广义预测控制

合集下载

广义预测控制理论及其应用研究

广义预测控制理论及其应用研究

浙江大学博士学位论文摘要fI亡当面鎏I控赳作为预测控制中最具代表性的算法之一,多年来一直是研究领域最为活跃的预测控剑簋法。

它融合了预测控制与自适应控制的优点,可直接处理输入、输出约束,并对过程的时滞及阶次估计不准有好的鲁棒性,能适用于开环不稳定和非最小相位系统。

目前,线性单变量系统的广义预测控制理论发展得较为成熟,但实际中往往是多变量、非线性系践两方面的研究,主要内容如下:1.从算法、理论和应用三个方面概述了预测控制的发展历史及现状,重点介绍了广义预测控制及其改进算法。

机制能有机地结合起来,对系统的阶次估计不准有好的鲁棒性。

|}—-,3.I由于很难用常规方法获得非线性系统的精确模型,而神经网络具有能逼近任~非线性系统的能力,因此用神经网络实现非线性预测控制是处理复杂非线性问题的一种通用思路J‘本文提出了先用递归神经网络将非线性过程全局反馈线性化,然后在此基础上设计约束广义预测控制器的方法,并在控制算法中考虑了线性化带来的模型误差。

f对连续搅拌槽反应器的仿真说明了该算法的有效性。

k一4.;对预测控制器进行鲁棒性分析和设计一直都是预测控制研究领域的难点。

竭‘文结合模型误差上界的频域辨识结果和小增益理论分析了存在建模误差时广义预测控制器的稳定性,根据对模型误差上界的估计给出基于图形的鲁棒广义预测控制器的参数整定方法,并将这一结果应用于PUMA500机器人的关节力控制系统的鲁棒参数设计。

浙江大学博士学位论文5.推导了有约束的多变量广义预测控制算法,并给出状态空间实现。

(对Shell分馏塔的仿真研究结果表明,算法能有效地处理过程时滞和非最小相位特性,有良好的解耦性能,在跟踪性、抗干扰性等方面的控制效果优于动态矩阵控制算法。

}一—76简要概述了国内外催化裂化装置先进控制的现状,并根据我国催化裂化工业的具体情况,提出一些具有实际意义的建议。

7阳汽油的干点和轻柴油的倾点是反映流化催化裂倔主分馏塔产品质量指标的重要参数,但由于种种困难很难获得。

GPC控制说明文档

GPC控制说明文档

广义预测控制(GPC)1.GPC 基本原理介绍广义预测控制 (GPC) 是牛津大学的Clarke 等于1987年提出的,基于参数模型,它是以(CARIMA )受控自回归积分滑动平均模型的基础,并结合辨识和自校正机制,表现出良好的鲁棒性。

特点:(1)基于CARIMA 模型;(2)目标函数中对控制增量加权的考虑; (3)利用输出的远程预报; (4)控制时域长度概念的引入; (5)丢番图方程的递推求解; 1.1 预测模型假设系统基于下面的CARIMA 模型,)1(/)()1()()()(11∆ξk k u z B k Y z A +-=--其中,),(),(k u k y 和)(k ξ是系统的输出、输入和干扰信号。

a a n n z a z a z A ---+++= 1111)(,b b n n z b z b b z B +++=-- 1101)(,11--=z ∆,(1-z 是向后移时间算子),模型即 ∆ξ/)()1()2()1()()1()(101k n k u b k u b k u b n k y a k y a k y b n a n b a +--++-+-=-++-+ ,,/)()1()2()1()()1()(101∆ξk n k u b k u b k u b n k y a k y a k y b n a n b a +--++-+-+-----=i i b a ,是系数,用数据辨识得到。

为得到)(k y 的j 步向前预测值)(j k y +,考虑下面的丢番图方程组:Nj z F z z A z E j j j ,,1)()()(1111 =+∆=---- (2)简写成:j jj F z A E -+=∆1,其中j E 和j F 为待求多项式,a j j n F j E =∂-=∂,1,)1(110---+++=j j j z e z e e E ,aan n j j j j z f z f f F --+++= 11,)()1()(j k E j k u B E j k y A E j j j ++-+=+ξ∆∆ (3)将(2)代入(3)得:)()1()()1(j k E j k u B E j k y F z j j j j ++-+=+--ξ∆)()()1()(j k E k y F j k u B E j k y j j j +++-+=+ξ∆ (4)得到未来输出)(j k y +的预测值:),,1()()1()|(ˆN j k y F j k u B E k j k yj j =+-+∆=+ (5)为将)1(-+j k u B E j ∆中已知信息和未知信息分离开来,在考虑另一组丢番图方程:Nj H z G B E jj j j ,,1 =+=- (6)其中j G 和j H 为待求多项式,1,1-=∂-=∂b j j n H j G ,)1(1110----+++=j j j z G z g g G ,)1(1110----+++=b bn n jj j j z h z h h H , 将(6)代入(5)得:)()1()()1()1()()1()()|(ˆ0j k y j k u G k y F k u H j k u G k y F j k u H z G k j k yj j j j j j j j ++-+∆=+-∆+-+∆=+-+∆+=+-(7)求解j j j j H G F E ,,,的递推算法:jj j j j j j j j j j j j H z G B E f e A e F z F z e E E A z F E z A z A -+-+--+==-=+=-===)11()10()(,)9()1(,1)8()()(0111111∆在利用MA TLAB 仿真时,可以自编函数简化之。

水下机器人动力学模型辨识与广义预测控制技术研究

水下机器人动力学模型辨识与广义预测控制技术研究

水下机器人动力学模型辨识与广义预测控制技术研究1. 本文概述本文旨在探讨水下机器人动力学模型辨识及其在广义预测控制技术中的应用。

水下机器人作为一种高效的海洋探索工具,在海洋科学研究、海底资源勘探、军事防御等领域发挥着重要作用。

由于水下环境的复杂性和动态特性,对机器人的控制提出了更高的要求。

为此,本文首先回顾了水下机器人动力学模型的研究现状,分析了模型辨识在提高机器人控制性能中的关键作用。

接着,本文详细介绍了广义预测控制技术的原理及其在水下机器人控制中的应用。

通过构建精确的动力学模型,结合广义预测控制算法,可以有效提高水下机器人的控制精度和稳定性。

本文通过仿真实验验证了所提出方法的有效性,并对未来研究方向进行了展望。

2. 水下机器人动力学模型水下机器人的动力学模型是理解和控制其运动的基础。

在深入研究水下机器人的动力学模型之前,首先需要明确其工作环境的特殊性:水下环境的阻力、浮力、流体动力学效应以及水下机器人特有的推进机制等。

该模型通常包括质量、阻尼和刚度等参数,用以描述机器人在水下运动时所受的力和力矩。

动力学模型可以分为几个主要部分:线性动力学模型、非线性动力学模型以及考虑流体动力学效应的复杂模型。

线性动力学模型主要关注机器人在低速运动时的行为,它假设所有力和力矩与速度和位移成线性关系。

这种模型适用于初步设计和分析,但在高速或者复杂动作时可能不够准确。

非线性动力学模型则考虑了速度和位移的非线性关系,能够更准确地描述机器人在各种速度下的行为。

这需要更复杂的数学工具和计算方法,但可以提供更精确的预测和控制。

流体动力学效应的考虑则进一步增加了模型的复杂性。

水下机器人在运动过程中会受到水流、波浪以及其他流体动力学效应的影响。

这些因素需要通过实验数据和数值模拟来综合考虑,以确保模型的实用性和准确性。

在实际应用中,动力学模型的建立和辨识是一个迭代过程。

通过实验和仿真,不断调整和优化模型参数,以提高模型的预测能力和控制精度。

一种克服模型参数失配的广义预测控制算法

一种克服模型参数失配的广义预测控制算法

一种克服模型参数失配的广义预测控制算法1 引言在控制领域中,预测控制(Predictive Control)是一种高级控制方法,该方法通过对未来系统行为的预测进行优化,能够实现较高的控制性能。

但是在实际应用中,由于模型不准确、参数变化等因素,往往会导致预测控制的失效。

为了克服这些问题,本文将介绍一种广义预测控制算法(Generalized Predictive Control,简称GPC),以其在模型参数失配情况下的优秀控制效果为例,探讨预测控制的改进之路。

2 预测控制的基本原理预测控制的基本思路是通过对系统行为的预测,通过最优化问题求解方式得到控制策略。

预测控制的过程包括两个关键步骤:预测(Prediction)和最优化(Optimization)。

在预测阶段,控制器使用系统的动态模型对未来的状态与输出进行预测,得到一组序列预测值。

在最优化阶段,使用一个性能指标(如MPC的代价函数)对控制器的控制策略进行评价,并找到最优策略,使得预测值与实际输出尽可能相近,同时优化目标最小化。

最终得到的解决方案应用于系统。

3 模型参数失配测量误差、模型不确定性、传感器误差等因素都可能导致参数的失配。

模型参数失配可以分为两类:常系数失配和时变失配。

常系数失配指的是模型中的某些参数在不确定的基础上保持不变。

在这种情况下,如果只使用标准的预测控制算法,将会导致控制效果变差且不稳定。

时变失配指的是模型的参数随时间变化。

模型参数的不确定性随着时间的推移而增加,因此预测控制算法的精度也会逐渐下降,导致控制响应变慢。

4 广义预测控制算法(GPC)广义预测控制(Generalized Predictive Control)是一种基于ARMA模型的改进方案,可以很好地解决模型参数失配问题。

ARMA(Auto-Regressive Moving Average)模型是常用的线性时不变系统模型,它通常用于描述具有随机噪声的信号序列。

gpc原理

gpc原理

gpc原理GPC原理。

GPC(Generalized Predictive Control)是一种广义预测控制方法,它是一种基于模型的控制策略,可以用于多变量、非线性、时变系统的控制。

GPC控制器通过对系统进行建模和预测,来实现对系统的控制。

本文将对GPC原理进行详细介绍,包括其基本原理、控制流程和应用特点。

首先,我们来介绍GPC的基本原理。

GPC控制器的设计基于对系统的数学模型,通过对系统的建模和预测,来实现对系统的控制。

在GPC中,首先需要建立系统的数学模型,通常采用ARX(自回归外推)模型或者ARMAX(自回归滑动平均外推)模型来描述系统的动态特性。

然后,利用这个模型进行预测,得到未来一段时间内系统的响应。

最后,根据预测的结果,通过优化算法计算出控制输入,从而实现对系统的控制。

接下来,我们来介绍GPC的控制流程。

首先,需要对系统进行建模,得到系统的数学模型。

然后,利用这个模型进行预测,得到未来一段时间内系统的响应。

接着,通过优化算法计算出控制输入,将其应用于系统中,实现对系统的控制。

在实际应用中,通常需要不断地对系统进行建模和预测,以及优化控制输入,来实现对系统的稳定控制。

最后,我们来介绍GPC的应用特点。

首先,GPC可以应用于多变量系统的控制,能够处理多个输入和输出之间的相互影响。

其次,GPC可以应用于非线性系统的控制,能够处理系统动态特性的非线性影响。

此外,GPC还可以应用于时变系统的控制,能够处理系统参数随时间变化的影响。

总的来说,GPC是一种灵活、高效的控制方法,适用于各种复杂的控制系统。

综上所述,GPC是一种基于模型的控制策略,通过对系统进行建模和预测,来实现对系统的控制。

它具有灵活、高效的特点,适用于多变量、非线性、时变系统的控制。

希望本文的介绍能够帮助大家更好地理解和应用GPC控制方法。

广义预测控制

广义预测控制

广义预测控制(G P C)GPC算法仿真被控对象模型动态矩阵控制算法的编程原理(1)设置GPC参数,例如采样周期,预测时域,控制时域,截断步长等。

(2)建立系统阶跃响应模型(3)设置初始时刻参数,例如系统的初始时刻值,柔化系数等。

(4)计算参考轨迹(5)计算控制作用增量(6)实施GPC控制(7)输出结果,绘制曲线GPC算法:1.初选控制参数:Q、R、P、M、 ysp 、?、?(z-1)2.采集输入、输出样本{?u(k),?y(k)}3.用RLS算法估计参数4.递推求解Diophantine方程,得到5.计算F(k)6.在线计算控制器参数d T7.得到控制增量?u(k)和控制输入u(k) =u(k-1) +?u(k)+1 ?k,进入下一周期预测计算和滚动优化GPC程序:%Clarke广义预测控制(C=1)(对象参数已知)%N1=d、N、Nu取不同的值clear all;close all;a=cell(1,2) ;b=cell(1,2) ;c=cell(1,1);d=cell(1,1);%对象参数syms k;k=length(k);if (0<=k<=150)a=[1 ]; b=[ ]; c=1; d=1;elseif (150<k<=300)a=[1 ]; b=[ ]; c=1; d=1;elseif (300<k<=450)a=[1 ]; b=[ ]; c=1; d=1;else (450<k<=600)a=[1 ]; b=[ ]; c=1; d=1;endna=length(a)-1;b=[zeros(1,d-1) b];nb =length(b)-1;%na、nb为多项式A、B阶次(因d!=1,对b添0)aa=conv(a,[1 -1]);naa=na+1;%aa的阶次N1=d;N=15;Nu=5;%最小输出长度、预测长度、控制长度gamma=1*eye(Nu);alpha=;%控制加权矩阵、输出柔化系数L=600;%控制步数uk=zeros(d+nb,1);%输入初值:uk(i)表示u(k-i)duk=zeros(d+nb,1);%控制增量初值yk=zeros(naa,1);%输出初值w=10*[ones(L/4,1);-ones(L/4,1);ones(L/4,1);-ones(L/4+d,1)]; %设定值xi=sqrt*randn(L,1);%白噪声序列%求解多步Diophantine方程并构建F1、F2、G[E,F,G]=multidiophantine(aa,b,c,N);G=G(N1: N, : );F1=zeros(N-N1+1,Nu); F2=zeros(N-N1+1,nb);for i=1:N-N1+1for j=1:min(i,Nu); F1(i,j)=F(i+N1-1,i+N1-1-j+1);endfor j=1:nb; F2(i,j)=F(i+N1-1,i+N1-1+j);endendfor k=1:Lif (1<=k<=150)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)elseif (150<k<=300)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)elseif (300<k<=450)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)else (450<k<=L)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)end%参考轨迹yr(k)=y(k);for i=1:Nyr(k+i)=alpha*yr(k+i-1)+(1-alpha)*w(k+d);endYr=[yr(k+N1:k+N)]';%构建向量Yk(k)%求控制量dU=inv(F1'*F1+gamma)*F1'*(Yr-F2*dUk-G*Yk); %ΔU du(k)=dU(1); u(k)=uk(1)+du(k);%更新数据for i=1+nb:-1:2uk(i)=uk(i-1);duk(i)=duk(i-1);enduk(1)=u(k);duk(1)=du(k);for i=naa:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endsubplot(2,1,1);plot(time,w(1:L),'m:',time,y);xlabel('k');ylabel('w(k)、y(k)');legend('w(k)','y(k)');subplot(2,1,2);plot(time,u);xlabel('k');ylabel('u(k)');function[E,F,G]=multidiophantine(a,b,c,N)%********************************************************** *%功能:多步Diophanine方程的求解%调用格式:[E,F,G]=sindiophantine(a,b,c,N)(注:d=1)%输入参数:多项式A,B,C系数向量及预测步数(共4个)%输出参数:Diophanine方程的解E,F,G(共3个)%********************************************************** ***na=length(a)-1;nb =length(b)-1;nc=length(c)-1;%A、B、C的阶次%E、F、G的初值E=zeros(N);E(1,1)=1;F(1,:)=conv(b,E(1,:));if na>=ncG(1,:)=[c(2:nc+1) zeros(1,na-nc)]-a(2:na+1);%令c(nc+2)=c(nc+3)=...=0elseG(1,:)=c(2:nc+1) -[a(2:na+1)-zeros(1,nc-na)];%令a(nc+2)=a(nc+3)=...=0end%求E、F、Gfor j=1:N-1for i=1:jE(j+1,i)=E(j,i);endE(j+1,j+1)=G(j,1);for i=2:naG(j+1,i-1)=G(j,i)-G(j,1)*a(i);endG(j+1,na)=-G(j,1)*a(na+1);F(j+1,: )=conv(b,E(j+1,:));end仿真结果N=15 Nu=5 alpha=N=10 Nu=5 alpha=N=15 Nu=3 alpha=N=15 Nu=3 alpha=结论可以得出,当保持其他参数不变而改变一或几个变量时会有不同的情形。

广义预测控制原理-江苏科技大学

广义预测控制原理-江苏科技大学

广义预测控制理论1引言预测控制思想主要是在70年代形成的,进人80年代后,随着模型算法控制(MAC)的问世,相继出现了动态矩阵控制(DMC)、扩展时域预测自适应控制(EPSAC)等结构各异的预测控制算法,这些算法分别基于有限脉冲响应和有限阶跃响应模型,算法简单,容易实现,1984年,Clarke及其合作者在上述算法的基础上,提出了广义预测控制(GPC)思想及基本方法,GPC基于参数模型,引入了不相等的预测水平和控制水平,使系统设计更灵活。

由于广义预测控制具有预测模型、滚动优化和反馈校正三个基本特征,因而具有优良的控制性能和鲁棒性,被认为是具有代表性的预测控制算法之一并被广泛应用于过程工业中。

近年来,广义预测控制吸引了众多学者对其进行研究国际上,各大控制会议和杂志对它也非常关注,近10年来的美国控制会议(ACC)、IEEE决策与控制会议(CDC)和国际自动控制联合会(IFAC)世界大会几乎每年都有关于预侧控制的专题分组及以预侧控制为主题的工作讨论会,1995年在韩国又召开了关于预测控制的国际讨论会,在广义预测控制方面也发表了不少综述文献和著作。

2广义预测控制2.1广义预测控制的基本算法GPC采用如下CARIMA模型来描述系统A(z ' )y(t) = B(z ')u (t -1) C (z (t) / :其中A(z」),B(z'),C(z')分别是阶数位的n a,n b,n c的z J的多项式,A(z‘)和C(z‘)是首一多项式,{u(t)},{y(t)},「(t)}分别表示系统的输入、输出和白噪声序列,‘刊。

广义预测控制使用如下的二次目标函数N2 NMJ =E{ ' [y(t k) 一,(t k)]2亠二;[:u(t k -1)]2} (2.1.2) k 出1 k =1其中,N1,N2分别为最小、最大预测长度,N M为控制长度,满足关系仁N「N2,N M乞N2且当k>N2时看,假定u(t k-T,■为控制加权序列,(2.1.1)■'(t k)是经柔化后的参考值,在GPC 中,不要求对象输出直接跟踪设定值'■, 只要求y(t)沿着参考轨迹到达设定值■。

广义预测控制,算法及仿真实例

广义预测控制,算法及仿真实例

广义预测控制算法及实例分析一.广义预测控制算法1.广义预测控制的提出广义预测控制是预测控制中三种常见算法之一。

预测控制的提出并不是某一种统一理论的产物,而是源于工业实践,并在工业实践过程中发展和完善起来的一类新型计算机控制算法。

预测控制不会过分依赖被控对象的精确数学模型,能很好的应对工业对象的结构、参数的不确定性,且用工业计算机较容易实现。

2.广义预测控制的基本原理广义预测控制是预测控制中最具代表性的算法,他有三方面的特点:基于传统的参数模型,模型参数少;是在自适应发展过称中发展起来的,保留了自适应发展的优点且更具鲁棒性;采用多步预测、滚动优化、反馈校正更适于工业应用。

广义预测控制基本原理:预测模型、滚动优化、反馈校正预测模型:预测控制的模型称为预测模型。

预测控制对模型的要求只强调其功能而非结构,只要模型可利用过去己知数据信息预测系统未来的输出行为,就可以作为预测模型。

在DMC、MAC等预测控制策略中,采用了阶跃响应、脉冲响应等非参数模型,而GPC预测控制策略则多选择CARIMA参数模型。

滚动优化:预测控制是一种优化控制算法,通过某一性能指标的最优来确定未来的控制作用。

预测控制的优化标准不是采用一成不变的全局最优化目标,而是采用滚动式的有限时域优化策略。

优化不是一次离线进行,而是反复在线进行。

在每一采样时刻,优化性能指标只涉及到未来有限的时域,而到下一采样时刻,这一优化时域同时向前推移。

因此,预测控制在每一时刻有一个相对于该时刻的优化性能指标,即实现滚动优化。

反馈校正:预测控制算法在进行滚动优化时,优化的基点应与系统实际一致。

但作为基础的预测模型,只是对象动态特性的粗略描述,可能与实时状态不慎符合。

这就需要用附加的预测手段补充模型预测的不足,或对基础模型进行在线修正。

预测控制算法在通过优化确定了一系列未来的控制作用后,每次只是实施当前时刻的控制作用。

到下一采样时刻,则首先检测对象的实际输出,并利用这一实时信息对基于模型的预测进行修正,然后再进行新的优化。

多变量广义预测控制

多变量广义预测控制
多变量广义预测控制
在线估计参数的控制方法
01 背景
目录
02 多变量控制
03 广义预测控制
04 算法的改进
05 控制系统的分析
多变量广义预测控制(Multivariable generalized predictive control )具有多个输入量或输出量的 采用传统的参数模型(如CARIMA模型),参数的数目较少,对于过程参数慢时变的系统,易于在线估计参数的控制 方法。
多变量控制
简介
优点
具有一个以上输入或一个以上输出的系统,在那里任一输入的变动产生来自一个以上输出的一个响应,叫做 多变量系统。一般说来,会有m个输入和l个输出,如图1所示。如果了l=m,这系统叫做方形系统。
图1
如果任一输入的变动产生来自一个以上输出的一个响应,那么这是由于系统中某种内部耦合或传输通路引起 的,通常,当处理一个特定输入时,一个特定的系统输出端会比其他输出端起更大的响应,其他输出端对这个物 入变动的响应叫做交互作用。
控制系统的分析
稳定性分析
鲁棒性分析
当预测模型没有建模误差时, Clarke等人从状态空间的角度对 GPC的稳定性进行了分析,认为当开环系统 能稳可测时,通过选择适当的参数,可以使闭环系统在有限时域内稳定,并产生稳定的状态最小拍控制;当预测 长度趋近无穷大时,闭环系统稳定,但算法的计算量将随预测长度的增加而呈指数倍增长,这就要求预测长度在 适当的范围之内,因此在一般情形下, GPC算法并不一定能保证系统的闭环稳定性。针对这个问题,众多学者进 行了大量的研究,有些学者通过对算法的改进来保证系统的闭环稳定性,如上节中提到的各种稳定的广义预测控 制算法;还有一些学者则直接从理论上来分析 GPC的稳定性,这些分析主要有两类:基于内模控制原理和状态空 间分析。

PI型广义预测控制算法及其在温度控制中的应用研究

PI型广义预测控制算法及其在温度控制中的应用研究

PI型广义预测控制算法及其在温度控制中的应用研究摘要广义预测控制(Generalized Predictive Control)是80年代产生的一种新型计算机控制方法是预测控制中最具有代表性的算法之一,它一出现就受到了国内外控制理论界和工业界的重视成为研究领域最为活跃的一种预测控制算法。

本文对广义预测控制理论进行深入研究,包括其基本理论、算法的优点及一些重要参数对系统性能的影响,使用Matlab和Visual Basic软件编写程序,实现PI型广义预测控制算法对工业过程常见的一阶、二阶带纯滞后对象的控制仿真,并将该算法应用于温度控制,得到了良好的控制效果.该算法对模型的精度要求不高,具有多步预测、滚动优化和反馈校正三个基本特征,具有优良的控制性能和鲁棒性,由于在优化中引入了多步预测思想,使其抗扰动及时延变化等能力显著提高。

主要工作内容如下:(1)研究了广义预测控制算法和传统的PID控制算法的原理,并分析比较了它们在实际应用中的优缺点。

(2)研究了基于GPC的PI型控制算法,将其应用于温度控制,并用MATLAB仿真,仿真结果表明,该算法在快速性和稳态性能方面均有较优秀的表现。

关键词:PI广义预测控制(GPC),系统仿真,丢番图方程,温度控制THE STUDY OF PI TYPE GENERALIZED PREDICTIVE CONTROL AND ITS APPLICATION INTEMPERATURE PROCESSABSTRACTGeneralized Predictive Control (GPC), which appeared in 80’s, is a new type of computer control method and one of the most representative algorithm. It has received increasing attention in the field of control and industry.The generalized predictive control was researched in the paper concluding the basic theory, the advantage of the algorithm and the effect of some important parameters. Matlab and Visual Basic are adopted to programming. Furthermore, simulation research was done for the first order and the second order model of industry process. Also, the algorithm was applied on temperature process. GPC algorithm doesn’t depend on exact model, which has three characters in the forms of multiple forecasting, roll optimize and feedback correction. Meanwhile, it shows well qualities of control and great robust. The ability of disturbance rejection and time-varying restraining has been enhanced greatly with the multi-step forecasting concept. The main idea is as follows,(1) The principles of the generalized predictive control and the traditional PID control were analyzed, and their advantages and defaults in practice were compared.(2) The PI type generalized predictive control and its application in temperature control was studied. Matlab simulation research showed that the improved algorithm can obtain better control effect in both the response time and the steady-state performance.Key words: PI type Generalized Predictive Control , System Simulation,Diophantine Equation, Temperature Process目录摘要 ........................................................................ I ABSTRACT . (II)一、绪论 (1)1.1 先进控制发展概述 (1)1.1.1 先进控制的产生背景 (1)1.1.2 先进控制的种类 (1)1.2 预测控制发展概述 (4)广义预测控制发展概述 (5)二、PID 算法和仿真 (6)2.1 PID 算法 (6)2.1.1 对象辩识和初始参数整定 (8)2.2 PID 控制参数对系统性能影响 ........................................... 9 .比例增益p K 对系统性能的影响 ....................................... 9 积分时间i T 对控制性能的影响 .. (10)2.2.3 微分时间d T 对控制性能的影响 (10)2.3 被控对象离散数学模型的建立 (10)2.4 PID 控制仿真 (13)三、广义预测控制基本算法 (19)预测模型 (19)3.2 j 步导前输出 (20)3.3 Diophantine 方程的递推求解 (21)3.4 多步输出预测 (23)最优控制率的计算 (24)系统的IMC 结构 (25)四、PI 型广义预测控制算法 (30)控制算法的推导 (30)4.2 简化控制算法的推导 (33)4.3 仿真研究 (35)4.3.1 主要调节过程及结论 (35)4.3.2 PIGPC 与PID 仿真结果比较 (37)4.3.3 PIGPC 的抗干扰性,随动性,鲁棒性 (37)4.3.4 比例因子P K 和积分因子I K (39)五、总结 (41)参考文献 (42)致谢 (44)附录 (45)一、绪论先进控制发展概述先进控制作为现今工业控制界的主要控制策略,经过了近半个世纪的发展才得以达到今天的发展水平。

广义预测控制算法

广义预测控制算法

广义预测控制算法
广义预测控制算法(Generalized Predictive Control,GPC)是
一种经典的模型预测控制算法,通过构建动态模型进行系统预测,并根据预测结果调整控制策略,以实现对系统的控制。

GPC算法的核心思想是利用系统的输入和输出数据建立系统
的数学模型,然后利用该模型进行系统的预测。

在每个控制周期内,GPC算法通过最小化预测误差的平方和来优化控制策略,从而实现系统的动态调节。

GPC算法的步骤如下:
1. 建立系统的数学模型,一般采用传递函数或状态空间模型。

2. 根据已知的输入和输出数据,利用最小二乘法或其他拟合方法来估计模型参数。

3. 根据建立的模型进行系统的预测,预测未来若干个时刻的系统输出。

4. 根据预测结果和系统的期望输出,计算预测误差,并通过最小化预测误差的平方和来优化控制策略。

5. 根据优化的控制策略,确定系统的控制输入,并应用于系统。

GPC算法具有较好的鲁棒性和自适应性,可以应用于多种控
制问题。

然而,由于需要建立系统的数学模型,并且对模型参数的估计比较困难,使得算法的实际应用存在一定的困难和局限性。

同时,算法的计算复杂度较高,实时性较差。

总的来说,广义预测控制算法是一种经典的模型预测控制算法,
适用于多种控制问题,但在实际应用中需要解决模型建立和参数估计的问题,并考虑算法的计算复杂度。

第10章-广义预测控制

第10章-广义预测控制

10.1.1 预测模型
其中
Gj
(z1)
g j,0
g
z1
j,1
g j, j1z j1
H (z ) h z 则由式(10.1.4)和式(10.11.5)可以得到1
j
j,1
hj ,2 z 2
hj,nb znb
式出y信((1k0息.1及.4未)j、|来式k的)(1输0.入1G.5值j)(、, z就式可1()1以0.u预1.(7测k)和对式象j(未10来.11的.|8)k输都)出可。作H为jG(PzC1的)预u测(模k)型。F这j样(z, 根1)据y(已k知) 的(输10入.1输.7)
(k
)
FN
(
z
1
)
y
(k
)
均可由 k 时刻已知的信息 y , ≤k 以及 u , k 计算。
(10.1.15)
如果记
y(k | k) y(k 1| k), , y(k N | k)T
u(k | k) u(k | k), ,u(k Nu 1| k)T
f (k) f1(k), , fN (k)T
给出了一个
E j、(z1) Fj (的z递1)推算法。
首先, 根据式(10.1.3)可写出
1 Ej (z1)A(z1) z j Fj (z1)
1 Ej1(z1)A(z1) z( j1) Fj1(z1)
两式相减可得
A(z1
)[E
j
1 ( z 1
)
E
j
(z
1
)]
z
j
[
z
F 1 j 1
(z1
)
Fj
10.1.1 预测模型
式中,z 1 是后移算子,表示后退一个采样周期的相应的量,即 z1y(k) y(k 1) ,z1u(k) u(k 1);

基于支持向量机的广义预测控制算法研究的开题报告

基于支持向量机的广义预测控制算法研究的开题报告

基于支持向量机的广义预测控制算法研究的开题报告一、选题背景:随着工业技术的不断进步,控制技术也得到了飞速发展。

针对工业控制中涉及到的非线性、时变性、模型未知等复杂问题,预测控制(MPC)作为一种优秀的控制策略,被广泛应用于工业过程中。

传统的预测控制方法主要针对线性模型设计,对于非线性模型的预测和控制效果不佳,因此需要更高效、准确的算法来解决这些问题。

支持向量机(SVM)是一种经典的非线性分类和回归模型,具有理论保证、泛化能力强等特点,在国内外学术界和工业界得到了广泛的应用。

半监督学习、多分类问题、序列预测和时序预测等领域都有良好的表现。

SVM与MPC的结合可以充分利用SVM的优越性,提高预测控制的效果,广泛应用于各种工业过程中。

二、研究目的:通过本次研究,探索SVM与MPC结合的广义预测控制算法,提高预测控制的精度和稳定性,推广应用于工业领域。

三、研究内容:1. SVM的基本原理及其在预测控制中的应用;2. 普通预测控制算法及其存在的问题;3. SVM与MPC的结合,构建广义预测控制算法;4. 通过实验验证该算法的优越性。

四、研究方法:本次研究采用计算模拟的方法,通过MATLAB软件编程实现SVM与MPC的广义预测控制算法,并与传统的预测控制算法进行比较验证。

五、研究意义:1. 提高预测控制精度和稳定性,推广应用于工业过程;2. 丰富SVM应用领域,推动SVM算法的研究和发展。

六、预期结果:通过本次研究,构建了一种基于支持向量机的广义预测控制算法,提高了工业过程的控制效率和稳定性。

同时,本研究所得到的结论对于工业控制技术的发展和工业生产的提高等方面具有重要意义和推广价值。

七、翻译英文:Research Report on Generalized Prediction Control Algorithm Based on Support Vector MachineI. Background:With the continuous progress of industrial technology, control technology has also developed rapidly. In view of the complex problems such as nonlinearity, time-varying, and model uncertainty involved in industrial control, Model Predictive Control (MPC) has been widely used in industrial processes as an excellent control strategy. Traditional predictive control methods mainly design linear models, and the prediction and control effect of nonlinear models are poor. Therefore, more efficient and accurate algorithms are needed to solve these problems.Support Vector Machine (SVM) is a classic nonlinear classification and regression model with theoretical guarantees and strong generalization capabilities. It has been widely used in academia and industry at home and abroad. Good performance in fields such as semi-supervised learning, multi-class problems, sequence prediction, andtime series prediction. The combination of SVM and MPC can fully utilize the advantages of SVM and improve the effect of predictive control, and is widely used in various industrial processes.II. Research purposes:Through this research, explore the generalized prediction control algorithm of SVM and MPC combination, improve the accuracy and stability of predictive control, and promote its application in the industrial field.III. Research content:1. The basic principle of SVM and its application in prediction control;2. The ordinary predictive control algorithm and its existingproblems;3. The combination of SVM and MPC to construct the generalizedprediction control algorithm;4. Verify the superiority of the algorithm through experiments.IV. Research methods:This research uses computational simulation method to realize the generalized prediction control algorithm of SVM and MPC combination through MATLAB programming, and compare it with the traditionalprediction control algorithm for verification.V. Research significance:1. Improve the accuracy and stability of predictive control andpromote its application in industrial processes;2. Enrich the application fields of SVM and promote the researchand development of SVM algorithm.VI. Expected results:Through this research, a generalized prediction control algorithmbased on support vector machine has been constructed, whichimproves the control efficiency and stability of industrial processes. Atthe same time, the conclusions obtained in this study are of greatsignificance and promotion value for the development of industrialcontrol technology and the improvement of industrial production.Translation: Chen Kangjie。

lecture 5 - 广义预测控制GPC

lecture 5 - 广义预测控制GPC

自校正控制
自校正控制的原理及组成见图,其 中参数估计器的功用是根据被控对象的
输入ut及输出 yt信息连续不断地估计
控制对象参数ˆ 。参数估计的常用算法 有随机逼近法、最小二乘法、极大似然 法等。调节器的功用是根据参数估计器 不断送来的参数估值 ˆ 。通过一定的控制 算法,按某一性能指标不断地形成控制作用。
在只存在不确定环境因素,但系统模型具有确定性的情况 下,这是随机控制需要解决的问题;而自适应控制是解决具有 数学模型不确定性为特征的最优控制问题。这时如果系统基本 工作于确定环境下,则称为确定性自适应控制;如果系统工作 于随机环境下,则称为随机自适应控制。
Predictive Control
自适应控制的提法可归纳为:在系统数学模型不确定的条 件下(工作环境可以是基本确定的或是随机的),要求设计控 制规律,使给定的性能指标尽可能达到及保持最优。
的初值则可按下式计算predictivecontrol滚动优化滚动优化数学期望输出的期望值优化时域的始值和终值控制时域控制加权系数一般取常数其中predictivecontrol滚动优化滚动优化输出期望值输出期望值对象输出期望值可采用mac中的参考轨迹形式其中predictivecontrol滚动优化滚动优化预测输出预测输出由预测模型可以写出未来预测的输出2021predictivecontrol2120其中predictivecontrol滚动优化滚动优化最优控制量最优控制量其中即时控制量为为矩阵的第一行predictivecontrol在线辨识与校正在线辨识与校正gpc只用一个模型通过对其在线修正来给出较准确的预测其中把模型参数与数据参数分别用向量形式描述predictivecontrol在线辨识与校正在线辨识与校正采用渐消记忆的递推最小二乘法估计参数向量遗忘因子一般取权因子正定的协方差阵初始取为一足够大正数初始其中predictivecontrol广义预测控制在线算法广义预测控制在线算法根据最新的输入输出数据用递推最小二乘法估计模型参数得到根据得到的按递推公式5计算根据计算的元素并计算f重新计算出并计算控制作用ut将其作用于对象predictivecontrolgpcgpcdmcdmc预测模型预测模型滚动优化滚动优化反馈校正反馈校正predictivecontrolthankyouthankyou

GPC文档

GPC文档


(
k
)
=

(
k
-1)
+
1
+
f
P(k T (k)
-1)f (k ) P (k -1)f
(k
)
éëDy
(
k
)
-
qˆT
(k
-1)f
(
k
)ùû
(21)
P
(
k
)
=
P
(k
-1)
-
P
(k -1)f (k )fT 1+fT (k)P(k
(k)P - 1)f
(k (k
-
)
1)
(22)
4
姓名:牛攀峰
学号:2120100307
方程
EjB = Gj + z-jH j
G j = g0 + g1z-1 + L + g j-1z-( j-1)
Hj
=
hj0
+ hj1z-1
+L +
h z -(nb-1) jnb-1
将(6)式代入(5)式,得
(6)
( ) yˆ (k + j | k ) = Gj + z- j H j Du (k + j -1) + Fj y (k )
由图(3)发现系统在刚开始时跟踪效果比较差,这是因为系统模型参数最 初时未知,模型参数需要进过一段时间的辨识之后才能获得,之后就会很快进入 到稳定状态了。
之后我们再设 na=4, nb=2,得到的仿真结果为:
图(4)
结果中,辨识的模型系数 A 为[1,-0.88496,-0.31555,0.1684,0.076418], 模 型系数 B 为[1.079,1.2983,0.59091],得到的辨识模型为:

gpc控制算法

gpc控制算法

gpc控制算法GPC(Generalized Predictive Control,广义预测控制)是一种基于模型的控制算法,用于实现系统的自动控制。

它通过对系统建立的数学模型进行预测,然后根据预测结果调整控制器的输出,以实现对系统的稳定控制。

GPC算法的基本步骤如下:1. 建立系统模型:首先根据实际系统的特性和数学模型,建立一个能够描述系统动态行为的数学模型,通常采用离散时间的状态空间模型。

2. 预测控制器设计:根据系统模型,设计一个预测控制器,该控制器根据当前的系统状态和控制输入预测系统未来的响应。

预测控制器通常采用递推的方式,不断更新预测结果。

3. 优化问题求解:通过数学优化方法,将控制目标转化为一个最优化问题,并求解该问题以获取最优的控制输入。

通常使用二次规划等数值优化技术。

4. 控制器输出更新:根据求解所得的最优控制输入,更新控制器的输出,并应用到实际系统中。

5. 反馈修正:根据实际系统的反馈信息,通过比较实际输出与预测输出的差异,修正控制器的参数以提高控制效果。

GPC算法的特点包括:- 预测性:GPC算法通过对未来系统响应的预测来进行控制,能够更好地适应系统动态变化,并处理时延和非线性等问题。

- 自适应性:GPC算法具有自适应性能,能够根据系统的变化动态调整控制器的输出。

- 鲁棒性:GPC算法能够有效地处理系统参数变化和测量噪声等不确定性,提高系统的稳定性和鲁棒性。

- 易于实现:GPC算法的计算过程相对简单,可以较容易地实现在实际控制系统中。

需要注意的是,GPC算法的实施需要一个较为精确的系统模型,并对其参数进行准确的估计。

此外,算法的性能还受到采样时间、控制器参数的选择等因素的影响。

因此,在实际应用中需要仔细分析系统特性,并对GPC算法进行适当的调整和优化。

广义预测控制

广义预测控制

广义预测控制(GPC)是一种鲁棒性强、能够有效地克服系统滞后、可应用于开环不稳定非最小相位系统的先进控制算法,但由于它需要Diophantine方程计算、矩阵求逆和最小二乘的递推求解,因此计算量很大,本文针对此缺陷提出四种不基于对象模型且实时性高的广义预测控制快速算法,为广义预测控制应用于实时性要求高的快速系统奠定了理论基础,具体研究工作如下。

(1)对参数未知单输入单输出线性系统提出一种参数自适应直接广义预测控制(DGPC)方法,该方法直接辨识广义预测控制器参数,即基于广义误差估计值对控制器参数和广义误差估计值中的未知向量进行自适应调整。

然后利用中值定理将参数未知单输入单输出非线性系统线性化变为时变线性系统,在自适应辨识中对时变参数采用三次样条函数进行逼近,以此将单输入单输出线性系统直接广义预测控制方法推广到单输入单输出非线性系统。

最后,将此方法推广到多输入多输出线性系统和非线性系统。

(2)对参数未知单输入单输出线性系统提出一种径向基函数(RBF)网络的直接广义预测控制方法,该方法利用RBF网络来逼近控制增量表达式,直接设计出广义预测控制器,并基于广义误差估计值对控制器参数即网络权值和广义误差估计值中的未知向量进行自适应调整。

然后将单输入单输出线性系统RBF网络广义预测控制方法推广到单输入单输出非线性系统。

最后,将此方法推广到多输入多输出线性系统和非线性系统。

(3)对参数未知单输入单输出线性系统提出一种模糊自适应的直接广义预测控制方法,该方法利用模糊逻辑来逼近控制增量表达式,直接设计出广义预测控制器,并基于广义误差估计值对控制器参数权值和广义误差估计值中的未知向量进行自适应调整。

然后将单输入单输出线性系统模糊自适应广义预测控制方法推广到单输入单输出非线性系统。

最后,将此方法推广到多输入多输出线性系统和非线性系统。

(4)提出一种基于灰色模型的多变量广义预测控制算法,该算法所需估计的参数少,而且多步情况下无需求解Diophantine方程,从而使计算量明显减少,极大的提高了实时性。

第三章 预测控制V1.0

第三章 预测控制V1.0

优化常用性能指标:
J q e (k j ) rj2 u 2 (k j )
i 1 2 2 i j 0
P
L 1
(3.16)
对偏差大小的约束
对控制作用的约束
设控制步程为L,滚动优化就是确定当前及未来共计L个时刻的控制增量
u(k ), u(k 1), , u(k L 1)
k+N k+N+1
u
u
u
u
u
图3.5 单位阶跃响应曲线
k
y(k ) a1u (k 1) a2 u (k 2) aN u (k N ) (3.1) u(k i) u(k i) u(k i 1) 控制增量
u
矩形脉冲信号转换成两个方向相反、 幅值相等的阶跃信号
预测控制是一种基于预测模型的控制方法。 根据已知的预测模型以及过程信息预测出对象在未来P个 时刻的输出 yM (k ) (k 1,2,, P) 。 预测输出
P:预测步程
预测控制算法就是要按照预测输出yM (k ) 与期望输出yR (k )
的偏差 e(k ) yM (k ) yR (k ) ,计算当前及未来L个时刻的控制 量 u(k )(k 0,1,2,, L 1) ,使某一控制性能指标J最优。
过去 未来
ys
yM (k )
y R (k )
y(k)
u(k)
0
1
2
L-1
P
k
滚动优化示意图
滚动优化
3.2 预测控制的基本原理
预测控制是一种基于反馈校正的闭环控制算法。 由于模型误差和未来时刻的干扰、噪声不容易测量。 反馈校正:利用系统实际输出与预测输出的偏差,对预测模型进行校 正。 滚动优化是为了减小和消除预测模型误差对优化结果的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广义预测控制(GPC)是一种鲁棒性强、能够有效地克服系统滞后、可应用于开环不稳定非最小相位系统的先进控制算法,但由于它需要Diophantine方程计算、矩阵求逆和最小二乘的递推求解,因此计算量很大,本文针对此缺陷提出四种不基于对象模型且实时性高的广义预测控制快速算法,为广义预测控制应用于实时性要求高的快速系统奠定了理论基础,具体研究工作如下。

(1)对参数未知单输入单输出线性系统提出一种参数自适应直接广义预测控制(DGPC)方法,该方法直接辨识广义预测控制器参数,即基于广义误差估计值对控制器参数和广义误差估计值中的未知向量进行自适应调整。

然后利用中值定理将参数未知单输入单输出非线性系统线性化变为时变线性系统,在自适应辨识中对时变参数采用三次样条函数进行逼近,以此将单输入单输出线性系统直接广义预测控制方法推广到单输入单输出非线性系统。

最后,将此方法推广到多输入多输出线性系统和非线性系统。

(2)对参数未知单输入单输出线性系统提出一种径向基函数(RBF)网络的直接广义预测控制方法,该方法利用RBF网络来逼近控制增量表达式,直接设计出广义预测控制器,并基于广义误差估计值对控制器参数即网络权值和广义误差估计值中的未知向量进行自适应调整。

然后将单输入单输出线性系统RBF网络广义预测控制方法推广到单输入单输出非线性系统。

最后,将此方法推广到多输入多输出线性系统和非线性系统。

(3)对参数未知单输入单输出线性系统提出一种模糊自适应的直接广义预测控制方法,该方法利用模糊逻辑来逼近控制增量表达式,直接设计出广义预测控制器,并基于广义误差估计值对控制器参数权值和广义误差估计值中的未知向量进行自适应调整。

然后将单输入单输出线性系统模糊自适应广义预测控制方法推广到单输入单输出非线性系统。

最后,将此方法推广到多输入多输出线性系统和非线性系统。

(4)提出一种基于灰色模型的多变量广义预测控制算法,该算法所需估计的参数少,而且多步情况下无需求解Diophantine方程,从而使计算量明显减少,极大的提高了实时性。

上述四种方法都不需要被控对象数学模型,因此为更好地解决含参数不确定性对象的广义预测控制问题提供了一种新思路,同时避免了Diophantine方程的在线求解及矩阵求逆。

广义预测控制需要实现四个功能:1、参数估计,可以用递推最小二乘法实现;
2、使用丢番图方程对模型分解,分解为当前状态和历史输入对模型未来输出值的作用公式,未来输入对模型未来输出值的作用公式;推导过程过于繁琐,可以直接套用公式计算。

3、参考轨迹生成,可以使用下面公式递推得到:r(n)=(1-k)*y(n-1)+k*(s-y(n-1)),其中k为时间常量,决定系统的调节速度,s为设定值。

4、最优值计算,可以直接套用公式。

实现过程:首先辨识系统模型,然后使用丢番图方程对辨识得到的模型进行分解,计算参考轨迹,最后把参考估计和分解后的系统模型带入公式得到最优输出值(其实是次优解),如此反复即可实现预测控制。

经典PID计算:可以使用增量式的公式:
y(n)=y(n-1)+Kp*[e(n)-e(n-1)]+Ki*e(n)+Kd*[e(n)+e(n-2)-2*e(n-1)]
需要说明广义预测控制和PID控制输出都需要设置输出值限幅。

工业实现:可以用c语言编写程序作为控制软件的控制代码,硬件平台可以是一台工控机或者PLC,另外也有这方面的软件包,不过很贵。

相关文档
最新文档