离散数学,置换群和子群及其陪集共48页
《子群的陪集》课件
• 子群与陪集的定义 • 子群的分类 • 陪集的分类 • 子群的性质 • 陪集的性质 • 子群与陪集的应用
目录
01
子群与陪集的定义
子群的定义
子群
一个群G的一个非空子集H,如果 对于G的每一个元素g,H中的元 素h满足$ghg^{-1}$也在H中, 则称H是G的一个子群。
陪集的性质
总结词
陪集的性质
详细描述
陪集具有传递性、对称性和可结合性,即如果H₁/G和H₂/G是群G的两个子群,那么H₁∩H₂/G=(H₁/G)∩(H₂/G), 且(H₁∪H₂)/G=(H₁/G)∪(H₂/G)。
陪集的运算性质
总结词
陪集的运算性质
详细描述
如果H₁/G和H₂/G是群G的两个子群,那么(H₁∪H₂)/G=(H₁/G)∪(H₂/G), (H₁∩H₂)/G=(H₁/G)∩(H₂/G),且H₁/G⋅H₂/G=(H₁⋅H₂)/G。
正规子群。
举例
整数模n的乘法子群是模n的剩余 类环的正规子群。
性质
正规子群在陪集中保持元素共轭 。
幂零子群
定义
如果存在正整数n,使得 $a^n=e$对于所有$a in H$,则称H是幂零子群。
举例
整数模n的乘法子群是幂零 子群。
性质
幂零子群是可解的,且其 指数为素数。
幂小子群
定义
如果存在正整数n,使得$a^n=e$对于所有$a in H$,则称H是幂小子群。
子群与陪集的关系
子群的陪集
如果H是G的子群,那么H的左陪集和右陪集都是G的子群。特别地,如果H是G 的正规子群,那么H的左陪集和右陪集是相同的,称为H在G中的余类。
举例
在整数集合中,所有偶数的集合是整数集合的一个子群,偶数集合的左陪集和右 陪集都是整数集合的子群。特别地,如果取H为所有偶数,那么H是整数集合的 正规子群,其左陪集和右陪集都是整数集合的子群。
离散数学第2版教学课件-子群
8.2 子群与陪集子群与群的关系:拉格朗日定理。
子群判定定理典型子群陪集H 是G 的非空子集(1)a,b ∈H 有a b ∈H(2) a ∈H 有a -1∈H.H 是G 的非空子集a,b ∈H,有ab -1∈HH 是G 的非空有穷子集a,b ∈H 有ab ∈H 陪集的性质Lagrange 定理及推论子群非空子集、群8.2 子群与陪集子群定义设G是群,H是G的非空子集,定义8.5(1) 如果H关于G中的运算构成群,则称H是G的子群, 记作H≤G.(2) 若H是G的子群,且H G,则称H是G的真子群,记作H<G.例如nZ (n是自然数) 是整数加群<Z,+> 的子群. 当n≠1时,nZ是Z的真子群.任何群G都存在子群. G和{e}都是G的子群,称为G的平凡子群.(子群判定定理1 )定理8.5设G为群,H是G的非空子集,则H是G的子群当且仅当(1) ∀a,b∈H有ab∈H(2) ∀a∈H有a-1∈H.证必要性是显然的.为证明充分性,只需证明e∈H.因为H非空,存在a∈H. 由条件(2) 知a-1∈H,根据条件(1) aa-1∈H,即e∈H.(子群判定定理2 )定理8.6设G为群,H是G的非空子集. H是G的子群当且仅当∀a,b∈H,有ab-1∈H.证必要性显然.只证充分性. 因为H非空,必存在a∈H.根据给定条件得aa-1∈H,即e∈H.任取a∈H, 由e,a∈H 得ea-1∈H,即a-1∈H.任取a,b∈H,知b-1∈H. 再利用给定条件得a(b-1) -1∈H,即ab∈H.综合上述,可知H是G的子群.(子群判定定理3 )定理8.7设G为群,H是G的非空有穷子集,则H是G的子群当且仅当∀a,b∈H有ab∈H. 证必要性显然.为证充分性,只需证明a∈H有a-1∈H.任取a∈H, 若a = e, 则a-1= e∈H.若a≠e,令S={a,a2,…},则S⊆H.由于H是有穷集,必有a i= a j(i<j).根据G中的消去律得a j-i= e,由a ≠ e可知j-i>1,由此得a j-i-1a = e 和 a a j-i-1= e从而证明了a-1= a j-i-1∈H.根据子群判定定理1,可知H是G的子群。
离散数学,置换群和子群及其陪集
因为置换按定义是一对一的,所以b1,b2,…,bn是 a1,a2,…,an的一个排列,由此可见,M的每个置 换对应a1,a2,…,an的一个排列,不同的置换对应 不同的排列,此外,a1,a2,…,an的任意排列也确 定M的一个置换,所以,M的置换共有n!个,其 中n是M的元数,M上的置换也称为n元置换。以下 用Sn表示这n!个置换作成的集合。
a1 a 2 a n b b b n 1 2
-1= b1 b 2 b n a1 a 2 a n
。
因此,我们有:
定理6.2.6 n元置换的全体作成的集合Sn对置换 的乘法作成一个群,称为n 次对称群。 注意,由于一般情况下置换相乘不满足交换律, 如上例,
§6.2.4 置 换 群 在伽罗瓦理论中起关键作用的就是置换群,它是有限群 的特例,是群的典型代表。
置换的定义:
定义6.2.4 设M是一个非空的有限集合,M的一个一对一 变换称为一个置换。 设M的元素为a1,a2,…,an,则M的置换σ可以简记为
σ=
a1 a 2 a n ,bi=σ(ai),i=1,2…,n b b b n 1 2
若M已经没有另外的元素,则σ就等于这个轮 换,否则设b1不在a1,…,ar之内,则同样 作法又可得到一个轮换(b1…bs)。 因为a1,…,ar各自已有变到它的元素,所 以b1,…,bs中不会有a1,…,ar出现,即 这两个轮换不相杂。若M的元素已尽,则σ 就等于这两个轮换的乘积,否则如上又可 得到一个轮换。如此类推,由于M有限,最 后必得 σ=( a1…ar)(b1…bs)…(c1…ct) (1) 即σ表成了不相杂的轮换的乘积。
证明:设σ=(a1…ar),τ=(b1…bs),σ和τ不 相杂。命χ为M的任意元素, (1)若χ在a1,…,ar之内,例如χ=ai,则 στ(χ)=στ(ai)=σ(ai)=ai+1, τσ(χ)=τσ(ai)=τ(ai+1)= ai+1。 i=r时,ai+1应改为a1。 总之,στ(χ)=τσ(χ)。 (2)同样可以说明,若χ在b1, …,bs之内, 也有στ(χ)=τσ(χ)。 (3)设χ不在a1, …,ar, b1, …,bs之内。 于是, στ(χ)=σ(χ)=χ,τσ(χ)=τ(χ)=χ。 因此,在所有情况下,στ(χ)=τσ(χ),故 στ=τσ。
§6.3置换群(离散数学)
证明
可见,(a1…ar)必和必
出现在(2)中,同样(2)中的任意轮换
必出现在(1)中,因之,(1)和(2)一
样,最多排列方法不同,但不相杂的轮换
相乘适合交换律,所以排列的次序本来是
可以任意颠倒的。
若M已经没有另外的元素,则σ就等于这个
轮换,否则设b1不在a1,…,ar之内,则同样作 法又可得到一个轮换(b1…bs).因为a1,…,ar 各自已有变到它的元素,所以b1,…,bs中不会 有a1,…,ar出现,即这两个轮换不相杂。若M 的元素已尽,则σ就等于这两个轮换的乘积,否
则如上又可得到一个轮换。如此类推,由于M有
往证(a1a2…atat+1)= (a1at+1) (a1a2…at) 令σ1=(a1 at+1),σ2=(a1 a2… at), 下面证明σ= σ1 σ2。 任取l∈M,
若l {a1,a2,…,at-1},不妨设l=am,则 σ(l)= σ(am)=am+1,
σ1 σ2(l)= σ1 (am+1)=am+1; 若l=at,则
§6.3 置 换 群
❖ 6.3.1 置换的定义 ❖ 6.3.2 置换的轮换表法 ❖ 6.3.3 置换的顺向圈表示 ❖ 6.3.4 置换的奇偶性
6.3.1 置换的定义
❖ 定义. 设M是一个非空的有限集合,M的 一个一对一变换称为一个置换。
❖ 设M={a1,a2,…,an},则M的置换σ可简记为
σ=
a1 b1
σ(l)=at+1 σ1σ2(l)=σ1σ2(at)=σ1(σ2(at))=σ1(a1)=at+1; 若l=at+1,则
§6.3 离散数学 置 换 群
则 στ=τσ.
证明:设σ=(a1…ar),τ=(b1…bs),
σ和τ不相杂。命χ为M的任意元.
若χ∈{a1,…,ar},设χ=ai,则
στ(χ)=στ(ai)=σ(ai) = ai+1,
τσ(χ)=τσ(ai)=τ(ai+1)=ai+1 。
i=r时, ai+1 应改为 a1 。
1 2 3 3 1 2
置换的乘法
对M中任意元素a及M的任意两个置换σ,τ, 规定στ(a)=σ(τ(a))。
例. 设σ= 则στ= τ σ=
1 2 3 4 2 1 3 4, τ= 1 2 3 4 3 4 2 1 , 1 2 3 4 4 3 1 2
1 2 3
一个元素不动:σ2= 1 2 3 σ4=
2 1 3
1 2 3 1 3 2σ 3= 1 2 3 2 3 1 σ = 6
1 2 3 3 2 1
0个元素不动:σ5= 故,S3 = {σ1,σ2,σ3,σ4,σ5,σ6}
Sn不是Abel群。 1
6.3.2 置换的轮换表法 轮换的定义
轮换. 设σ是M的置换,若可取到M的元素
a1, …,ar 使
σ(a1)=a2,σ(a2)=a3,…,σ(ar-1)=ar,σ(ar)=a1, 而σ不变M的其余的元素,则σ称为一个轮换, 记为 (a1 a2 … ar )
例. σ=
1 2 3 4 5 6 3 2 4 1 5 6
1
=
b1 b2 bn a a a n 1 2
《离散数学》课件第6章 (2)
〈SS, , 〈Σ*, τ〉不是可交换半群。
定义 6.1.3 含有关于*运算的幺元的半群〈S, *〉, 称
它为独异点(monoid), 或含幺半群, 常记为〈S, *, e〉(e是
幺元)。
第六章 几个典型的代数系统
【例6.1.4】
〈Z, +〉是独异点, 幺元是0, 〈Z, +, 0〉;
〈Z, ×〉是独异点, 幺元是1, 〈Z, ×, 1〉;
(4) A≠ , 〈P(A), ∩〉是半群, 幺元为A, 非空集合无逆
元, 所以不是群。
(5) A≠ , 〈P(A), 是S, 所以是群。
S∈P(A), S的逆元
(6) 〈Q+, ·〉(正有理数与数乘)为一群, 1为其幺元。 〈Q, ·〉不是群, 因为数0无逆元。
因为零元无逆元, 所以含有零元的代数系统就不会是群。
逻辑关系见图6.1.1。
第六章 几个典型的代数系统
图6.1.1
第六章 几个典型的代数系统
定义 6.1.1 设〈S, *〉是代数系统, *是二元运算, 如果*运算满足结合律, 则称它为半群(semigroups)。
换言之, x, y, z∈S, 若*是S上的封闭运算且满足 (x*y)*z=x*(y*z), 则〈S, *〉是半群。
设半群〈S, *〉中元素a(简记为a∈S)的n次幂记为an, 递 归定义如下:
a1=a an+1=an*a1 n∈Z+ 即半群中的元素有时可用某些元素的幂表示出来。
因为半群满足结合律, 所以可用数学归纳法证明
am*an=am+n, (am)n=amn。
第六章 几个典型的代数系统
普通乘法的幂、 关系的幂、 矩阵乘法的幂等具体的代 数系统都满足这个幂运算规则。
离散数学群与子群-PPT
解:由题意,R上得二元运算★得运算表如上所示,由表知,运算★在R上就 是封闭得。
对于任意a, b, cR,(a★b)★c表示将图形依次旋转a, b和c,而 a★(b★c)表示将图形依次旋转b,c和a,而总得旋转角度都就是 a+b+c(mod 360),因此(a★b)★c= a★(b★c),即★运算满足结合性。
a
b
c
d
b
d
a
c
定理5、4、4 群〈G,*〉得运算表中任一行(列)得元素都就是G中元 素得一个置换。且不同行,不同列得置换都不同。 证明 首先,证明运算表中得任一行或任一列所含G中得一个元素不可能多 于一次。用反证法,如果对应于元素a∈G得那一行中有两个元素都就 是c,即有 a*b1=a*b2=c 且b1≠b2 由可约性可得 b1=b2,这与b1≠b2矛盾。
其次,要证明G中得每一个元素都在运算表得每一行和每一列中出现。考 察对应于元素a∈G得那一行,设b就是G中得任一元素,由于 b=a*(a1*b),所以b必定出现在对应于a得那一行中。
再由运算表中没有两行(或两列)相同得事实,便可得出:<G,*>得运算表中 每一行都就是G得元素得一个置换,且每一行都就是不相同得。同样得 结论对于列也就是成立得。
结果都等于另一个元素, ) 3) G中任何元素得逆元就就是她自己; 。 故〈G,*〉为一个群。 此外,运算就是可交换得,一般称这个群为克莱因(Klein)四元群,简称四元群。
思考练习
已知:在整数集 I 上得二元运算定义为:a,b∈I,
a b=a+b-2
证明:< I , >为群。
么元为:2 逆元:x-1=4-x
离散数学群与子群
一、群得概念
§6.3置换群(离散数学)
σ(l)= σ(at+1)= a1 σ1 σ2(l) = σ1 (σ2(at+1)) = σ1 (at+1) = a1 ;
若l {a1,a2,…,at+1},则 σ(l)=l
ห้องสมุดไป่ตู้
11
2 2
33
一个元素不动:σ2=
σ4=
12
2 1
33
11
2 3
23σ 3=
0个元素不动:σ5=
12
2 3
31σ6=
故,S3 = {σ1,σ2,σ3,σ4,σ5,σ6}
13
2 2
31
13
2 1
23
置换的乘法
➢ 对M中任意元素a及M的任意两个置换σ,τ, 规定στ(a)=σ(τ(a))。
➢ 例. 设σ=
12
2 1
3 3
44,τ=
13
2 4
3 1
24
则στ=
13
2 4
3 2
41,
τσ=
14
2 3
3 1
24
≠ στ
置换的乘法的性质
❖ 满足结合律:(στ)ρ=σ(τρ),σ,τ,ρ∈ Sn。
❖ Sn中有单位元: n元恒等置换,设 为σ0,有:σ0τ=τσ0 ,τ∈Sn
❖ 每个n元置换在Sn 中都有逆元素:
σ1=(1)(2)(3)(4) σ2=(1 2 3 4) σ3=(1 3)(2 4)
绕中心逆时针转00; 绕中心逆时针转900; 绕中心逆时针转1800;
§64子群及其陪集(离散数学)-专业PPT文档-PPT精品文档
应用判别条件二 例
给定整数m,证明(mZ,+)是一个群。 证明:注意到(Z,+)是一个群, mZ是Z的非 空子集,因此,只需证(mZ,+)是(Z,+)的子 群。 对任意x,y∈ mZ,存在k,l ∈Z,使得 x=km, y=lm, 于是 x-y=km-lm=(k-l)m ∈ mZ 。 因此, (mZ,+)是(Z,+)的子群,当然本身是 一个群。
判别条件一
证明: 必要性
若H是G的子群,则(1)、(3)显然。
现要证(2).
(错误证法:由H是G的子群知,H是群,故 对a∈H,有b∈H,使得ab=1,所以b是a 的逆,由a的逆的唯一性,知a-1 =b,而b ∈H ,故 a-1 ∈H 。)
判别条件一
先证H中的单位元就是G中的单位元。 设1G是G中的单位元,1H是H中的单位元。 任取a∈H,则在H中有: 1H a=a, 故在G中也成立。以a-1右乘得
6.4.1 子 群 的 定 义
子群 设(G,·)是一个群, H G,
如果 (H, ·) 仍是一个群,则 (H,·)叫做(G,·)的子群。
真子群 如果G的一个子群H不等于G,
即H G,则(H,·)叫做
(G,·)的真子群。 Note: G的子群H的运算必须与G的运算一样,
比如, (C*,·)不是(C,+)的子群。
❖例. 整数加法群(Z,+)是由1生成的循环群。 (mZ,+)是由m生成的循环群。
❖例.设G是4次对称群(本身不是循环群),由
(1 2)生成的循环子群为{I,(1 2)}。
元素的周期
看由元素a所生成的循环群(a):
…,a-2,a-1,a0,a,a2,…
06离散数学课件资料
2024/7/3
离散数学
10
二、群的概念
群中的幂:设群<G, > ,则对 xG, x0 = e ,xn+1 = xn x,(n为非负整数) x-n= (x -1)n= (xn)-1,(n为正整数)
幂运算的性质: (1) xG,(x-1)-1 = x, (2) x, yG,(x y)-1 = y -1 x–1, (3) xG,xm xn = xm + n ,m, n为整数
(1)
(2)
(3)
代数系统
半群
独异点
群
2024/7/3
离散数学
6
二、群的概念
例1:设G= R-{1/2},对 x, yG,x * y = x + y – 2xy , 试证明<G, * >是否为群? 证明: (1) 若 x, yG,x * y = x + y – 2xy G,故* 运算
关于G满足封闭性。 (2) 若 x, y , zG ,
是<Z, +>的平凡子群;
设<G,*>是一个群,B是G的一个有限非空子
有限子群 判定定理
集。若运算*在集合B上封闭,则 <B,*>是
<G,*>的子群。
子群的 设<G, * >为群,H是G的非空子集,如果对 x, 判定定理 yH,x * y -1H,则<H,*>是<G, * >的子群。
2024/7/3
如:<Z+, +>和<N, +>是<Z, +>的子半群,且<N, +>是 <Z, +>的子独异点,但<Z+, +>却不是。
离散数学课件变换群、置换群与循环群
• [An;•]是代数系统。
• 1.封闭性
• 2.结合律当然成立
• 3.恒等置换eAn • 4.对于An,
在Sn中有逆元-1, -1也是偶置换
• 推论13.5:对称群Sn中所有偶置换组成的 集合, 记为An,关于置换的乘法构成群。
• 定义13.9:称上述[An;•]为n次交待群。
• 由于An中每个元素都是置换,因此根据置 换群的定义可知[An;•] 也是置换群.
• 证明:对任两个对换:
• (a,b)(c,d)
• (a,b)(b,c)
推论14.4:Sn中的奇、偶置换在置换的乘法运算 下,其奇偶性由下表给出:
• 偶置换 偶置换 偶置换
奇置换 奇置换
奇置换 奇置换 偶置换
• 恒等置换看作为偶置换 • Sn= On∪An • On∩An= • 偶置换与偶置换的乘积仍是偶置换,•是An上
• [Sn;•]是一个置换群, n次对称群。
• S上的置换Sn,习惯上写成
1(1)2(2) (nn)
这里(i)即为i在函数下的象,这里1,2, ,n次序无关,即
1 ( 1 )2 (2 ) ( n n ) i( 1 i1 )i2 (i2 ) ( ii n n )
• SS表示S到S的所有映射全体组成的集合, • SS={f|f:SS}, • [SS;•]是半群。是拟群。不是群 • T(S)表示S上所有一一变换组成的集合。 • T(S)={f|fSS,且f为一一对应} • [T(S);•]是群
• 定义13.5:设GT(S),当[G;•]为群时,就称
该群为变换群,其中•为一一变换的合成
离散数学课件变换群,置换群与循环群 13.10:g,egag, ra =era;arraa p17112.(2) autohwd 分享于 2017-03-30 16:16:11.0 暂无简介 文档格式: .ppt 文档页数: 22页 文档大小: 496.5k 文档热度: 文档分类: 待分类 系统标签: 数学课 置换 离散 变换 egag 循环
离散数学第6讲置换群和循环群
i个
例如k=4时, 这个群如右表 所示, 其中[0]是么元, [1]或 [3]是生成元。
二、循环群
定理11:设<G,*>是由g∈G为生成元的循环群。 (a)若G是无限集,则<G,*>与<I,+>同构。 (b)若G是有限集且|G|=k,则<G,*>与<Nk, +k>同构。
定理9:任何一个循环群必定是阿贝尔群(可交换群)。 证明: 设<G,*>是一个循环群,它的生成元为g,那么对于任意的a, b∈G, 必有i, j∈I,使得
gi=a, gj=b 那么a*b=gi*gj=gi+j=gj+i=gj*gi=b*a,因此,<G,*>是一个阿贝尔群。
二、循环群
定理10:设<G, *>是由g∈G生成的有限循环群, 如果|G|=n,则gn=e, G ={g, g2, g3, …, gn=e}且n是使 gn=e的最小正整数。 证明: (1)先证gm=e而m<n是不可能的。
所以<Sn, ◇>是一个群。
一、置换群
给定n个元素组成的集合A: A上的若干置换所构成的群称为n次置换群; A上所有置换构成的群称为n次对称群, <Sn,◇>。 n次对称群<Sn,◇>的子群即为n次置换群。
例1 令A={1,2,3},A上置换的全体S3={pi i = 1,2,3,4,5,6}。
(pa◇pb)(x) = (x * a) * b =x * (a * b) =pa*b(x)∈P
(1)
(b) 存在幺元 设e是<G , *>的么元, a∈G是任一元素,则有
离散数学 ch6-2.3群、变换群、有限群
#Ex2:(G,)是群, a∈G, 如果a的阶为n ,则 ak=e 当且仅当 k=mn (m∈I)(即k是n的整数倍) 证明:⑴ 充分性,已知k=mn (m∈I) ak= amn=(an)m= em =e ⑵ 必要性,已知ak=e , a的阶为n,即 an=e , 假设k不是n的整数倍,令 k=mn+t m,t∈I, 0<t<n t=k-mn at= ak-mn= aka-mn= e(an)-m =e-m = e 由于at=e,而 t<n,与 a的阶为n矛盾。 所以 k是n的整数倍。即 k=mn (m∈I)。 思考题:上例中R4=S; L4=S R和L的阶都为4;而R-1=L 由此可以得到什么结论?
ห้องสมุดไป่ตู้
2.可换群(阿贝尔群)
定义2: 设(G, * )是群,运算*是可交换的,则称它是可 换群。 例如(I,+),(R,+) ,(P(E), )都是可换群。
3.子群
定义3:设(G, * )是群, 如果(G, * )的子系统(H , *) 也是群,则称(H , * )是(G, * )的一个子群
即如果(H , * )满足: ⑴ 任何a,b∈ H 有a * b∈ H, (封闭) ⑵幺元 e∈ H, (有幺元) ⑶任何a∈ H 有a-1∈ H, (可逆) 则称(H, * )是(G, * )的子群。 例如:(I,+)是(R,+)的子群。
例如: 判断(I,+),(R,+) ,(P(E), ), (R,×) 及(P(E), ∩)是否为群?请说明理由。 解:(I,+),(R,+)幺元是 0,每个x的逆元是 -x 。 (P(E), )幺元是Φ ,因任何X∈P(E) XX=Φ ∴X-1=X, ∴(I,+),(R,+),(P(E), )是群。 而 (R,×) ,(P(E), ∩)都有幺元,但不是群。
第十七章 群 北京大学计算机系离散数学讲义(ppt版)
2020/6/30
群的性质(续)
方程 ax=b 和 ya=b 在群 G 中有解且有唯一解. 证: a-1b 是 ax=b 的解.
假设 c 为解,则 c = ec = (a-1a)c =a-1(ac) = a-1b
aG, 方程 ax=e 有解,得到 a 的右逆元.
2020/6/30
群的性质(续)
消去律 ab= ac b=c, ba = ca b=a 说明:消去律也可以定义群 设 G 是有限半群,且不含零元.若 G 中成立消去律,则 G 是群. 证:设 G={a1=e,a2,…,an},任取 aiG,
aiG ={aiaj |j=1,2,…,n} 由封闭性, aiGG, 假设|aiG|<n, 则存在 j,k 使得 aiaj=aiak, 根据消去律,aj=ak, 矛盾. 所以 aiG=G. 任取 ai,aj, ai,ajG ajaiG 方程 aix=aj 有解 同理,方程 yai=aj 有解.G 是群. 注:<Z5,>不是群,因为有 0;<Z+,>也不是群,无限.
只要证 s=q (at)q=(at)r/d=(ar)t/d=ep=e
s|q (at)s=e ats=e r|ts q|ps
q|s (p,q 互素) 分析:相互整除
2020/6/30
|a|=r, ak=e 当且仅当 r|k
关于群性质的证明题(续)
例 5 设 G 为有限群,x,yG, y 为 2 阶元,xe, 且 x2y=yx, 求|x|
2020/6/30
群的性质(续)
G 为群,aG, 且|a|=r, 则 (1)ak =e r | k (2)|a|=|a-1| (3)若|G| = n, 则 rn. 证 (1)充分性. ak = arl =(ar)l=el = e
离散数学课件10.1-10.3群
2021/6/18
16
定理10.1说明
定理10.1(2)中的结果可以推广到有限多个元素的情况,即
a 1 a 2 a r 1 a r 1 a r 1 1 a 1 1
注意上述定理中的最后一个等式只对交换群成立。 如果G是非交换群,那么只有
ab n a b a b a b
2021/6/18
12
群的性质—群的幂运算规则
定理10.1 设G为群,则G中的幂运算满足: (1) a∈G,(a-1)-1=a。 (2) a,b∈G,(ab)-1=b-1a-1。 (3) a∈G,anam=an+m,n,m∈Z。 (4) a∈G,(an)m=anm,n,m∈Z。 (5) 若G为交换群,则(ab)n=anbn。 分析: (1)和(2)可以根据定义证明。 (3)、(4)、(5)中的等式,先利用数学归纳法对于自然数n和m
2021/6/18
21
证明元素的阶相等的方法
证明|x|=|y|的方法: 令|x|=r,|y|=s 验证 (x)s=e r|s 验证 (y)r=e s|r 因此 r=s,即 |x|=|y|。
2021/6/18
22
例10.6
例10.6 设G是群,a,b∈G是有限阶元。证明 (1)|b-1ab|=|a| (2)|ab|=|ba|
2021/6/18
14
定理10.1的证明
(3) a∈G,anam=an+m,n,m∈Z。
先考虑n,m都是自然数的情况。任意给定n,对m进行归纳。
m=0,有ana0=ane=an=an+0成立。
假设对一切m∈N有anam=an+m成立,则有
anam+1=an(ama)=(anam)a=an+ma=an+m+1
第8节 子群的陪集 PPT
右陪集的基本性质
性质1′ 设H是群G的子群,则 (1) He = H; (2) a∈G 有a∈Ha.
性质2′ 设H是群G的子群,则a, b∈G有 a∈Hb b∈Ha ba1∈H Ha=Hb .
性质3′ 设H是群G的子群, 则 (1) a∈G,Ha≠ ; (2) a, b∈G,Ha = Hb 或 Ha∩Hb = ; (3) ∪Ha = G . 性质4′ 设H是群G的子群,则H的所有右陪集构成 的集族是G的一个划分.
有关陪集的问题
设H是群G的子群。 H的所有左陪集都是G的非空子集。 请问:H的左陪集一定是G的子群吗?
判别群G的非空子集是其子群的方法? 判别群G的非空子集不是其子群的方法?
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交
陪集的基本性质
性质5 设H是群G的子群,则 a, b∈G,|aH|=|bH|=|H|=|Ha|=|Hb| .
陪集的性质: 设H是群G的子群,则 (1) eH = H; (2) a∈G 有a∈aH.
等价关系与子群的陪集
等价类的性质: 设R是非空集合X上的等价关系, 则a, b∈X, 有
(a, b)∈R a∈[b] b∈[a] [a] = [b].
陪集的性质: 设H是群G的子群,则a, b∈G有
a∈bH b∈aH a1b∈H aH=bH .
Lagrange定理的应用
例4 证明阶小于6 的群都是Abel群.
证 1 阶群是平凡的,显然是Abel群. 2, 3和5都是素数,由推论2它们都是单元素生成的 循环群,都是Abel群. 设G是4阶群. 若G中含有4阶元,比如说a,则 G=(a)是循环群,可知G是Abel群. 若G中不含4阶元,G中只含1阶和2阶元,由命题可 知G也是Abel群.