空间直角坐标系练习题

合集下载

高中数学 必修二 同步练习 专题4.3 空间直角坐标系(解析版)

高中数学 必修二 同步练习 专题4.3 空间直角坐标系(解析版)

一、选择题1.在空间直角坐标系中,M(–2,1,0)关于原点的对称点M′的坐标是A.(2,–1,0)B.(–2,–1,0)C.(2,1,0)D.(0,–2,1)【答案】A【解析】∵点M′与点M(–2,1,0)关于原点对称,∴M′(2,–1,0).故选A.2.点B是点A(1,2,3)在坐标平面yOz内的射影,则OB等于A.13B.14C.23D.13【答案】A3.点B30,0)是点A(m,2,5)在x轴上的射影,则点A到原点的距离为A.2B.2C.3D.5【答案】A【解析】点B30,0)是点A(m,2,5)在x轴上的射影,可得m3A到原点的距离222++2.故选A.(3)254.在空间直角坐标系中,点A(5,4,3),则A关于平面yOz的对称点坐标为A.(5,4,–3)B.(5,–4,–3)C.(–5,–4,–3)D.(–5,4,3)【答案】D【解析】根据关于坐标平面yOz 的对称点的坐标的特点,可得点A (5,4,3),关于坐标平面yOz 的对称点的坐标为(–5,4,3).故选D .5.空间中两点A (1,–1,2)、B (–1,1,22+2)之间的距离是A .3B .4C .5D .6【答案】B【解析】∵A (1,–1,2)、B (–1,1,22+2),∴A 、B 两点之间的距离d =222(11)(11)(2222)++--+--=4,故选B .6.在空间直角坐标系中,P (2,3,4)、Q (–2,–3,–4)两点的位置关系是A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .以上都不对【答案】C7.点P (1,1,1)关于xOy 平面的对称点为P 1,则点P 1关于z 轴的对称点P 2的坐标是A .(1,1,–1)B .(–1,–1,–1)C .(–1,–1,1)D .(1,–1,1)【答案】B【解析】∵点P (1,1,1)关于xOy 平面的对称点为P 1,∴P 1(1,1,–1),∴点P 1关于z 轴的对称点P 2的坐标是(–1,–1,–1).故选B .8.已知点A (2,–1,–3),点A 关于x 轴的对称点为B ,则|AB |的值为A .4B .6C 14D .10【答案】D【解析】点A (2,–1,–3)关于平面x 轴的对称点的坐标(2,1,3),由空间两点的距离公式可知:AB ()()()222221133-++++10,故选D .9.在空间直角坐标系Oxyz 中,点M (1,2,3)关于x 轴对称的点N 的坐标是A.N(–1,2,3)B.N(1,–2,3)C.N(1,2,–3)D.N(1,–2,–3)【答案】D【解析】∵点M(1,2,3),一个点关于x轴对称的点的坐标是只有横标不变,纵标和竖标改变,∴点M(1,2,3)关于x轴对称的点的坐标为(1,–2,–3),故选D.10.空间点M(1,2,3)关于点N(4,6,7)的对称点P是A.(7,10,11)B.(–2,–1,0)C.579222⎛⎫⎪⎝⎭,,D.(7,8,9)【答案】A11.在空间直角坐标系中,已知点A(1,0,2),B(1,–4,0),点M是A,B的中点,则点M的坐标是A.(1,–1,0)B.(1,–2,1)C.(2,–4,2)D.(1,–4,1)【答案】B【解析】∵点M是A,B的中点,∴M110420222+-+⎛⎫⎪⎝⎭,,,即M(1,–2,1).故选B.二、填空题12.空间中,点(2,0,1)位于___________平面上(填“xOy”“yOz”或“xOz”)【答案】xOz【解析】空间中,点(2,0,1)位于xOz平面上.故答案为:xOz.13.在正方体ABCD–A1B1C1D1中,若D(0,0,0),A(4,0,0),B(4,2,0),A1(4,0,3),则对角线AC1的长为___________.29【解析】∵在正方体ABCD –A 1B 1C 1D 1中,D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),∴C 1(0,2,3),∴对角线AC 1的长为|AC 1|=222(04)2329-++=.故答案为:29.14.在空间直角坐标系中,点P 的坐标为(1,2,3),过点P 作平面xOy 的垂线PQ ,则垂足Q 的坐标为___________. 【答案】(1,2,0)【解析】空间直角坐标系中,点P (1,2,3),过点P 作平面xOy 的垂线PQ ,垂足为Q ,则点Q 的坐标为(1,2,0),如图所示.故答案为:(1,2,0).15.若A (1,3,–2)、B (–2,3,2),则A 、B 两点间的距离为___________.【答案】5【解析】由题意,A 、B 两点间的距离为222(12)(33)(22)++-+--=5.故答案为:5. 16.已知A (1,a ,–5),B (2a ,–7,–2)(a ∈R ),则|AB |的最小值为___________.【答案】3617.点A (–1,3,5)关于点B (2,–3,1)的对称点的坐标为___________.【答案】(5,–9,–3)【解析】设点A(–1,3,5)关于点B(2,–3,1)的对称点的坐标为(a,b,c),则12 2332512abc-+⎧=⎪⎪+⎪=-⎨⎪+⎪=⎪⎩,解得a=5,b=–9,c=–3,∴点A(–1,3,5)关于点B(2,–3,1)的对称点的坐标为(5,–9,–3).故答案为:(5,–9,–3).三、解答题18.若点P(–4,–2,3)关于坐标平面xOy及y轴的对称点的坐标分别是A和B.求线段AB的长.19.在Z轴上求一点M,使点M到点A(1,0,2)与点B(1,–3,1)的距离相等.【解析】设M(0,0,z),∵Z轴上一点M到点A(1,0,2)与B(1,–3,1)的距离相等,∴()222221021(03)(1)z z++-=+++-,解得z=–3,∴M的坐标为(0,0,–3).20.如图建立空间直角坐标系,已知正方体的棱长为2,(1)求正方体各顶点的坐标;(2)求A1C的长度.【解析】(1)∵正方体的棱长为2,∴A (0,0,2),B (0,2,2),C (2,2,2),D (2,0,2), A 1(0,0,0),B 1(0,2,0),C 1(2,2,0),D 1(2,0,0). (2)由(1)可知,A 1(0,0,0),C (2,2,2),A 1C 的长度|A 1C |=222222++=23.21.求证:以A (4,1,9),B (10,–1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.。

高一数学空间直角坐标系试题答案及解析

高一数学空间直角坐标系试题答案及解析

高一数学空间直角坐标系试题答案及解析1.已知点A(﹣3,1,﹣4),则点A关于x轴的对称点的坐标为()A.(﹣3,﹣1,4)B.(﹣3,﹣1,﹣4)C.(3,1,4)D.(3,﹣1,﹣4)【答案】A【解析】根据在空间直角坐标系中关于x轴对称的点的坐标是横标不变,纵标和竖标变为原来的相反数,写出点A关于x轴对称的点的坐标.解:∵在空间直角坐标系中关于x轴对称的点的坐标横标不变,纵标和竖标变为原来的相反数,∵点A(﹣3,1,﹣4),∴关于x轴对称的点的坐标是(﹣3,﹣1,4),故选A.点评:本题是一个空间直角坐标系中坐标的变化特点,关于三个坐标轴对称的点的坐标特点,关于三个坐标平面对称的坐标特点,我们一定要掌握,这是一个基础题.2.求证:以A(﹣4,﹣1,﹣9),B(﹣10,1,﹣6),C(﹣2,﹣4,﹣3)为顶点的三角形是等腰直角三角形.【答案】见解析【解析】先利用空间两点的距离公式分别求出AB,AC,BC的长,然后利用勾股定理进行判定是否为直角三角形,以及长度是否有相等,从而判定是否是等腰直角三角形.证明:,,,∵d2(A,B)+d2(A,C)=d2(B,C)且d(A,B)=d(A,C).∴△ABC为等腰直角三角形.点评:本题主要考查了两点的距离公式和勾股定理的应用,考查空间想象能力、运算能力和推理论证能力,属于基础题.3.如图,长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,A'C'于B'D'相交于点P.分别写出C,B',P的坐标.【答案】C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.【解析】别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图.根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3和长方体在坐标系中的位置,写出B′点的顶点坐标是(3,4,3)和C的坐标,根据中点的坐标公式写出中点P的坐标.解:分别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图,根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,则C点的坐标为(0,4,0),D′点的坐标为(0,0,3),B'点的坐标为(3,4,3),由中点坐标公式得:P的坐标为.故答案为:C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.点评:本题考查空间中点的坐标,考查在坐标系中表示出要用的点的坐标,考查中点坐标公式,是一个基础题,这种题目是以后利用空间向量解决立体几何的主要工具.4.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则Q的坐标为()A.B.C.D.【答案】D【解析】过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,写出要求点的坐标.解:空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,∴Q(1,,0)故选D.点评:不同考查空间中点的坐标,是一个基础题,这种题目一般不会单独出现,它只是立体几何与空间向量中所出现的题目的一个小部分.5.坐标原点到下列各点的距离最小的是()A.(1,1,1)B.(1,2,2)C.(2,﹣3,5)D.(3,0,4)【答案】A【解析】利用两点间的距离分别求得原点到四个选项中点的距离,得出答案.解:到A项点的距离为=,到B项点的距离为=3到C项点的距离为=到D项点的距离为=5故选A点评:本题主要考查了两点间的距离公式的应用.属基础题.6.点(2,0,3)在空间直角坐标系中的位置是在()A.y轴上B.xOy平面上C.xOz平面上D.第一卦限内【答案】C【解析】从选项中可以看出,此题是考查空间坐标系下坐标平面上点的特征,此点的纵坐标为0,故此点是直角坐标系中xOz平面上的点.解:∵点(2,0,3)的纵坐标为0∴此点是xOz平面上的点故应选C点评:空间直角坐标系下,xOy平面上的点的竖坐标为0,xOz平面上的点的纵坐标为0,yOz平面上的点的横坐标为0,本题考查是空间直角坐标系中点的坐标中三个分量与在坐标系中的位置的对应关系.7.已知点A(1,2,1),B(﹣1,3,4),D(1,1,1),若=2,则||的值是.【答案】.【解析】设出P点的坐标,根据所给的=2和A、B两点的坐标求出P点的坐标,写出向量的坐标,利用求模的公式得到结果.解:设P(x,y,z),∴=(x﹣1,y﹣2,z﹣1).=(﹣1﹣x,3﹣y,4﹣z)由=2得点P坐标为P(﹣,,3),又D(1,1,1),∴||=.点评:认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.空间向量在立体几何中作用不可估量.8.在空间直角坐标系中,在Ox轴上的点P1的坐标特点为,在Oy轴上的点P2的坐标特点为,在Oz轴上的点P3的坐标特点为,在xOy平面上的点P4的坐标特点为,在yOz平面上的点P5的坐标特点为,在xOz平面上的点P6的坐标特点为.【答案】(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).【解析】考查空间坐标系中坐标轴与坐标平面上点的坐标的结构,Ox轴上的点只有横坐标不为0;Oy轴上的点只有纵坐标不为0;Oz轴上的点只有竖坐标不为0;在xOy平面上的点竖坐标一定为0;yOz平面上的点横坐标一定为0;xOz平面上的点纵坐标一定为0;解:由空间坐标系的定义知;Ox轴上的点P1的坐标特点为(x,0,0),在Oy轴上的点P2的坐标特点为(0,y,0),在Oz轴上的点P3的坐标特点为(0,0,z),在xOy平面上的点P4的坐标特点为(x,y,0),在yOz平面上的点P5的坐标特点为(0,y,z),在xOz平面上的点P6的坐标特点为(x,0,z).故答案应依次为(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).点评:考查空间坐标系的定义,训练对空间坐标系中坐标轴上的点的坐标结构与坐标平面上的点的坐标结构.9.已知空间三点的坐标为A(1,5,﹣2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p= ,q= .【答案】3;2【解析】根据所给的三个点的坐标,写出两个向量的坐标,根据三个点共线,得到两个向量之间的共线关系,得到两个向量之间的关系,即一个向量的坐标等于实数倍的另一个向量的坐标,写出关系式,得到结果.解:∵A(1,5,﹣2),B(2,4,1),C(p,3,q+2),∴=(1,﹣1,3),=(p﹣1,﹣2,q+4)∵A,B,C三点共线,∴∴(1,﹣1,3)=λ(p﹣1,﹣2,q+4),∴1=λ(p﹣1)﹣1=﹣2λ,3=λ(q+4),∴,p=3,q=2,故答案为:3;2点评:本题考查向量共线,考查三点共线与两个向量共线的关系,考查向量的坐标之间的运算,是一个基础题.10.求到两定点A(2,3,0),B(5,1,0)距离相等的点的坐标(x,y,z)满足的条件.【答案】6x﹣4y﹣13=0即为所求点所满足的条件.【解析】直接利用空间坐标系中两点间的距离公式得关于x,y的方程式,化简即可得所求的点的坐标(x,y,z)满足的条件.解:设P(x,y,z)为满足条件的任一点,则由题意,得,.∵|PA|=|PB|,平方后化简得:6x﹣4y﹣13=0.∴6x﹣4y﹣13=0即为所求点所满足的条件.点评:本题主要考查了点、线、面间的距离计算,以及空间几何体的概念、空间想象力,属于基础题.11.如图,长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,A'C'于B'D'相交于点P.分别写出C,B',P的坐标.【答案】C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.【解析】别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图.根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3和长方体在坐标系中的位置,写出B′点的顶点坐标是(3,4,3)和C的坐标,根据中点的坐标公式写出中点P的坐标.解:分别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图,根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,则C点的坐标为(0,4,0),D′点的坐标为(0,0,3),B'点的坐标为(3,4,3),由中点坐标公式得:P的坐标为.故答案为:C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.点评:本题考查空间中点的坐标,考查在坐标系中表示出要用的点的坐标,考查中点坐标公式,是一个基础题,这种题目是以后利用空间向量解决立体几何的主要工具.12.在xOy平面内的直线x+y=1上确定一点M;使M到点N(6,5,1)的距离最小.【答案】点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.【解析】先设点M(x,1﹣x,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.解:设点M(x,1﹣x,0)则=∴当x=1时,.∴点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.点评:本题主要考查了空间两点的距离公式,以及二次函数研究最值问题,同时考查了计算能力,属于基础题.13.试解释方程(x﹣12)2+(y+3)2+(z﹣5)2=36的几何意义.【答案】在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.【解析】题中式子可化为:,只要利用两点间的距离公式看看它所表示的几何意义即可得出答案.解:在空间直角坐标系中,方程(x﹣12)2+(y+3)2+(z﹣5)2=36即:方程表示:动点P(x,y)到定点(12,﹣3,5)的距离等于定长6,所以该方程几何意义是:在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.点评:本题主要考查了球的性质和数形结合的数学思想,是一道好题.14.已知点P的坐标为(3,4,5),试在空间直角坐标系中作出点P.【答案】见解析【解析】找出P点在横轴和纵轴上的投影,以这两个投影为邻边的矩形的一个顶点是点P在xOy坐标平面上的射影,过这个射影对应的点作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到要求的点.解:由P(3,4,5)可知点P在Ox轴上的射影为A(3,0,0),在Oy轴上射影为B(0,4,0),以OA,OB为邻边的矩形OACB的顶点C是点P在xOy坐标平面上的射影C(3,4,0).过C作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到的就是点P.点评:本题考查空间直角坐标系,考查空间中点的坐标,是一个基础题,解题的关键是能够想象出空间图形,是一个送分题目.15.设点B是点A(2,﹣3,5)关于xOy面的对称点,则A、B两点距离为()A.10B.C.D.38【答案】A【解析】点B是A(2,﹣3,5)关于xoy平面对称的点,B点的横标和纵标与A点相同,竖标相反,写出点B的坐标,根据这条线段与z轴平行,得到A、B两点距离.解:点B是A(2,﹣3,5)关于xoy平面对称的点,∴B点的横标和纵标与A点相同,竖标相反,∴B(2,﹣3,﹣5)∴AB的长度是5﹣(﹣5)=10,故选A.点评:本题看出空间中点的坐标和两点之间的距离,本题解题的关键是根据关于坐标平面对称的点的特点,写出坐标,本题是一个基础题.16.点P(x,y,z)满足=2,则点P在()A.以点(1,1,﹣1)为圆心,以2为半径的圆上B.以点(1,1,﹣1)为中心,以2为棱长的正方体上C.以点(1,1,﹣1)为球心,以2为半径的球面上D.无法确定【答案】C【解析】通过表达式的几何意义,判断点P的集合特征即可得到选项.解:式子=2的几何意义是动点P(x,y,z)到定点(1,1,﹣1)的距离为2的点的集合.故选C.点评:本题考查空间两点间距离公式的应用,空间轨迹方程的求法.17.点P(1,2,3)关于y轴的对称点为P1,P关于坐标平面xOz的对称点为P2,则|P1P2|= .【答案】2【解析】由题意求出P关于坐标平面xOz的对称点为P2的坐标,即可求出|P1P2|.解:∵点P(1,2,3)关于y轴的对称点为P1,所以P1(﹣1,2,﹣3),P关于坐标平面xOz的对称点为P2,所以P2(1,﹣2,3),∴|P1P2 |==2.故答案为:2点评:本题是基础题,考查空间点关于点、平面的对称点的求法,两点的距离的求法,考查计算能力.18.已知x,y,z满足(x﹣3)2+(y﹣4)2+z2=2,那么x2+y2+z2的最小值是.【答案】27﹣10.【解析】利用球心与坐标原点的距离减去半径即可求出表达式的最小值.解:由题意可得P(x,y,z),在以M(3,4,0)为球心,为半径的球面上,x2+y2+z2表示原点与点P的距离的平方,显然当O,P,M共线且P在O,M之间时,|OP|最小,此时|OP|=|OM|﹣=﹣=5,所以|OP|2=27﹣10.故答案为:27﹣10.点评:本题考查空间中两点间的距离公式的应用,考查计算能力.19.如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.【答案】A(1,﹣1,0),B(1,1,0),C(﹣1,1,0),D(﹣1,﹣1,0),E(,﹣,1),F().【解析】由题意直接写出B的坐标,利用对称性以及中点坐标公式分别求出A、B、C、D、E、F 的坐标.解:如图所示,B点的坐标为(1,1,0),因为A点关于x轴对称,得A(1,﹣1,0),C点与B点关于y轴对称,得C(﹣1,1,0),D与C关于x轴对称,的D(﹣1,﹣1,0),又P(0,0,2),E为AP的中点,F为PB的中点,由中点坐标公式可得E(,﹣,1),F().点评:本题考查空间点的坐标的求法,中点坐标公式的应用,对称知识的应用,考查计算能力.20.已知空间直角坐标系O﹣xyz中的点A(1,1,1),平面α过点A且与直线OA垂直,动点P(x,y,z)是平面α内的任一点.(1)求点P的坐标满足的条件;(2)求平面α与坐标平面围成的几何体的体积.【答案】(1)x+y+z=3.(2)【解析】(1)通过平面α过点A且与直线OA垂直,利用勾股定理即可求点P的坐标满足的条件;(2)求出平面α与坐标轴的交点坐标,即可利用棱锥的体积公式求出所求几何体体积.解:(1)因为OA⊥α,所以OA⊥AP,由勾股定理可得:|OA|2+|AP|2=|OP|2,即3+(x﹣1)2+(y﹣1)2+(z﹣1)2=x2+y2+z2,化简得:x+y+z=3.(2)设平面α与x轴、y轴、z轴的点分别为M、N、H,则M(3,0,0)、N(0,3,0)、H(0,0,3).所以|MN|=|NH|=|MH|=3,所以等边三角形MNH的面积为:=.又|OA|=,故三棱锥0﹣MNH的体积为:=.点评:本题考查空间想象能力,计算能力,转化思想,空间两点距离公式的应用.。

空间直角坐标系习题 精品

空间直角坐标系习题 精品

1.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行; ④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和② B.②和③ C..③和④ D.②和④2.在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是( ) A .30B .45学网C .60D .903. 半径为R 的半圆卷成一个圆锥,则它的体积为( )A 3324R πB 338R πC 3524R πD 358R π4.如图,在半径为3的面上有,,A B C 三点,90,ABC BA BC ︒∠==,球心O 到平面ABC的距离是322,则B C 、两点的球面距离是A.3πB.πC.43πD.2π 5.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( ) A .若,l ααβ⊥⊥,则l β⊂ B .若//,//l ααβ,则l β⊂C .若,//l ααβ⊥,则l β⊥D .若//,l ααβ⊥,则l β⊥二、填空题;1.设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; (2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直。

上面命题中,真命题...的序号 (写出所有真命题的序号)1.如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。

空间直角坐标系例题

空间直角坐标系例题

空间直角坐标系例题于是,小明拿出他的笔记本,画了个大大的坐标系,X轴、Y轴、Z轴都清晰可见。

看着这些线条,朋友们个个眉头紧皱,心里想着:“这是什么鬼?难道我们要在这儿打坐?”小明哈哈大笑:“别担心,咱们就把这当成一个大地图,找到每一个宝藏点就行了!”听了这话,大家的紧张情绪稍微缓解了些,心想,这地图总比坐着干等要好得多。

于是,他们决定从坐标(1, 2, 3)开始。

小明指着地图,兴奋地说:“我们先往右走一格,然后向上走两格,最后再往前走三格。

”小伙伴们点点头,心里琢磨着,跟着小明的指引走,感觉就像在玩寻宝游戏一样,心里那个期待啊,简直要飞起来了。

一路上,他们嬉闹着,偶尔还会有小鸟飞过,仿佛在为他们的探险加油。

可是,事情并没有那么简单。

小明带着大家走到(1, 2, 3)时,发现眼前是一片空荡荡的地方。

哦,真是个意外,大家都愣住了。

小明耸耸肩:“没关系,这只是第一步。

我们去(4, 5, 6)看看。

”话音刚落,大家又开始朝新的坐标点进发。

这时候,小王调皮地说:“要是每个坐标都有宝藏,那我就发达了!”这话让大家都笑了,气氛一下子轻松了许多。

他们按照小明的计划继续前进。

走到(4, 5, 6)时,竟然看到了一棵巨大的老树,树下还有个破旧的箱子。

大家的心都提到了嗓子眼,难道这就是传说中的宝藏?小明激动地跑过去,打开箱子,发现里面竟然是一堆旧玩具和几本发黄的书。

虽然不是金银财宝,但大家还是围着箱子,乐呵呵地翻看起来。

小李拿起一个破损的玩具车,感慨道:“这让我想起小时候的快乐啊!”过了一会儿,大家决定继续探险,目标是(7, 8, 9)。

在路上,小王突然冒出一句:“这就像是在解密,每一个坐标点都是一个谜。

”大家纷纷点头,确实是这样。

他们就这样快乐地在坐标系中穿梭,偶尔碰到小动物,偶尔发出欢笑,仿佛整个世界都在和他们一起玩耍。

终于,他们到达了最后一个坐标点,(7, 8, 9)。

在这里,竟然发现了一片美丽的花丛,五颜六色的花朵让人目不暇接。

空间直角坐标系

空间直角坐标系

典型例题
1 图(可看成是八个棱长为 的小正方体堆积成的正方体),其 2
例2 结晶体的基本单位称为晶胞,如图是食盐晶胞的示意
中色点代表钠原子,黑点代表氯原子.
典型例题
1 图(可看成是八个棱长为 的小正方体堆积成的正方体),其 2
例2 结晶体的基本单位称为晶胞,如图是食盐晶胞的示意
中色点代表钠原子,黑点代表氯原子. 如图建立空间直角坐标 系O-xyz后,试写出全部钠原子所在位置的坐标.
R
M
P
O
M’
Q
y
x

z
yoz面

zox 面

xoy面
Ⅶ Ⅷ
o
y
Ⅵ Ⅴ

x
空间直角坐标系共有三个坐标面、八个卦限
3、空间中点的坐标
对于空间任意一点P,要求它的坐标 方法一:过P点分别做三个平面垂直于
x,y,z轴,平面与三个坐标轴的交点分别为
P1、P2、P3,在其相应轴上的坐标依次为 x,y,z,那么(x,y,)就叫做点P的空间直角
空间直角坐标系
OABC—A’B’C’D’是单位正方体.以O为原点,分别以射 线OA,OC, OD’的方向为正方向,以线段OA,OC, OD’的长为单 位长,建立空间直角坐标系O—xyz.试说出正方体的各个顶点 的坐标.并指出哪些点在坐标轴上,哪些点在坐标平面上.
z
(0,0,1)
D
'
C
'(0,1,1)
(1,0,1)
A
'
B '(1,1,1)
O(0,0,0) C(0,1,0) y
B(1,1,0)
A (1,0,0)
x
典型例题

高中数学《空间直角坐标系》课堂练习题

高中数学《空间直角坐标系》课堂练习题

高中数学《空间直角坐标系》课堂练习题【小编寄语】查字典数学网小编给大伙儿整理了高中数学《空间直角坐标系》课堂练习题,期望能给大伙儿带来关心!当堂练习:1.在空间直角坐标系中, 点P(1,2,3)关于x轴对称的点的坐标为( )A.(-1,2,3)B.(1,-2,-3)C.(-1, -2, 3)D.(-1 ,2, -3)2.在空间直角坐标系中, 点P(3,4,5)关于yOz平面对称的点的坐标为( )A.(-3,4,5)B.(-3,- 4,5)C.(3,-4,-5)D.(-3,4,-5)3.在空间直角坐标系中, 点A(1, 0, 1)与点B(2, 1, -1)之间的距离为( )A.B.6C.D.24.点P( 1,0, -2)关于原点的对称点P/的坐标为( )A.(-1, 0, 2)B.(-1,0, 2)C.(1 , 0 ,2)D.(-2,0,1)5.点P( 1, 4, -3)与点Q(3 , -2 , 5)的中点坐标是( )A.( 4, 2, 2)B.(2, -1, 2)C.(2, 1 , 1)D. 4, -1, 2)6.若向量在y轴上的坐标为0, 其他坐标不为0, 那么与向量平行的坐标平面是( )A. xOy平面B. xOz平面C.yOz平面D.以上都有可能7.在空间直角坐标系中, 点P(2,3,4)与Q (2, 3,- 4)两点的位置关系是( )A.关于x轴对称B.关于xOy平面对称C.关于坐标原点对称D.以上都不对8.已知点A的坐标是(1-t , 1-t , t), 点B的坐标是(2 , t, t), 则A与B两点间距离的最小值为( )A.C.D.9.点B是点A(1,2,3)在坐标平面内的射影,则OB等于( )A.B.C.D.10.已知ABCD为平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),则点D的坐标为( )A.(,4,-1) B.(2,3,1) C.(-3,1,5) D.(5,13,-3)11.点到坐标平面的距离是( )A.B.C.D.12.已知点三点共线,那么的值分别是( )A.,4 B.1,8 C.,-4 D.-1,-813.在空间直角坐标系中,一定点到三个坐标轴的距离差不多上1,则该点到原点的距离是( )A.C.D.14.在空间直角坐标系中, 点P的坐标为(1,),过点P作yOz平面的垂线PQ, 则垂足Q的坐标是______________ __.15.已知A(x, 5-x, 2x-1)、B(1,x+2,2-x),当|AB|取最小值时x的值为_______________.16.已知空间三点的坐标为A(1,5,-2)、B(2,4,1)、C(p,3,q+2),若A、B、C三点共线,则p =_________,q=__________.17.已知点A(-2, 3, 4), 在y轴上求一点B , 使|AB|=7 , 则点B的坐标为________________.18.求下列两点间的距离:A(1 , 1 , 0) , B(1 , 1 , 1);C(-3 ,1 , 5) , D(0 , -2 , 3).19.已知A(1 , -2 , 11) , B(4 , 2 , 3) ,C(6 , -1 , 4) , 求证:ABC是直角三角形.20.求到下列两定点的距离相等的点的坐标满足的条件:A(1 , 0 ,1) , B(3 , -2 , 1) ;A(-3 , 2 , 2) , B(1 , 0 , -2).21.在四棱锥P-ABCD中,底面ABCD为正方形,且边长为2a,棱P D⊥底面ABCD,PD=2b,取各侧棱的中点E,F,G,H,写出点E,F,G,H的坐标.参考答案:经典例题:解:(1)假设在在y轴上存在点M,满足因M在y轴上,可设M(0,y,0),由,可得明显,此式对任意恒成立.这确实是说y轴上所有点都满足关系(2)假设在y轴上存在点M,使△MAB为等边三角形.由(1)可知,y轴上任一点都有,因此只要就能够使得△MAB是等边三角形.因为因此,解得故y轴上存在点M使△MAB等边,M坐标为(0,,0),或(0,,0).当堂练习:1.B;2.A;3.A;4.B;5.C;6.B;7.B;8.C;9.B; 10.D; 11.C; 12.C; 13. A; 14. (0,); 15.; 16. 3 , 2; 17. (0,18. 解: (1)|AB|=(2)|CD|=19. 证明:为直角三角形.20. 解: (1)设满足条件的点的坐标为(x ,y , z) , 则化简得4x-4y-3=0即为所求.(2)设满足条件的点的坐标为(x ,y , z) , 则化简得2x-y-2z+3=0即为所求.21. 解: 由图形知,DA⊥DC,DC⊥DP,DP⊥DA,故以D为原点,建立如图空间坐标系D-xyz.因为E,F,G,H分别为侧棱中点,由立体几何知识可知,平面EF GH与底面ABCD平行,从而这4个点的竖坐标都为P的竖坐标的一半,也确实是b,由H为DP中点,得H(0,0,b)E在底面面上的投影为AD中点,因此E的横坐标和纵坐标分别为a 和0,因此E(a,0,b),同理G(0,a,b);唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。

空间直角坐标系

空间直角坐标系

四、空间两点间的距离
设 M1( x1 , y1 , z1 )、 M2 ( x2 , y2 , z2 )为空间两点
zR
M1
P o
d = M1M2 = ?
M2
Q 在直角M1 NM2
N 及直角M1PN 中,
y 使用勾股定理知
x
d 2 = M1P 2 + PN 2 + NM2 2 ,
M1P x2 x1 , PN y2 y1 ,
五、典型例题
例 2 设 P 在 x轴上,它到 P1(0, 2,3)的距离为到点 P2 (0,1,1)的距离的两倍,求点 P 的坐标.
解 因为 P 在 x轴上, 设P点坐标为 ( x,0,0),
PP1 x2 2 2 32 x2 11,
PP2 x2 12 12 x2 2,
PP1 2 PP2 , x2 11 2 x2 2
x 1, 所求点为 (1,0,0), (1,0,0).
六、小结
一、空间直角坐标系 二、三个坐标面 八个卦限 三、空间点的坐标 四、空间两点间的距离
NM2 z2 z1 ,
x
zR
M1
P
o
d M1P 2 PN 2 NM2 2
M2
Q N
y
M1M2 x2 x1 2 y2 y1 2 z2 z1 2 .
空间两点间距离公式
特殊地:若两点分别为 M( x, y, z) , O(0,0,0)
d OM x2 y2 z2 .
五、典型例题
例 1 求证以 M1(4,3,1)、 M2 (7,1,2)、M3 (5,2,3)
三点为顶点的三角形是一个等腰三角形.
解 M1M2 2 (7 4)2 (1 3)2 (2 1)2 14, M2M3 2 (5 7)2 (2 1)2 (3 2)2 6, M3M1 2 (4 5)2 (3 2)2 (1 3)2 6, M2M3 M3M1 , 原结论成立.

空间坐标系与空间坐标系在立体几何中的应用有答案

空间坐标系与空间坐标系在立体几何中的应用有答案

空间坐标系与空间坐标系在立体几何中的应用有答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-一.空间直角坐标系如图1,为了确定空间点的位置,我们建立空间直角坐标系:以正方体为载体,以O为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长,建立三条数轴:x轴、y轴、z 轴,这时我们说建立了一个空间直角坐标系,其中点O叫做坐标原点,x轴、y 轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、zOx平面、yOz平面,通常建立的坐标系为右手直角坐标系,即右手拇指指向x 轴的正方向,食指指向y轴的正方向,中指指向z轴的正方向.二.空间直角坐标系中的坐标空间一点M的坐标可用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M 在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标[例1] 在空间直角坐标系中,作出点M(6,-2,4).[例2] 长方体ABCD-A1B1C1D1中,|AB|=a,|BC|=b,|CC1|=c,将此长方体放到空间直角坐标系中的不同位置(如图3),分别写出长方体各顶点的坐标.变式1:棱长为2的正方体,将此正方体放到空间直角坐标系中的不同位置,分别写出几何体各顶点的坐标。

2.底面为边长为4的菱形,高为5的棱柱,将此几何体放到空间直角坐标系中的不同位置分别写出几何体各顶点的坐标。

3. 在棱长均为2a的正四棱锥P-ABCD中,建立恰当的空间直角坐标系,(1)写出正四棱锥P-ABCD各顶点坐标;(2)写出棱PB的中点M的坐标.解:连接AC,BD交于点O,连接PO,∵P-ABCD为正四棱锥,且棱长均为2a.∴四边形ABCD为正方形,且PO⊥平面ABCD.∴OA=2=PA2-OA2=2a2-2a2=2a.以O点为坐标原点,OA,OB,OP所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系.(1)正四棱锥P-ABCD中各顶点坐标分别为A(2a,0,0),B(0,2a,0),C(-2 a,0,0),D(0,-2a,0),P(0,0,2a).(2)∵M为棱PB的中点,∴由中点坐标公式,得M(0+02,2a+02,0+2a2),即M(0,22a,22a).[例3] 在空间直角坐标系中,点P(-2,1,4).(1)求点P关于x轴的对称点的坐标;(2)求点P关于xOy平面的对称点的坐标;(3)求点P关于点M(2,-1,-4)的对称点的坐标.[解](1)由于点P关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点为P1(-2,-1,-4).(2)由于点P关于xOy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点为P2(-2,1,-4).(3)设对称点为P3(x,y,z),则点M为线段PP3的中点,由中点坐标公式,可得x =2×2-(-2)=6,y=2×(-1)-1=-3,z=2×(-4)-4=-12,所以P3(6,-3,-12).变式:1.写出点P(6,-2,-7)在xOy面,yOz面,xOz面上的投影的坐标以及点P 关于各坐标平面对称的点的坐标.解:设点P在xOy平面、yOz平面、xOz平面上的投影分别为点A,B,C,点P关于xOy平面、yOz平面、xOz平面的对称点分别为点A′,B′,C′,由PA⊥平面xOy,PB⊥平面yOz,PC⊥平面xOz及坐标平面的特征知,点A(6,-2,0),点B(0,-2,-7),点C(6,0,-7);根据点P关于各坐标平面对称点的特征知,点A′(6,-2,7),B′(-6,-2,-7),C′(6,2,-7).2.在棱长都为2的正三棱柱ABC-A1B1C1中,建立恰当的直角坐标系,并写出正三棱柱ABC-A1B1C1各顶点的坐标.[正解] 取BC ,B 1C 1的中点分别为O ,O 1,连线OA ,OO 1, 根据正三棱柱的几何性质,OA ,OB ,OO 1两两互相垂直,且 |OA |=32×2=3, 以OA ,OB ,OO 1所在的直线分别为x 轴、y 轴、z 轴建立直角坐标系,如图5所示,则正三棱柱ABC —A 1B 1C 1各顶点的坐标分别为A (3,0,0),B (0,1,0),C (0,-1,0),A 1(3,0,2),B 1(0,1,2),C 1(0,-1,2).三.空间向量在立体几何中的应用1. 直线的方向向量与平面的法向量(1) 直线l 上的向量e 以及与e 共线的向量叫做直线l 的方向向量.(2) 如果表示非零向量n 的有向线段所在直线垂直于平面α,那么称向量n 垂直于平面α,记作n ⊥α.此时把向量n 叫做平面α的法向量.2. 线面关系的判定直线l 1的方向向量为e 1=(a 1,b 1,c 1),直线l 2的方向向量为e 2=(a 2,b 2,c 2),平面α的法向量为n 1=(x 1,y 1,z 1),平面β的法向量为n 2=(x 2,y 2,z 2).(1) 如果l 1∥l 2,那么e 1∥e 2⇔e 2=λe 1⇔a 2=λa 1,b 2=λb 1,c 2=λc 1. (2) 如果l 1⊥l 2,那么e 1⊥e 2⇔e 1·e 2=0⇔a 1a 2+b 1b 2+c 1c 2=0. (3) 若l 1∥α,则e 1⊥n 1⇔e 1·n 1=0⇔a 1x 1+b 1y 1+c 1z 1=0.(4) 若l 1⊥α,则e 1∥n 1⇔e 1=k n 1⇔a 1=kx 1,b 1=ky 1,c 1=kz 1. (5) 若α∥β,则n 1∥n 2⇔n 1=k n 2⇔x 1=kx 2,y 1=ky 2,z 1=kz 2. (6) 若α⊥β,则n 1⊥n 2⇔n 1·n 2=0⇔x 1x 2+y 1y 2+z 1z 2=0. 3. 利用空间向量求空间角 (1) 两条异面直线所成的角①范围:两条异面直线所成的角θ的取值范围是⎝⎛⎦⎥⎤0,π2.②向量求法:设直线a 、b 的方向向量为a 、b ,其夹角为φ,则有cos θ=|cos φ|.(2) 直线与平面所成的角①范围:直线和平面所成的角θ的取值范围是⎣⎢⎡⎦⎥⎤0,π2. ②向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|(3) 二面角①二面角的取值范围是[0,π]. ②二面角的向量求法:(ⅰ) 若AB 、CD 分别是二面角α-l-β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB 与CD 的夹角(如图①).(ⅱ) 设n 1、n 2分别是二面角α-l-β的两个面α、β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).题型1 空间向量的基本运算[例1]已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a =AB →,b =AC →.(1) 求a 和b 的夹角θ;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值. 解:∵A (-2,0,2),B(-1,1,2),C(-3,0,4),a =AB →,b =AC →, ∴a =(1,1,0),b =(-1,0,2).(1)∵cosθ=a·b |a ||b |=-1+0+02×5=-1010,∴a 和b 的夹角为arccos ⎝ ⎛⎭⎪⎫-1010. (2)∵k a +b =k(1,1,0)+(-1,0,2)=(k -1,k ,2),k a -2b =(k +2,k ,-4),且(k a +b )⊥(k a -2b ),∴(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=2k 2+k -10=0,解得k =-52或2.题型2 空间中的平行与垂直例2 如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直, AB =2,AF =1,M 是线段EF 的中点.求证:(1) AM∥平面BDE ;(2) AM⊥平面BDF.证明:(1) 建立如图所示的空间直角坐标系,设AC∩BD=N ,连结NE.则N ⎝ ⎛⎭⎪⎫22,22,0,E(0,0,1),A(2,2,0),M ⎝ ⎛⎭⎪⎫22,22,1.∴ NE →=⎝ ⎛⎭⎪⎫-22,-22,1,AM →=⎝ ⎛⎭⎪⎫-22,-22,1.∴ NE →=AM →且NE 与AM 不共线.∴ NE∥AM.∵ NE 平面BDE ,AM 平面BDE ,∴ AM ∥平面BDE.(2) 由(1)知AM →=⎝ ⎛⎭⎪⎫-22,-22,1,∵ D(2,0,0),F(2,2,1),∴ DF→=(0,2,1),∴ AM →·DF →=0,∴ AM ⊥DF.同理AM⊥BF. 又DF∩BF=F ,∴ AM ⊥平面BDF. 题型3 空间的角的计算例3 (2013·苏锡常镇二模)如图,圆锥的高PO =4,底面半径OB =2,D 为PO 的中点,E 为母线PB 的中点,F 为底面圆周上一点,满足EF⊥DE.(1) 求异面直线EF 与BD 所成角的余弦值; (2) 求二面角F-OD-E 的正弦值.解:(1) 以O 为原点,底面上过O 点且垂直于OB 的直线为x 轴,OB 所在的线为y 轴,OP 所在的线为z 轴,建立空间直角坐标系,则B(0,2,0),P(0,0,4),D(0,0,2),E(0,1,2).设F(x 0,y 0,0)(x 0>0,y 0>0),且x 20+y 20=4,则EF →=(x 0,y 0-1,-2),DE →=(0,1,0),∵ EF ⊥DE ,即EF →⊥DE →,则EF →·DE →=y 0-1=0,故y 0=1.∴ F(3,1,0),EF →=(3,0,-2),BD →=(0,-2,2).设异面直线EF 与BD 所成角为α,则cos α=⎪⎪⎪⎪⎪⎪⎪⎪EF →·BD →|EF →||BD →|=47×22=147. (2) 设平面ODF 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1⊥OD →,n 1⊥OF →,即⎩⎨⎧z 1=0,3x 1+y 1=0.令x 1=1,得y 1=-3,平面ODF 的一个法向量为n 1=(1,-3,0).设平面DEF 的法向量为n 2=(x 2,y 2,z 2),同理可得平面DEF 的一个法向量为n 2=⎝⎛⎭⎪⎫1,0,32.设二面角F-OD-E 的平面角为β,则|cos β|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=17=77.∴ sin β=427. (翻折问题)例4. (2013广东韶关第二次调研)如图甲,在平面四边形ABCD 中,已知∠A=45°,∠C =90°,∠ADC =105°,AB =BD ,现将四边形ABCD 沿BD 折起,使平面ABD⊥平面BDC(如图乙),设点E 、F 分别为棱AC 、AD 的中点.(1) 求证: DC⊥平面ABC ; (2) 求BF 与平面ABC 所成角的正弦值; (3) 求二面角B -EF -A 的余弦值.解:(1) ∵ 平面ABD⊥平面BDC ,又∵ AB⊥BD,∴ AB ⊥平面BDC ,故AB⊥DC,又∵ ∠C=90°,∴ DC ⊥BC ,BC ABC 平面ABC ,DC 平面ABC ,故DC⊥平面ABC.(2) 如图,以B 为坐标原点,BD 所在的直线为x 轴建立空间直角坐标系如下图示,设CD =a ,则BD =AB =2a ,BC =3a ,AD =22a ,可得B(0,0,0),D(2a ,0,0),A(0,0,2a),C ⎝ ⎛⎭⎪⎫32a ,32a ,0,F(a ,0,a),∴ CD →=⎝ ⎛⎭⎪⎫12a ,-32a ,0,BF →=(a ,0,a).设BF 与平面ABC 所成的角为θ,由(1)知DC⊥平面ABC ,∴ cos ⎝ ⎛⎭⎪⎫π2-θ=CD →·BF →|CD →|·|BF →|=12a 2a ·2a =24,∴ sin θ=24.(3) 由(2)知 FE⊥平面ABC, 又∵ BE平面ABC ,AE平面ABC ,∴ FE⊥BE,FE⊥AE ,∴ ∠AEB 为二面角B -EF -A 的平面角 .在△AEB 中,AE =BE =12AC =12AB 2+BC 2=72a , ∴ cos ∠AEB =AE 2+BE 2-AB 22AE ·BE =-17,即所求二面角B -EF -A 的余弦为-17.课后巩固练习:1.(2013·江苏卷)如图所示,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1) 求异面直线A 1B 与C 1D 所成角的余弦值;(2) 求平面ADC 1与平面ABA 1所成二面角的正弦值.解:(1) 以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2) 设平面ADC 1的法向量为n 1=(x ,y ,z),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0), 设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53. 2. (2013·新课标全国卷Ⅱ)如图所示,直三棱柱ABCA 1B 1C 1中,D 、E 分别是AB 、BB 1的中点,AA 1=AC =CB =22AB.(1) 证明:BC 1∥平面A 1CD ;(2) 求二面角DA 1CE 的正弦值. (1) 证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则BC 1∥DF. 因为DF 平面A1CD ,BC 1平面A 1CD , 所以BC 1∥平面A 1CD.(2) 由AC =CB =22AB 得AC⊥BC. 以C 为坐标原点,CA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Cxyz.设CA =2,则D(1,1,0),E(0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎨⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 为平面A 1CE 的法向量,则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n·m |n||m|=33,故sin 〈n ,m 〉=63.即二面角D-A 1C-E 的正弦值为63. 3. (2013·重庆)如图所示,四棱锥PABCD 中,PA ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD=π3,F 为PC 的中点,AF ⊥PB.(1) 求PA 的长;(2) 求二面角B-AF-D 的正弦值.解:(1) 如图,连结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD,故AC⊥BD.以O 为坐标原点,OB →、OC →、AP →的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系Oxyz ,则OC =CDcos π3=1,而AC =4,得AO =AC -OC =3.又OD =CDsin π3=3,故A(0,-3,0),B(3,0,0),C(0,1,0),D(-3,0,0).因为PA⊥底面ABCD ,可设P(0,-3,z),由F 为PC 边中点,得F ⎝⎛⎭⎪⎫0,-1,z 2,又AF →=⎝⎛⎭⎪⎫0,2,z 2,PB →=(3,3,-z),因AF⊥PB,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23),所以|PA→|=2 3.(2) 由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面FAD 的法向量为n 1=(x 1,y 1,z 1),平面FAB 的法向量为n 2=(x 2,y 2,z 2).由n 1·AD →=0,n 1·AF →=0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB →=0,n 2·AF →=0, 得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B-AF-D 的正弦值为378.4. (2013·连云港调研)在三棱锥SABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 恰是AC 的中点,侧棱SB 和底面成45°角.(1) 若D 为侧棱SB 上一点,当SDDB为何值时,CD ⊥AB ;(2) 求二面角S-BC-A 的余弦值大小.解:以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系O-xyz.由题意知∠SBO=45°,SO =(0,0,0),C(0,3,0),A(0,-3,0),S(0,0,3),B(3,0,0).(1) 设BD →=λBS →(0≤λ≤1),则OD →=(1+λ)OB →+λOS →=(3(1+λ),0,3λ),所以CD →=(3(1-λ),-3,3λ). 因为AB →=(3,3,0),CD ⊥AB ,所以CD →·AB →=9(1-λ)-3=0,解得λ=23.故SD DB =12时, CD ⊥AB. (2) 平面ACB 的法向量为n 1=(0,0,1),设平面SBC 的法向量n 2=(x ,y ,z),则n 2·SB →=0,n 2·SC →=0,则⎩⎨⎧3x -3z =0,3y -3z =0,解得⎩⎨⎧x =z ,y =3z ,取n 2=(1,3,1),所以cos 〈n 1,n 2〉=3×0+1×0+1×112+12+(3)2·1=55. 又显然所求二面角的平面角为锐角,故所求二面角的余弦值的大小为55. 5. 在直四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2,底面是边长为1的正方形,E 、F 分别是棱B 1B 、DA 的中点.(1) 求二面角D 1-AE-C 的大小; (2) 求证:直线BF∥平面AD 1E.(1) 解:以D 为坐标原点,DA 、DC 、DD 1分别为x 、y 、z 轴建立空间直角坐标系如图.则相应点的坐标分别为D 1(0,0,2),A(1,0,0),C(0,1,0),E(1,1,1),∴ED1→=(0,0,2)-(1,1,1)=(-1,-1,1),AE →=(1,1,1)-(1,0,0)=(0,1,1), AC →=(0,1,0)-(1,0,0)=(-1,1,0).设平面AED 1、平面AEC 的法向量分别为m =(a ,b ,1),n =(c ,d ,1).由⎩⎪⎨⎪⎧ED 1→·m =0,AE →·m =0⎩⎨⎧-a -b +1=0,b +1=0⎩⎨⎧a =2,b =-1,由⎩⎪⎨⎪⎧AC →·n =0,AE →·n =0⎩⎨⎧-c +d =0,d +1=0⎩⎨⎧c =-1,d =-1,∴m =(2,-1,1),n =(-1,-1,1),∴cos m ,n =m·n |m |·|n |=-2+1+16×3=0,∴二面角D 1AEC 的大小为90°.(2) 证明:取DD 1的中点G ,连结GB 、GF.∵E 、F 分别是棱BB 1、AD 的中点,∴GF ∥AD 1,BE ∥D 1G 且BE =D 1G ,∴四边形BED 1G 为平行四边形,∴D 1E ∥BG. 又D1E 、D 1A 平面AD 1E ,BG 、GF 平面AD 1E , ∴BG ∥平面AD 1E ,GF ∥平面AD 1E.∵GF 、GB 平面BGF ,∴平面BGF∥平面AD 1E. ∵BF 平面AD 1E ,∴直线BF∥平面AD 1E.(或者:建立空间直角坐标系,用空间向量来证明直线BF∥平面AD 1E ,亦可)6. (2013·苏州调研)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,A 1A =是BC 的中点.(1) 求直线DB 1与平面A 1C 1D 所成角的正弦值; (2) 求二面角B 1-A 1D-C 1的正弦值.解:(1) 由题意,A(0,0,0),B(2,0,0),C(0,4,0),D(1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3).A 1D →=(1,2,-3),A 1C 1→=(0,4,0).设平面A 1C 1D 的一个法向量为n =(x ,y ,z).∵ n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0.∴ x =3z ,y =0.令z =1,得x ==(3,0,1).设直线DB 1与平面A 1C 1D 所成角为θ,∵ DB 1→=(1,-2,3),∴ sin θ=|cos 〈DB 1→·n 〉|=3×1+0×(-2)+1×310×14=33535. (2) 设平面A 1B 1D 的一个法向量为m =(a ,b ,c). A 1B 1→=(2,0,0),∵ m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0,∴ a =0,2b =3c.令c =2,得b ==(0,3,2).设二面角B 1A 1DC 1的大小为α,∴ |cos α|=cos|〈m ,n 〉|=|m·n||m|·|m|=|0×3+3×0+2×1|13×10=265,则sin α=3765=345565.∴ 二面角B 1A 1DC 1的正弦值为345565.7. (2013·南通二模)如图,在三棱柱ABCA 1B 1C 1中,A 1B ⊥平面ABC ,AB ⊥AC ,且AB =AC =A 1B =2.(1) 求棱AA 1与BC 所成的角的大小;(2) 在棱B 1C 1上确定一点P ,使二面角P -AB -A 1的平面角的余弦值为255.解:(1) 如图,以A 为原点建立空间直角坐标系,则C(2,0,0),B(0,2,0),A 1(0,2,2),B 1(0,4,2),AA 1→=(0,2,2),BC →=B 1C 1→=(2,-2,0).cos 〈AA 1→,BC →〉=AA 1→·BC →|AA 1→|·|BC →|=-48·8=-12,故AA 1与棱BC 所成的角是π3.(2) P 为棱B 1C 1中点,设B 1P →=λB 1C 1→=(2λ,-2λ,0),则P(2λ,4-2λ,2).设平面PAB 的法向量为n 1=(x ,y ,z),AP →=(2λ,4-2λ,2),则⎩⎪⎨⎪⎧n 1·AP →=0,n 1·AB →=0.⎩⎨⎧λx+2y -λy+z =0,2y =0.⎩⎨⎧z =-λx,y =0.故n 1=(1,0,-λ),而平面ABA1的法向量是n2=(1,0,0),则cos〈n1,n2〉=n1·n2|n1|·|n2|=11+λ2=255,解得λ=12,即P为棱B1C1中点,其坐标为P(1,3,2).近六年高考题1. 【2010高考北京理第16题】(14分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE;(3)求二面角A-BE-D的大小.【答案】设AC与BD交与点G。

基础训练:空间直角坐标系

基础训练:空间直角坐标系

4.3 空间直角坐标系1.点(2,1,0)A -在空间直角坐标系的位置是【 】A. z 轴上B. xOy 平面上C. xO z 平面上D. yOz 平面上2.点B 是点)3,2,1(A 在坐标平面yoz 内的射影,则||OB 等于【 】 A.14 B. 13 C. 32 D.113.已知线段AB 的两个端点的坐标分别为)4,3,9(-A 和)1,2,9(B ,则线段AB 【 】A.与平面xoy 平行B. 与平面xoz 平行C. 与平面zoy 平行D. 与平面xoy 获zoy 平行4.已知三角形ABC 的顶点A (2,2,0),B (0,2,0),C (0,1,4),则三角形ABC 是【 】A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形5.点(1,3,5)P 关于原点对称的点的坐标是 .6.连接平面上两点111(,)P x y ,222(,)P x y 的线段12P P 的中点M 的坐标为1212(,)22x x y y ++,那么,已知空间中两点1111(,,)P x y z ,2222(,,)P x y z ,线段12P P 的中点M 的坐标为 .7.已知A (2,5,-6),在y 轴上求一点B ,使得|AB |=7;8.在空间直角坐标系中,给定点(1,2,3)M -,求它关于坐标平面、坐标轴和原点的对称点的坐标.参考答案1. B2. B3. C4. A5.(1,3,5)--- 6. 122212(,,)222x x y y z z +++ 7. B (0,2,0)或B (0,8,0).8. 点(1,2,3)M -关于平面xO y 、平面yO z 、平面xOz 的对称点的坐标分别是(1,2,3)--、(1,2,3)--、(1,2,3).点(1,2,3)M -关于x 轴、y 轴、z 轴、原点的对称点的坐标分别是(1,2,3)-、(1,2,3)---、(1,2,3)-,(1,2,3)--.。

2.3 空间直角坐标系典型习题

2.3 空间直角坐标系典型习题

§2.3 空间直角坐标系典型习题 一、选择题 1.以棱长为1的正方体ABCD-A 1B 1C 1D 1的棱AB 、AD 、AA 1所在的直线为坐标轴,建立空间直角坐标系,则平面AA 1B 1B 对角线交点的坐标为( )A .(0,0.5,0.5)B .(0.5,0,0.5)C .(0.5,0.5,0)D .(0.5,0.5,0.5)2.设点B 是点A (2,-3,5)关于xOy 面的对称点,则A 、B 两点距离为( )A .10B .10C .38D .383.如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO-A′B′C′D′,A′C 的中点E 与AB 的中点F 的距离为( )A .a 2B .a 22C .aD .a214.一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是( )A .37B .47C .33D .575.点P (x ,y ,z )满足222)1()1()1(++-+-z y x =2,则点P 在( )A .以点(1,1,-1)为圆心,以2为半径的圆上B .以点(1,1,-1)为中心,以2为棱长的正方体上C .以点(1,1,-1)为球心,以2为半径的球面上D .无法确定6.若A 、B 两点的坐标是A (3cosα,3sinα),B (2cosθ,2sinθ),则|AB|的取值范围是( )A .[0,5]B .[1,5] C.(1,5) D .[1,25]7.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是( ) ①点P 关于x 轴对称点的坐标是P 1(x ,﹣y ,z );②点P 关于yOz 平面对称点的坐标是P 2(x ,﹣y ,﹣z );③点P关于y轴对称点的坐标是P3(x,﹣y,z);④点P关于原点对称的点的坐标是P4(﹣x,﹣y,﹣z).A.3B.2C.1D.08.设A(3,3,1)、B(1,0,5)、C(0,1,0),则AB中点M到C点的距离为()A.B.C.D.9.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()B A.B.C.D.10.已知ABCD为平行四边形,且A(4,1,3),B(2,﹣5,1),C(3,7,﹣5),则点D 的坐标为()A.(3.5,4,﹣1)B.(2,3,1)C.(﹣3,1,5)D.(5,13,﹣3)11.已知点A(1,﹣2,11),B(4,2,3),C(x,y,15)三点共线,那么x,y的值分别是()A.0.5,4 B.1,8 C.-0.5,﹣4 D.﹣1,﹣812.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是()A.B.C.D.二、填空题(每小题5分,共20分)13.点P(1,2,3)关于y轴的对称点为P1,P关于坐标平面xOz的对称点为P2,则|P1P2|= ____14.已知三角形的三个顶点为A(2,-1,4),B(3,2,-6),C(5,0,2),则BC边上的中线长为_____________15.已知x,y,z满足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是____________ 16. 已知点A(﹣3,1,4),则点A关于原点的对称点B的坐标为;AB的长为.三、解答题(共70分)17.如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.21.在空间直角坐标系中,已知A(3,0,1)和B(1,0,﹣3),试问(1)在y轴上是否存在点M,满足|MA|=|MB|?(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.参考答案:一、选择题1.以棱长为1的正方体ABCD-A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴,建立空间直角坐标系,则平面AA1B1B对角线交点的坐标为()A.(0,0.5,0.5)B.(0.5,0,0.5)C.(0.5,0.5,0)D.(0.5,0.5,0.5)【解答】解:由题意如图,平面AA 1B 1B 对角线交点是横坐标为AB 的中点值,竖坐标为AA 1的中点值,纵坐标为0,所以平面AA 1B 1B 对角线交点的坐标为(0.5,0,0.5).故选B .2.设点B 是点A (2,-3,5)关于xOy 面的对称点,则A 、B 两点距离为( )A .10B .10C .38D .38【解答】解:点B 是A (2,-3,5)关于xoy 平面对称的点,∴B 点的横标和纵标与A 点相同,竖标相反,∴B (2,-3,-5)∴AB 的长度是5-(-5)=10,故选A .3.如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO-A′B′C′D′,A′C 的中点E 与AB 的中点F 的距离为( )A .a 2B .a 22C .aD .a21【解答】解:如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO-A′B′C′D′, ∵A (a ,0,0),B (a ,a ,0),C (0,a ,0),A′(a ,0,a ),A′C 的中点E 与AB 的中点F ,∴F (a ,2a ,0),E (2a ,2a ,2a ), |EF|=222)0()2()(aa a a a a a -+-+-=22a . 4.一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是( )A .37B .47C .33D .57【解答】解:点P (1,1,1)平面xoy 的对称点的M 坐标(1,1,-1),一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是:222)16()13()13(++-+-=57.故选D .5.点P (x ,y ,z )满足222)1()1()1(++-+-z y x =2,则点P 在( ) A .以点(1,1,-1)为圆心,以2为半径的圆上B .以点(1,1,-1)为中心,以2为棱长的正方体上C .以点(1,1,-1)为球心,以2为半径的球面上D .无法确定【解答】解:式子222)1()1()1(++-+-z y x =2的几何意义是动点P (x ,y ,z )到定点(1,1,-1)的距离为2的点的集合.故选C .6.若A 、B 两点的坐标是A (3cosα,3sinα),B (2cosθ,2sinθ),则|AB|的取值范围是( )A .[0,5]B .[1,5] C.(1,5) D .[1,25]【解答】解:由题意可得|AB|=22)sin 2sin 3()cos 2cos 3(βαβα-+- =βαβαsin sin cos cos 1249+-+ =)cos(1213βα--.∵-1≤cos (α-β)≤1,∴1≤13-12cos (α-β)≤25,∴1≤)cos(1213βα--≤5,故选B . 7.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是( )C ①点P 关于x 轴对称点的坐标是P 1(x ,﹣y ,z );②点P 关于yOz 平面对称点的坐标是P 2(x ,﹣y ,﹣z );③点P 关于y 轴对称点的坐标是P 3(x ,﹣y ,z );④点P 关于原点对称的点的坐标是P 4(﹣x ,﹣y ,﹣z ).A . 3B . 2C . 1D . 08.设A (3,3,1)、B (1,0,5)、C (0,1,0),则AB 中点M 到C 点的距离为( )CA .B .C .D .9.点B 是点A (1,2,3)在坐标平面yOz 内的正投影,则|OB|等于( )BA .B .C .D .10.已知ABCD 为平行四边形,且A (4,1,3),B (2,﹣5,1),C (3,7,﹣5),则点D 的坐标为( )DA . (3.5,4,﹣1)B . (2,3,1)C . (﹣3,1,5)D . (5,13,﹣3)11.已知点A (1,﹣2,11),B (4,2,3),C (x ,y ,15)三点共线,那么x ,y 的值分别是( )CA . 0.5,4B . 1,8C . -0.5,﹣4D . ﹣1,﹣812.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( A )A .B .C .D .二、填空题(每小题5分,共20分)13.点P (1,2,3)关于y 轴的对称点为P 1,P 关于坐标平面xOz 的对称点为P 2,则|P 1P 2|= ____214【解答】解:∵点P (1,2,3)关于y 轴的对称点为P 1,所以P 1(-1,2,-3),P 关于坐标平面xOz 的对称点为P 2,所以P 2(1,-2,3),∴|P 1P 2|=222)33()22()11(--+++--=214.故答案为:21414.已知三角形的三个顶点为A (2,-1,4),B (3,2,-6),C (5,0,2),则BC 边上的中线长为 _____________211【解答】解:∵B (3,2,-6),C (5,0,2),∴BC 边上的中点坐标是D (4,1,-2) ∴BC 边上的中线长为222)42()11()24(--+++-=22,故答案为:21115.已知x ,y ,z 满足(x-3)2+(y-4)2+z 2=2,那么x 2+y 2+z 2的最小值是 ____________27-102.【解答】解:由题意可得P (x ,y ,z ),在以M (3,4,0)为球心,2为半径的球面上, x 2+y 2+z 2表示原点与点P 的距离的平方,显然当O ,P ,M 共线且P 在O ,M 之间时,|OP|最小,此时|OP|=|OM|-2=432+-2=52,所以|OP|2=27-102.故答案为:27-102.16. 已知点A (﹣3,1,4),则点A 关于原点的对称点B 的坐标为 ;AB 的长为 .(3,-1,-4)2三、解答题(共70分)17.如图所示,过正方形ABCD 的中心O 作OP ⊥平面ABCD ,已知正方形的边长为2,OP=2,连接AP 、BP 、CP 、DP ,M 、N 分别是AB 、BC 的中点,以O 为原点,射线OM 、ON 、OP 分别为Ox 轴、Oy 轴、Oz 轴的正方向建立空间直角坐标系.若E 、F 分别为PA 、PB 的中点,求A 、B 、C 、D 、E 、F 的坐标.解:【解答】解:如图所示,B 点的坐标为(1,1,0),因为A 点关于x 轴对称,得A (1,-1,0),C 点与B 点关于y 轴对称,得C (-1,1,0), D 与C 关于x 轴对称,的D (-1,-1,0),又P (0,0,2),E 为AP 的中点,F 为PB 的中点,由中点坐标公式可得E (0.5,-0.5,1),F (0.5,0.5,1).18.在空间直角坐标系中,解答下列各题:(1)在x 轴上求一点P ,使它与点P 0(4,1,2)的距离为30;(2)在xOy 平面内的直线x+y=1上确定一点M ,使它到点N (6,5,1)的距离最小.解:【解答】解:(1)设点P 的坐标是(x ,0,0),由题意|P0P|=30,即22221)4(++-x =30,∴(x-4)2=25.解得x=9或x=-1.∴点P 坐标为(9,0,0)或(-1,0,0).先设点M (x ,1-x ,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.(2)设点M (x ,1-x ,0)则|MN|=51)1(22+-x ∴当x=1时,|MN|min=51.∴点M 的坐标为(1,0,0)时到点N (6,5,1)的距离最小.19.已知空间直角坐标系O-xyz 中点A (1,1,1),平面α过点A 且与直线OA 垂直,动点P (x ,y ,z )是平面α内的任一点.(1)求点P 的坐标满足的条件;(2)求平面α与坐标平面围成的几何体的体积.解:【解答】解:(1)因为OA ⊥α,所以OA ⊥AP ,由勾股定理可得:|OA|2+|AP|2=|OP|2,即3+(x-1)2+(y-1)2+(z-1)2=x 2+y 2+z 2,化简得:x+y+z=3.(2)设平面α与x 轴、y 轴、z 轴的点分别为M 、N 、H ,则M (3,0,0)、N (0,3,0)、H (0,0,3).所以|MN|=|NH|=|MH|=32, 所以等边三角形MNH 的面积为:3/4×(32)2=93/2.又|OA|=3,故三棱锥0-MNH 的体积为:31×93/2×3=4.5.20.如图,已知正方体ABCD ﹣A′B′C′D′的棱长为a ,M 为BD′的中点,点N 在A′C′上,且 |A′N|=3|NC′|,试求MN 的长.【解答】解:以D 为原点,建立如图空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),C'(0,a ,a ),D'(0,0,a ).由于M 为BD'的中点,取A'C'中点O',所以M (2a ,2a ,2a ),O'(2a ,2a ,a ).因为|A'N|=3|NC'|,所以N 为A'C'的四等分,从而N 为O'C'的中点,故N (4a ,43a ,a ).根据空间两点距离公式,可得|MN |=222)2()432()42(a a a a a a -+-+-=46a21.在空间直角坐标系中,已知A (3,0,1)和B (1,0,﹣3),试问(1)在y 轴上是否存在点M ,满足|MA|=|MB|?(2)在y 轴上是否存在点M ,使△MAB 为等边三角形?若存在,试求出点M 坐标.【解答】解:(1)假设在y 轴上存在点M ,满足|MA|=|MB|.因M 在y 轴上,可设M (0,y ,0),由|MA|=|MB|,可得2222223113++=++y y 显然,此式对任意y ∈R 恒成立.这就是说y 轴上所有点都满足关系|MA|=|MB|.(2)假设在y 轴上存在点M ,使△MAB 为等边三角形.由(1)可知,y 轴上任一点都有|MA|=|MB|,所以只|MA|=|AB|就可以使得△MAB 是等边三角形.因为|MA|=222)01()0()03(-+-+-y =210y +|AB |=222)13()00()31(-+-+-=20于是210y +=20,解得y =±10 故y 轴上存在点M 使△MAB 等边,M 坐标为(0,10,0),或(0,−10,0).空间直角坐标系 优化训练1.已知点A (-1,2,7),则点A 关于x 轴对称点的坐标为( )A .(-1,-2,-7)B .(-1,-2,7)C .(1,-2,-7)D .(1,2,-7)2.点P (-2,0,3)位于( )A .y 轴上B .z 轴上C .xOz 平面内D .yOz 平面内3.如图所示空间直角坐标系的直观图中,正确的个数为( )A .1B .2C .3D .44.点P (-3,2,1)关于Q (1,2,-3)的对称点M 的坐标是________.5.在空间直角坐标系Oxyz 中,点P (2,3,4)在x 轴上的射影的坐标为______,在平面xOy 上的射影的坐标为______,在yOz 平面上的射影的坐标为______.1.如图,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,|BP |=13|BD ′|,则P 点的坐标为( )A .(13,13,13)B .(23,23,23) C .(13,23,13) D .(23,23,13) 2.在空间直角坐标系中,P (2,3,4),Q (-2,3,-4)两点的位置关系是( )A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .关于y 轴对称3.已知空间直角坐标系中有一点M (x ,y ,z )满足x >y >z ,且x +y +z =0,则M 点的位置是( )A .一定在第Ⅴ或第Ⅷ卦限B .一定在第Ⅷ卦限C .可能在第Ⅰ卦限D .可能在xOz 平面上 4. 在空间直角坐标系中,点P (1,2,3),过点P 作平面xOy 的垂线PQ ,垂足为Q ,则Q 的坐标为( )A .(0,2,0)B .(0,2,3)C .(1,0,3)D .(1,2,0)5.已知△ABC 的三个顶点坐标分别为A (2,3,1)、B (4,1,-2)、C (6,3,7),则△ABC 的重心坐标为( )A.⎝ ⎛⎭⎪⎫6,72,3B.⎝ ⎛⎭⎪⎫4,73,2 C.⎝ ⎛⎭⎪⎫8,143,4 D.⎝ ⎛⎭⎪⎫2,76,1 6.设z 是任意实数,相应的点P (2,2,z )运动的轨迹是( )A .一个平面B .一条直线C .一个圆D .一个球7.在xOy 平面内有两点A (-2,4,0),B (3,2,0),则AB 的中点坐标是________.8.已知▱ABCD 的两个顶点A (2,-3,-5),B (-1,3,2)以及它的对角线交点E (4,-1,7),则顶点C 的坐标为________,D 的坐标为________.9.点P (a ,b ,c )关于原点的对称点P ′在x 轴上的投影A 的坐标为________.10.在三棱锥S -ABC 中,SA ⊥AB ,SA ⊥AC ,AB ⊥AC ,且SA =AB =AC =a ,D 为BC 的中点,E 为SD 的中点,建立适当的坐标系,求点S 、A 、B 、C 、D 、E 的坐标.11. 如图,在长方体OABC -D ′A ′B ′C ′中,|OA |=1,|OC |=3,|OD ′|=2,点E 在线段AO 的延长线上,且|OE |=12,写出B ′,C ,E 的坐标.12. 如图,有一个棱长为1的正方体ABCD —A 1B 1C 1D 1,以点D 为坐标原点,分别以射线DA ,DC ,DD 1的方向为正方向,以线段DA ,DC ,DD 1的长度为单位长,建立三条数轴:x 轴,y 轴,z 轴,从而建立起一个空间直角坐标系Oxyz .一只小蚂蚁从点A 出发,不返回地沿着棱爬行了2个单位长.请用坐标表示小蚂蚁现在爬到了什么位置.空间直角坐标系 优化训练1.已知点A (-1,2,7),则点A 关于x 轴对称点的坐标为( )A .(-1,-2,-7)B .(-1,-2,7)C .(1,-2,-7)D .(1,2,-7)答案:A2.点P (-2,0,3)位于( )A .y 轴上B .z 轴上C .xOz 平面内D .yOz 平面内解析:选C.由点P 纵坐标为零知P (-2,0,3),在xOz 平面内.3.如图所示空间直角坐标系的直观图中,正确的个数为( )A .1B .2C .3D .4答案:C4.点P (-3,2,1)关于Q (1,2,-3)的对称点M 的坐标是________.解析:设M 坐标为(x ,y ,z ),则有1=x -32,2=2+y 2,-3=1+z 2,解得x =5,y =2,z =-7∴M (5,2,-7).答案:(5,2,-7)5.在空间直角坐标系Oxyz 中,点P (2,3,4)在x 轴上的射影的坐标为______,在平面xOy 上的射影的坐标为______,在yOz 平面上的射影的坐标为______.答案:(2,0,0) (2,3,0) (0,3,4)1.如图,在正方体ABCD -A ′B ′C ′D ′中,棱长为1,|BP |=13|BD ′|,则P 点的坐标为( )A .(13,13,13)B .(23,23,23) C .(13,23,13) D .(23,23,13) 解析:选D.连接BD ,点P 在xDy 平面的射影落在BD 上,∵|BP |=13|BD ′|,∴Px =Py =23,Pz =13,故P (23,23,13). 2.在空间直角坐标系中,P (2,3,4),Q (-2,3,-4)两点的位置关系是( )A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .关于y 轴对称 解析:选D.由P 、Q 两点的纵坐标相同,横坐标、竖坐标分别互为相反数知P 、Q 关于y 轴对称.3.已知空间直角坐标系中有一点M (x ,y ,z )满足x >y >z ,且x +y +z =0,则M 点的位置是( )A .一定在第Ⅴ或第Ⅷ卦限B .一定在第Ⅷ卦限C .可能在第Ⅰ卦限D .可能在xOz 平面上解析:选D.由x >y >z 且x +y +z =0知,x >0,z <0,y ∈R ,故点M 可能在第Ⅴ、第Ⅷ卦限或在xOz 平面上.故选D.4. 在空间直角坐标系中,点P (1,2,3),过点P 作平面xOy 的垂线PQ ,垂足为Q ,则Q 的坐标为( )A .(0,2,0)B .(0,2,3)C .(1,0,3)D .(1,2,0)解析:选D.由P 、Q 两点的横坐标、纵坐标相等知.5.已知△ABC 的三个顶点坐标分别为A (2,3,1)、B (4,1,-2)、C (6,3,7),则△ABC 的重心坐标为( )A.⎝ ⎛⎭⎪⎫6,72,3B.⎝ ⎛⎭⎪⎫4,73,2 C.⎝ ⎛⎭⎪⎫8,143,4 D.⎝ ⎛⎭⎪⎫2,76,1 答案:B6.设z 是任意实数,相应的点P (2,2,z )运动的轨迹是( )A .一个平面B .一条直线C .一个圆D .一个球解析:选B.由P 的x 、y 坐标是定值,则过(2,2,0)作与xOy 平面垂直的直线,直线上任意一点都满足x =2,y =2,故P 的轨迹是一条直线.7.在xOy 平面内有两点A (-2,4,0),B (3,2,0),则AB 的中点坐标是________. 解析:设AB 中点坐标为(x ,y ,z ),则x =3-22=12, y =4+22=3,z =0 ∴中点坐标为(12,3,0). 答案:(12,3,0) 8.已知▱ABCD 的两个顶点A (2,-3,-5),B (-1,3,2)以及它的对角线交点E (4,-1,7),则顶点C 的坐标为________,D 的坐标为________.解析:E 为AC 、BD 的中点.答案:(6,1,19) (9,-5,12)9.点P (a ,b ,c )关于原点的对称点P ′在x 轴上的投影A 的坐标为________. 解析:由题意得P ′(-a ,-b ,-c ),∴P ′(-a ,-b ,-c )在x 轴上的投影A 坐标为(-a,0,0).答案:(-a,0,0)10.在三棱锥S -ABC 中,SA ⊥AB ,SA ⊥AC ,AB ⊥AC ,且SA =AB =AC =a ,D 为BC 的中点,E 为SD 的中点,建立适当的坐标系,求点S 、A 、B 、C 、D 、E 的坐标.解:∵在三棱锥S -ABC 中,SA ⊥AB ,SA ⊥AC ,AB ⊥AC ,∴以点A 为坐标原点,AB 、AC 、AS 所在直线分别为x 轴,y 轴和z 轴建立如图所示空间直角坐标系,∵SA =AB =AC =a ,D 为BC 的中点,∴A (0,0,0),B (a,0,0),C (0,a,0),S (0,0,a ),D (a 2,a 2,0),连接AD , ∵SA ⊥AB ,SA ⊥AC ,AB ∩AC =A ,∴SA ⊥平面ABC ,过点E 作EF ⊥AD ,垂足为F ,则EF ⊥平面ABC .∵E 为SD 的中点,∴F 为AD 的中点,∴|EF |=12|AS |,∴E (a 4,a 4,a 2), 即点S (0,0,a ),A (0,0,0),B (a,0,0),C (0,a,0),D (a 2,a 2,0),E (a 4,a 4,a2). 11. 如图,在长方体OABC -D ′A ′B ′C ′中,|OA |=1,|OC |=3,|OD ′|=2,点E 在线段AO 的延长线上,且|OE |=12,写出B ′,C ,E 的坐标.解:点C 在y 轴上,x 坐标,z 坐标均为0,且|OC |=3,故点C 的坐标为(0,3,0). 因为B ′B 垂直于xOy 平面,垂足为B ,所以点B ′与B 的x 坐标和y 坐标都相同,又|BB ′|=|OD ′|=2,且点B ′在xOy 平面的上方,所以点B ′的坐标为(1,3,2).点E 在x 轴负半轴上,且|OE |=12, 所以点E 的坐标为(-12,0,0). 12. 如图,有一个棱长为1的正方体ABCD —A 1B 1C 1D 1,以点D 为坐标原点,分别以射线DA ,DC ,DD 1的方向为正方向,以线段DA ,DC ,DD 1的长度为单位长,建立三条数轴:x 轴,y 轴,z 轴,从而建立起一个空间直角坐标系Oxyz .一只小蚂蚁从点A 出发,不返回地沿着棱爬行了2个单位长.请用坐标表示小蚂蚁现在爬到了什么位置.解:小蚂蚁沿着A -B -C 或A -B -B 1或A -D -C 或A -D -D 1或A -A 1-B 1或A -A 1-D 1任一条路线爬行,其终点为点C 或B 1或D 1.点C 在y 轴上,且DC =1,则其y 坐标为1,x 坐标与z 坐标均为0,所以点C 的坐标是(0,1,0);同理可知D 1的坐标是(0,0,1);点B 1在xOy 平面上的射影是B ,点B 在xOy 平面上的坐标是(1,1),且|B 1B |=1,则其z 坐标为1,所以点B 1的坐标是(1,1,1).。

空间直角坐标系试题(含答案)

空间直角坐标系试题(含答案)

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.在空间直角坐标系中,已知点P (x ,y ,z ),给出下列4条叙述: ①点P 关于x 轴的对称点的坐标是(x ,-y ,z ) ②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z ) ③点P 关于y 轴的对称点的坐标是(x ,-y ,z )④点P 关于原点的对称点的坐标是(-x ,-y ,-z ) 其中正确的个数是( )A .3B .2C .1D .02.若已知A (1,1,1),B (-3,-3,-3),则线段AB 的长为 ( )A .B .C .D .3.已知A (1,2,3),B (3,3,m ),C (0,-1,0),D (2,―1,―1),则 ( )A .||AB >||CD B .||AB <||CDC .||AB ≤||CDD .||AB ≥||CD4.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则||CM ( )A .4B .532C .2D .25.如图,三棱锥A -BCD 中,AB ⊥底面BCD ,BC ⊥CD ,且AB =BC =1,CD =2,点E 为CD 的中点,则AE 的长为( )ABC .2D 6.点B 是点A (1,2,3)在坐标平面yOz 内的射影,则OB 等于 ( )A .14B .13C .32D .117.已知ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则点D 的坐标为( )A .(27,4,-1)B .(2,3,1)C .(-3,1,5) D .(5,13,-3)8.点),,(c b a P 到坐标平面xOy 的距离是( )A .22b a +B .cC .cD .b a +9.已知点)11,2,1(-A ,)3,2,4(B , )15,,(y x C 三点共线,那么y x ,的值分别是 ( )A .21,4B .1,8C .21-,-4 D .-1,-810.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( ) A .26B .3C .23D .36第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.如右图,棱长为3a 正方体OABC -''''D A B C , 点M 在|''|B C 上,且|'|C M =2|'|MB ,以O 为坐标原点,建立如图空间直有坐标系,则点M 的坐标为 .12.如右图,为一个正方体截下的一角P -ABC , ||PA a =,||PB b =,||PC c =,建立如图坐标系,求△ABC 的重心G 的坐标 _ _.13.若O (0,0,0),P (x ,y ,z ),且||1OP =,则2221x y z ++=表示的图形是 _ _.14.已知点A (-3,1,4),则点A 关于原点的对称点 B 的坐标为 ;AB 的长为 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)如图,长方体''''ABCD A B C D -中,||3AD =,||5AB =,|'|3AA =,设E 为'DB 的中点,F 为'BC 的中点,在给定的空间直角坐标系D -xyz 下,试写出A ,B ,C ,D ,'A ,'B ,'C ,'D ,E ,F 各点的坐标.16.(12分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,且边长为2a,棱PD⊥底面ABCD,PD=2b,取各侧棱的中点E,F,G,H,写出点E,F,G,H的坐标.17.(12分)如图,已知矩形ABCD中,||3AD=,||4AB=.将矩形ABCD沿对角线BD折起,使得面BCD⊥面ABD.现以D为原点,DB作为y 轴的正方向,建立如图空间直角坐标系,此时点A 恰好在xDy 坐标平面内.试求A ,C 两点的坐标.18.(12分)已知)11,2,1(-A ,)3,2,4(B ,)4,1,6(-C ,求证其为直角三角形.19.(14分)如图,已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'AC 上,且|'|3|'|A N NC =,试求MN 的长.20.(14分)在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问(1)在y轴上是否存在点M,满足||||?MA MB(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.参考答案一、CADCB BDCCA二、11.(2a ,3a ,3a ); 12.G (3,3,3b c a ) ; 13.以原点O 为球心,以1为半径的球面;14.(3,-1,-4); 三、15.解:设原点为O ,因为A ,B ,C ,D 这4个点都在坐标平面 xOy 内,它们的竖坐标都是0,而它们的横坐标和纵坐标可利用||3AD =,||5AB =写出,所以 A (3,0,0),B (3,5,0),C (0,5,0),D (0,0,0);因为平面''''A B C D 与坐标平面xOy 平行,且|'|3AA =,所以A ',B ','C ,D '的竖坐标都是3,而它们的横坐标和纵坐标分别与A ,B ,C ,D 的相同,所以'A (3,0,3),'B (3,5,3),'C (0,5,3),'D (0,0,3);由于E 分别是'DB 中点,所以它在坐标平面xOy 上的射影为DB的中点,从而E 的横坐标和纵坐标分别是'B 的12,同理E 的竖坐标也是'B 的竖坐标的12,所以E (353,,222);由F 为'BC 中点可知,F 在坐标平面xOy 的射影为BC 中点,横坐标和纵坐标分别为32和5,同理点F 在z 轴上的投影是AA '中点,故其竖坐标为32,所以F (32,5,32).16.解: 由图形知,DA ⊥DC ,DC ⊥DP ,DP ⊥DA ,故以D 为原点,建立如图空间坐标系D -xyz .因为E ,F ,G ,H 分别为侧棱中点,由立体几何知识可知,平面EFGH 与底面ABCD 平行,从而这4个点的竖坐标都为P 的竖坐标的一半,也就是b , 由H 为DP 中点,得H (0,0,b )E 在底面面上的投影为AD 中点,所以E 的横坐标和纵坐标分别为a 和0,所以E (a ,0,b ), 同理G (0,a ,b );F 在坐标平面xOz 和yOz 上的投影分别为点E 和G ,故F 与E横坐标相同都是a ,与G 的纵坐标也同为a ,又F 竖坐标为b ,故F (a ,a ,b ).17.解: 由于面BCD ⊥面ABD ,从面BCD 引棱DB 的垂线CF 即为面ABD 的垂线,同理可得AE 即为面BCD 的垂线,故只需求得DF DE CF AE ,,,的长度即可。

高考数学第一章空间向量与立体几何3-1空间直角坐标系练习含解析新人教A版选择性必修第一册

高考数学第一章空间向量与立体几何3-1空间直角坐标系练习含解析新人教A版选择性必修第一册

空间直角坐标系学习目标 1.了解空间直角坐标系.2.能在空间直角坐标系中写出所给定点、向量的坐标.知识点一 空间直角坐标系 1.空间直角坐标系及相关概念(1)空间直角坐标系:在空间选定一点O 和一个单位正交基底{}i ,j ,k ,以O 为原点,分别以i ,j ,k 的方向为正方向,以它们的长为单位长度建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴,这时我们就建立了一个空间直角坐标系Oxyz .(2)相关概念:O 叫做原点,i ,j ,k 都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy 平面、Oyz 平面、Ozx 平面,它们把空间分成八个部分. 2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系. 思考 空间直角坐标系有什么作用?答案 可以通过空间直角坐标系将空间点、直线、平面数量化,将空间位置关系解析化. 知识点二 空间一点的坐标在空间直角坐标系Oxyz 中,i ,j ,k 为坐标向量,对空间任意一点A ,对应一个向量OA →,且点A 的位置由向量OA →唯一确定,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使OA →=x i +y j +z k .在单位正交基底 {i ,j ,k }下与向量 OA →对应的有序实数组(x ,y ,z )叫做点A 在此空间直角坐标系中的坐标,记作A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.思考 空间直角坐标系中,坐标轴上的点的坐标有何特征? 答案 x 轴上的点的纵坐标、竖坐标都为0,即(x ,0,0).y 轴上的点的横坐标、竖坐标都为0,即(0,y ,0). z 轴上的点的横坐标、纵坐标都为0,即(0,0,z ).知识点三 空间向量的坐标在空间直角坐标系Oxyz 中,给定向量a ,作OA →=a .由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =x i +y j +z k .有序实数组(x ,y ,z )叫做a 在空间直角坐标系Oxyz 中的坐标,上式可简记作a =(x ,y ,z ). 思考 空间向量的坐标和点的坐标有什么关系?答案 点A 在空间直角坐标系中的坐标为(x ,y ,z ),那么向量 OA →的坐标也为(x ,y ,z ).1.空间直角坐标系中,在x 轴上的点的坐标一定是(0,b ,c )的形式.( × ) 2.空间直角坐标系中,在xOz 平面内的点的坐标一定是(a ,0,c )的形式.( √ ) 3.关于坐标平面yOz 对称的点其纵坐标、竖坐标保持不变,横坐标相反.( √ )一、求空间点的坐标例1 (1)画一个正方体ABCD -A 1B 1C 1D 1,若以A 为坐标原点,以棱AB ,AD ,AA 1所在的直线分别为x 轴、y 轴、z 轴,取正方体的棱长为单位长度,建立空间直角坐标系,则 ①顶点A ,C 的坐标分别为________________; ②棱C 1C 中点的坐标为________;③正方形AA 1B 1B 对角线的交点的坐标为________. 答案 ①(0,0,0),(1,1,0) ②⎝ ⎛⎭⎪⎫1,1,12 ③⎝ ⎛⎭⎪⎫12,0,12(2)已知正四棱锥P -ABCD 的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标.解 ∵正四棱锥P -ABCD 的底面边长为4,侧棱长为10, ∴正四棱锥的高为223.以正四棱锥的底面中心为原点,平行于BC ,AB 所在的直线分别为x 轴、y 轴,垂直于平面ABCD 的直线为z 轴,建立如图所示的空间直角坐标系,则正四棱锥各顶点的坐标分别为A (2,-2,0),B (2,2,0),C (-2,2,0),D (-2,-2,0),P (0,0,223).答案不唯一.反思感悟 (1)建立空间直角坐标系的原则 ①让尽可能多的点落在坐标轴上或坐标平面. ②充分利用几何图形的对称性. (2)求某点M 的坐标的方法作MM ′垂直平面xOy ,垂足M ′,求M ′的横坐标x ,纵坐标y ,即点M 的横坐标x ,纵坐标y ,再求M 点在z 轴上射影的竖坐标z ,即为M 点的竖坐标z ,于是得到M 点的坐标(x ,y ,z ). 跟踪训练1 在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是D 1D ,BD 的中点,G 在棱CD 上,且CG =14CD ,H 为C 1G 的中点,试建立适当的坐标系,写出E ,F ,G ,H 的坐标.解 建立如图所示的空间直角坐标系.点E 在z 轴上,它的横坐标、纵坐标均为0, 而E 为DD 1的中点, 故其坐标为⎝⎛⎭⎪⎫0,0,12. 由F 作FM ⊥AD ,FN ⊥CD ,垂足分别为M ,N , 由平面几何知识知FM =12,FN =12,故F 点坐标为⎝ ⎛⎭⎪⎫12,12,0.因为CG =14CD ,G ,C 均在y 轴上,故G 点坐标为⎝ ⎛⎭⎪⎫0,34,0. 由H 作HK ⊥CG ,可得DK =78,HK =12,故H 点坐标为⎝ ⎛⎭⎪⎫0,78,12.(答案不唯一) 二、空间点的对称问题例2 在空间直角坐标系中,已知点P (-2,1,4). (1)求点P 关于x 轴对称的点的坐标; (2)求点P 关于xOy 平面对称的点的坐标;(3)求点P 关于点M (2,-1,-4)对称的点的坐标.解 (1)由于点P 关于x 轴对称后,它在x 轴的分量不变,在y 轴,z 轴的分量变为原来的相反数,所以对称点坐标为P 1(-2,-1,-4).(2)由点P 关于xOy 平面对称后,它在x 轴,y 轴的分量不变,在z 轴的分量变为原来的相反数,所以对称点坐标为P 2(-2,1,-4).(3)设对称点为P 3(x ,y ,z ),则点M 为线段PP 3的中点, 由中点坐标公式,可得x =2×2-(-2)=6,y =2×(-1)-1=-3,z =2×(-4)-4=-12,所以P 3的坐标为(6,-3,-12). 反思感悟 空间点对称问题的解题策略(1)空间点的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.(2)对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论. 跟踪训练2 已知点P (2,3,-1)关于坐标平面xOy 的对称点为P 1,点P 1关于坐标平面yOz 的对称点为P 2,点P 2关于z 轴的对称点为P 3,则点P 3的坐标为________. 答案 (2,-3,1)解析 点P (2,3,-1)关于坐标平面xOy 的对称点P 1的坐标为(2,3,1),点P 1关于坐标平面yOz 的对称点P 2的坐标为(-2,3,1),点P 2关于z 轴的对称点P 3的坐标是(2,-3,1).三、空间向量的坐标例3 已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=4,M 为BC 1的中点,N 为A 1B 1的中点,建立适当的空间直角坐标系,求向量AB →,AC 1—→,BC 1—→的坐标.解 建立如图所示的空间直角坐标系,设14AB →=i ,14AC →=j ,14AA 1→=k ,AB →=4i +0j +0k =(4,0,0),AC 1—→=AA 1—→+AC →=0i +4j +4k =(0,4,4), ∴BC 1—→=BC →+CC 1—→ =BA →+AC →+CC 1—→ =-4i +4j +4k =(-4,4,4).反思感悟 向量坐标的求法(1)点A 的坐标和向量 OA →的坐标形式完全相同; (2)起点不是原点的向量的坐标可以通过向量的运算求得.跟踪训练3 已知A (3,5,-7),B (-2,4,3),设点A ,B 在yOz 平面上的射影分别为A 1,B 1 ,则向量A 1B 1—→的坐标为__________. 答案 (0,-1,10)解析 点A (3,5,-7),B (-2,4,3)在yOz 平面上的射影分别为 A 1 (0,5,-7), B 1 (0,4,3), ∴向量A 1B 1—→的坐标为(0,-1,10).1.点P (2,0,3)在空间直角坐标系中的位置是在( ) A .y 轴上 B .xOy 面上 C .xOz 面上 D .yOz 面上答案 C2.在空间直角坐标系中,点P (1,3,-5)关于平面xOy 对称的点的坐标是( ) A .(-1,3,-5) B .(1,3,5) C .(1,-3,5) D .(-1,-3,5) 答案 B3.在空间直角坐标系中,点P (-1,-2,-3)到平面yOz 的距离是( ) A .1 B .2 C .3 D.14 答案 A4.点P (1,1,1)关于xOy 平面的对称点P 1的坐标为______;点P 关于z 轴的对称点P 2的坐标为________.答案 (1,1,-1) (-1,-1,1)解析 点P (1,1,1)关于xOy 平面的对称点P 1的坐标为(1,1,-1),点P 关于z 轴的对称点P 2的坐标为(-1,-1,1).5.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),则向量AC 1—→的坐标为________. 答案 (-4,2,3)解析 AC 1—→=AD →+DC 1—→=AD →+DC →+CC 1—→=-4i +2j +3k =(-4,2,3).1.知识清单:(1)空间直角坐标系的概念. (2)点的坐标. (3)向量的坐标.2.方法归纳:数形结合、类比联想.3.常见误区:混淆空间点的坐标和向量坐标的概念,只有起点在原点的向量的坐标才和终点的坐标相同.1.如图所示,正方体ABCD-A1B1C1D1的棱长为1,则点B1的坐标是( )A.(1,0,0)B.(1,0,1)C.(1,1,1)D.(1,1,0)答案 C解析点B1到三个坐标平面的距离都为1,易知其坐标为(1,1,1),故选C.2.点A(0,-2,3)在空间直角坐标系中的位置是( )A.在x轴上B.在xOy平面内C.在yOz平面内D.在xOz平面内答案 C解析∵点A的横坐标为0,∴点A(0,-2,3)在yOz平面内.3.在空间直角坐标系中,P(2,3,4),Q(-2,-3,-4)两点的位置关系是( )A.关于x轴对称B.关于yOz平面对称C.关于坐标原点对称D.以上都不对答案 C解析当三个坐标均相反时,两点关于原点对称.4.在空间直角坐标系中,已知点P(1,2,3),过点P作平面yOz的垂线PQ,则垂足Q 的坐标为( )A.(0,2,0) B.(0,2,3)C.(1,0,3) D.(1,2,0)答案 B解析 由于垂足在平面yOz 上,所以纵坐标,竖坐标不变,横坐标为0.5.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A.⎝ ⎛⎭⎪⎫0,14,-1 B.⎝ ⎛⎭⎪⎫-14,0,1C.⎝ ⎛⎭⎪⎫0,-14,1D.⎝ ⎛⎭⎪⎫14,0,-1 答案 C解析 BE →=BB 1—→+B 1E —→=k -14j =⎝⎛⎭⎪⎫0,-14,1.6.点P (1,2,-1)在xOz 平面内的射影为B (x ,y ,z ),则x +y +z =________. 答案 0解析 点P (1,2,-1)在xOz 平面内的射影为B (1,0,-1),∴x =1,y =0,z =-1, ∴x +y +z =1+0-1=0.7.已知A (3,2,-4),B (5,-2,2),则线段AB 中点的坐标为________. 答案 (4,0,-1)解析 设中点坐标为(x 0,y 0,z 0),则x 0=3+52=4,y 0=2-22=0,z 0=-4+22=-1,∴中点坐标为(4,0,-1).8.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为________.答案 (5,4,1)解析 设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z=1,故B 点的坐标为(5,4,1).9.建立空间直角坐标系如图所示,正方体DABC -D ′A ′B ′C ′的棱长为a ,E ,F ,G ,H ,I ,J 分别是棱C ′D ′,D ′A ′,A ′A ,AB ,BC ,CC ′的中点,写出正六边形EFGHIJ 各顶点的坐标.解 正方体DABC -D ′A ′B ′C ′的棱长为a ,且E ,F ,G ,H ,I ,J 分别是棱C ′D ′,D ′A ′,A ′A ,AB ,BC ,CC ′的中点,∴正六边形EFGHIJ 各顶点的坐标为E ⎝⎛⎭⎪⎫0,a 2,a ,F ⎝ ⎛⎭⎪⎫a 2,0,a ,G ⎝ ⎛⎭⎪⎫a ,0,a 2,H ⎝⎛⎭⎪⎫a ,a 2,0,I ⎝ ⎛⎭⎪⎫a 2,a ,0,J ⎝ ⎛⎭⎪⎫0,a ,a 2.10.如图所示,过正方形ABCD 的中心O 作OP ⊥平面ABCD ,已知正方形的边长为2,OP =2,连接AP ,BP ,CP ,DP ,M ,N 分别是AB ,BC 的中点,以O 为原点,⎩⎨⎧⎭⎬⎫OM →,ON →,12OP →为单位正交基底建立空间直角坐标系.若E ,F 分别为PA ,PB 的中点,求点A ,B ,C ,D ,E ,F 的坐标.解 由题意知,点B 的坐标为(1,1,0). 由点A 与点B 关于x 轴对称,得A (1,-1,0), 由点C 与点B 关于y 轴对称,得C (-1,1,0), 由点D 与点C 关于x 轴对称,得D (-1,-1,0). 又P (0,0,2),E 为AP 的中点,F 为PB 的中点, 所以由中点坐标公式可得E ⎝ ⎛⎭⎪⎫12,-12,1,F ⎝ ⎛⎭⎪⎫12,12,1.11.已知空间中点A (1,3,5),点A 与点B 关于x 轴对称,则向量点B 的坐标为________. 答案 (1,-3,-5)12.在空间直角坐标系中,点M (-2,4,-3)在xOz 平面上的射影为点M 1,则点M 1关于原点对称的点的坐标是________. 答案 (2,0,3)解析 由题意,知点M 1的坐标为(-2,0, -3), 所以点M 1关于原点对称的点的坐标是(2,0,3).13.如图,正方体ABCD -A ′B ′C ′D ′的棱长为2,则图中的点M 关于y 轴的对称点的坐标为________.答案 (-1,-2,-1)解析 因为D (2,-2,0),C ′(0,-2,2),所以线段DC ′的中点M 的坐标为(1,-2,1), 所以点M 关于y 轴的对称点的坐标为(-1,-2,-1).14.如图是一个正方体截下的一角P -ABC ,其中PA =a ,PB =b ,PC =c .建立如图所示的空间直角坐标系,则△ABC 的重心G 的坐标是________.答案 ⎝ ⎛⎭⎪⎫a 3,b 3,c3 解析 由题意知A (a ,0,0),B (0,b ,0),C (0,0,c ).由重心坐标公式得点G 的坐标为⎝ ⎛⎭⎪⎫a 3,b 3,c3.15.已知向量p 在基底{a ,b ,c }下的坐标为(2,1,-1),则p 在基底{2a ,b ,-c }下的坐标为________;在基底{a +b ,a -b ,c }下的坐标为________.答案 (1,1,1) ⎝ ⎛⎭⎪⎫32,12,-1 解析 由题意知p =2a +b -c ,则向量p 在基底{2a ,b ,-c }下的坐标为(1,1,1). 设向量p 在基底{a +b ,a -b ,c }下的坐标为(x ,y ,z ),则p =x (a +b )+y (a -b )+z c =(x +y )a +(x -y )b +z c ,又∵p =2a +b -c ,∴⎩⎪⎨⎪⎧x +y =2,x -y =1,z =-1,解得x =32,y =12,z =-1,∴p 在基底{a +b ,a -b ,c }下的坐标为⎝ ⎛⎭⎪⎫32,12,-1. 16.如图,在空间直角坐标系中,BC =2,原点O 是BC 的中点,点D 在平面yOz 内,且∠BDC =90°,∠DCB =30°,求点D 的坐标.解 过点D 作DE ⊥BC ,垂足为E .在Rt△BDC 中,∠BDC =90°,∠DCB =30°,BC =2,得|BD →|=1,|CD →|=3, ∴|DE →|=|CD →|sin 30°=32,|OE →|=|OB →|-|BE →|=|OB →|-|BD →|cos 60°=1-12=12,∴点D 的坐标为⎝⎛⎭⎪⎫0,-12,32.。

新高考数学复习专题突破——突破4.3 空间直角坐标系(课时训练)含答案解析

新高考数学复习专题突破——突破4.3 空间直角坐标系(课时训练)含答案解析

突破4.3 空间直角坐标系【基础巩固】1..在空间直角坐标系中,点M 的坐标是(4,7,6),则点M 关于y 轴对称的点在xOz 平面上的射影的坐标为( )A .(4,0,6)B .(-4,7,-6)C .(-4,0,-6)D .(-4,7,0) 2.关于空间直角坐标系O -xyz 中的一点P (1,2,3)有下列说法: ①OP 的中点坐标为;(12,1,32)②点P 关于x 轴对称的点的坐标为(-1,-2,-3); ③点P 关于坐标原点对称的点的坐标为(1,2,-3); ④点P 关于xOy 平面对称的点的坐标为(1,2,-3). 其中正确说法的个数是( )A .2B .3C .4D .13.设点P (a ,b ,c )关于原点对称的点为P ′,则|PP ′|=( )A. B .2 C .|a +b +c | D .2|a +b +c |a 2+b 2+c 2a 2+b 2+c 24.已知点A (1,a ,-5),B (2a ,-7,-2)(a ∈R )则|AB |的最小值是( )A .3B .3C .2D .2 36365.点(2,0,3)在空间直角坐标系中的( )A .y 轴上B .xOy 面上C .xOz 面上D .第一象限内6.空间两点A (2,5,4),B (-2,3,5)之间的距离等于________.7.如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标__________.1DB 1AC8.如图,在空间直角坐标系中,PA⊥平面OAB,PA=OA=2,∠AOB=30°.(1)求点P的坐标;5(2)若|PB|=,求点B的坐标.【能力提升】9.如图,在长方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,|CF |=|AB |=2|CE |,|AB |∶|AD |∶|AA 1|=1∶2∶4.试建立适当的坐标系,写出E ,F 点的坐标.10.如图,在正方体中,分别是的中点,棱长为1. 试1111ABCD A B C D ,E F 111,BB D B 建立适当的空间直角坐标系,写出点的坐标.,E F11.如图,已知正方体ABCD­A′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求|MN|的长.12.如图所示,V­ABCD是正棱锥,O为底面中心,E,F分别为BC,CD的中点.已知|AB|=2,|VO|=3,建立如图所示空间直角坐标系,试分别写出各个顶点的坐标.13.如图,在棱长为1的正方体ABCD­A1B1C1D1中,以正方体的三条棱所在直线为轴建立空间直角坐标系Oxyz.(1)若点P在线段BD1上,且满足3|BP|=|BD1|,试写出点P的坐标,并写出P关于y轴的对称点P′的坐标;(2)在线段C1D上找一点M,使点M到点P的距离最小,求出点M的坐标.解析附后突破4.3 空间直角坐标系【基础巩固】1..在空间直角坐标系中,点M 的坐标是(4,7,6),则点M 关于y 轴对称的点在xOz 平面上的射影的坐标为( )A .(4,0,6)B .(-4,7,-6)C .(-4,0,-6)D .(-4,7,0) 【答案】:C【解析】:点M 关于y 轴的对称点是M ′(-4,7,-6),点M ′在坐标平面xOz 上的射影是(-4,0,-6),故选C.2.关于空间直角坐标系O -xyz 中的一点P (1,2,3)有下列说法: ①OP 的中点坐标为;(12,1,32)②点P 关于x 轴对称的点的坐标为(-1,-2,-3); ③点P 关于坐标原点对称的点的坐标为(1,2,-3); ④点P 关于xOy 平面对称的点的坐标为(1,2,-3). 其中正确说法的个数是( )A .2B .3C .4D .1【答案】:A【解析】:①显然正确;点P 关于x 轴对称的点的坐标为(1,-2,-3),故②错;点P 关于坐标原点对称的点的坐标为(-1,-2,-3),故③错;④显然正确. 3.设点P (a ,b ,c )关于原点对称的点为P ′,则|PP ′|=( )A. B .2 C .|a +b +c | D .2|a +b +c | a 2+b 2+c 2a 2+b 2+c 2【答案】:B【解析】:P (a ,b ,c )关于原点对称的点为P ′(-a ,-b ,-c ),则|PP ′|==2.[a -(-a )]2+[b -(-b )]2+[c -(-c )]2a 2+b 2+c 24.已知点A (1,a ,-5),B (2a ,-7,-2)(a ∈R )则|AB |的最小值是( )A .3B .3C .2D .23636【答案】B【解析】|AB |2=(2a -1)2+(-7-a )2+(-2+5)2=5a 2+10a +59=5(a +1)2+54.∴a =-1时,|AB |2的最小值为54.∴|AB |min ==3.故选B . 5465.点(2,0,3)在空间直角坐标系中的( )A .y 轴上B .xOy 面上C .xOz 面上D .第一象限内【答案】C【解析】因为该点的y 坐标为0,根据坐标平面上点的特点可知该点在xOz 面上.故选C .6.空间两点A (2,5,4),B (-2,3,5)之间的距离等于________. 【答案】21【解析】|AB |==.(2+2)2+(5-3)2+(4-5)2217.如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标__________.1DB 1AC【答案】(﹣4,3,2)【解析】如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵的坐标为(4,3,2),∴A (4,0,0),C 1(0,1DB3,2),∴(﹣4,3,2).故答案为:(﹣4,3,2).1AC =8.如图,在空间直角坐标系中,PA ⊥平面OAB ,PA =OA =2,∠AOB =30°. (1)求点P 的坐标;(2)若|PB |=,求点B 的坐标.5【解析】(1)过A 作AE ⊥OB 于E ,则AE =1,OE =, 3所以点A 的坐标为(1,,0),所以点P 的坐标为(1,,2).33(2)因为点B 在y 轴上,因此可设点B 的坐标为B (0,b,0),则|PB |==,解得b =, 1+(b -3)2+453所以点B 的坐标为(0,,0). 3【能力提升】9.如图,在长方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,|CF |=|AB |=2|CE |,|AB |∶|AD |∶|AA 1|=1∶2∶4.试建立适当的坐标系,写出E ,F 点的坐标.【解析】以A 为坐标原点,射线AB ,AD ,AA 1的方向分别为正方向建立空间直角坐标系,如图所示.10.如图,在正方体中,分别是的中点,棱长为1. 试1111ABCD A B C D ,E F 111,BB D B 建立适当的空间直角坐标系,写出点的坐标.,E F【解析】建立如图所示坐标系.方法一:点在面上的射影为,竖坐标为.所以. E xDy ,1,()1,0B B 121(1,1,)2E 在面上的射影为的中点,竖坐标为1.所以. F xDy BD G 11(,,1)22F 方法二:,,,为的中点,为的中点.11,()1,1B 10,()0,1D ()1,1,0B E 1B B F 11B D 故点的坐标为即,点的坐标为,即E 111110(,,)222+++1(1,1,2F 101011(,,)222+++. 11(,,1)2211.如图,已知正方体ABCD ­A ′B ′C ′D ′的棱长为a ,M 为BD ′的中点,点N 在A ′C ′上,且|A ′N |=3|NC ′|,试求|MN |的长.(a4,34a,a)因为|A′N|=3|NC′|,所以N为A′C′的四等分点,从而N为O′C′的中点,故N.(a2-a4)2+(a2-3a4)2+(a2-a)264根据空间两点间的距离公式,可得|MN|==a.12.如图所示,V­ABCD是正棱锥,O为底面中心,E,F分别为BC,CD的中点.已知|AB|=2,|VO|=3,建立如图所示空间直角坐标系,试分别写出各个顶点的坐标.【答案】V(0,0,3),A(-1,-1,0),B(1,-1,0),C(1,1,0),D(-1,1,0).【解析】∵底面是边长为2的正方形,∴|CE|=|CF|=1.∵O点是坐标原点,∴C(1,1,0),同样的方法可以确定B(1,-1,0),A(-1,-1,0),D(-1,1,0).∵V 在z 轴上,∴V (0,0,3).13.如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,以正方体的三条棱所在直线为轴建立空间直角坐标系Oxyz .(1)若点P 在线段BD 1上,且满足3|BP |=|BD 1|,试写出点P 的坐标,并写出P 关于y 轴的对称点P ′的坐标;(2)在线段C 1D 上找一点M ,使点M 到点P 的距离最小,求出点M 的坐标.【答案】(1)P ′;(2)当m =时,|MP |取得最小值,此时点M 为(-23,23,-13)1222. (0,12,12)【解析】(1)由题意知P 的坐标为, (23,23,13)P 关于y 轴的对称点P ′的坐标为. (-23,23,-13)(2)设线段C 1D 上一点M 的坐标为(0,m ,m ),则有|MP |===. (-23)2+(m -23)2+(m -13)22m 2-2m +12(m -12)2+12当m =时,|MP |取得最小值,所以点M 为. 1222(0,12,12)如何学好数学1.圆锥曲线中最后题往往联立起来很复杂导致k 算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。

高中数学第一章空间向量与立体几何1.3.1空间直角坐标系含解析第一册 (1)

高中数学第一章空间向量与立体几何1.3.1空间直角坐标系含解析第一册 (1)

课时分层作业(四)(建议用时:40分钟)一、选择题1.空间两点A,B的坐标分别为(x,-y,z),(-x,-y,-z),则A,B两点的位置关系是()A.关于x轴对称B.关于y轴对称C.关于z轴对称D.关于原点对称B[纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y轴对称.]2.已知A(1,2,-1),B(5,6,7),则直线AB与平面xOz交点的坐标是()A.(0,1,1) B.(0,1,-3)C.(-1,0,3) D.(-1,0,-5)D[设直线AB与平面xoz交点坐标是M(x,y,z),则错误!=(x-1,-2,z+1),错误!=(4,4,8),又错误!与错误!共线,∴错误!=λ错误!,即错误!解得x=-1,z=-5,∴点M(-1,0,-5).故选D。

]3.设A(3,3,1),B(1,0,5),C(0,1,0),则AB的中点M到点C的距离|CM|=()A.错误!B.错误!C.错误!D.错误!C[M错误!,|CM|=错误!=错误!。

]4.如图,在空间直角坐标系中,正方体ABCD.A1B1C1D1的棱长为1,B1E=错误!A1B1,则错误!等于()A.错误!B.错误!C.错误!D.错误!C[{错误!,错误!,错误!}为单位正交向量,错误!=错误!+错误!=-错误! DC,→+错误!,∴错误!=错误!。

]5.设{i,j,k}是单位正交基底,已知向量p在基底{a,b,c}下的坐标为(8,6,4),其中a=i+j,b=j+k,c=k+i,则向量p在基底{i,j,k}下的坐标是()A.(12,14,10) B.(10,12,14)C.(14,12,10) D.(4,3,2)A[依题意,知p=8a+6b+4c=8(i+j)+6(j+k)+4(k +i)=12i+14j+10k,故向量p在基底{i,j,k}下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P(1,错误!,错误!),过点P作平面yOz的垂线PQ,则垂足Q的坐标为________.(0,错误!,错误!)[过P的垂线PQ⊥面yOz,则Q点横坐标为0,其余不变,故Q(0,错误!,错误!).]7.设{e1,e2,e3}是空间向量的一个单位正交基底,a=4e1-8e2+3e3,b=-2e1-3e2+7e3,则a,b的坐标分别为________.(4,-8,3),(-2,-3,7)[由题意可知a=(4,-8,3),b =(-2,-3,7).]8。

空间直角坐标系

空间直角坐标系

4.3空间直角坐标系例1:已知正四棱锥P-ABCD 的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标。

解: 正四棱锥P-ABCD 的底面边长为4,侧棱长为10,∴正四棱锥的高为232。

以正四棱锥的底面中心为原点,平行于AB 、BC 所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则正四棱锥各顶点的坐标分别为A(2,-2,0)、B(2,2,0)、C(-2,2,0)、D(-2,-2,0)、P(0,0,232)。

总结:在求解此类问题时,关键是能根据已知图形,建立适当的空间直角坐标系,从而便于计算所需确定的点的坐标。

例2.在棱长为a 的正方体ABCD -1111D C B A 中,求异面直线11CC BD 与间的距离。

解:以D 为坐标原点,从D 点出发的三条棱所在直线为坐标轴,建立如图所求的空间直角坐标系。

设P 、Q 分别是直线1BD 和1CC 上的动点,其坐标分别为(x, y, z)、(0,1,z a ),则由正方体的对称性,显然有x=y 。

要求异面直线11CC BD 与间的距离,即求P 、Q 两点间的最短距离。

设P 在平面AC 上的射影是H ,由在∆!BDD 中,BDBHD D PH =1,所以axa a z -=,∴x=a-z , ∴P 的坐标为(a-z, a-z, z) ∴|PQ|=2122)()(z z z z a -++-=2)2(2)(2221a a z z z +-+-∴当21az z==时,|PQ|取得最小值,最小值为a 22。

∴异面直线11CC BD 与间的距离为a 22。

限时作业: 1.已知(4,1,3),(2,5,1),A B C AB C -是的中点,则的的坐标为( )A.(3,2,2)-B. (3,2,1)C. 573(,,)222-D. 215(,,)722- 2.点(3,2,2)A -在x 轴上的摄影和在xoy 平面上的射影点分别为( )A. (1,0,1)(1,2,0)--、B. (1,0,0)(1,2,0)--、C. (1,0,1)(1,0,0)--、D. (1,2,0)(1,2,0)--、 3.已知三点(1,0,1)(2,4,3)(5,8,5)A -,B ,C ,则( ) A.三点构成等腰三角形 B. 三点构成直角三角形 C 三点构成等腰直角三角形.D. 三点构不成三角形4.点(,2,1)(1,1,2)(1,1,1)P x Q R 到、的距离相等,则x 的值为( ) A.12 B. 1 C. 32D. 2 5.(选做)到点1(1,0,0)(4,0,0)(,,)2A P x y z 的距离除以到点B 的距离为的点的坐标满足( ) A. 2224xy z ++= B. 22212x y z ++=C.2225()42x y z -++=D. 2225()122x y z -++=6.点P(1,2,3)关于坐标平面xOy 的对称点的坐标为(1,2,-3).7.已知A(x ,2,3)、B(5,4,7),且|AB|=6,则x= 1或9 .8.(选做)已知A(2,5,-6),在y 轴上有一点B ,使得|AB|=7,则点B 的坐标为B(0,2,0)或B(0,8,0). 9.在长方体1111D C B A ABCD -中,AB=12,AD=8,1AA =5,试建立适当的空间直角坐标系,写出各顶点的坐标。

空间直角坐标系 习题(含答案)

空间直角坐标系 习题(含答案)
②若 最小,求 的方程.
22.在平面直角坐标系 中,已知 的顶点 .
(1)若 为 的直角顶点,且顶点 在 轴上,求 边所在直线方程;
(2)若等腰 的底边为 ,且 为直线 上一点,求点 的坐标.
23.求函数 的最小值.
24.如图所示的多面体是由底面为 的长方体被截面 所截面而得到的,其中
(1)求 的长;
【详解】
设z轴上任意一点Q的坐标为 ,
由空间中两点间的距离公式可得: ,
当 时取得最小值.
故选C.
【点睛】
本题考查空间中两点间的距离,掌握空间内两点间的距离公式,会根据解析式求最值,注意计算的准确性.
3.C
【解析】
【分析】
先根据线面平行的性质和中位线定理说明M为EF的中点,再根据中点坐标公式求M的坐标。
设F(0,0,z).
∵AEC1F为平行四边形, ∴由AEC1F为平行四边形,
∴由 = 得,(-2,0,z)=(-2,0,2),
∴z=2.∴F(0,0,2).∴ =(-2,-4,2,于是| |=2 ,即BF的长为2 ;
(2)设 为平面AEC1F的法向量,显然 不垂直于平面ADF,故可设 =(x,y,1).
故答案为
12.168
【解析】
【分析】
由题意,设 ,得 ,根据坐标对应相等,列出方程组,求得 的值,得到向量 的坐标,再利用向量的夹角公式,即可求解.
【详解】
由题意, ,设 ,
又 , ,
所以
即 ,
解得 ,
则 .
故 .
【点睛】
本题主要考查了空间向量的坐标运算,以及向量的夹角公式的应用,其中熟记向量的坐标表示与向量共线的运算,以及向量的夹角公式,合理、准确运算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间直角坐标系练习一班级 姓名一、基础知识、1、将空间直角坐标系画在纸上时,x 轴与y 轴、x 轴与z 轴均成 ,而z 轴垂直于y 轴,,y 轴和z 轴的长度单位 ,x 轴上的单位长度为y 轴(或z 轴)的长度的 ,2、坐标轴上的点与坐标平面上的点的坐标的特点:x 轴上的点P 的坐标的特点:P( , , ),纵坐标和竖坐标都为零.y 轴上的点的坐标的特点: P( , , ),横坐标和竖坐标都为零.z 轴上的点的坐标的特点: P( , , ),横坐标和纵坐标都为零.x Oy 坐标平面内的点的特点:P( , , ),竖坐标为零.x Oz 坐标平面内的点的特点:P( , , ),纵坐标为零.y Oz 坐标平面内的点的特点:P( , , ),横坐标为零.3、已知空间两点A(1x ,1y , 1z ),B(2x ,2y 2z ),则AB 中点的坐标为( , , ).4、一个点关于坐标轴和坐标平面的对称点的坐标:点P (x ,y ,z)关于坐标原点的对称点为 1P ( , , );点P (x ,y ,z)关于坐标横轴(x轴)的对称点为2P ( , , );点P (x ,y ,z)关于坐标纵轴(y轴)的对称点为3P ( , , );点P (x ,y ,z)关于坐标竖轴(z轴)的对称点为4P ( , , );点P (x ,y ,z)关于xOy坐标平面的对称点为 5P ( , , );点P (x ,y ,z)关于yOz坐标平面的对称点为 6P ( , , )点P (x ,y ,z)关于zOx坐标平面的对称点为 7P ( , , ).二、选择题1、有下列叙述:① 在空间直角坐标系中,在ox 轴上的点的坐标一定是(0,b ,c );②在空间直角坐标系中,在yoz 平面上的点的坐标一定是(0,b ,c );③在空间直角坐标系中,在oz 轴上的点的坐标可记作(0,0,c );④在空间直角坐标系中,在xoz 平面上的点的坐标是(a ,0,c )。

其中正确的个数是( )A 、1B 、2C 、3D 、42、已知点A (-3,1,4),则点A 关于原点的对称点的坐标为( )A 、(1,-3,-4)B 、(-4,1,-3)C 、(3,-1,-4)D 、(4,-1,3)3、已知点A (-3,1,-4),点A 关于x 轴的对称点的坐标为( )A 、(-3,-1,4)B 、(-3,-1,-4)C 、(3,1,4)D 、(3,-1,-4)4、点(2,3,4)关于xoz 平面的对称点为( )A 、(2,3,-4)B 、(-2,3,4)C 、(2,-3,4)D 、(-2,-3,4)5、以正方体ABCD —A 1B 1C 1D 1的棱AB 、AD 、AA 1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC 1中点坐标为( )A、(12,1,1) B、(1,12,1) C、(1,1,12) D、(12,12,1)6、点(1,1,1)关于z轴的对称点为()A、(-1,-1,1)B、(1,-1,-1)C、(-1,1,-1)D、(-1,-1,-1)三、填空题7、点(2,3,4)关于yoz平面的对称点为------------------。

8、设z为任意实数,相应的所有点P(1,2,z)的集合图形为-----------------。

9、以棱长为1的正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴,建立空间直角坐标系,则面AA1B1B对角线交点的坐标为----------------。

10、P(x0,y0,z0)关于y轴的对称点为-------------------。

四、解答题11、在空间直角坐标系中,与x轴垂直的是坐标平面;与y轴垂直的是坐标平面;与z轴垂直的是坐标平面;12、在空间直角坐标系中,落在x轴上的点的坐标的特点是。

试写出三个点的坐标,,。

落在xoy坐标平面内的点的坐标特点是。

试写出三个点的坐标,,。

13、(1)写出点P(2,3,4)在三个坐标平面内的射影的坐标是。

(2)写出点P(2,3,4)在三条坐标轴上的射影的坐标是。

14、(1)写出点P(1,3,-5)关于原点成中心对称的点的坐标是。

(2)写出点P(1,3,-5)关于ox轴对称的点的坐标是。

15、如下图,在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(32,12,0),点D在平面yoz上,且BDC=900, DCB=300,求点D的坐标。

答案:一、选择题1、C;2、C;3、A;4、C;5、C;6、A二、填空题7、(-2,3,4)8、过点(1,2,0)且平行于z轴的一条直线。

9、(12,0,12)10、(-x0,y0,-z0)三、解答题11、解:在空间直角坐标系中,yoz坐标平面与x轴垂直,xoz坐标平面与y轴垂直,xoy坐标平面与z轴垂直。

12、解:在空间直角坐标系中,落在x轴上的点的纵坐标和竖坐标都是0,即(x,y,0)的形式,如(2,0,0),(-3,0,0),(12,0,0)。

13、解:(1)点P(2,3,4)在xoy坐标平面内的射影为(2,3,0);在yoz坐标平面内的射影为(0,3,4);在xoz坐标平面内的射影为(2,0,4)(2)P(2,3,4)在x轴上的射影是(2,0,0);在y轴上的射影是(0,3,0);在z轴上的射影为(0,0,4)。

14、解:(1)点P(1,3,-5)关于原点成中心对称的点的坐标为(-1,-3,5);(2)点P(1,3,-5)关于ox轴对称的点的坐标(1,-3,5)。

15、解:过D作DEBC,垂足为E,在R t BDC中, BDC=900, DCB=300,BC=2,得BD=1,∴DE=Cdsin300OE=OB-BE=OB-BDcos600=1-12=12∴D点坐标为(0,-12,2)。

空间直角坐标系练习二班级姓名一、选择题1、在空间直角坐标系中,点A(1,2,-3)关于x轴的对称点为()A、A(1,-2,-3)B、(1,-2,3)C、(1,2,3)D、(-1,2,-3)2、设yR,则点P(1,y,2)的集合为()A、垂直于xoz平面的一条直线B、平行于xoz平面的一条直线C、垂直于y轴的一个平面D、平行于y轴的一个平面3、在空间直角坐标系中,方程x2-4(y-1)2=0表示的图形是()A、两个点B、两条直线C、两个平面D、一条直线和一个平面4、在空间直角坐标系中,点P(3,4,5)关于yoz平面的对称点的坐标为()A、(-3,4,5)B、(-3,-4,5)C、(3,-4,-5)D、(-3,4,-5)5、在空间直角坐标系中,P(2,3,4)、Q(-2,-3,-4)两点的位置关系是()A、关于x轴对称B、关于yoz平面对称C、关于坐标原点对称D、以上都不对6、点P(a,b,c)到坐标平面xOy的距离是()A、|a| C、|b| D、|c|∆是()7、A(1,-2,11),B(4,2,3),C(6,-1,4)为三角形的三个顶点,则ABCA、直角三角形B、钝角三角形C、锐角三角形D、等腰三角形二、填空题8、在空间直角坐标系中,点P的坐标为(1,过点P作yoz平面的垂线PQ,则垂足Q的坐标是--------------------。

9、若点A(2,1,4)与点P(x,y,z)的距离为5,则x,y,z满足的关系式是_______________.10、已知点A在x轴上,点B(1,2,0),且则点A的坐标是_________________.三、解答题11、在直角坐标系O—xyz中作出以下各点的P(1,1,1)、Q(-1,1,-1)。

12、已知正方体ABCD—A1B1C1D1,E、F、G是DD1、BD、BB1之中点,且正方体棱长为1。

请建立适当坐标系,写出正方体各顶点及E、F、G的坐标。

13、求点A(1,2,-1)关于坐标平面xoy及x轴对称点的坐标。

14、四面体P—ABC中,PA、PB、PC两两垂直,PA=PB=2,PC=1,E为AB的中点。

建立空间直角坐标系并写出P、A、B、C、E的坐标。

15、试写出三个点使得它们分别满足下列条件(答案不唯一):(1) 三点连线平行于x 轴;(2) 三点所在平面平行于xoy 坐标平面;在空间任取两点,类比直线方程的两点式写出所在直线方程答案:一、选择题1、B ;2、A ;3、C ;4、A ;5、C ;6、D ;7、A二、填空题8、(0,2,3)9、222(2)(1)(4)25x y z -+-+-=10、(0,0,0)或(2,0,0)三、解答题11、解:在直角坐标系O —xyz 中,在坐标轴上分别作出点P x 、P y 、P z ,使它们在x 轴、y 轴、z 轴上的坐标分别是1,1,1;再分别通过这些点作平面平行于平面yoz 、xoz 、xoy ,这三个平面的交点即为所求的点P 。

(图略)12、解:如右图,建立空间直角坐标系,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),B 1(1,1,1),C 1(0,1,1),D 1(0,0,1),E (0,0,12), F (12,12,0),G (1,1,12) 13、解:过A 作AM ⊥xoy 交平面于M ,并延长到C ,使AM=CM ,则A 与C 关于坐标平面xoy 对称且C (1,2,1)。

过A 作 AN ⊥x 轴于N 并延长到点B ,使AN=NB ,则A 与B 关于x 轴对称且B (1,-2,1)。

∴A (1,-2,1)关于坐标平面xoy 对称的点C (1,2,1);A (1,-2,1)关于x 轴对称点B (1,-2,1)。

思维启示:(1)P (x ,y ,z )关于坐标平面xoy 的对称点为P 1(x ,y ,-z );P (x ,y ,z )关于坐标平面yoz 的对称点为P 2(-x ,y ,z );P (x ,y ,z )关于坐标平面xoz 的对称点为P 3(x ,-y ,z );(2)P (x ,y ,z )关于x 轴的对称点为P 4(x ,-y ,-z );P (x ,y ,z )关于y 轴的对称点为P 5(-x ,y ,z );P (x ,y ,z )关于z 轴的对称点为P 6(-x ,-y ,z )。

14、解:如图,建立空间直角坐标系,则P (0,0,0),A (2,0,0),B (0,2,0),C (0,0,1),E (1,1,0)。

15、解:(1)(1,2,3),(-2,1,3),(1,-1,3)(只要写出的三点的纵坐标和竖坐标相等即可)。

(2)(1,2,3),(-2,1,3),(1,-1,3)(只要写出的三点的竖坐标相等即可)。

(2)若两点坐标分别为(x 1,y 1,z 1)和 (x 2,y 2,z 2),则过这两点的直线方程为111212121x x y y z z x x y y z z ---==---(x 2 x 1且y 2 y 1且z 2 z 1)。

相关文档
最新文档