二次函数系数与图像的关系课件

合集下载

二次函数中各项系数abc与图像的关系

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。

一.选择题(共8小题)1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b +2a >02.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个 B.4个 C.3个 D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a=.12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。

二次函数的图象与系数a,b,c的关系(PPT课件)

二次函数的图象与系数a,b,c的关系(PPT课件)

与x轴交点的情况 b²-4ac=0,函数图象与x轴有一个交点; b²-4ac>0,函数图象与x轴有两个交点; b²-4ac<0,函数图象与x轴无交点.
有一个交点 b²-4ac=0
无交点 b²-4ac<0
y
x 0
有两个交点 b²-4ac>0
突破练习:已知二次函数y=ax²+bx+c的图象如 图所示,判断下列说法是否正确。
左同右异
∵对称轴在y轴 左侧,a>0
∴b>0
∵对称轴为直线x=0 ∴b=0
x
∵对称轴在y轴右 侧,a>0
∴b<0
练习 判断下列各图中的a、b、c的符号
(1)
y
(2)
y
(3)Oxx Oy xO
(1) a_>__0; b_>__0; c_<__0;
(2)a_<__0; b__>_0; c__=_0;
(3)a_<__0; b__=_0; c__>_0;
y轴交点的位置
c=0,经过原点;
c>0,与y轴正半轴相交;
c<0,与y轴负半轴相交。
c<0
y 抛物线开口 向上,a>0
x 0
c>0
y
0
x
c=0
对称轴的位置 y
①对称轴为直线x=0(y轴), b 0
2a
b=0;
②对称轴在y轴左侧,
b 2a
0
a,b同号;
0
③对称轴在y轴右侧, b 0
2a
a,b异号.
二次函数的图象与系数a,b,c的关系
安化县思源实验学校 陈雅丽
我们学过, y

人教版九年级上 二次函数的图像和字母系数之间的关系(20张ppt)

人教版九年级上 二次函数的图像和字母系数之间的关系(20张ppt)

当堂检测
1.抛物线 y=x2-6x+5 的顶点坐标为 A.(3,-4) B.(3,4) C.(-3,-4) D.(-3,4)
(A )
解 析 配方:y=x2-6x+5=(x-3)2-4,所以顶点坐 标为(3,-4),故选 A.
当堂检测
1.抛物线 y=x2-6x+5 的顶点坐标为 A.(3,-4) B.(3,4) C.(-3,-4) D.(-3,4)
抛物线有最低点,当 x 抛物线有最高点,当 x=
最值 =-2ba时,y 有最小值, -2ba时,y 有最大值,
y 最小值=4ac4-a b2.
y 最大值=4ac4-a b2.
字母
关键点回顾
1.a>0 时,开口向上;2.a<0 时,开口向下. a
|a|越大,抛物线的开口程度___越__小___,|a|越小,抛物线的开口程度___越__大___.
y
1、点(1,a+b+c) a+b+c>0
2、点 (-1,a-b+c) a-b+c=0

-2 -1 o 1 2
x
3、点 (2,4a+2b+c) 4a+2b+c>0
4、点 (-2,4a-2b+c) 4a-2b+c<0
…………… ……………
已知二次函数y=ax2+bx+c(a≠0)
的图象如图所示,下列结论:
() A.1 B.2 C.3 D.4
C
由-12<0,得抛物线开口向下,①正确;关系 式写成了顶点形式,因此对称轴为直线 x=-1,顶点坐标
为(-1,3),②错误;③正确;由-12<0,当 x>1>-1 时, y 随 x 的增大而减小,④正确.故选 C.

二次函数系数a,b,c与图像的关系ppt课件

二次函数系数a,b,c与图像的关系ppt课件
(6)b2-4ac; (7)4ac-b2; (8)2a+b; (9)2a-b y
-1
0
1
x
8
9.练习:填空
(1)函数y=ax2 +bx+c(a 0)的函数值恒为正的
条件为:
,恒为负的条件为:

(2)已知抛物线y=ax2 +bx+c的图象在x轴的下方,
则方程ax2 +bx+c 0的解的情况为

(3)二次函数y=ax2 +bx+c中,ac<0,则抛物线与x轴 有 交点。
9
11、二次函数y ax2 bx c(a 0)的图象如图所示,
下列结论①c<0,②b>0③4a+2b+c>0,④(a+c)2 b2
其中正确的是
(填序号,并说明理由)
y
x=1
(a+c)2 b2 (a b c)(a b c)
1 2
其中正确的结论是( ) (A)①② (B)②③ (C)②④ (D)③④
11
-1 o
1x
4
3.二次函数y=ax2+bx+c的图象如图1所
示则下列关于a、b、c间的关系判断正
确的是( )
y
A)ab<0
O
x
B)bc<0
C)a+b+c>0
D)a-b+c<0
(图1)
5
例4(青海)二次函数 y ax2 bx c 图象如图2所示,
则点 A(b2 4ac, b ) 在第 象限.

a
y
O x

二次函数图像与参数课件

二次函数图像与参数课件

02
03
通过求导和分析导数的符号变化 ,可以判断高次多项式的单调性 和极值点。
04
感谢您的观看
THANKS
判别式的意义
判别式$Delta$决定了二次函数图像的根的情况。当$Delta > 0$时,方程有两个不相等的实根,抛物 线与$x$轴有两个交点;当$Delta = 0$时,方程有两个相等的实根,抛物线与$x$轴有一个交点;当 $Delta < 0$时,方程无实根,抛物线与$x$轴无交点。
02
二次函数图像特征
二次函数图像与参数课件
汇报人:XXX 2024-01-29
目录
• 二次函数基本概念 • 二次函数图像特征 • 参数变化对图像影响 • 典型二次函数图像分析 • 二次函数与实际问题应用 • 总结回顾与拓展延伸
01
二次函数基本概念
定义与性质
定义
二次函数是一般形式为 $y=ax^2+bx+c$($a neq 0$) 的函数,它描述了一个变量与另 一个变量的二次关系。
3
注意
以上内容中,$a,b,c,h,k$均为常数,且$aneq 0$。
03
参数变化对图像影响
a值变化对图像影响
当a>0时,二次函数的图像是一个开口向上 的抛物线。随着a值的增大,抛物线的开口逐 渐变窄,函数的增减速度逐渐加快。
当a<0时,二次函数的图像是一个开口向下 的抛物线。随着a值的减小,抛物线的开口逐 渐变宽,函数的增减速度逐渐减慢。
对称中心
对于标准形式的二次函数$y=a(x-h)^2+k$,其对称中心为 点$(h,k)$。
与坐标轴交点情况
1 2
与$x$轴交点
当$Delta=b^2-4ac>0$时,与$x$轴有两个交 点;当$Delta=0$时,与$x$轴有一个交点;当 $Delta<0$时,与$x$轴无交点。

二次函数的系数与图象的关系

二次函数的系数与图象的关系
二次函数的系数与图象的 关系
通过了解二次函数的系数与图象的关系,我们能够更好地理解二次函数的定 义和特点。
二次函数的定义和特点
1 定义
二次函数是指函数表达式中最高次项是二次的函数。
2 特点
二次函数的图像通常是一个开口向上或开口向下的抛物线。
二次函数与图象的对应关系
Input
自变量x的值
Output
1
a>1
当> 1时,二次函数的图像向上平移并
0<a<1
2
变窄。
当0 < a < 1时,二次函数的图像向上平移
并变宽。
3
-1 < a < 0
当-1 < a < 0时,二次函数的图像向下平移
a < -1
4
并变宽。
当a < -1时,二次函数的图像向下平移并 变窄。
系数b对二次函数图象的影响
1
b> 0
并变宽。
3
-1 < b < 0
当-1 < b < 0时,二次函数的图像向右平移
b < -1
4
并变宽。
当b < -1时,二次函数的图像向右平移并 变窄。
系数c对二次函数图象的影响
1
c> 0
当c > 0时,二次函数的图像整体上移。
2
c= 0
当c = 0时,二次函数的图像不发生垂直平移。
3
c< 0
当c < 0时,二次函数的图像整体下移。
当b > 0时,二次函数的图像向左平移。
2
b= 0
当b = 0时,二次函数的图像不发生水平平移。

二次函数图象与系数的关系PPT课件(人教版)

二次函数图象与系数的关系PPT课件(人教版)
202X
二次函数
y ax2 bx c(a 0)
图象与系数的关系
一、课前小练习
1、二次函数 y x2 2的x图 象3 开口方
向,
顶点坐标: ,
对称轴:
;
当x=0时,y=_ _,抛物线与y轴的交点是_ _;
当y=0 时,x= ,抛物线与x轴的交点是:
2、二次函数 y ax2 bx c(a 0)
(A) 4 (B) 3 (C) 2 (D) 1
X=-1
y
0
1
x
3.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=-1是对称轴,
有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c= -9a;④若
(-3,y1),( 3 ,y2)是抛物线上两点,则y1>y2.其中正确的是
2
(B )
直线x=1
5、抛物线 y ax2 bx c(a 0) 的图象
如下图所示,试确定下列各式的符号: (1)a ; (2) b ; (3)c;
(4) b2 4ac
(5)a b c (6)a b c
y
-1 o 1x
字母的符号
a
a>0
a<0
b=0
b
ab同号
ab异号
c=0
c
c>0
c<0
Δ=0
归纳总结
b 对图象的影响
b影响对 称轴的 位置
当b=0时,对称轴为y轴 当ab同号时对称轴在y轴左侧 当ab异号时对称轴在y轴右侧
归纳总结
c 对图象的影响
C确定图 象与y轴 的交点
当c=0时图象过原点 当c>0时图象与y轴正半轴相交 当c<0时图象与y轴负半轴相交

中考复习课件 二次函数的图象与各项字母系数之间的关系

中考复习课件  二次函数的图象与各项字母系数之间的关系
④(a+c)2<b2,其中不正确的个数是 (D )
A、4个 B、3个
y
C、2个 D、1个
o
x
x=1
3、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中:①abc>0;②b=2a;③a+b+c<0;
④a+b-c>0; ⑤a-b+c>0正确的个数是 (C )
A、2个 B、3个
y
C、4个 D、5个
小试牛刀 快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
20
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
21
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△ 的符号:
b
2a+b
- 与1比较,等于1,大于1,小于1
2a
2a-b
- b 与-1比较,等于-1,大于-1,小于-1 2a
b2-4ac
与x轴交点个数
a+b+c 令x=1,y=a+b+c,看纵坐标是在y轴的正半
轴上(>0)还是在负半轴上(<0)
a-b+c 令x=-1,y=a-b+c,看纵坐标
4a+2b+ c
4a-
b24ac>0
b2-4ac=0
与x轴无交点
b24ac<0
5.二次函数图象的对称轴特殊情况
(1)当对称轴是x=1

二次函数y=ax2+bx+c系数与图像的关系专题优质课 ppt课件

二次函数y=ax2+bx+c系数与图像的关系专题优质课 ppt课件

探究知识点二: a+b+c和a-b+c符号判断
(5)a+b+c的符号 :
由x=1时抛物线上的点的位置确定
点在x轴上方
点在x轴下方 点在x轴上
a+b+c>0
a+b+c<0 a+b+c=0
y
2020/12/27
-1 O 1 x
13
探究知识点二: a+b+c和a-b+c符号判断
(6)a-b+c的符号:
(4)b2-4ac的符号: 由抛物线与x轴的交点个数确定。
与x轴没有交点
与x轴有一个交点
没有实数根b2-4ac<0 有两个相等的实数根b2-4ac=0
与x轴有两个交点
有两个不相等的实数根b2-4ac>0
y
2020/12/27
o
x
11
知识点一:基本符号的判断(自主训练)
根据图象判断a、b、c及b2-4ac的符号
是( C )
y
y
y
y
Ox -3
A
Ox -3
B
Ox -3
C
Ox -3
D
由形定数,再由数定形.
2020/12/27
19
综合训练——形成能力
3、已知:一次函数y=ax+c与二次函数y=ax2+bx+c,它
们在同一坐标系中的大致图象是图中的( C )
y
y
o
x
y (A)
o
x
(B) y
2020/12/、3个
y
C、4个 D、5个
2020/12/27

二次函数系数与图像的关系(共32张PPT)

二次函数系数与图像的关系(共32张PPT)

⑤、a-b+c>0,⑥、4a+2b+c<0,⑦、4a-2b+c<0.
小结:二次函数y=ax2+bx+c(a≠0)的系数a,b,c,△与
抛物线的关系


a a决定开口方向:a>0时开口向上,
a<0时开口向下
a、b同时决定对称轴位置:a、b同号时对称轴在y轴左侧
b
a、b异号时对称轴在y轴右侧
b=0时对称轴是y轴
由抛物线捕捉对称信息的方式有:
抛物线y=ax2+bx+c如图所示,试确定a、b、c的符号:
⑤、a-b+c>0,⑥、4a+2b+c<0,⑦、4a-2b+c<0.
3个
对称轴是y轴: b=0
三、随堂演练
1.根据图象判断a、b、c的符号
y
a _>___0
y
b__<__0
0
c__<___0
0
x
a _<___0
抛物线的关系


a决定开口方向:a>0时开口向上,
a
a<0时开口向下
a、b同时决定对称轴位置:a、b同号时对称轴在y轴左侧
b
a、b异号时对称轴在y轴右侧
b=0时对称轴是y轴
c决定抛物线与y轴的交点:c>0时抛物线交于y轴的正半轴
c
c=0时抛物线过原点
c<0时抛物线交于y轴的负半轴
△决定抛物线与x轴的交点:△>0时抛物线与x轴有两个交点
y
2、当x=-1时, y=a-b+c
3、当x=2时,
y=4a+2b+c
4、当x=-2时, y=4a-2b+c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线y=ax2+bx+c(a≠0)中如 y
果已知:
a< 0,b < 0,c = 0,.△ > 0,
o
x
判断图像经过哪些象限?
抛物线y=ax2+bx+c(a≠0)中如果已 y
知:
o
x
a > 0,b > 0,c < 0,.△ > 0,
判断图像经过哪些象限?
已知:二次函数y=ax2+bx+c的系
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
•0 (0,0)
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
b x=- 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
•0 (0,c)
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
y
o
x
中考试题分析
(重庆)二次函数y=ax2+bx+c的图 像如图所示,则点M(b,c/a)在
( D)
A.第一象限 B.第二象限 C.第三象限 D. 第四象限
a <0,b >0,c >0
中考试题分析
(绵阳)二次函数y=ax2+bx+c的
图像如图,则不等式bx+a>0
的解为
( D)
A.x > a/b B.x > -a/b
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
•(x,0)
x
(3)a、b确定对称轴
b x=- 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
C.x < a/b D.x < -a/b
a <0,b <0
若抛物线y=ax2+3x+1与x轴有两
个交点,则a的取值范围是( D )
A.a>0
B.a>- 4/9
C.a> 9/4 D.a<9/4且a≠0
抛物线y=ax2+bx+c与x轴交点个数问 题与一元二次方程ax2+bx+c=0的根 的个数问题紧密联系.
y
o
x
快速回答:
抛物线y=ax2+bx+c如图所示,试 确定a、b、c、△的符号:
y
o
x
快速回答:
抛物线y=ax2+bx+c如图所示,试 确定a、b、c、△的符号:
y
o
x
快速回答:
抛物线y=ax2+bx+c如图所示,试 确定a、b、c、△的符号:
y
o
x
快速回答:
抛物线y=ax2+bx+c如图所示,试 确定a、b、c、△的符号:
c=0 c<0
x
(3)a、b确定对称轴
b x=- 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
• • 0
(x1,0)
x
(x2,0)
(3)a、b确定对称轴
(山西省)二次函数y=x2+bx+c
的图像如图所示,则函数值 y<0时,对应的x取值范围 -3 1
是 -3<x<1 .
探究练习: 若a>0, b>0, c>0,你能否画出 y=ax2+bx+c的大致图象呢?
0
0
0
要画出二次函数的大致图象,不但 要知道a,b,c的符号,还应该知道b2-4ac 的大小.
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
•(0,c)
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
Δ>0
Δ=0 Δ<0
y
0•
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
b x=- 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
快速回答:
抛物线y=ax2+bx+c如图所示,试 确定a、b、c、△的符号:
Δ>0
Δ=0 Δ<0
by x=- 2a
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
b x=- 2a
y
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y
b
x=- 2a
0
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
1、二次函数的定义:
形如“y=ax2+bx+c (a、b、c为常数
,≠a0 )”的函数叫二次函数。注意:自 变量x的最高次项为2 次, 变量的关系 是 整 式。
2、抛物线 y ax2 bx c(a≠0)的顶点
坐标为_(_2_ba_, _4a_c4_a_b2 ), 对称轴为直线_x___2_ba
如图是二次函数y=ax2 +bx+c 的函数图象,你能从图中得到 哪些信息?
-3 -1 1
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
二次函数图象位 置与a、b、c、
c>0
c=0 c<0
的正负关b 2a
的位置:
ab>0 ab=0 ab<0
相关文档
最新文档