全等三角形复习课导学案
全等三角形的判定复习课导学案
全等三角形的判定复习课教学目标:1、通过全等三角形的概念,性质和判定方法的复习,让学生掌握判定全等三角形的一般方法并能运用。
2、让学生经历观察、猜想、证明、归纳的过程,发展学生合情合理的推理能力,渗透转化的数学思想。
3、引导学生共同参与,激发数学求知欲,并养成良好的数学学习惯。
教学重点:利用全等三角形证明线段之间的关系。
教学难点:全等三角形的构造与证明。
教学过程:一、情境导入小明同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带哪一块去配?二、温故知新1、全等三角形的定义?一个三角形经过哪些变化可以得到它的全等形?2、全等三角形有哪些性质?3、全等三角形的判定方法有哪些?三、小试牛刀1.已知:如图∠B=∠DEF,BC=EF,补充条件 求证:ΔABC ≌ ΔDEF(1)若要以“SAS ”为依据,还缺条件 ____ _;(2) 若要以“ASA ”为依据,还缺条件 ;(3) 若要以“AAS ”为依据,还缺条件 ;(4)若要以“SSS ” 为依据,还缺条件 ; (5)若∠B=∠DEF=90°要以“HL” 为依据,还缺条件 。
四、方法归纳(1)已知两边 (2)一边一角 (3)已知两角1 2 3 D E F A B C五、直击中考1、(2014•宜宾)如图,已知:在△AFD 和△CEB 中,点A 、E 、F 、C 在同一直线上,AE=CF ,∠B=∠D ,AD ∥BC .求证:AD=BC .2、(2015•宜宾)如图,AC =DC ,BC =EC ,∠ACD = ∠BCE求证:∠A =∠D3、(2016•宜宾)如图,已知∠CAB=∠DBA ,∠CBD=∠DAC .求证:BC=AD .六、扩展提高1、在△ABC 中, ∠ACB=90°,AC=BC,直线MN 经过点C, AD ⊥MN 于点D, BE ⊥MN 于点E,(1)当直线MN 旋转到图(1)的位置时,猜想线段AD,BE,DE 的数量关系,并证明你的猜想(2)当直线MN 旋转到图(2)的位置时,猜想线段AD,BE,DE 的数量关系,并证明你的猜想(3)当直线MN 绕点C 旋转到图③的位置时,试问DE 、AD 、BE 具有怎样的等量关系?七、课堂小结八、课后作业:本章复习题C 组 D E CB A。
人教版八年级上册第十二章《全等三角形》复习导学案
第十二章《全等三角形》复习导教案追踪训练学习目标:( 1)回首全等三角形的观点、性质、判断方法||,利用全等三角形的性质和判断进行计算和证算||。
( 2)让学生经历察看、猜想、证明、概括的过程||,发展学生通情达理的推理能力||。
( 3)指引学生共同参加 ||,激发数学求知欲 ||,并养成优秀的数学学习惯 ||。
学习重难点:||。
要点:利用全等三角形的性质和判断进行计算和证明难点:全等三角形的结构与证明||。
一、建立全等三角形知识结构图二、自主学习重难点一全等三角形的对应关系例 1 如图 ||,△ OCA≌△ OBD||,C 和 B||, A 和 D 是对应极点 ||,请指出这两个三角形中相等的边和角.追踪训练1.好像△ ABC ≌△ CDA||,且 AB=CD|| ,则以下结论错误的选项是()A.AC 和 CA 是对应边B.∠B 和∠D 是对应角C.DA 和 BC 是对应边D.∠ DAC= ∠BAC重难点二全等三角形的性质例 2 已知△ ABC ≌△ A’B’C’||,且△ ABC 的周长为BC=5||,则 A’C’等于剖析:依据全等三角形对应边相等能够获得全等三角形角形全等的判定重难点四角均分线的性质重难点五文字命题的证明步骤: 1.明确命题中的已知和求证;2.依据题意画出图形||,并用数学符号表示已知和求证;3.经过剖析 ||,找出由已知推出求证的门路||,写出证明过程||。
三、合作商讨3、如图:在△ ABC 中 ||,∠C=90° ||,AC=BC|| ,过点 C 在△ ABC 外作直AM ⊥ MN 于 M|| ,BN ⊥MN 于 N||。
求证: MN=AM+BN|| 。
4、如图 ||,△ AEC 和△ DFB 中||,点 A||,B||,C||,D 在同向来线上个关系式:①AE ∥DF||,②AB=CD|| ,③CE=BF④∠ E=∠ F||,||。
(1)请用此中三个关系式作为条件 ||,另一个作为结论 ||,写出你以为正命题(用序号写出命题书写形式:“假如 ||, ||, ||,那么”);第1页/共2页(2)选择( 1)中你写出的一个命题||,说明它正确的原因 ||。
全等三角形复习导学案
全等三角形复习导学案姓名学习目标:(1)知识目标:重新掌握或巩固三角形全等的性质和判定方法的知识点。
(2)能力目标:通过自己对三角形全等的性质和判定方法知识点的复习和习题训练,提高对知识应用的理解能力和逻辑思维能力。
(3)情感目标:培养自己的主动思考问题的探索精神, 学习重点:三角形全等的性质和判定方法。
学习难点:三角形全等的性质和判定方法的运用。
学习方法:积极思考、勤于动手、认真探索。
【自主学习】思考下列问题,写出答案: 一、什么是全等形?答:。
二、什么是全等三角形?答:。
三、全等三角形的性质全等三角形、、、、、、都相等。
观察下面图形,完成表格:A四、全等三角形的判定方法②、两边和它们的夹角对应相等的两个三角形全等,简写成“SAS”.③、两角和它们的夹边对应相等的两个三角形全等,简写成"ASA”④、两角和其中一角的对边对应角相等的两个三角形全等,简写成“AAS”.⑤、有斜边和一条直角边对应相等的两个直角三角形全等,简写成“HL”.小结:①证明任意一对三角形全等都需要个条件②证明全等找条件的思路与方法:1、从已知找现成的条件。
2、从图形找隐含的条件。
(公共边,公共角,对顶角)3、从已知推导不足的所需条件。
精典例题1:如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD 。
证明:精典例题2:如图,已知AC=FE 、AC ∥FE ,点A 、D 、B 、F 在一条直线上,AD=FB .求证:BC=DE证明:直击中考1:(2015中考)19.(8分)已知:如图,点C 、D 在线段AB 上,E 、F 在AB同侧,DE 与CF 相交于点O ,且AC=BD ,AE=BF ,∠A=∠B.求证:DE=CF .F DCBEA直击中考2:(2015泉州市)20.(9分)如图,在矩形ABCD 中,点O 在边AB 上,∠AOC=∠BOD ,求证:AO=OB.直击中考3:(2015龙岩市)20.(10分)如图,E ,F 分别是矩形ABCD 的边AD ,AB 上的点,若EF =EC ,且EF ⊥EC .(1)求证:AE =DC ;直击中考4:(2015•漳州)19.(8分)求证:等腰三角形的两底角相等.已知:如图,在△ABC 中,AB=AC .求证:∠B=∠C.分析:1、你从已知可找到现成的条件是。
八年级数学上册12全等三角形复习导学案新版新人教版
全等三角形复习一、复习目标1、掌握全等三角形的概念及其性质;2、会灵活运用全等三角形的判定方法解决问题;3、掌握角平分线的性质并能灵活运用。
二、知识再现1、全等三角形的概念及其性质1)全等三角形的定义: 2)全等三角形性质:(1) (2) (3)周长相等 (4)面积相等 例1.如图1, ABC ∆≌ADE ∆,BC 的延长线交DA 于F , 交DE 于G,105=∠=∠AED ACB , 25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数.例题反思:2、 全等三角形的判定方法:例2.如图2,AD 与BC 相交于O,OC=O D,OA=OB,求证:DBA CAB ∠=∠例题反思:例3.如图3,在ABC ∆中,AB=AC ,D 、E 分别在BC 、AC 边上。
且B ADE ∠=∠,AD=DE 求证:ADB ∆≌DEC ∆.图1图23、角平分线例4.如图4,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC ,求证:EB=FC例题反思:三、双基检测1、下列命题中正确的( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等 2、下列各条件中,不能作出唯一三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边 3、完成下列证明过程.如图5,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE ,=DEF B ∠∠ 求证:=ED EF .证明:∵∠DEC =∠B +∠BDE ( ), 又∵∠DEF =∠B (已知),∴∠______=∠______(等式性质). 在△EBD 与△FCE 中, ∠______=∠______(已证), ______=______(已知), ∠B =∠C (已知),∴EBD FCE △≌△( ).∴ED =EF ( ).图4ADECBF图5如图6⑴,AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由。
全等三角形复习导学案
全等三角形复习导学案一、学习目标1、理解全等三角形的概念和性质,能够准确识别全等三角形的对应边和对应角。
2、掌握全等三角形的判定方法(SSS、SAS、ASA、AAS、HL),并能熟练运用这些方法证明两个三角形全等。
3、能够运用全等三角形的性质和判定解决与三角形有关的计算和证明问题。
4、通过复习,提高逻辑推理能力和综合运用知识的能力。
二、知识梳理1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形的对应边相等。
(2)全等三角形的对应角相等。
3、全等三角形的判定方法(1)“边边边”(SSS):三边对应相等的两个三角形全等。
(2)“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
(3)“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
(4)“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
(5)“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
三、典型例题例 1:已知,如图,△ABC≌△DEF,AB = DE,∠A =∠D,求证:BC = EF。
证明:因为△ABC≌△DEF,AB = DE,∠A =∠D,所以∠B =∠E。
又因为 AB = DE,∠A =∠D,所以△ABC≌△DEF(ASA),所以 BC = EF。
例 2:如图,在△ABC 中,AD 是中线,BE⊥AD 于点 E,CF⊥AD 交 AD 的延长线于点 F。
求证:BE = CF。
证明:因为 AD 是中线,所以 BD = CD。
因为 BE⊥AD,CF⊥AD,所以∠BED =∠CFD = 90°。
在△BED 和△CFD 中,∠BED =∠CFD,∠BDE =∠CDF,BD = CD,所以△BED≌△CFD(AAS),所以 BE = CF。
例 3:如图,已知 AC = BD,∠C =∠D = 90°,求证:Rt△ABC≌Rt△BAD。
人教版八年级数学上全等三角形复习导学案教案
《全等三角形》复习(1)【要点梳理】1.全等三角形的定义:能够叫做全等三角形.2.对应点、对应角及书写注意点:把两个全等的三角形重合到一起,重合的顶点叫做.重合的边叫做.重合的角叫做.“全等”符号:,读作“”,记两个三角形全等时,通常把表示对应的字母写在的位置上.3.全等三角形的性质:(1);(2).4.判定一般三角形全等的判定方法有:;直角三角形全等的判定方法还有.5.角平分线的性质定理;角平分线的判定定理.6.作全等三角形的方法、作一个角等于已知角、作一个已知角的角平分线.【基础训练】1.如图1,点A、C、F在同一直线,点B在EC上,EC⊥AF,△ABC≌△EFC,CB、CF是对应边,且CF=4cm,BE=3cm,∠F=58°.则∠A=,BC=,AC=.图1 图2 图3 图42.如图2,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,则∠CAE=. 3.如图3,除公共边AB外,根据下列括号内三角形全等的条件,在横线上添加适当的条件,使△ABC≌△ABD全等.(1),.(SSS)(2),.(ASA).(3)∠1=∠2 ,.(SAS)(4),∠3=∠4.(AAS).4.如图4,AE⊥BD于C,CB=CD,AC=EC,则AB与ED的关系是.【例题讲解】例1 如图,点A、C、D、B在同一直线上,AE=BF,AC=BD,AE∥BF.求证:FD∥EC.例2如图,已知△ABC中,AB=A C.(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠AEF=∠ACF.例3如图,AD∥BC,AB⊥BC,AD=AB,E为BC上一点,DF⊥AE于F.在AE上是否存在一点P,使△ABP与△DAF全等?若存在,请找出满足条件的点P,并给予证明;若不存在,请说明理由.例4如图,BF⊥AC于F,CE⊥AB于E,BF与CE交于点D,BF=CE.求证:D在∠BAC的平分线上.例5已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,解决下面问题:①若∠BCA=90°,∠a=90°,在图1中补全图形,则BE CF,EF|BE-AF|;(填>、<或=)②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立;(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).AB CDE《全等三角形》复习(2)例1如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,求证:AB=BC+AD.练:已知:如图△ABC中,AM是BC边上的中线.求证:)(21ACABAM+<.变式:在△ABC中,AD是BC边的中线,AC=3,AB=5,则AD的取值范围是.例2如图,∠BAC=90°,CE⊥BE,AB=AC,BD=2EC.求证:BE平分∠ABC例3如图,已知△ABC中,延长AC边上的中线BE到G,使EG=BE,延长AB边上的中线CD到F,使DF=CD,连接AF,AG.(1)补全图形;(2)AF与AG的大小关系如何?证明你的结论;(3)F,A,G三点的位置关系如何?证明你的结论.例4如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=21∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.M CBA。
全等三角形复习导学案(新人教版八年级上)
全等三角形复习导学案(新人教版八年级上)以下是为您推荐的全等三角形复习导学案(新人教版八年级上),希望本篇文章对您学习有所帮助。
全等三角形复习导学案(新人教版八年级上)使用说明:学生利用自习先复习课本第2-25页15分钟,然后30分钟独立做完学案。
正课由小组讨论交流然后展示点评,对于有疑问的题目教师点拨、拓展。
建议使用2课时。
【学习目标】1、掌握三角形全等的判定方法,利用三角形全等进行证明,掌握综合法证明的格式.2、能用尺规进行一些基本作图.能用三角形全等和角平分线的性质进行证明。
3、极度热情、高度责任、自动自发、享受成功。
教学重点:用三角形全等和角平分线的性质进行证明有关问题教学难点: 灵活应用所学知识解决问题,精炼准确表达推理过程【学习过程】一、本章知识结构梳理三角形二、方法指引1、证明两个三角形全等的基本思路:(1)已知两边(2)已知一边一角(3)已知两角2、三角形全等是证明线段相等、角相等最基本、最常用的方法。
例题1、如图:AB=AC,MEAB,MFAC,垂足分别为E、F,ME=MF。
求证:MB=MC例题2、已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=AD3、当题目中有角平分线时,可通过构造等腰三角形或全等三角形来寻找解题思路,或利用角平分线性质去证线段相等例题3、已知E=90,CE=CB,AB∥CD.求证:△ADC是等腰三角形例题4、已知:如图,AD平分BAC,DEAB于E,DFAC于F,DB=DC,求证:EB=FC4、证明线段的和、差、倍、分问题时,常采用割长、补短等方法例题5、如图,已知AC∥BD,EA、EB分别平分CAB和DBA,CD过点E,求证AB=AC+BD 提示:要证明两条线段的和与一条线段相等时常用的两种方法:(1)、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。
(割)(2)、把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。
人教版八年级数学上册1三角形全等的判定复习学案
12.2全等三角形的判定复习【学习目标】1、进一步熟练掌握三角形全等的判定方法,并能利用全等三角形的判定证明有关线段相等、角相等的问题;2、经历运用三角形全等的条件解决问题的过程,发展合情推理能力和演绎推理能力.【重点难点】重点:利用全等三角形的判定证明有关线段相等、角相等的问题;难点:根据已知条件选择合适的判定方法证明两个三角形全等【学习过程】一、知识回顾:1、判定两个三角形全等的方法有哪些?2、判定两个直角三角形全等的方法有哪些?二、合作探究:证明两个三角形全等常见思路有哪些?(1)当条件中有两条边对应相等时,如何选择判定方法?(2)当条件中有一条边对应相等,一个角对应相等时,如何选择判定方法?(3)当条件中有两个角对应相等时,如何选择判定方法?三、例题探究:例1、已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC≌ΔDEF(1)若要以“SAS”为依据,还缺条件__;(2) 若要以“ASA”为依据,还缺条件__;(3) 若要以“AAS”为依据,还缺条件__;(4)若要以“SSS”为依据,还缺条件__;(5)若∠B=∠DEF=90°要以“HL”为依据还缺条件__;例2、已知:如图,AD是△ABC 的中线,求证:ACABAD+<2四、尝试应用1、如图,已知AB=AC,BE=CE,延长AE交BC于D,则图中全等三角形共有()A、1对B、2对C、3对D、4对2、下列条件中,不能判定两个直角三角形全等的是()A、一锐角和斜边对应相等B、两条直角边对应相等C、斜边和一直角边对应相等D、两个锐角对应相等3、下列四组中一定是全等三角形的为()A.三内角分别对应相等的两三角形B、斜边相等的两直角三角形C、两边和其中一条边的对角对应相等的两个三角形D、三边对应相等的两个三角形4、已知:如图∠ABC=∠DCB, AB=DC,求证: (1)AC=BD; (2)S△AOB = S△DOC5、如图,已知∠ABC=∠DCB,要使△ABC≌△DCB,只需添加一个条件是_____________。
第十二章 全等三角形小结复习导学案
第十二章全等三角形小结复习导学案一、新课导入1、导入课题:在这一章,我们深入的研究了全等三角形的性质、判定以及相关的应用,这节课我们把这章的知识整体回顾一下。
2、学习目标:(1)知道全等三角形的性质、判定;(2)能说出角平分线性质、判定以及它与全等三角形知识的联系;(3)灵活运用全等三角形的性质、判定解决问题。
3、学习重难点重点:全等三角形的性质、判定难点:全等三角形的性质、判定的应用二、分层学习第一层次自学1、自学指导(1)自学内容:自学P31页--- P56页的内容.(2)自学时间:10分钟.(3)自学方法:回顾、反思.(4)自学参考提纲:知识回顾:请你带着下面的问题,复习一下全章的内容:①你能举出一些实际生活中全等形的例子吗?②全等三角形有什么性质?③全等三角形的判定有哪些?试着说说这些判定之间的区别。
④学习本章内容之后,你对角平分线有哪些新认识,你能用全等三角形的相关知识进行证明吗?⑤说说证明几何问题的一般步骤有哪些?2.自学:同学们可结合自学指导进行复习.3.助学:师助生:(1)明了学情:通过本章的学习,了解学生是否学会了利用证明三角形全等来得到线段相等、角相等,利用全等三角形证明角的平分线的性质。
(2)差异指导:引导学生总结证明线段相等、角相等的方法是证明三角形全等来完成的。
生助生:学生之间相互交流帮助。
4. 强化复述全等三角形的性质、判定。
第二层次自学1、自学指导(1)自学内容:参考提纲中的例题.(2)自学时间:10分钟.(3)自学方法:动手完成.(4)自学参考提纲:①巧添辅助线构造全等三角形例1:如图,在△ABC 中,AB=12,AC=8,AD 是BC 边上的中线,求AD 的取值范围。
AB D C②利用三角形全等解决开放与探究问题例2:如图,在△ABC 和△ACE 中,有下列四个条件:①AB=AC ,②AD=AE ,③∠1=∠2,④BD=CE请你以其中三个条件为题设,余下的作为结论,写出一个真命题(要求写出已知、求证、及证明过程)2、自学:先动手独立完成,不会的小组合作。
新人教版八年级数学上册第十二章全等三角形复习课导学案
优质资料新人教版八年级数学上册第十二章全等三角形复习课导学案复习目标1:知道全等三角形及其性质,能利用全等条件判定两三角形全等。
2:能利用全等三角形的判定和性质来证明线段相等或角相等。
3.知道角的平分线的性质,会判断一个点是否在一个角的平分线上。
重点:.全等三角形的判定和性质的综合应用,角平分线的性质和判定难点:典型例题和综合运用预习导学体系构建:总结本章知识点及相互联系.◆核心梳理1.全等三角形的定义:能够的两个三角形叫做全等三角形.把两个全等的三角形重合在一起,重合的顶点叫做顶点,重合的边叫做边,重合的角叫做角.全等三角形的性质:全等三角形的对应边,全等三角形的对应角 .2.全等三角形的判定.(1)的两个三角形全等(简写成“边边边”或“”)(2)的两个三角形全等(简写成“边角边”或“”)(3)的两个三角形全等(简写成“角边角”或“”)(4)的两个三角形全等(简写成“角角边”或“”)(5)的两个三角形全等(简写成“斜边直角边”或“”) 3.角平分线的性质及应用.角的平分线上的点 .到角的两边的距离相等的点在 .上.【预习自测】如图,P是∠AOB平分线OF上一点,CD⊥OF于点P,并分别交OA、OB于C、D,则CD P点到∠AOB两点距离之和()A.小于B.大于C.等于D.不能确定合作探究-----不议不讲专题一全等三角形的对应元素1.在ΔABC中,∠B=∠C与ΔABC全等的三角形有一个角是100°,那么在ΔABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C【方法归纳】如何确定三角形的对应边和对应角?优质资料专题二关于全等三角形的判定问题2.阅读教材“复习题12”“13”,并完成下面的证明.已知:如图,在△ABC和△A1B1C1中,AB=A1B1,AC=A1C1,BD,B1D1分别是△ABC和△A1B1C1的中线,且BD=B1D1,.求证:△ABC≌△A1B1C1[变式训练1]仿照上题,求证:有两条边和其中一条边上的高对应相等的两个锐角三角形全等。
全等三角形复习导学案
HL
图形语言
定义法
符号语言
在△ABC和△DEF中,
∴△ABC≌△DEF()
探
究
交
流
1.如图,对于给出的四个条件:①AB=DC;②∠A=∠D;③AC=DB;④∠ABC=∠DCB.
你能选择其中两个条件证明△ABC≌△DCB吗?为什么?
选择条件.
证明:
2.如图所示,已知∠1=∠2,AB∥DE,BF=EC.求证:AB=DE.
当
堂
检
测
1.(2016成都)如图, ,其中∠A=36°, ,则∠B=.
2.(2016云南,6分,16/23)如图,已知点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.
3.(2015云南,5分,16/23)如图,已知: ,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.
4.(2016昆明,6分,16/23)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AE=CE.
小结与
作业
小结
1.老师进行归纳点拨.
2.请有疑问的同学把你的困惑写在小纸条上交给学习委员.
作业
请你如右图所示自编一道题目并写出证明过程,要求:用“HL”证明
△ABC≌△DEF.
《全等三角形》复习课
班级姓名
目标
导学
学习
目标
1.理解全等三角形的概念,能够准确识别全等三角形中的对应边、对应角;
2.掌握三角形全等的判定方法,能够利用三角形全等进行证明,掌握综合法证明的格式.
考点
分析
这是云南省初中数学学业水平考试的一个高频考点,主要以解答题的形式出现.
知பைடு நூலகம்
全等三角形全章导学案
1全等三角形 导学案 一、学习目标:1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。
2.掌握全等三角形的性质,并运用性质解决有关的问题。
3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。
二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。
三、学习过程(一)、自主预习课本内容,回答下列问题:1、能够________的图形就是全等图形, 两个全等图形的_______和________完全相同。
2、一个图形经过______、______、_________后所得的图形与原图形 。
3、把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 。
“全等”用“ ”表示,读作 。
4、如图所示,△OCA ≌△OBD ,对应顶点有:点___和点___,点___和点___,点___和点___; 对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,____和____,_____和_____.5、全等三角形的性质:全等三角形的 相等, 相等。
(二)、练一练1.如图,△AB C ≌△CDA ,AB 和CD ,BC 和DA 是对应边。
写出其他对应边及对应角。
2如图,△ABN ≌△ACM ,∠B 和∠C 是对应角,AB 与AC 是对应边。
写出其他对应边及对应角。
《课内探究》1.如图△EFG ≌△NMH,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边. 在△NMH 中,MH 是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝. (1)写出其他对应边及对应角. (2)求线段MN 及线段HG 的长.2.如图,△ABC ≌△DEC,CA 和CD,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗? 为什么?课题:《三角形全等的判定》(SSS)导学案【学习目标】 1、能自己试验探索出判定三角形全等的SSS 判定定理。
全等三角形导学案(共16课时)
课题: 11.1 全等三角形 第1课时 累计1课时编写人: 备课组长: 审查人 授课时间教学目标:1、知道什么是全等形、全等三角形及全等三角形的对应元素。
2、知道全等三角形的性质,能用符号正确地表示两个三角形全等3、能熟练找出两个全等三角形的对应角、对应边。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角。
教学过程:一、 创设情境,引入新课(课前检测) 二、课前预习1、 阅读教材2——3页2、填空(1) 叫做全等形(2) 叫做全等三角形(3)把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做重合的角叫做 。
(4)“全等”用 表示, 读作 。
(5)全等三角形的性质: , 。
3.思考(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角(2)将ABC ∆沿直线BC 平移,得到DEF ∆,说出你得到的结论,说明理由?(3)如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知:οο30,43=∠=∠B A ,求ADC ∠的大小。
三.合作探究D DBD BE BC例1.已知如图(1),ABC ∆≌DCB ∆,其中的对应边:____与____,____与____,____与____,对应角:______与_______,______与_______,______与_______. 例2.如图(2),若BOD ∆≌C B COE ∠=∠∆,.指出这两个全等三角形的对应边; 若ADO ∆≌AEO ∆,指出这两个三角形的对应角。
(图1) (图2) ( 图3)例3.如图(3), ABC ∆≌ADE ∆,BC 的延长线交DA 于F ,交DE 于G,ο105=∠=∠AED ACB ,οο25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数.三、疑难点拨1、如图,已知△ABE ≌△ACD , ∠ADE=∠AED,∠B=∠C,指出其它的对应边和对应角。
人教版八年级上册 第12章 全等三角形121122复习课 导学案
全等三角形12.1-12.2复习课
一、全等三角形:____________________________________________________________________
二、全等三角形的性质:______________________________________________________________
三、全等三角形的判定
特殊方法:直角三角形( )
四、基础训练:
2. 如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,请你添加一个适当的条件:_________,使△AEH ≌△CDH .
4.已知:如图,AB=AC,AD=AE, ∠1=
∠3,那么∠E=∠D 吗?为什么? 5. 如图,AC 与BD 相交于点O ,且
AC=BD ,DA ⊥AC ,BC ⊥BD ,垂足分别是A ,B.求证:AD=BC.
6. 如图,BE ⊥AE ,CF ⊥AE ,垂足分别是E 、F ,D 是EF 的中点,△BED 与△CFD 全等吗?为什么?
五、能力提升
如图,△ABC 中,AB =AC ,∠BAC =90°,DE 是过点A 的直线,BD ⊥DE 于D ,CE ⊥DE 于E ,
(1)若B 、C 在DE 的同侧(如图1),求证:DE =DB +EC
第4题图
H E D C B A
(2)若B、C在DE的两侧(如图2),其他条件不变,DE、DB、EC三条线段之间满足什么关系?写出你的猜测,并说明你的理由.
图1 图2。
全等三角形复习导学案
知识点:掌握三角形全等的判定方法,利用三角形全等进行证明,掌握综合法证明的格式.考 点:掌握三角形全等的判定方法,能用三角形全等进行证明 能 力:能用尺规进行一些基本作图.能用三角形全等性质进行证明。
方 法:指导法、讲解法、启发式 【知识回顾】一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(SSS)(2)两角和它们的夹边对应相等的两个三角形全等。
(ASA)(3)两角和其中一角的对边对应相等的两个三角形全等。
(AAS)(4)两边和它们的夹角对应相等的两个三角形全等。
(SAS)(5)斜边和一条直角边对应相等的两个直角三角形全等。
(HL)(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找ABCDE①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS)【经典例题】例1.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等 例2.下列各组条件中,能判定△ABC ≌△DEF 的是( )A .AB =DE ,BC =EF ,∠A =∠DB .∠A =∠D ,∠C =∠F ,AC =EF C .AB =DE ,BC =EF ,△ABC 的周长= △DEF 的周长D .∠A =∠D ,∠B =∠E ,∠C =∠F例3.如图,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC , 则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:4例4、已知:如图AB=AC,AD=AE,∠BAC=∠DAE 求证: △ABD ≌△ACEA思考:求证:1.BD=CE2. ∠B= ∠C3. ∠ADB= ∠AEC【课堂练习】一、填空题1.下列各条件中,不能作出惟一三角形的是()A.已知两边和夹角 B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边2.如图2,已知AC =BD ,21∠=∠,那么△ABC ≌ , 其判定根据是__________.3.如图3,ABC ∆中,BC AD ⊥于D ,要使△ABD ≌△ACD ,若根据“HL ”判定,还需加条件___ = ___.4.如图4,已知AC =BD ,D A ∠=∠,请你添一个直接条件, = ,使△AFC ≌△DEB .二、选择题1.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同一条直线上,如图,可以得到EDC ABC ≅,所以ED =AB ,因此测得ED 的长就是AB 的长,判定EDC ABC ≅ 的理由是( )A .SASB .ASAC .SSSD .HL2、已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50°D2 3 43、如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35° D .40°4、如图,已知AB AD =,那么添加下列一个条件后, 仍无法判定ABC ADC △≌△的是( ) A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠ D .90B D ==︒∠∠三、简答题1.如图,A 、B 两建筑物位于河的两岸,要测得它们之间的距离,可以从B 点出发沿河岸画一条射线BF ,在BF 上截取BC =CD ,过D 作DE ∥AB ,使E 、C 、A 在同一直线上,则DE 的长就是A 、B 之间的距离,请你说明道理.C ABB 'A 'ACD2.已知:如图,点D 、E 在BC 上,且BD=CE ,AD=AE ,求证:AB=AC .3.已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .4.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .C B DEF ABCDE5.已知:BE ⊥CD ,BE =DE ,BC =DA , 求证:① △BEC ≌△DAE ; ②DF ⊥BC .【课后作业】1.已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对全等三角形.2.如图,△ABC ≌△ADE ,则,AB = ,∠E =∠ .若∠BAE =120°,∠BAD =40°,则∠BAC = .3.△ABC ≌△DEF ,且△ABC 的周长为12,若AB =3,EF =4,则AC = .4.已知:如图,A 、C 、F 、D 在同一直线上,AF =D C ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .BACBAEDBCDEF A。
HL、三角形全等复习导学案
DCBA课题: 11.2三角形全等的判定(HL )编写人:常现军 审查人:张鹏飞 把关领导:李先骅【学习目标】1、理解直角三角形全等的判定方法“HL ”,并能灵活选择方法判定三角形全等;2.通过独立思考、小组合作、展示质疑,体会探索数学结论的过程,发展合情推理能力; 3. 极度热情、高度责任、自动自发、享受成功。
教学重点:运用直角三角形全等的条件解决一些实际问题。
教学难点:熟练运用直角三角形全等的条件解决一些实际问题。
一、预习案1、复习思考(1)、判定两个三角形全等的方法: 、 、 、 (2)、如图,Rt △ABC 中,直角边是 、 ,斜边是 (3)、如图,AB ⊥BE 于B ,DE ⊥BE 于E ,①若∠A=∠D ,AB=DE , 则△ABC 与△DEF (填“全等”或“不全等” ) 根据 (用简写法)②若∠A=∠D ,BC=EF ,则△ABC 与△DEF (填“全等”或“不全等” )根据 (用简写法)③若AB=DE ,BC=EF ,则△ABC 与△DEF (填“全等”或“不全等” )根据 (用简写法)④若AB=DE ,BC=EF ,AC=DF 则△ABC 与△DEF (填“全等”或“不全等” )根据 (用简写法)2、如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?(1)动手试一试。
已知:Rt △ABC 求作:Rt △'''A B C , 使'C ∠=90°,''A B =AB, ''B C =BC 作法:(2) 把△'''A B C 剪下来放到△ABC 上,观察△'''A B C 与△ABC 是否能够完全重合? (3)归纳;由上面的画图和实验可以得到判定两个直角三角形全等的一个方法斜边与一直角边对应相等的两个直角三角形 (可以简写成“ ”或“ ”) (4)用数学语言表述上面的判定方法在Rt △ABC 和Rt '''A B C ∆中, ∵''BC B C AB =⎧⎨=⎩ ∴Rt △ABC ≌Rt △(5)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法 “ ”、 “ ”、 “ ”、 “ ”、 还有直角三角形特殊的判定方法 “ ” 二、探究案如图,AC=AD ,∠C ,∠D 是直角,将上述条件标注在图中,你能说明BC 与BD 相等吗?BA 11C 1三、归纳总结这节课你有什么收获呢?与你的同伴进行交流四、当堂检测1、如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,(1)若AC//DB ,且AC=DB ,则△ACE ≌△BDF ,根据 (2)若AC//DB ,且AE=BF ,则△ACE ≌△BDF ,根据 (3)若AE=BF ,且CE=DF ,则△ACE ≌△BDF ,根据(4)若AC=BD ,AE=BF ,CE=DF 。
全等三角形复习导学案
《全等三角形复习》导学案单位:淅河二中 年级:八年级 学科:数 学 课型:复习课 内容:全等三角形复习 主备:胡玉丽 审核:学习目标:1、认识全等三角形2、能利用全等判断两线段或者两角的相等关系3、能判断两个三角形全等学习重点、难点:能用不同方法判断两个三角形全等学习方法:1、预习导学 例题讲解 分层设计,先写后说,互动交流2、通过练习,回顾基本概念,巩固知识教学过程:一、知识梳理1、_________的两个三角形全等;2、全等三角形的对应边_____;对应角______;3、证明全等三角形的基本思路 (1)已知两边⎪⎩⎪⎨⎧_____)(___________)(_____________)__________看是否是直角三角形找夹角找第三边( (2)已知一边一角⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧(_____)(_______)(_____)(_____)(______)已知是直角,找一边找一角已知一边与对角找这边的对角找这个角的另一边找这边的另一邻角已知一边与邻角(3)已知两角 ⎪⎩⎪⎨⎧_____)(_____________)__________找夹边外任意一边找夹边( 4、角平分线的性质为________________________________________ 用法:∵_____________;_________;_________∴QD=QE5、角平分线的判定_____________________________________ 用法:∵_____________;_________;_________∴点Q在∠AOB的平分线上(4与5的图如下)二、预习、交流1,两个能够完全重合的图形称为.全等图形的和完全相同.2.如图1,若△ABC≌△EFC,且CF=3cm,∠EFC=64°,则BC=_____cm,∠B=___.BAEFA21CDBAECDBA D (图1)(图2)(图3)(图4)3.如图2,AC=DB,∠1=∠2,则△ABC≌△______,∠ABC=∠______.4.如图3,在△ABC和△ADE中,∠CAE=∠BAD,AC=AE(1)若加条件_________,可用SAS推得△ABC≌△ADE;(2)若加条件_________,可用ASA推得△ABC≌△ADE.5.(1)如图4,已知△ABC中AD平分∠BAC,∠ABD=∠ACD,则再由“___ ”, 就可判定△ABD≌△ACD.(2)如图5,已知AD∥BC,∠ABC=∠CDA,则可由“AAS”直接判定△_______ ≌________,(3)如图6,已知△ABC中,AD是BC边上的高,要根据“AAS”证明△ABC≌△ACD, 还需加条件∠_________=∠__________.B ACDBACA EFDOBAECD(图5)(图6)(图7)(图8)6. 如图7,AD∥BC,AD=BC,AC与BD交于点O,EF过点O并分别交AD、BC于E、F, 则图中的全等三角形共有( ) A.1对 B.2对 C.3对 D.4对7. 如图8,△ABC≌△DEF,求证:AD=BE.8.如图,已知:AC和BD相交于点O,OA=OC,OB=OD,AB与DC 平行吗?说明理由。
人教版八年级上册第12章全等三角形《复习课》导学案
第十二章复习课
1.知道全等三角形及其性质,能利用全等条件判定两三角形全等.
2.能利用全等三角形的判定和性质来证明线段相等或角相等.
3.知道角的平分线的性质,会判断一个点是否在一个角的平分线上.
4.重点:全等三角形的性质和判定的综合应用,角平分线的性质和判定.
◆体系构建
◆核心梳理
1.全等三角形的定义:能够完全重合的两个三角形叫作全等三角形.把两个全等的三角形重合在
一起,重合的顶点叫作对应顶点,重合的边叫作对应边,重合的角叫作对应角.
全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.
2.三角形全等的判定.
(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”);
(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”);
(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”);
(4)两角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”);
(5)斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边直角边”或“HL”).
3.角的平分线的性质及其应用.
角的平分线上的点到角的两边的距离相等.
到角的两边距离相等的点在角的平分线上.
【预习自测】如图,P是∠AOB平分线OF上一点,CD⊥OF于点P,并分别交OA、OB于C、D,则CD P点到∠AOB两边距离之和(B)
A.小于
B.大于
C.等于
D.不能确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学《全等三角形》复习导学案
学习目标:
1.了解全等三角形的概念,掌握两个三角形全等的条件.
2.在图形变换中,能熟练地把握全等三角形,进一步发展直觉思维能力. 学习重点、难点:
1.建立本章的知识网络
2.应用相关知识解决实际问题
教学流程:
一.知识网络构建(学生自主学习,自主完成)
1.两个的三角形是全等三角形.
2.全等三角形的对应边 ,对应角 .
3.两个三角形全等的条件: , , , .
4. 的两个直角三角形全等.简写为“HL”.
二.典型例题(师生共同研讨,学生合作探究,疑难问题教师讲评)
例1.填空:如图1,请你选择合适的条件填入空格内,使△DEF≌△DGF
(1)因为DF=DF, , ,根据SAS,可知道△DEF≌△DGF.
(2) 因为 , DF=DF, ,根据ASA,可知道△DEF≌△DGF.
(3) 因为 , , DF=DF,根据AAS,可知道△DEF≌△DGF.
(4) 因为DF=DF, , ,根据SSS,可知道△DEF≌△DGF.
(5) 若∠E=∠G=90°, , DF=DF,根据HL,可知道Rt△DEF≌Rt△DGF.
变式一:如图2,若△DEF≌△AGB,你能得到哪些结论? 变式二:如图3,AC⊥BC,AD⊥BD,垂足分别为C、D,AC=BD,
△ABC≌△BAD吗?为什么?
变式三:如图4,AC⊥BC,ED⊥BD,BE⊥BC垂足分别为C、D、B,AB=BE.试探究BE与AC+AD之间的关系.
变式四:如图5,AC⊥BC,AD⊥BD,垂足分别为C、D,AD=BC,
问(1)AE=BE吗?请说明你的理由.
(2)如图6,在上述条件不变的情况下,连接AB,OE,你认
为OE具有哪些性质?能说明你的理由吗
三.随堂检测反馈(学生独立完成,教师点评)
1.如图7,要使△ABC≌△ABD,下面给出的四组条件中,错误的一组是()
A.BC=BD,∠BAC=∠
BAD B.∠C=∠D,∠BAC=∠BAD
C.∠BAC=∠BAD,∠ABC=∠ABD
D.BC=BD,AC=AD
2.如图8,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,
还需添加一个条件,这个条件可以是.
3.如图9,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CE与AB相交于点F.AD⊥CF于点D,且AD平分∠FAC.请写出图中两对
..全等三角形,并选择其中一对加以证明.
四.小结与思考
图1 图2
D
B
图4
E
D
C
B
A
B
A
图9
A
B
C
D
E
F
图5
O
E
D
C
B
A
_B
_F
_E
_D
_C
_B
_A
图8
五.作业(每人选做3题)
1.如图10所示,∠E =∠F =90°,∠B =∠C ,AE =AF ,结论:①EM =FN ;②CD =DN ;③∠FAN =∠EAM ;
④△ACN ≌△ABM .其中正确的有( ) A .1个 B .2个 C .3个 D .4个
2.如图11,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌
ADE △,可补充的条件是 (写出一个即可)
.
3.如图12,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交
BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .
4. 如图①所示,已知AE ⊥FE ,垂足为E ,且E 是DC 的中点.
(1)如图13①,如果FC ⊥DC ,AD ⊥DC ,垂足分别为C 、D ,且AD=DC ,判断AE 是∠FAD 的角平分线吗?(不必说明理由) (2)如图13②,如果(1)中的条件去
掉
“AD=DC ”,其余条件不变,
(1)中的结论仍成立吗?请说明理由.
(3)如图13③,如果(1)的条件改为,AD ∥FC ,(1)中的结论仍成立吗?请说明理由.
图10
A E
F
B C
D
M
N
A C E B
D
图11
A
F
C E D
A
F
C E D
A
F
C
D E ①
② ③
图13
图12
A B
D C
E F。