连云港市年中考数学试卷含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省连云港市2016年中考数学试卷
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.)
1.有理数﹣1,﹣2,0,3中,最小的数是()
A.﹣1 B.﹣2 C.0 D.3
【分析】先求出|﹣1|=1,|﹣2|=2,根据负数的绝对值越大,这个数就越小得到﹣2<﹣1,而0大于任何负数,小于任何正数,则有理数﹣1,﹣2,0,3的大小关系为﹣2<﹣1<0<3.
【解答】解:∵|﹣1|=1,|﹣2|=2,
∴﹣2<﹣1,
∴有理数﹣1,﹣2,0,3的大小关系为﹣2<﹣1<0<3.
故选B.
【点评】本题考查了有理数的大小比较:0大于任何负数,小于任何正数;负数的绝对值越大,这个数就越小.
2.据市统计局调查数据显示,我市目前常住人口约为4470000人,数据“4470000”用科学记数法可表示为()
A.×106B.×107C.×107D.447×104
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:数据“4470000”用科学记数法可表示为×106.
故选:A.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面是的字是()
A.丽B.连C.云D.港
【分析】正方体的平面展开图中,相对面的特点是必须相隔一个正方形,据此作答.
【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“美”与“港”是相对面,
“丽”与“连”是相对面,
“的”与“云”是相对面.
故选D.
【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
4.计算:5x﹣3x=()
A.2x B.2x2C.﹣2x D.﹣2
【分析】原式合并同类项即可得到结果.
【解答】解:原式=(5﹣3)x=2x,
故选A
【点评】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.
5.若分式的值为0,则()
A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣2
【分析】根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.
【解答】解:∵分式的值为0,
∴,解得x=1.
故选:C.
【点评】本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零,根据此条件列出关于x的不等式组是解答此题的关键.
6.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()
A.y=3x B.C.D.y=x2
【分析】可以分别写出选项中各个函数图象的特点,与题目描述相符的即为正确的,不符的就是错误的,本题得以解决.
【解答】解:y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;
的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;
的图象在二、四象限,故选项C错误;
y=x2的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;
故选B.
【点评】本题考查反比例函数的性质、正比例函数的性质、二次函数的性质,解题的关键是明确它们各自图象的特点和性质.
7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S
1、S
2
、S
3
;如图2,
分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为
S 4、S
5
、S
6
.其中S
1
=16,S
2
=45,S
5
=11,S
6
=14,则S
3
+S
4
=()
A.86 B.64 C.54 D.48
【分析】分别用AB、BC和AC表示出 S
1、S
2
、S
3
,然后根据AB2=AC2+BC2即可得出S
1
、S
2
、S
3
的关系.同理,得出S
4、S
5
、S
6
的关系.
【解答】解:如图1,S
1=AC2,S
2
=BC2,S
3
=AB2.
∵AB2=AC2+BC2,
∴S
1+S
2
=AC2+BC2=AB2=S
3
,
如图2,S
4=S
5
+S
6
,
∴S
3+S
4
=16+45+11+14=86.
故选A.
【点评】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
8.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r 的取值范围为()
A.2<r<B.<r<3 C.<r<5 D.5<r<
【分析】如图求出AD、AB、AE、AF即可解决问题.
【解答】解:如图,∵AD=2,AE=AF=,AB=3,
∴AB>AE>AD,
∴<r<3时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,
故选B.
【点评】本题考查点由圆的位置关系、勾股定理等知识,解题的关键是正确画出图形,理解题意,属于中考常考题型.
二、填空题(本大题共有8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上.)
9.化简:═ 2 .
【分析】直接利用立方根的定义即可求解.
【解答】解:∵23=8
∴=2.
故填2.