1.3.1简单的逻辑联结词1.ppt
合集下载
高中数学第一章常用逻辑用语1.3简单的逻辑联结词课件新人教A版选修11[1]
![高中数学第一章常用逻辑用语1.3简单的逻辑联结词课件新人教A版选修11[1]](https://img.taocdn.com/s3/m/6e56e5f2bb68a98270fefaa6.png)
解:(1)是“p∧q”形式的命题.其中p:48是16的倍数,q:48是12的倍数.
(2)是“ p”形式的命题.其中p:方程x2+x+3=0有实数根.
(3)是“p∨q”形式的命题.其中p:菱形是圆的内接四边形,q:菱形是圆的外
切四边形.
第十页,共22页。
题型一
题型二
题型三
题型四
反思 正确理解逻辑联结词“或”“且”“非”是解题的关键,有些命题
B.p∧q为假,p∨q为假, p为假
C.p∧q为假,p∨q为真, p为假
D.p∧q为真,p∨q为真, p为假
解析(jiě xī):p为真,q为假,故“p∧q”为假,“p∨q”为真,“ p”为假,选C.
答案:C
第七页,共22页。
1.理解逻辑联结(liánjié)词“或”的含义
剖析“或”是具有选择性的逻辑联结(liánjié)词,含有三层含义,即“p或q”
1
那么 4
1
,
4
< < 4;
1
如果 q 真,且 p 假,有 a<0 或 a≥4,且 a≤4 , 那么a<0.
1
因此实数 a 的取值范围为(-∞,0)∪ ,4 .
4
第十八页,共22页。
题型一
题型二
题型三
题型四
反思 解决此类问题的方法,一般是先假设p,q分别为真,化简其中的
参数取值范围(fànwéi),然后当它们为假时取其补集,最后确定参数的
取值范围(fànwéi).当p,q中参数的范围(fànwéi)不易求出时,也可以利
用 p与p, q与q不能同真同假的特点,先求 p, q中
参数的取值范围(fànwéi).
(2)是“ p”形式的命题.其中p:方程x2+x+3=0有实数根.
(3)是“p∨q”形式的命题.其中p:菱形是圆的内接四边形,q:菱形是圆的外
切四边形.
第十页,共22页。
题型一
题型二
题型三
题型四
反思 正确理解逻辑联结词“或”“且”“非”是解题的关键,有些命题
B.p∧q为假,p∨q为假, p为假
C.p∧q为假,p∨q为真, p为假
D.p∧q为真,p∨q为真, p为假
解析(jiě xī):p为真,q为假,故“p∧q”为假,“p∨q”为真,“ p”为假,选C.
答案:C
第七页,共22页。
1.理解逻辑联结(liánjié)词“或”的含义
剖析“或”是具有选择性的逻辑联结(liánjié)词,含有三层含义,即“p或q”
1
那么 4
1
,
4
< < 4;
1
如果 q 真,且 p 假,有 a<0 或 a≥4,且 a≤4 , 那么a<0.
1
因此实数 a 的取值范围为(-∞,0)∪ ,4 .
4
第十八页,共22页。
题型一
题型二
题型三
题型四
反思 解决此类问题的方法,一般是先假设p,q分别为真,化简其中的
参数取值范围(fànwéi),然后当它们为假时取其补集,最后确定参数的
取值范围(fànwéi).当p,q中参数的范围(fànwéi)不易求出时,也可以利
用 p与p, q与q不能同真同假的特点,先求 p, q中
参数的取值范围(fànwéi).
1.3.1《且(and)》课件1.3.2《或(or)》课件
![1.3.1《且(and)》课件1.3.2《或(or)》课件](https://img.taocdn.com/s3/m/1ef6f0bd84868762caaed5c0.png)
上面故事中,这类以“或”( ∨ )连接的叙述,若以集合的角度来 看是并集( ∪ )的意思,如视频中的叙述就是指{水中生物}∪{陆地
动物}这个集合中的所有动物可以来参加庆祝会。若以“且”( ∧ )
连接则代表交集(∩ )的意思,如下面的叙述表示{水中生物}∩{陆
地动物}这个集合中的动物才能来参加庆祝会。最后,“除了‘生
将下列命题用“且”联结成新命题,并判断它们的真假; (1)p:菱形的对角线相等,
q:菱形的对角线互相平分 (2) p:35是5的倍数,
q:35是7的倍数。
解:(1) pq:菱形的对角线相等且互相平分。 由于p假、q真,从而pq假。
(2) pq: 35是5的倍数且35是7的倍数。 由于p真、q真,从而pq真。
可发现,命题(3)是由命题(1)(2)使用联结词“或” 联结得到的新命题。
一般地,使用联结词“或” 把命题p和命题q联 结起来就得到一个新命题。
记作: pq 读作: p或q
口诀:全假为假,有真即真.
当p,q两个命题中有一个命题是真命题时, p q是真命题;
当p,q都是假命题时,p q是假命题;
1.3 简单的逻辑联结词
1.3.1 且(and) 1.3.2 或(or)
本课件以一个关于青蛙不能参加庆祝会的故事为背景,提出生 活的逻辑联结词应用广泛,引出了在数学中也有类似的逻辑联结 词,揭开了本课学习的序幕.以学生自主探究为主,探讨逻“且 ”“或”的命题的真假判断方法。
记作: pq 读作: p且q
常用小写字母p、q、r 、s…表示命题
口诀:全真为真,有假即假.
当p,q都是真命题时,pq是真命题; 当p,q两个命题中有一个命题是假命题时, pq是假命题;
从串联电路来理解联结词“且”的含义: 把命题为真看作开关闭合; 把命题为假看作开关断开。
(新课标人教A版)选修1-1数学同步课件:1-3-1《“且”与“或”》
![(新课标人教A版)选修1-1数学同步课件:1-3-1《“且”与“或”》](https://img.taocdn.com/s3/m/3314e0c1da38376baf1fae84.png)
[例4] 已知命题p:方程x2+mx+1=0有两个不相等 的负实数根,命题q:方程4x2+4(m-2)x+1=0无实数根,
若“p或q”为真命题,“p且q”为假命题,求m的取值范
围.
[解析] 若方程x2+mx+1=0有两个不等的负根,
若方程4x2+4(m-2)x+1=0无实根, 则Δ=16(m-2)2-16<0,即1<m<3,
2.由下列各组命题构成的新命题“p或q”“p且q”都
为真命题的是 ( A.p:4+4=9,q:7>4 B.p:a∈{a,b,c},q:{a} D.p:2是偶数,q:2不是质数 [答案] B [解析] “p或q”“p且q”都为真,则p真q真,故选B. {a,b,c} )
C.p:15是质数,q:8是12的约数
然语言中的“或者”有两种用法:一是“不可兼”的
“或”;二是“可兼”的“或”,而我们仅研究可兼“或” 在数学中的含义.
1.关于逻辑联结词“且”
(1)“且”的含义与日常语言中的“并且”、“及”、 “和”相当,是连词“既„„又„„”的意思,二者须同 时兼得. (2) 从如图所示串联开关电路上看,当两个开关 S1 、 S2
已知a>0且a≠1,设命题p:函数y=ax在R上单调递减, q:不等式:x+|x-2a|>1的解集为R,若p且q为假,p或q为 真,求a的取值范围.
[解析] p:0<a<1.
由函数 y=ax 在 R 上单调递减知 0<a<1, 所以
不等式:x+|x-2a|>1 的解集为 R,即 y=x+|x-2a| 在 R 上恒大于 1,又因为
[点评] 用逻辑联结词“且”“或”联结两个命题时,
关键是正确理解这些词语的意义及在日常生活中的同义词, 选择合适的联结词,有时为了语法的要求及语句的通顺也 可进行适当的省略和变形.
简单的逻辑联结词(一)或且非PPT优秀课件
![简单的逻辑联结词(一)或且非PPT优秀课件](https://img.taocdn.com/s3/m/17d34c0fa32d7375a5178029.png)
逻辑联结词中的”且”相当于集合中的”交 集”,即两个必须都选.
再见
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
题都是假命题时, p q 是假命题.
p
开关p,q的闭合
对应命题的真假,
q
则整个电路的接
通应与命断题开分p 别 对q
的真与假.
一般地,对一个命题p全盘否定,就得 到一个新命题,记作
p
读作”非p”或”p的否定”
若 p
例1:指出下列复合命题的形式及构成它 的简单命题:
(1)24既是8的倍数,也是6的倍数; (2)李强是篮球运动员或跳高运动员; (3)平行线不相交;
“且”、“非”意义不同之处.
问题:下列语句是命题吗?如果不是,请你将它改
为命题的形式
(1)11>5. (2)3是15的约数吗?
(3)求证:3是15的约数。 (4)0.7是整数. (5)x>8.
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。
(1)请全体同学起立! (2)X2+x>0. (3)对于任意的实数a,都有a2+1>0. (4)x=-a. (5)91是质数. (6)中国是世界上人口最多的国家.
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
再见
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
题都是假命题时, p q 是假命题.
p
开关p,q的闭合
对应命题的真假,
q
则整个电路的接
通应与命断题开分p 别 对q
的真与假.
一般地,对一个命题p全盘否定,就得 到一个新命题,记作
p
读作”非p”或”p的否定”
若 p
例1:指出下列复合命题的形式及构成它 的简单命题:
(1)24既是8的倍数,也是6的倍数; (2)李强是篮球运动员或跳高运动员; (3)平行线不相交;
“且”、“非”意义不同之处.
问题:下列语句是命题吗?如果不是,请你将它改
为命题的形式
(1)11>5. (2)3是15的约数吗?
(3)求证:3是15的约数。 (4)0.7是整数. (5)x>8.
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。
(1)请全体同学起立! (2)X2+x>0. (3)对于任意的实数a,都有a2+1>0. (4)x=-a. (5)91是质数. (6)中国是世界上人口最多的国家.
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
(-人教A版)简单的逻辑联结词课件-(共31张)
![(-人教A版)简单的逻辑联结词课件-(共31张)](https://img.taocdn.com/s3/m/6e4fbb275bcfa1c7aa00b52acfc789eb172d9e0b.png)
的补集.
3.已知命题 p:关于 x 的方程 x2-ax+4=0 有实根;命题 q:关于 x 的函数 y=2x2 +ax+4 在[3,+∞)上是增函数.若 p∨q 是真命题,p∧q 是假命题,则实数 a 的取 值范围是( ) A.(-12,-4]∪[4,+∞) B.[-12,-4]∪[4,+∞) C.(-∞,-12)∪(-4,4) D.[-12,+∞)
D.命题“p 且綈 q”为真
解析:若直线 l1 与直线 l2 平行,则必满足 a(a+1)-2×3=0,解得 a=-3 或 a=2, 但当 a=2 时两直线重合,所以 l1∥l2⇔a=-3,所以命题 p 为真.如果这三点不在 平面 β 的同侧,则不能推出 α∥β,所以命题 q 为假.故选 D. 答案:D
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上,要不断反思、关 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气! 古之立大事者,不惟有超世 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已,不亦远乎?心中有 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭疏食,饮水,曲肱 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策,有包藏宇宙之机, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐民之乐者,民亦乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与不学同;知而不能 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不信者行不果。立志 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋而不忠乎?与朋友 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担当。为天地立心, 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地势坤,君子以厚德 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立志,难成! 海纳百 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不惧。”真正努力精进 者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学技术,都需要无数次 的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁击溃过你,都不重要。 重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。最深的孤独不是长久的 一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一个人的价值,应该看他 贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知,最苦的是等待,最幸福 的是真爱,最后悔的是错过。两个人在一起能过就好好过! 不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世界的真正财富。人若软 弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便是黑暗中的那一盏明灯, 可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太过短暂,今天放弃了明天 不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目标,去承受常人承受不了 的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的! 既然爱,为什么不说出口,有些东西失去了,就在也回不来了! 对于人来说,问心无愧是最舒服的枕头。嫉妒他人,表 明他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑微中站起来,带着封存 梦想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你,所以,过去的懒惰,决定 你今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不是逃避或绕开它们,而 是面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。做不了决定的时候,让 时间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾。发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志, 并把研究继续下去。我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。公共的利益,人 类的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶,叶而后花。意志 的出现不是对愿望的否定,而是把愿望合并和提升到一个更高的意识无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。即使遇到了不幸的 灾难,已经开始了的事情决不放弃。最可怕的敌人,就是没有坚强的信念。既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。意志若是屈从,不论程度如何, 它都帮助了暴力。有了坚定的意志,就等于给双脚添了一对翅膀。意志坚强,只有刚强的人,才有神圣的意志,凡是战斗的人,才能取得胜利。卓越的人的一大优点是:在不利和艰难 的遭遇里百折不挠。疼痛的强度,同自然赋于人类的意志和刚度成正比。能够岿然不动,坚持正见,度过难关的人是不多的。钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什 么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。只要持续地努力,不懈地奋斗,就没有征服不了的东西。
3.已知命题 p:关于 x 的方程 x2-ax+4=0 有实根;命题 q:关于 x 的函数 y=2x2 +ax+4 在[3,+∞)上是增函数.若 p∨q 是真命题,p∧q 是假命题,则实数 a 的取 值范围是( ) A.(-12,-4]∪[4,+∞) B.[-12,-4]∪[4,+∞) C.(-∞,-12)∪(-4,4) D.[-12,+∞)
D.命题“p 且綈 q”为真
解析:若直线 l1 与直线 l2 平行,则必满足 a(a+1)-2×3=0,解得 a=-3 或 a=2, 但当 a=2 时两直线重合,所以 l1∥l2⇔a=-3,所以命题 p 为真.如果这三点不在 平面 β 的同侧,则不能推出 α∥β,所以命题 q 为假.故选 D. 答案:D
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上,要不断反思、关 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气! 古之立大事者,不惟有超世 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已,不亦远乎?心中有 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭疏食,饮水,曲肱 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策,有包藏宇宙之机, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐民之乐者,民亦乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与不学同;知而不能 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不信者行不果。立志 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋而不忠乎?与朋友 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担当。为天地立心, 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地势坤,君子以厚德 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立志,难成! 海纳百 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不惧。”真正努力精进 者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学技术,都需要无数次 的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁击溃过你,都不重要。 重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。最深的孤独不是长久的 一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一个人的价值,应该看他 贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知,最苦的是等待,最幸福 的是真爱,最后悔的是错过。两个人在一起能过就好好过! 不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世界的真正财富。人若软 弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便是黑暗中的那一盏明灯, 可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太过短暂,今天放弃了明天 不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目标,去承受常人承受不了 的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的! 既然爱,为什么不说出口,有些东西失去了,就在也回不来了! 对于人来说,问心无愧是最舒服的枕头。嫉妒他人,表 明他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑微中站起来,带着封存 梦想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你,所以,过去的懒惰,决定 你今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不是逃避或绕开它们,而 是面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。做不了决定的时候,让 时间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾。发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志, 并把研究继续下去。我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。公共的利益,人 类的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶,叶而后花。意志 的出现不是对愿望的否定,而是把愿望合并和提升到一个更高的意识无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。即使遇到了不幸的 灾难,已经开始了的事情决不放弃。最可怕的敌人,就是没有坚强的信念。既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。意志若是屈从,不论程度如何, 它都帮助了暴力。有了坚定的意志,就等于给双脚添了一对翅膀。意志坚强,只有刚强的人,才有神圣的意志,凡是战斗的人,才能取得胜利。卓越的人的一大优点是:在不利和艰难 的遭遇里百折不挠。疼痛的强度,同自然赋于人类的意志和刚度成正比。能够岿然不动,坚持正见,度过难关的人是不多的。钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什 么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。只要持续地努力,不懈地奋斗,就没有征服不了的东西。
数学选修一课件第一章 1.3.1~1.3.2
![数学选修一课件第一章 1.3.1~1.3.2](https://img.taocdn.com/s3/m/44a533dbda38376baf1faed8.png)
类型二
p∨q命题
例2 分别指出下列命题的构成形式及命题的真假: (1)相似三角形的面积相等或对应角相等; 解 这个命题是“p∨q”的形式,其中p:相似三角形的面积相等; q:相似三角形的对应角相等. 因为p假、q真,所以p∨q为真命题.
解析答案
(2)集合A是A∩B的子集或是A∪B的子集; 解 命题“集合A是A∩B的子集或是A∪B的子集”是由命题: p:集合A是A∩B的子集; q:集合A是A∪B的子集 用“或”联结后构成的新命题,即p∨q. 因为命题q是真命题,所以命题p∨q是真命题.
(1)(n-1)· n· (n+1) (n∈N*)既能被2整除,也能被3整除;
解 此命题为“p且q”形式的命题,其中,
p:(n-1)· n· (n+1) (n∈N*)能被2整除;
q:(n-1)· n· (n+1) (n∈N*)能被3整除.因为p为真命题,q也为真命题,所
以“p且q”为真命题.
解析答案
解析答案
类型三 p∨q与p∧q的应用 例3 已知p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;q:函数 f(x)=-(5-2a)x在R上是减函数.若“p或q”为真,“p且q”为假,求实 数a的取值范围.
反思与感悟
解析答案
跟踪训练3
设有两个命题.命题p:不等式x2-(a+1)x+1≤0的解集是∅;
命题q:函数f(x) =(a+1)x在定义域内是增函数 .如果p∧q为假命题,p∨q
为真命题,求a的取值范围.
解析答案
返回ห้องสมุดไป่ตู้
达标检测
1
2
3
4
5
π 1.设命题p:函数y=sin 2x的最小正周期为 2 ;命题q:函数y=cos x的图 π 象关于直线x= 对称.则下列判断正确的是( C ) 2 A.p为真 B.q为真
2014-2015学年高中数学(人教版选修2-1)配套课件第一章 1.3.1 简单的逻辑联结词——且、或
![2014-2015学年高中数学(人教版选修2-1)配套课件第一章 1.3.1 简单的逻辑联结词——且、或](https://img.taocdn.com/s3/m/66250787680203d8ce2f24d5.png)
p∧q:1不是质数且1不是合数.
(2)p:2是偶数,q:2是质数,
p∧q:2 是偶数且2是质数.
(3)p:5是质数,q:7是质数,
p∧q:5是质数且7是质数.
(4)p:x=3是方程|x|=3的解,
q:x=-3是方程|x|=3的解,
p∨q:x=3或x=-3是方程|x|=3的解.
基 础 梳 理 2.含有逻辑联结词的命题真假的判断: (1)若p∧q为真,当且仅当
p、q均为真 _______________________________________________ ;
(2)若p∨q为真,当且仅当
p、q至少有一个为真 _______________________________________________ .
点评:(1)当一个复合命题不是用“且”或“或”连
接时,可以将其改为用“且”或“或”连接的复合命题,
改写时要注意不能改变原命题的意思,这就要仔细考虑到 底是用“且”还是用“或”.
(2)在用“且”、“或”联结两个命题 p、 q时,
在不引起歧义的情况下,可将 p、 q中的条件或结论合 并,使叙述更通顺.
q:三角形的外角大于与它不相邻的任何一个内角.
变 式 迁 移 解析:(1)“p∨q”:π 是无理数或e不是无理数; “p∧q”:π 是无理数且e不是无理数. (2)“p∨q”:方程x2+2x+1=0有两个相等的实数根 或两根的绝对值相等;“p∧q”:方程x2+2x+1=0有两 个相等的实数根且两根的绝对值相等.
栏 目 链 接
题型一
例1
用“且”、“或”联结成新命题
将下列命题用“且”、“或”联结成新命题.
简单的逻辑联结词
![简单的逻辑联结词](https://img.taocdn.com/s3/m/b14fcc189ec3d5bbfc0a742d.png)
【变式与拓展】 1.写出下列各命题构成“p 或 q” 、“p 且 q”和“非 p”
形式的复合命题: (1)p: 3是无理数,q: 3是实数; (2)p:4>6,q:4+6≤10; (3)p:8 是 30 的约数,q:6 是 30 的约数; (4)p:矩形的对角线互相垂直,q:矩形的对角线互相平分.
误认为它们就是简单命题,要根据语句所表达的含义进行命题 结构的判断.对“或”“且”“非(不)”的理解要与集合中的“并集 “交集”和“补集”的概念结合起来.特别是“否命题”,要对命 的关键词进行否定.
自主解答:(1)这个命题是“非 p”形式的命题,其中 p:方程 x2-3=0 有有理根.
(2)这个命题是“p 且 q”形式的命题,其中 p:两个角是45° 的三角形是等腰三角形,q:两个角是 45°的三角形是直角三 角形.
题型1 用逻辑联结词构成复合命题 例1:分别写出由下列各组命题构成“p 或 q”、“p 且 q”
和“非 p”形式的复合命题: (1)p: 2是无理数,q: 2大于 1; (2)p:N⊆Z,q:0∈N; (3)p:x2+1>x-4,q:x2+1<x-4.
思维突破:由简单命题写出复合命题时,可直接使用逻辑 联结词,如本题的(1)(2),也可以不使用逻辑联结词,如例(3) 中的“p 或 q”,“非 p”.写复合命题的关键是要搞清楚 “且”“或”“非”的意义.
(3)这个命题是“p 或 q”形式的命题,其中 p:如果 xy<0, 则点 P(x,y)的位置在第二象限,q:如果 xy<0,则点 P(x,y) 的位置在第四象限.
【变式与拓展】
2.用“p 或 q”“p 且 q”“非 p”填空: (1)“6 是自然数且是偶数”是_p_且______形式;
q (2)“3≥2”是____p_或__q___形式; (3)“4 的算术平方根不是-2”是__非__p____形式;
1.3.1逻辑联结词“且”或“‘非’
![1.3.1逻辑联结词“且”或“‘非’](https://img.taocdn.com/s3/m/ae494d1e915f804d2b16c1c4.png)
分析:
因为p 和 q都是假命题, 所以p ∨ q一定是假命题, 而 A 的表述明显是真命题, 因此正确答案是 B .
课堂小结
“或”的概念 : 逻辑联结词 “或” : p ∨ q 读作:p或 q
“或”的判断方法 :
当p,q 两个命题中有一个 命题是真命题时 p ∨ q 是真命题;
•当p,q 两个命题中都是 命题是假命题时, p ∨ q是假命题.
1.分别用“p或q”、“p且q”、“非p”填空: 命题“非空集A∪B中的元素是A中的 元素或B中的元素” 是__p_或__q___的形式.
2. p:菱形的对角线互相垂直, q:菱形的对角线互相平分 p或q形式的复合命题是
菱__形__的__对__角__线__互__相__垂__直__或__互__相__平__分__.
例1
判断下列命题的真假: (1) 2≤2; (2) 集合A是 A∩B的子集或A∪B
的子集; (3) 周长相等的两个三角形全等或
面积相等的两个三角形全等.
(1) 2≤2;
解:
(1)命题“2≤2”是由命题:
p:2=2;q:2 < 2
用“或”联结后构成的新命题,即 p∨q. 因为p是真命题,所以p ∨ q 是真
这句话中p为真,q为真, 就说明这句话是对的.
下列三个命题间有什么关系?
(1) 12能被3整除; (2) 12能被4整除; (3) 12能被3整除且能被4整除.
可以看出… 命题(3)是由 命题(1)和(2)用 联结词“且”连接起来的.
一般地,用逻辑联结词 “且” 把命题 p 和命题 q 联结起来.就得到 一个新命题,记作:
命题,所以原命题为真命题.
(2) 集合A是 A∩B的子集或A∪B的子
2020版高中数学新人教版A版选修2-1课件第1章1.3简单的逻辑联结词第1课时“且”与“或”
![2020版高中数学新人教版A版选修2-1课件第1章1.3简单的逻辑联结词第1课时“且”与“或”](https://img.taocdn.com/s3/m/aeeb64c0f90f76c661371a74.png)
新课标导学
数学
选修2-1 ·人教A版
第一章 常用逻辑用语
1.3 简单的逻辑联结词
第1课时 “且”与“或”
1
自主预习学案
2
互动探究学案
3
课时作业学案
自主预习学案
• 要在某居民楼一楼与二楼的楼梯间安一盏灯,一楼和二 楼各有一个开关,使得任意一个开关都能独立控制这盏灯,你 能运用“或”“且”的方法解决吗?
• A.p:4+4=9,q:7>4
(B )
• B.p:a∈{a,b,c},q:{a} {a,b,c}
• C.p:15是质数,q:8是12的约数
• D.p:2是偶数,q:2不是质数
• [解析] “p或q”“p且q”都为真,则p真q真,故选B.
• 5.给出下列条件: • (1)“p成立,q不成立”; • (2)“p不成立,q成立”; • (3)“p与q都成立”; • (4)“p与q都不成立”. • 其中能使“p或q”成立的条件是______(1_)_(2_)(_3_) ____(填序 号).
• 〔跟踪练习1〕
• 指出下列命题的形式及构成它的简单命题:
• (1)有两个内角是45°的三角形是等腰直角三角形;
• (2)±1是方程x3+x2-x-1=0的根.
• [思路分析] 要根据语句所表过的含义及逻辑联结词的 意义来进行分析和判断. • [解析] (1)这个命题是“p且q”形式的命题,其中p:有两 个内角是45°的三角形是等腰三角形,q:有两个内角是45°的 三角形是直角三角形. • (2)这个命题是“p或q”形式的命题,其中p:1是方程x3+ x2-x-1=0的根,q:-1是方程x3+x2-x-1=0的根.
• (2)这个命题是“p或q”的形式,其中,p:1是合数;q:1是质 数.
数学
选修2-1 ·人教A版
第一章 常用逻辑用语
1.3 简单的逻辑联结词
第1课时 “且”与“或”
1
自主预习学案
2
互动探究学案
3
课时作业学案
自主预习学案
• 要在某居民楼一楼与二楼的楼梯间安一盏灯,一楼和二 楼各有一个开关,使得任意一个开关都能独立控制这盏灯,你 能运用“或”“且”的方法解决吗?
• A.p:4+4=9,q:7>4
(B )
• B.p:a∈{a,b,c},q:{a} {a,b,c}
• C.p:15是质数,q:8是12的约数
• D.p:2是偶数,q:2不是质数
• [解析] “p或q”“p且q”都为真,则p真q真,故选B.
• 5.给出下列条件: • (1)“p成立,q不成立”; • (2)“p不成立,q成立”; • (3)“p与q都成立”; • (4)“p与q都不成立”. • 其中能使“p或q”成立的条件是______(1_)_(2_)(_3_) ____(填序 号).
• 〔跟踪练习1〕
• 指出下列命题的形式及构成它的简单命题:
• (1)有两个内角是45°的三角形是等腰直角三角形;
• (2)±1是方程x3+x2-x-1=0的根.
• [思路分析] 要根据语句所表过的含义及逻辑联结词的 意义来进行分析和判断. • [解析] (1)这个命题是“p且q”形式的命题,其中p:有两 个内角是45°的三角形是等腰三角形,q:有两个内角是45°的 三角形是直角三角形. • (2)这个命题是“p或q”形式的命题,其中p:1是方程x3+ x2-x-1=0的根,q:-1是方程x3+x2-x-1=0的根.
• (2)这个命题是“p或q”的形式,其中,p:1是合数;q:1是质 数.
或且非ppt课件
![或且非ppt课件](https://img.taocdn.com/s3/m/24176ea6240c844769eaeeed.png)
(3)|a|≥0, 真 |a|<0; 假
(4)方程x2-4=0无实根, 假 方程x2-4=0有实根. 真
2.一般地,对一个命题p全盘否定,就得到一个新命题,
记作﹁p,读作“非p”或“p的否定”,那么﹁p的否定
是什么?
﹁p的否定是p 3.命题p与﹁p的真假有什么关系?
p与﹁p必有一个是真命题,另一个是假命题.
即 pq 。
因为p真、q假, 所以命题pq 是真命题。
(2) 集合A是A∩B的子集或是A∪B的子集; 解:命题“集合A是A∩B的子集或是A∪B的子集” 是或命题: p:集合A是A∩B的子集; q:集合A是A∪B的子集;
用“或”联结后构成新命题,即 pq 因为p假q真,所以命题pq是真命题。
口诀:全真为真,有假即假.
2.“或”:当p,q两个命题中有一个命题是真命题时, p q是真命题; 当p,q都是假命题时,p q是假命题;
口诀:全假为假,有真即真.
逻辑联结词“非”
1.下列各组语句是命题吗?它们之间有什么关系?并判明真假. (1)35能被5整除, 真 35不能被5整除; 假
(2)函数y=lgx是偶函数, 假 函数y=lgx不是偶函数; 真
(3) 周长相等的两个三角形全等或面积相等的两 个三角形全等。
解:命题“周长相等的两个三角形全等或面积相 等的两个三角形全等”是或命题:
p:周长相等的两个三角形全等 q:面积相等的两个三角形全等
用“或”联结后构成的新命题,即pq, 因为p假q假,所以命题pq假。
如果pq为真命题, 那么pq一定是真命题吗?
金太阳好教育云平台
1.3 简单的逻辑联结词
1.3.1 且(and) 1.3.2 或(or)
1 理解逻辑联结词“且”的含义
(4)方程x2-4=0无实根, 假 方程x2-4=0有实根. 真
2.一般地,对一个命题p全盘否定,就得到一个新命题,
记作﹁p,读作“非p”或“p的否定”,那么﹁p的否定
是什么?
﹁p的否定是p 3.命题p与﹁p的真假有什么关系?
p与﹁p必有一个是真命题,另一个是假命题.
即 pq 。
因为p真、q假, 所以命题pq 是真命题。
(2) 集合A是A∩B的子集或是A∪B的子集; 解:命题“集合A是A∩B的子集或是A∪B的子集” 是或命题: p:集合A是A∩B的子集; q:集合A是A∪B的子集;
用“或”联结后构成新命题,即 pq 因为p假q真,所以命题pq是真命题。
口诀:全真为真,有假即假.
2.“或”:当p,q两个命题中有一个命题是真命题时, p q是真命题; 当p,q都是假命题时,p q是假命题;
口诀:全假为假,有真即真.
逻辑联结词“非”
1.下列各组语句是命题吗?它们之间有什么关系?并判明真假. (1)35能被5整除, 真 35不能被5整除; 假
(2)函数y=lgx是偶函数, 假 函数y=lgx不是偶函数; 真
(3) 周长相等的两个三角形全等或面积相等的两 个三角形全等。
解:命题“周长相等的两个三角形全等或面积相 等的两个三角形全等”是或命题:
p:周长相等的两个三角形全等 q:面积相等的两个三角形全等
用“或”联结后构成的新命题,即pq, 因为p假q假,所以命题pq假。
如果pq为真命题, 那么pq一定是真命题吗?
金太阳好教育云平台
1.3 简单的逻辑联结词
1.3.1 且(and) 1.3.2 或(or)
1 理解逻辑联结词“且”的含义
课件4:1.3.1 简单的逻辑联结词
![课件4:1.3.1 简单的逻辑联结词](https://img.taocdn.com/s3/m/ddc5cd9029ea81c758f5f61fb7360b4c2e3f2ad7.png)
不相等. 命题的否定与否命题的区别
• (1)原命题“若P则q” 的形式,它的非命题“若 p,则q”;而它的否命题为 “若┓p,则┓q”.
• (2)命题的否定(非)的真假性与原命题相反; 而否命题的真假性与原命题无关.
例题分析
例4:写出下列命题的否定,并判断它们的真假: (1)p: y sin x 是周期函数;
p∧q为真命题 p∨q是真命题
p∨q是真命题
p∧q为真命题
★★1.3.3 非 (not) 1.问题1
思考:
下列两组命题间有什么关系?
(1)35能被5整除; (2)35不能被5整除. (3)方程 x2+x+1=0有实数根; (4)方程 x2+x+1=0无实数根
命题(2)是命题(1)的否定,命题(4)是命题(3)
解:(1) 1是奇数且1是素数 , 假命题 (2) 2是素数且3是素数,真命题
★★1.3.2 或 (or)
1.问题1: 下列命题中,命题 间有什么关系?
思考: (1)27是7的倍数; (2)27是9的倍数; (3)27是7的倍数或是9的倍数.
命题(3)是由命题(1)(2)使用联结词“或”联结得
到的新命题.
对“非”的理解,可联想到集合中的“补集” 概念,若命题p对应于集合P,则命题非p就对 应着集合P在全集U中的补集CUP. 探究2:命题的否定与否命题是不是同一概念呢? 他们具有怎样的区别呢?
命题的否定与否命题是完全不同的概念
例:写出命题p: “正方形的四条边相等”的否定与 它的否命题. 命题┓p: 正方形的四条边不相等. P的否命题:若一个四边形不是正方形,则它的四条边
对“或”的理解,可联想到集合中“并集”的概 念.A∪B={x︱x∈A或x∈B}中的“或”,它是指 “x∈A”、“x∈B”中至少一个是成立的,即x∈A且
• (1)原命题“若P则q” 的形式,它的非命题“若 p,则q”;而它的否命题为 “若┓p,则┓q”.
• (2)命题的否定(非)的真假性与原命题相反; 而否命题的真假性与原命题无关.
例题分析
例4:写出下列命题的否定,并判断它们的真假: (1)p: y sin x 是周期函数;
p∧q为真命题 p∨q是真命题
p∨q是真命题
p∧q为真命题
★★1.3.3 非 (not) 1.问题1
思考:
下列两组命题间有什么关系?
(1)35能被5整除; (2)35不能被5整除. (3)方程 x2+x+1=0有实数根; (4)方程 x2+x+1=0无实数根
命题(2)是命题(1)的否定,命题(4)是命题(3)
解:(1) 1是奇数且1是素数 , 假命题 (2) 2是素数且3是素数,真命题
★★1.3.2 或 (or)
1.问题1: 下列命题中,命题 间有什么关系?
思考: (1)27是7的倍数; (2)27是9的倍数; (3)27是7的倍数或是9的倍数.
命题(3)是由命题(1)(2)使用联结词“或”联结得
到的新命题.
对“非”的理解,可联想到集合中的“补集” 概念,若命题p对应于集合P,则命题非p就对 应着集合P在全集U中的补集CUP. 探究2:命题的否定与否命题是不是同一概念呢? 他们具有怎样的区别呢?
命题的否定与否命题是完全不同的概念
例:写出命题p: “正方形的四条边相等”的否定与 它的否命题. 命题┓p: 正方形的四条边不相等. P的否命题:若一个四边形不是正方形,则它的四条边
对“或”的理解,可联想到集合中“并集”的概 念.A∪B={x︱x∈A或x∈B}中的“或”,它是指 “x∈A”、“x∈B”中至少一个是成立的,即x∈A且
1.3.1简单的逻辑联结词——或、且、非
![1.3.1简单的逻辑联结词——或、且、非](https://img.taocdn.com/s3/m/0b2be8d9da38376baf1fae65.png)
q:x=-3是方程|x|=3的解,
p∨q:x=3或x=-3是方程|x|=3的解. 金品质•高追求 我们让你更放心!
返回
◆数学•选修2-1•(配人教A版)◆
跟踪训练 3.分别指出下列命题的形式以及构成它的简单命
题.
(1)李明是老师,赵山也是老师; (2)1是合数或质数; (3)他是运动员兼教练员;
(4)这些文学作品不仅艺术上有缺点,而且政治上也
返回
◆数学•选修2-1•(配人教A版)◆
跟踪训练 4.判断下列复合命题的真假.
(1)等腰三角形顶角的平分线平分底边并且垂直于底边;
(2)5≥4; (3)A A∪B.
分析:先确定复合命题的构成形式以及构成它的简单
命题,然后研究各简单命题的真假,最后再根据相应的真
值表判定复合命题的真假.
金品质•高追求
返回
◆数学•选修2-1•(配人教A版)◆
1.“或”、“且”、“非”贯穿于集合与简易逻辑 之中.正确理解“或”、“且”、“非”的含义是十分重 要的. 2.在写出一个含有“或”、“且”命题的否命题时, 要注意“非或即且,非且即或”. 3.“或命题”的真假特点是“一真即真,要假全 假”. 4.“且命题”的真假特点是“一假即假,要真全 真”. 金品质•高追求 我们让你更放心!
◆数学•选修2-1•(配人教A版)◆
自测自评 ( 1.命题“平行四边形的对角线相等且互相平分”是 C ) A.简单命题 B.p或q形式命题
C . p且q形式命题 D.非p形式命题 2 . 已知命题 p: 5≤5, q: 5>6.则下列说法正确的是 (C )
A.“p∧q”为真,“p∨q”为真,“綈 p”为真
金品质•高追求
我们让你更放心!
返回
高中数学 1-3 简单的逻辑联结词课件 新人教A版选修2-1
![高中数学 1-3 简单的逻辑联结词课件 新人教A版选修2-1](https://img.taocdn.com/s3/m/1e0deae6856a561252d36f3c.png)
x≠0________y≠0(填“且”或“或”)
答案:或 且
4.命题p:x=π是y=|sinx|的一条对称轴; q:2π是y=|sinx|的最小正周期,下列命题:
①p∨q;②p∧q;③綈p;④綈q.
其中真命题的序号是________.
解析:∵π是y=|sinx|的最小正周期, ∴q为假.
又∵p为真,
当 p 假,q 真时,函数 y=loga(x+1)在区间 (0, +∞)内不是单调递减, 曲线 y=x2+(2a-3)x+1 与 x 1 轴交于不同的两点,因此,a∈(1,+∞)∩((0, )∪ 2 5 5 ( ,+∞ )),即 a∈( ,+∞). 2 2 1 5 综上可知, a 的取值范围为[ ,1)∪ ( ,+∞). 2 2
第一章
常用逻辑用语
1. 3
简单的逻辑联结词
目标了然于胸,让讲台见证您的高瞻远瞩
1.了解联结词“且”“或”“非”的含义. 2.会用联结词“且”“或”“非”联结或改写某 些数学命题,并判断新命题的真假.
新知视界
1.用逻辑联结词构成新命题 (1) 用联结词“且”把命题 p 和命题 q 联结起来,就 得到一个新命题,记作p∧q,读作p且q.
迁移体验1 是( )
(1)命题“菱形的对角线互相垂直平分”
A.简单命题
C.“p∧q”的形式
B.“p∨q”的形式
D.“綈p”的形式
(2)命题p:6是2的倍数;命题q:6是3的倍数,则 “p∨q”形式的命题为________________;
“p∧q”形式的命题为________________;
“綈p”形式的命题为________________;
Δ= m2- 4>0 解:p 满足 m>0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题:判断下面的语句是否正确. (1)12>5. (2)3是12的约数. (3)3是12的约数吗? (4)0.4是整数. (5)x>5.
像(1)(2)(4)这样可以判断正确或错 误的语句称为命题,(3)(5)就不是命题.
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。
(1)请全体同学起立! (2)X2+x>0. (3)对于任意的实数a,都有 a(42+)x1=>-0a. (5)91是素数. (6)中国是世界上人口最多的国家.
pq
读作”p且 q”.
规定:当p,q都是真命题时, p q 是 真命题;当p,q两个命题中有一个命 题是假命题时, p q 是假命题.
全真为真,有假即假.
pq
例1
将下列命题用”且”联结成新命题,并判断 它们的真假: (1)P:平行四边形的对角线互相平分,q:平行四 边形的对角线相等.
(2)P:菱形的对角线互相垂直,q:菱形的对角线 互相平分.
(7)这道数学题目有趣吗? (8)若|x-y|=|a-b|,则x-y=a-b. (9)任何无限小数都是无理数.
我们再来看几个复杂的命题:
(1)10可以被2或5整除. (2)菱形的对角线互相垂直且平分. (3)0.5非整数.
“或”,“且”, “非”称为逻辑联结词.含有 逻辑联结词的命题称为复合命题,不含逻辑联 结词的命题称为简单命题.
本节须注意的几个方面: 见的几个正面词语的否
定正面 .
=>
是
都是
至多有一个 至少有一个 任意的 所有的
否定
≠
≤
不是
不都是
至少有两个 没有一个 某个 某些
例4 已知命题p,q,写出“P或q”,“P且q”,“非p”
形式的复合命题. (1)p:π是无理数,q:π是实数. (2)p:3>5,q:3+5=8. (3)p:等腰三角形的两个底角相等,q:等腰三 角形底边上的高和底边上的中线重合.
• 例2
• 用逻辑联结词”且”改写下列命题,并判断它们 • 的真假: • (1)1既是奇数,又是素数; • (2)2和3都是素数.
例2 分别写出由命题“p:平行四边形的对角 线相等”,“q:平行四边形的对角线互相平分” 构成的“P或q”,“P且q”,“非p”形式的命题。
例3 分别指出下列命题的形式及构成它的 简单命题。 (1)24既是8的倍数,又是6的倍数. (2)李强是篮球运动员或跳水运动员. (3)平行线不相交.
复合命题有以下三种形式: (1)P且q. (2)P或q. (3)非p.
1.3.1 且(and)
思考?
下列三个命题间有什么关系? (1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除.
一般地,用逻辑联结词”且”
p q 把命题p和命题q联结起来.就得
到一个新命题,记作
像(1)(2)(4)这样可以判断正确或错 误的语句称为命题,(3)(5)就不是命题.
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。
(1)请全体同学起立! (2)X2+x>0. (3)对于任意的实数a,都有 a(42+)x1=>-0a. (5)91是素数. (6)中国是世界上人口最多的国家.
pq
读作”p且 q”.
规定:当p,q都是真命题时, p q 是 真命题;当p,q两个命题中有一个命 题是假命题时, p q 是假命题.
全真为真,有假即假.
pq
例1
将下列命题用”且”联结成新命题,并判断 它们的真假: (1)P:平行四边形的对角线互相平分,q:平行四 边形的对角线相等.
(2)P:菱形的对角线互相垂直,q:菱形的对角线 互相平分.
(7)这道数学题目有趣吗? (8)若|x-y|=|a-b|,则x-y=a-b. (9)任何无限小数都是无理数.
我们再来看几个复杂的命题:
(1)10可以被2或5整除. (2)菱形的对角线互相垂直且平分. (3)0.5非整数.
“或”,“且”, “非”称为逻辑联结词.含有 逻辑联结词的命题称为复合命题,不含逻辑联 结词的命题称为简单命题.
本节须注意的几个方面: 见的几个正面词语的否
定正面 .
=>
是
都是
至多有一个 至少有一个 任意的 所有的
否定
≠
≤
不是
不都是
至少有两个 没有一个 某个 某些
例4 已知命题p,q,写出“P或q”,“P且q”,“非p”
形式的复合命题. (1)p:π是无理数,q:π是实数. (2)p:3>5,q:3+5=8. (3)p:等腰三角形的两个底角相等,q:等腰三 角形底边上的高和底边上的中线重合.
• 例2
• 用逻辑联结词”且”改写下列命题,并判断它们 • 的真假: • (1)1既是奇数,又是素数; • (2)2和3都是素数.
例2 分别写出由命题“p:平行四边形的对角 线相等”,“q:平行四边形的对角线互相平分” 构成的“P或q”,“P且q”,“非p”形式的命题。
例3 分别指出下列命题的形式及构成它的 简单命题。 (1)24既是8的倍数,又是6的倍数. (2)李强是篮球运动员或跳水运动员. (3)平行线不相交.
复合命题有以下三种形式: (1)P且q. (2)P或q. (3)非p.
1.3.1 且(and)
思考?
下列三个命题间有什么关系? (1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除.
一般地,用逻辑联结词”且”
p q 把命题p和命题q联结起来.就得
到一个新命题,记作