2020-2021初中数学实数知识点

合集下载

七年级实数重点知识点

七年级实数重点知识点

七年级实数重点知识点实数是数学中重要的一个概念,也是数与数之间的关系的基石。

在七年级学习实数时,有许多重要的知识点需要掌握。

下面让我们一起来了解一下七年级实数的重点知识点。

一、实数的概念实数是指可以表示成有限小数、无限小数或分数的数,包括正数、负数和零。

例如,2、-3、0、0.5、-2.7、1/4等都是实数。

二、实数的大小关系实数的大小关系有四种情况:1.正数与正数之间的大小关系:数值越大,实数越大。

例如,2>1,所以2比1大。

2.负数与负数之间的大小关系:数值越小,实数越大。

例如,-3>-5,所以-3比-5大。

3.正数与负数之间的大小关系:正数比负数大。

例如,3>-2,所以3比-2大。

4.相等关系:相等的实数大小相同。

例如,3=3,所以3和3相等。

三、实数的运算实数的运算有四种:加法、减法、乘法和除法。

1.加法运算:且取它们的公共符号。

例如,2+3=5,-2+(-3)=-5。

当两个实数异号时,它们的和是它们的绝对值之差,并且取绝对值大的实数的符号。

例如,2+(-3)=-1,-2+3=1。

2.减法运算:减法运算可以转化为加法运算。

即,a-b=a+(-b)。

例如,2-3=2+(-3)=-1。

3.乘法运算:且取它们的公共符号。

例如,2×3=6,(-2)×(-3)=6。

当两个实数异号时,它们的积是它们的绝对值相乘取负数。

例如,2×(-3)=-6,(-2)×3=-6。

4.除法运算:当两个实数同号时,它们的商是这两个实数的绝对值之商,并且取它们的公共符号。

例如,6÷2=3,(-6)÷(-2)=3。

当两个实数异号时,它们的商是这两个实数的绝对值之商,并且取负数作为商的符号。

例如,6÷(-2)=-3,(-6)÷2=-3。

四、实数的绝对值和相反数1.实数的绝对值:实数的绝对值是这个实数到0的距离,它永远是非负数。

例如,|-2|=2,|5|=5。

综合实数知识点总结

综合实数知识点总结

综合实数知识点总结一、实数的定义实数是数学上最基本的数,包括有理数和无理数,任何一个不是虚数的数都是实数。

实数可以用数轴上的点来表示,数轴上的每一个点都对应一个实数,反之,每一个实数都可以对应数轴上的一个点。

实数包括正数、负数和零,可以表示为一个小数、一个分数、一个整数或者以无穷不循环小数的形式表示。

无理数是指不能被表示为两个整数之比的数,如π和根号2等。

有理数是指可以被表示为两个整数之比的数,包括正整数、负整数、零、分数等。

二、实数的性质1. 实数的加法性质- 交换律:a + b = b + a- 结合律:(a + b) + c = a + (b + c)- 存在加法单位元0:a + 0 = a- 存在加法逆元:a + (-a) = 02. 实数的乘法性质- 交换律:a * b = b * a- 结合律:(a * b) * c = a * (b * c)- 存在乘法单位元1:a * 1 = a- 存在乘法逆元:如果a ≠ 0,则存在a的乘法逆元1/a3. 实数的分配律:a * (b + c) = a * b + a * c4. 实数的比较性质:对于不相等的实数a和b- 反对称性:如果a > b,则b < a- 传递性:如果a > b,且b > c,则a > c- 密集性:在任意两个不相等的实数a和b之间,存在一个实数c,使得a < c < b5. 导数性质:对于可导的函数f(x),f'(x)=lim(h->0)[f(x+h)-f(x)]/h三、实数的运算1. 实数的加法和减法加法:a + b减法:a - b = a + (-b)2. 实数的乘法和除法乘法:a * b除法:a / b = a * (1 / b),其中b ≠ 03. 实数的指数运算幂运算:a^b,其中a是底数,b是指数4. 实数的根号运算开方运算:√a5. 实数的数学函数常见的数学函数包括四则运算、幂函数、指数函数、对数函数、三角函数、反三角函数等。

初中实数性质知识点总结

初中实数性质知识点总结

初中实数性质知识点总结一、实数的基本性质1. 实数的定义:实数是有理数和无理数的统称。

有理数是可以表示为两个整数的比值的数,无理数是不能表示为有理数的数。

2. 实数的分类:实数可以分为有理数和无理数两类。

有理数包括整数、分数以及可以表示为分数的小数,无理数包括无穷不循环小数和无穷循环小数。

3. 实数的有序性:实数集合中的任意两个数都可以进行大小比较,即两个实数之间存在大小关系,这就是实数的有序性。

4. 实数的稠密性:实数集合中任意两个不相等的实数之间一定存在一个实数,这就是实数的稠密性。

5. 实数的无后继性和无穷性:任意一个实数都有比它大的实数,实数集合是无穷的。

6. 实数的运算封闭性:实数集合中任意两个实数进行加、减、乘、除运算的结果仍然是一个实数。

7. 实数的运算性质:实数集合中的运算满足交换律、结合律、分配律等。

二、实数的代数性质1. 实数的加法性质:(1)交换律:对于任意实数a和b,有a+b=b+a;(2)结合律:对于任意实数a、b和c,有(a+b)+c=a+(b+c);(3)加法单位元:对于任意实数a,有a+0=a;(4)加法逆元:对于任意实数a,有a+(-a)=0。

2. 实数的减法性质:减法可以看成加上一个数的相反数,所以减法的性质和加法的性质相同。

3. 实数的乘法性质:(1)交换律:对于任意实数a和b,有a×b=b×a;(2)结合律:对于任意实数a、b和c,有(a×b)×c=a×(b×c);(3)乘法单位元:对于任意实数a,有a×1=a;(4)乘法逆元:对于任意非零实数a,有a×(1/a)=1。

4. 实数的除法性质:(1)除法分配律:对于任意实数a、b和c,有a÷(b+c)=a÷b+a÷c;(2)除法与乘法结合:对于任意实数a、b和c,有a÷(b×c)=a÷b÷c。

2020-2021初中数学实数知识点总复习含答案解析(2)

2020-2021初中数学实数知识点总复习含答案解析(2)

2020-2021初中数学实数知识点总复习含答案解析(2)一、选择题1.在实数范围内,下列判断正确的是( )A .若2t ,则m=nB .若22a b >,则a >bC 2=,则a=bD =a=b 【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A 、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B 、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C 、两个数可能互为相反数,如a=-3,b=3,故选项错误;D 、根据立方根的定义,显然这两个数相等,故选项正确.故选:D .【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.2.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4, ∴商q =4,∴余数r=a﹣bq=2×4=8,∴q+r=4+8=4.故选:A.【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q即2的整数部分.3.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a的取值范围是解题的关键.4.若a、b分别是2a-b的值是()A.B.C D.【答案】C【解析】根据无理数的估算,可知34,因此可知-4<-3,即2<3,所以可得a为2,b为2a-b=4-(故选C.5.已知一个正方体的表面积为218dm ,则这个正方体的棱长为( )A .1dmB C D .3dm【答案】B【解析】【分析】设正方体的棱长为xdm ,然后依据表面积为218dm 列方程求解即可.【详解】设正方体的棱长为xdm .根据题意得:2618(0)x x =>,解得:x.故选:B .【点睛】此题考查算术平方根的定义,依据题意列出方程是解题的关键.6.在3.14,237,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选:B.【点睛】 考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个【答案】D【解析】【详解】①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误;③负数没有立方根,错误;④16的平方根是±4,用式子表示是±16=±4,错误; ⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确. 错误的一共有3个,故选D .8.下列各数中比3大比4小的无理数是( )A .10B .17C .3.1D .103【答案】A【解析】【分析】由于带根号的且开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【详解】∵四个选项中是无理数的只有10和17,而17>4,3<10<4 ∴选项中比3大比4小的无理数只有10.故选A .【点睛】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .513【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥02(2)1y --,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形,22222+=②当2,3222313+=③当2为一直角边,3为斜边时,则第三边是直角,=.故选D .考点:1.非负数的性质;2.勾股定理.10.+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 【答案】B【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.11.设2a =.则a 在两个相邻整数之间,那么这两个整数是( ) A .1和2B .2和3C .3和4D .4和5 【答案】C【解析】【分析】<<56<<,进而可得出a 的范围,即可求得答案.【详解】<<∴56<<∴52262-<<-,即324<<,∴a 在3和4之间,故选:C .【点睛】此题主要考查了估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B.考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.13.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【详解】解:A、C2=,故选项错误;B、|﹣3|=3,故选项正确;D、9开三次方不等于3,故选项错误.故选B.【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.14.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.15.已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是() A.①②B.②③C.③④D.②③④【答案】B【解析】【分析】根据实数与数轴的关系,有理数是无限循环小数或有限小数,无理数是无限不循环小数,可得答案.【详解】解:①数轴上的点表示实数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数有无限个,故④错误;故选:B.【点睛】本题考查了实数与数轴,实数与数轴上的点一一对应,掌握实数与数轴的关系是解题的关键.16.实数a,b,c,d在数轴上的对应点的位置如图所示,则下列结论正确的是()A.|a|>|b| B.a>﹣3 C.a>﹣d D.11 c【答案】A【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】由数轴可知,﹣4<a<﹣3,b=﹣1,0<c<1,d=3,∴|a|>|b|,A正确;a<﹣3,B错误;a<﹣d,C错误;11,D错误,c故选A.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义等,熟练掌握是解题的关键.17.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.18.下列命题中,真命题的个数有()①带根号的数都是无理数;②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根;④有且只有一条直线与已知直线垂直A.0个B.1个C.2个D.3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.如图,表示8的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A【解析】【分析】确定出88的范围,即可得到结果.【详解】解:∵6.25<8<9,<<∴2.53的点在数轴上表示时,所在C和D两个字母之间.故选:A.【点睛】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.20.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;=﹣;④0.01的立方根是0.00001,其中正确的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.。

实数初中数学知识点总结

实数初中数学知识点总结

实数初中数学知识点总结一、实数的定义与分类实数是数学中最基本的数系之一,包括有理数和无理数两大类。

有理数可以表示为两个整数的比值,形式为a/b,其中a和b为整数,b不为零。

无理数则不能表示为有理数的形式,例如圆周率π和黄金比例φ。

1.1 有理数有理数包括整数和分数。

整数包括正整数、负整数和零,分数则是整数的比值形式。

有理数可以表示为有限小数或无限循环小数。

1.2 无理数无理数是无限不循环小数,常见的无理数有圆周率π、自然对数的底数e等。

无理数不能表示为分数形式。

二、实数的性质实数具有以下性质:- 封闭性:实数的加法、减法、乘法和除法(除数不为零)都是封闭的。

- 有序性:实数集是一个有序集,任何两个实数都可以比较大小。

- 完备性:实数集中的任何有界数列都有一个极限,这个极限也是实数集中的数。

三、实数的运算3.1 加法实数的加法满足交换律和结合律。

两个实数相加,和的符号由绝对值大的数决定,同号相加取原来的符号,异号相加取绝对值大的数的符号,并用较大的绝对值减去较小的绝对值。

3.2 减法实数的减法可以转化为加法,即a - b = a + (-b)。

减法的顺序改变会改变结果的符号。

3.3 乘法实数的乘法满足交换律、结合律和分配律。

两个正实数相乘得正,两个负实数相乘得正,正实数与负实数相乘得负。

3.4 除法实数的除法可以转化为乘法,即a ÷ b = a × (1/b)。

除以一个非零实数,相当于乘以它的倒数。

四、实数的比较实数的大小比较遵循以下规则:- 正实数都大于零。

- 零大于所有的负实数。

- 负实数都小于零。

- 两个负实数比较大小,其绝对值大的反而小。

五、实数的平方根与立方根5.1 平方根实数a的平方根是一个数b,使得b² = a。

正实数有两个平方根,一个正数和一个负数;零的平方根是零;负数没有实数平方根。

5.2 立方根实数a的立方根是一个数b,使得b³ = a。

实数知识点总结概括初中

实数知识点总结概括初中

实数知识点总结概括初中一、实数的基本概念1. 实数的定义实数是包括有理数和无理数的数的集合,记作R。

有理数包括整数和分数,而无理数是那些无法写成有理数形式的数,如π和√2等。

实数的概念是对数的一个总称,它是数学研究和运用的基础。

2. 实数的表示实数可以用小数表示,小数可以是有限的,也可以是无限的循环小数。

有理数可以表示为有限小数或无限循环小数,而无理数通常用无限不循环小数表示。

3. 实数的分布实数可以用数轴表示,数轴上的点对应着实数。

实数在数轴上是连续的,任意两个实数之间都存在着无穷多个实数。

这种连续的性质是实数的重要特点之一。

二、实数的性质1. 实数的比较实数之间可以比较大小,可以用不等式表达实数的大小关系。

对于任意两个实数a和b,有a<b、a=b或a>b三种可能的关系。

2. 实数的绝对值实数的绝对值是这个实数到原点的距离,记作|a|,其中a是实数。

绝对值有以下性质:(1)若a>0,则|a|=a;(2)若a<0,则|a|=-a;(3)|a|=0的充分必要条件是a=0。

3. 实数的有序性实数集合是有序的,即实数集合中的每个实数都可以和实数集合中的其他实数相比较大小。

这种有序性是实数与数学中其他集合的一个重要区别。

4. 实数的密度实数在数轴上是连续分布的,任意两个实数之间都存在着无穷多个实数。

这种性质体现了实数的密度,也是实数在数学中的重要性质之一。

三、实数的运算1. 实数的加法和减法实数的加法和减法是最基本的运算,可以利用数轴对实数的加法和减法进行图形化表示,以便更直观地理解实数的运算。

2. 实数的乘法和除法实数的乘法和除法是对实数进行组合和分解的运算,可以用数轴对实数的乘法和除法进行图形化表示,以便更直观地理解实数的运算。

3. 实数的乘方和开方实数的乘方和开方是对实数进行多次相乘或多次开方的运算,可以用数轴对实数的乘方和开方进行图形化表示,以便更直观地理解实数的运算。

4. 实数的混合运算实数的混合运算是实数运算的综合应用,包括加减乘除、乘方开方等多种运算的组合和应用。

初中数学实数知识点总结

初中数学实数知识点总结

初中数学实数知识点总结一、实数的分类实数是由整数、分数、无理数和有理数四种数构成的。

整数是不含小数部分的正整数、负整数和0。

例如,-3、-2、-1、0、1、2、3等都是整数。

分数是由整数和非零整数构成的比值。

例如,1/2、3/4、-2/3等都是分数。

无理数是指不能表示为有理数的数,通常是无限不循环小数。

如π、根号2、根号3等都是无理数。

有理数是整数和分数的集合,是可以表示为整数比整数的分数的数。

有理数包括整数和分数,例如-3、-2、-1、0、1、2、3、1/2、3/4等都是有理数。

二、实数的加法和减法实数的加法和减法是我们在日常生活中经常用到的运算方式。

对于整数和分数的加法和减法,我们可以按照它们的正负号和大小进行相应的运算。

例如,对于同号的整数,其加法就是两个数的绝对值相加,并且结果的符号与原来的符号相同;对于异号的整数,其加法就是两个数的绝对值相减,并且结果的符号取绝对值大的数的符号。

对于分数的加法和减法,我们可以先找到它们的公共分母,然后按照相同的公共分母进行运算。

三、实数的乘法和除法实数的乘法和除法也是我们在日常生活中经常用到的运算方式。

对于整数和分数的乘法和除法,我们可以按照相应的规则进行运算。

例如,对于整数的乘法和除法,我们可以按照同号和异号的规则进行运算。

对于分数的乘法和除法,我们可以把乘法转化为乘以倒数的形式进行运算。

四、实数的比较大小在日常生活中,我们经常需要比较不同的数的大小。

对于实数的比较大小,我们可以按照它们的绝对值和符号进行比较。

例如,比较两个正数的大小时,我们可以直接比较它们的绝对值大小;比较一个正数和一个负数的大小时,我们可以直接判断正数的大小。

对于分数的比较大小,我们可以将它们转化为相同的分母后再进行比较。

五、实数的混合运算在实际应用中,我们经常需要对不同类型的实数进行混合运算。

例如,我们需要计算一个整数与一个分数的乘积,或者一个整数与一个无理数的和。

对于这种情况,我们可以根据它们的类型进行相应的转化,然后再进行运算。

完整版)实数知识点总结

完整版)实数知识点总结

完整版)实数知识点总结第一章实数考点一:实数的概念及分类(3分)实数可以分为以下几类:1.正有理数2.零、有限小数和无限循环小数的有理数3.实数负有理数4.正无理数5.无限不循环小数的无理数6.负无理数7.整数,包括正整数、零和负整数。

8.正整数又称自然数。

9.有理数包括正整数、零、负整数、正分数和负分数。

10.无理数包括开方开不尽的数、有特定意义的数、有特定结构的数和某些三角函数。

考点二:实数的倒数、相反数和绝对值1.相反数是指符号相反的两个数,互为相反数的两个数在数轴上关于原点对称。

2.如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

3.一个数的绝对值是表示这个数的点与原点的距离,|a|≥0.4.零的绝对值是它本身,若|a|=a,则a≥0;若|a|=-a,则a≤0.5.正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

6.如果a与b互为倒数,则有ab=1,反之亦成立。

7.倒数等于本身的数是1和-1,零没有倒数。

考点三:平方根、算数平方根和立方根1.如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。

2.一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

3.正数a的正的平方根叫做a的算术平方根,记作“a”。

4.正数和零的算术平方根都只有一个,零的算术平方根是零。

5.如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。

6.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

7.注意:3-√a=-3√a,这说明三次根号内的负号可以移到根号外面。

考点四:科学记数法和近似数1.一个近似数四舍五入到哪一位,就说它精确到哪一位,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2.科学记数法是将一个数写成n±a×10的形式,其中1≤a<10.1.科学记数法当一个数的绝对值非常大或非常小时,我们可以使用科学记数法来表示。

初一数学实数知识点总结

初一数学实数知识点总结

初一数学实数知识点总结实数在初一数学的学习中是非常重要的一部分内容,而且在考试中也会经常运用到它们。

甚至在之后的初二初三,还有高中都会在计算中使用。

因此,为了能够更好的学习这部分知识,孩子最好把初一数学...实数在初一数学的学习中是非常重要的一部分内容,而且在考试中也会经常运用到它们。

甚至在之后的初二初三,还有高中都会在计算中使用。

因此,为了能够更好的学习这部分知识,孩子最好把初一数学实数知识点总结出来,这样也能为之后的复习带来便利。

初一数学实数知识点总结1、有理数的运算(1)加法:同号相加,取相同的符号,把绝对值相加。

异号相加,绝对值相等时和为0。

绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值,一个数与0相加不变。

(2)减法:减去一个数,等于加上这个数的相反数。

(3)乘法:两数相乘,同号得正,异号得负,绝对值相乘。

任何数与0相乘得0;乘积为1的两个有理数互为倒数。

(4)除法:除以一个数等于乘以一个数的倒数,0不能作除数。

(5)乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

(6)混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数实数,是有理数和无理数的总称。

数学上,实数定义为与数轴上的点相对应的数。

实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应,但仅仅以列举的方式不能描述实数的整体,实数和虚数共同构成复数。

初一数学怎么提高成绩1、做题质量其实学习不在于做题多少,而在于做题的质量如何。

会做的题,做一百道做一千道,你也还是会做,不会做的题,还是不会做,但决定你成绩的往往都是这些不会做的题。

所以在有限的学习时间内,初一学生要多做自己不会做的题,多思考。

万事开头难,第一次做难题肯定很痛苦,但过了第一次就会发现,以后学习或做题都会轻松不少。

2、学会总结、归纳数学这门学科,在考试时能遇到跟自己之前做过的题的几率实在太小,与其期盼一模一样的题,同学们更应该把自己曾经做过的题好好总结一下,归个类,再列出对应的解题思路。

(完整版)实数知识点总结

(完整版)实数知识点总结

(完整版)实数知识点总结1. 实数的定义实数是包括有理数和无理数在内的数的集合。

实数集包含有理数集和无理数集。

2. 有理数的性质有理数是可以表示为两个整数的比值的数。

有理数的性质包括:- 有理数的四则运算性质:加法、减法、乘法和除法。

- 有理数的分数形式,即可以表示为两个整数的比值。

- 有理数可以表示为小数,且小数可以是有限的或无限循环的。

3. 无理数的性质无理数是不能表示为两个整数的比值的数。

无理数的性质包括:- 无理数不能表示为分数形式。

- 无理数的十进制表示是无限不循环的。

- 无理数可以用无限不循环的小数表示,但无法精确表示。

4. 实数的数轴表示实数可以在数轴上表示,数轴上的每个点都对应一个实数。

5. 实数的运算实数的运算包括加法、减法、乘法和除法。

实数的运算满足以下性质:- 交换律:a + b = b + a,a * b = b * a。

- 结合律:(a + b) + c = a + (b + c),(a * b) * c = a * (b * c)。

- 分配律:a * (b + c) = a * b + a * c。

6. 绝对值绝对值是一个数离0的距离,可以用来表示数的大小。

绝对值的性质包括:- 绝对值非负:|a| >= 0。

- 非零数的绝对值大于0:|a| > 0。

- 绝对值的加法:|a + b| <= |a| + |b|。

7. 实数的比较实数可以进行大小比较,实数的比较满足以下性质:- 反身性:a = a。

- 对称性:如果a > b,则b < a。

- 传递性:如果a > b,b > c,则a > c。

8. 实数的区间实数可以按照大小关系分为开区间、闭区间、半开半闭区间等。

区间的边界可以是实数也可以是无穷大。

9. 实数的近似值由于实数的无理数部分是无限不循环的,所以我们一般用近似值来表示实数。

10. 实数的应用实数在数学和科学中有广泛的应用,如在几何中表示线段长度、在物理中表示物体的质量等。

关于初中实数的知识点总结

关于初中实数的知识点总结

关于初中实数的知识点总结初中实数是数学中的一个重要概念,它包括有理数和无理数两部分。

实数在数轴上表示,有理数是可以表示为两个整数的比,而无理数则不能表示为两个整数的比。

下面将对初中实数的相关知识点进行总结。

1.有理数:有理数包括整数和分数两部分。

整数是正整数、负整数和0的集合。

分数是一个整数除以另一个非零整数得到的结果,可以用分数线表示。

可以把有理数表示为分数的形式,也可以表示为小数的形式。

例如,1/2和0.5是等价的有理数表示方式。

2.相反数:对于任意一个有理数a,它的相反数是-b,满足a+(-b)=0。

例如,2的相反数是-2,-3/4的相反数是3/43.绝对值:绝对值表示一个数的距离原点的距离,用,a,表示。

对于正数来说,它的绝对值等于它本身;对于负数来说,它的绝对值等于它的相反数。

例如,3,=3,-3,=34.无理数:无理数是指那些不能表示为两个整数的比的实数。

无理数的十进制小数表示是无限不循环的,例如π、√2等。

无理数与有理数的区别在于无理数不能用分数表示,并且无理数是无限不循环的小数。

5.实数运算:实数之间可以进行加、减、乘、除等运算。

加法和乘法具有结合律、交换律和分配律等性质,满足整体运算律。

减法和除法可以转化为加法和乘法运算来进行。

在进行实数运算时,需要注意正负数的加减运算规则和有理数和无理数运算的规则。

6.数轴:数轴是用来表示实数的一条直线。

数轴上的每一个点都对应一个实数,实数与数轴上的点是一一对应的关系。

数轴上的原点表示0,左侧表示负数,右侧表示正数。

数轴上的单位长度可以表示为17.判断实数的大小:对于任意两个实数a和b,可以通过比较它们在数轴上的位置来判断它们的大小关系。

如果a在b的左侧,则a<b;如果a在b的右侧,则a>b;如果a和b在同一点上,则a=b。

8.有理数的大小比较:对于任意两个有理数a和b,可以先把它们表示为相同分母的分数形式,然后比较分子的大小。

如果a/b < c/d,则ad < bc;如果a/b >c/d,则ad > bc;如果a/b = c/d,则ad = bc。

实数知识点总结大全

实数知识点总结大全

一、实数的概念及性质1. 实数的定义:实数是指可以用在数轴上表示的数,包括有理数和无理数。

2. 实数的性质:实数具有以下性质:(1)实数集合是一个实数域,它包含了所有实数。

(2)实数是可比较的,即任意两个实数之间可以进行大小比较。

(3)实数是封闭的,对任意两个实数进行加减乘除得到的结果还是实数。

(4)实数满足传递性,即如果a>b,b>c,则a>c。

3. 实数的稠密性:实数的一个重要性质是稠密性,即在任意两个不相等的实数之间,都存在着无穷多个实数。

这意味着实数在数轴上是密密麻麻地分布着的,没有空隙。

4. 实数的有限性:实数作为一种数学对象,是有限的,也就是说,对于任意一个实数,它都可以用有限个操作从某个给定的实数得到。

5. 实数的无限性:实数也具有无限性,例如无理数的小数部分是无限不循环的,这使得实数具有无限性。

二、实数的运算1. 实数的加法:实数的加法满足结合律、交换律和分配律,即对于任意实数a、b、c,有a+(b+c)=(a+b)+c,a+b=b+a,a(b+c)=ab+ac。

2. 实数的减法:实数的减法可以看作加上一个相反数,即a-b=a+(-b)。

3. 实数的乘法:实数的乘法满足结合律、交换律和分配律,即对于任意实数a、b、c,有a(bc)=(ab)c,ab=ba,a(b+c)=ab+ac。

4. 实数的除法:实数的除法满足除法运算的性质,即分子与分母都不为零。

5. 实数的乘方:实数的乘方运算是幂运算的一种特殊形式,即对于实数a和自然数n,有a^n=a*a*...*a(共n个a)。

6. 实数的开方:实数的开方是乘方运算的逆运算,即给定一个实数a,求出另一个实数b,使得b^2=a。

7. 实数的绝对值:实数的绝对值是一个非负的实数,它表示了这个实数到原点的距离,通常用|a|表示。

8. 实数的倒数:对于一个非零实数a,它的倒数是1/a。

1. 实数的大小比较:实数之间可以进行大小比较,对于任意两个实数a和b,有以下比较关系:(1)a>b:表示a大于b。

实数的知识点总结课件

实数的知识点总结课件

实数的知识点总结课件一、实数的概念1.1 实数的定义实数是数学领域中的一种数字概念,包括有理数和无理数。

实数是可以用来度量和计算数量的数,是数学中最基本的数。

1.2 实数的分类实数可以分为有理数和无理数两类。

有理数是可以用整数或整数分数表示的数,而无理数是不能用有限的整数或整数分数表示的数。

二、实数的性质2.1 实数的加法实数的加法满足交换律、结合律和分配律。

即对于任意的实数a、b、c有:a+b=b+a,(a+b)+c=a+(b+c),a(b+c)=ab+ac。

2.2 实数的减法实数的减法满足异减法a-b=a+(-b),其中-a称为a的相反数,满足a+(-a)=0。

2.3 实数的乘法实数的乘法满足交换律、结合律和分配律。

即对于任意的实数a、b、c有:ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。

2.4 实数的除法实数的除法满足a÷b=a×(1/b),其中b≠0。

2.5 实数的乘方实数的乘方满足乘方的次序异法则:(a^m )^n=a^(mn),其中a为非零实数,m和n为任意实数。

三、实数的表示和比较3.1 实数的表示实数可以用数轴上的点表示,数轴上任意一点与原点的距离称为这个点的坐标。

3.2 实数的比较实数的比较可以通过数轴上的位置进行比较,即若a在b的左边,则a小于b,若a在b的右边,则a大于b。

四、实数的运算4.1 实数的加减运算实数的加减运算即是对实数进行加法和减法的操作,按照加法和减法的性质进行运算。

4.2 实数的乘除运算实数的乘除运算即是对实数进行乘法和除法的操作,按照乘法和除法的性质进行运算。

4.3 实数的乘方运算实数的乘方运算即是对实数进行乘方的操作,按照乘方的性质进行运算。

五、实数的应用5.1 实数在代数中的应用实数在代数中可以用来解方程、求根以及进行代数计算。

5.2 实数在几何中的应用实数在几何中可以用来表示线段、面积、体积等几何量,并进行几何计算。

实数的相关知识点总结

实数的相关知识点总结

实数的相关知识点总结一、实数的分类根据数轴上的位置,实数可以分为正数、负数和零。

1. 正数:指大于零的实数,通常用正号(+)表示。

2. 负数:指小于零的实数,通常用负号(-)表示。

3. 零:指等于零的实数。

根据是否可以用分数表示,实数可以分为有理数和无理数。

1. 有理数:指可以表示为两个整数的比值的实数,包括整数和分数。

有理数的特点是其小数部分是有限的或者循环的。

2. 无理数:指不能表示为两个整数的比值的实数,其小数部分是无限不循环的。

常见的无理数有π、e和根号2等。

实数还可以分为代数数和超越数。

1. 代数数:指可以是方程的根的实数,即代数方程的解。

例如,整数、分数、无理数都是代数数。

2. 超越数:指不能是任何代数方程的解的实数,即不能用代数表达式表示的实数。

π和e都是超越数的例子。

二、实数的性质1. 实数的比较性质:对于任意两个不相等的实数a和b,要么a>b,要么a<b。

2. 实数的加法性质:对于任意三个实数a、b、c,有加法交换律a+b=b+a和加法结合律(a+b)+c=a+(b+c)。

3. 实数的乘法性质:对于任意三个实数a、b、c,有乘法交换律a×b=b×a和乘法结合律(a×b)×c=a×(b×c)。

4. 实数的分配律:对于任意三个实数a、b、c,有乘法对加法的分配律a×(b+c)=a×b+a×c。

5. 实数的零元素:存在一个实数0,使得对于任意实数a,有a+0=a。

6. 实数的负元素:对于任意实数a,存在一个实数-b,使得a+(-b)=0。

7. 实数的乘法单位元素:存在一个实数1,使得对于任意实数a,有a×1=a。

8. 实数的除法单位元素:对于任意非零实数a,存在一个实数1/a,使得a×(1/a)=1。

9. 实数的绝对值:对于任意实数a,有其绝对值|a|≥0,当a≠0时,|a|就是a的绝对值。

七年级实数重点知识点总结

七年级实数重点知识点总结

七年级实数重点知识点总结实数是数学中非常重要的一个概念,指的是有理数和无理数的总称。

在七年级的数学课堂上,实数是一个非常关键的知识点,需要认真学习掌握。

本文将对七年级实数的重点知识点进行总结,希望能够帮助大家更好地理解和掌握实数的概念。

一、有理数和无理数的概念有理数是可以表示为分数形式的数,包括整数、分数和纯循环小数,用Q表示。

无理数是不能写成分数形式的数,它们的小数部分是无限不循环的,用符号R表示,如√2、π等。

二、绝对值的概念绝对值是一个数与0之间的距离,用|a|表示。

例如,|3|=3,|-5|=5。

绝对值有以下性质:①|a|≥0;②|-a|=|a|;③|ab|=|a||b|;④若a≠0,则|a⁄b|=|a|÷|b|三、有理数的比较有两个有理数a和b,它们的大小关系有以下规律:①若a>b,则a-b>0;②若a=b,则a-b=0;③若a<b,则a-b<0。

四、有理数的加减法有理数的加减法,即有理数加减有理数的运算。

加减法的规律如下:①正数加正数得正数;②正数加负数得正数或负数,绝对值大的数决定结果的符号;③负数加负数得负数。

五、有理数的乘法有理数的乘法即有理数与有理数的乘积。

乘法的规律如下:①正数与正数的积是正数;②正数与负数的积是负数;③负数与负数的积是正数。

六、有理数的除法有理数的除法是指有理数与非零有理数相除。

除法的规律如下:①正数除以正数是正数;②正数除以负数是负数;③负数除以正数是负数;④负数除以负数是正数。

七、无理数的概念无理数无法写成分数形式,且它们的小数部分是无限不循环的。

无理数有以下性质:①无理数加、减、乘、除有理数的结果仍为无理数;②若a和b都是无理数,则a+b、a-b、ab、a÷b都有可能是有理数或无理数。

八、实数的大小关系实数的大小关系有以下规律:①若a>b,则a-c>b-c(c为任意实数);②若a>b,c>d,则a+c>b+d;③若a>b,且c>0,则ac>bc。

实数常识知识点总结初中

实数常识知识点总结初中

实数常识知识点总结初中一、实数的分类1. 有理数有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、分数(正分数、负分数)等。

有理数包括有限小数和循环小数。

2. 无理数无理数是不能表示为两个整数之比的数,它们的小数部分是无限不循环的,如π、根号2等。

无理数与有理数一起构成了实数集。

二、实数的性质1. 实数的比较对于任意两个实数a和b,可以得出以下比较关系:- 如果a>b,则a-b>0;- 如果a=b,则a-b=0;- 如果a<b,则a-b<0。

2. 实数的运算性质实数的加法、减法、乘法、除法具有以下性质:- 加法结合律:a+(b+c)=(a+b)+c;- 乘法结合律:a*(b*c)=(a*b)*c;- 加法交换律:a+b=b+a;- 乘法交换律:a*b=b*a;- 加法分配律:a*(b+c)=a*b+a*c;- 乘法分配律:a/(b+c)=a/b+a/c。

三、实数的运算1. 实数的加法实数的加法满足封闭性、交换律、结合律和终结律。

2. 实数的减法实数的减法满足封闭性、结合律和终结律,但不满足交换律。

3. 实数的乘法实数的乘法满足封闭性、交换律、结合律和终结律。

4. 实数的除法实数的除法满足封闭性、结合律和终结律,但不满足交换律。

四、实数的绝对值1. 实数a的绝对值表示为|a|,即a的绝对值等于a或-a,即|a|=a或|a|=-a。

2. 实数的绝对值性质- |a|>0,当且仅当a≠0时成立;- |ab|=|a|*|b|;- |a/b|=|a|/|b|,其中b≠0。

五、实数的循环小数1. 循环小数的表示循环小数是一种特殊的小数,它的小数部分在某一个位置开始循环出现。

2. 循环小数的转化将循环小数转化为分数时,可以使用以下步骤:- 令x=循环小数;- 乘以适当的倍数,使得小数部分移到整数部分的右边;- 通过观察找出一个新的循环小数;- 使用代数式求解得到最终结果。

六、实数的应用实数在生活和实际问题中有着广泛的应用,例如在金融、物理、化学等领域中都可以看到实数的应用。

《实数》 知识清单

《实数》 知识清单

《实数》知识清单一、实数的定义实数,是有理数和无理数的总称。

有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数,也称为无限不循环小数,不能写作两整数之比。

二、实数的分类1、按定义分类(1)有理数:整数和分数统称为有理数。

整数:包括正整数、0、负整数。

例如:5、0、-3 等。

分数:包括正分数和负分数。

例如:1/2、-3/4 等。

(2)无理数:无限不循环小数叫做无理数。

例如:π(圆周率)、√2(根号 2)等。

2、按正负分类(1)正实数:包括正有理数和正无理数。

(2)0:既不是正数也不是负数。

(3)负实数:包括负有理数和负无理数。

三、实数的性质1、实数与数轴上的点一一对应数轴是规定了原点、正方向和单位长度的直线。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

2、实数的运算(1)加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得 0。

(2)减法:减去一个数,等于加上这个数的相反数。

(3)乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘都得 0。

(4)除法:除以一个数(0 除外),等于乘这个数的倒数。

(5)实数的运算顺序:先算乘方、开方,再算乘除,最后算加减;如果有括号,先算括号里面的。

3、实数的大小比较(1)正数大于 0,0 大于负数,正数大于负数。

(2)两个负数比较大小,绝对值大的反而小。

(3)作差法:若 a b > 0,则 a > b;若 a b = 0,则 a = b;若 a b < 0,则 a < b。

(4)作商法:对于两个正数 a、b,若 a/b > 1,则 a > b;若 a/b= 1,则 a = b;若 a/b < 1,则 a < b。

四、平方根与立方根1、平方根(1)如果一个数的平方等于 a,那么这个数叫做 a 的平方根。

初中实数知识点全总结

初中实数知识点全总结

初中实数知识点全总结一、实数的定义实数是由有理数和无理数组成的数的集合。

有理数包括整数、分数和正整数;无理数则是无法用有理数来表示的数,例如π和√2等。

二、实数的分类1. 有理数有理数包括整数、分数和正整数。

整数包括正整数、负整数和零。

分数是整数和整数的比值,可以是正数、负数或零。

2. 无理数无理数是无法用有理数来表示的数,是不可约分的分数或者是无限不循环小数。

例如π和√2都是无理数。

三、实数的运算1. 加法和减法实数的加法和减法遵循有理数的运算规律,即同号相加或相减为同号,异号相加或相减为两数之差的绝对值,并且符号取两数中绝对值较大的数的符号。

2. 乘法和除法实数的乘法和除法也遵循有理数的运算规律,即同号相乘为正,异号相乘为负,除法则是分子与分母的正负来决定商的正负。

3. 求幂和开方实数的幂指数法则:a^m * a^n = a^(m+n),a^m / a^n = a^(m-n)。

实数的开方是幂的逆运算,例如√a * √a = a。

四、实数的大小比较实数的大小比较是由实数的大小和符号来决定的。

绝对值大的数大,同号的数比较绝对值,异号的数大小关系取决于绝对值的大小。

五、实数的绝对值实数的绝对值是一个非负数,它表示一个数到原点的距离,负数的绝对值是去掉符号得到的正数。

六、实数的有序性实数具有有序性,即任意两个实数之间可以进行大小比较,并且它们之间有顺序。

有理数的有序性遵循数轴上从左到右递增的规律,而无理数也满足这一规律。

七、实数的数轴实数的数轴是用来表示有序性和进行实数的几何意义的工具。

数轴上每一个点都表示一个实数,它们按照大小关系排列在数轴上。

八、实数的近似值实数的近似值是指用一个近似的数来代替真实的数,常用的方法有四舍五入和截断法。

九、实数的应用实数在数学中的应用非常广泛,包括代数、几何、概率统计和数学分析等方面都离不开实数。

以上就是初中实数知识点的全面总结,实数是数学的基础知识,对于学习进阶数学课程和应用数学知识都有着重要的意义。

初中数学实数知识点

初中数学实数知识点

初中数学实数知识点实数是数学中的一个基本概念,它包括有理数和无理数两部分。

初中数学中的实数知识点主要包括实数的基本性质、实数间的大小关系、实数的运算和实数的表示等。

下面我将为您详细介绍这些知识点。

1. 实数的基本性质(1)实数可以按照大小顺序排列,任意两个实数之间都可以比较大小。

(2)实数满足传递性,即若a≤b,b≤c,则a≤c。

(3)实数满足三角不等式,即对于任意实数a和b,有|a+b|≤|a|+|b|。

2. 实数间的大小关系(1)实数中有正数、零和负数三种,其中零是最小的数。

(2)对于两个正数,越大的数大;对于两个负数,越大的数小。

(3)对于一个正数和一个负数,正数大于负数。

(4)绝对值大的数更大。

3. 实数的运算(1)实数的加法运算:加法满足交换律、结合律和消去律。

即对于任意实数a、b和c,有a+b=b+a,(a+b)+c=a+(b+c),a+0=a和a+(-a)=0。

(2)实数的减法运算:减法可以转换为加法,即a-b=a+(-b)。

(3)实数的乘法运算:乘法满足交换律、结合律和分配律。

即对于任意实数a、b和c,有a×b=b×a,(a×b)×c=a×(b×c),a×(b+c)=a×b+a×c。

(4)实数的除法运算:若b≠0,则a÷b=a×(1/b)。

4. 实数的表示(1)实数可以用小数表示,小数位是无线多的,可以是有限的也可以是无限循环的。

(2)实数可以用分数表示,分数可以是真分数、假分数和整数。

(3)实数可以用带根号形式表示,其中无理数是指不能写成两个整数比的形式,常见的无理数有π和√2等。

(4)实数可以用数字和字母的运算式表示,用代数式表示实数的运算过程。

以上是初中数学中关于实数的知识点。

实数是数学中的重要概念,不仅在初中数学中有重要的应用,还是后续高中数学和大学数学中的重要基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021初中数学实数知识点一、选择题1.在实数范围内,下列判断正确的是( )A .若2t ,则m=nB .若22a b >,则a >bC 2=,则a=bD =a=b 【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A 、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B 、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C 、两个数可能互为相反数,如a=-3,b=3,故选项错误;D 、根据立方根的定义,显然这两个数相等,故选项正确.故选:D .【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.2 )A .±2B .±4C .4D .2【答案】D【解析】【分析】如果一个数x 的立方等于a ,那么x 是a 的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【点睛】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.3.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4, ∴商q =4,∴余数r =a ﹣bq =2×4=8,∴q +r =4+8=4.故选:A .【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q 即2的整数部分.4.1的值在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 【答案】C【解析】分析:根据平方根的意义,由16<17<25的近似值进行判断.详解:∵16<17<25∴4<5∴3-1<4-1在3到4之间.故选:C.点睛:此题主要考查了无理数的估算,根据平方根的被开方数的大小估算是解题关键.5.如图,M 、N 、P 、Q 1的点是( )A .点MB .点NC .点PD .点Q【答案】D【解析】【分析】 先求出15的范围,再求出151-的范围,即可得出答案.【详解】解:∵3.5154<<,∴2.51513<-<,∴表示151-的点是Q 点,故选D .【点睛】本题考查估算无理数的大小,实数与数轴.一般用夹逼法估算无理数.6.下列各数中最小的是( )A .22-B .8-C .23-D .38- 【答案】A【解析】【分析】先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.【详解】解:224-=-,2139-=,382-=-, 143829-<-<-<-<Q , ∴最小的数是4-,故选:A .【点睛】本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.7.估计的值在( ) A .0到1之间B .1到2之间C .2到3之间D .3到4之间【答案】B【解析】【分析】利用“夹逼法”估算无理数的大小.【详解】 =﹣2.因为9<11<16,所以3<<4. 所以1<﹣2<2. 所以估计的值在1到2之间. 故选:B .【点睛】本题考查估算无理数的大小.估算无理数大小要用逼近法.8.下列各式中,正确的是( )A ()233-=-B 42=±C 164=D 393=【答案】C【解析】【分析】对每个选项进行计算,即可得出答案.【详解】 ()233-=,原选项错误,不符合题意;42=,原选项错误,不符合题意;164=,原选项正确,符合题意;D. 393≠,原选项错误,不符合题意.故选:C【点睛】本题考查平方根、算术平方根、立方根的计算,重点是掌握平方根、算术平方根、立方根的性质.9.7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 【答案】B【解析】 分析:直接利用27<3,进而得出答案. 详解:∵273, ∴37+1<4,故选B .7的取值范围是解题关键.10.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.11.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;12.下列各组数中互为相反数的是( )A .52(5)-B .2--和(2)-C .38-38-D .﹣5和15【答案】B【解析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A 、5和()25-=5,两数相等,故此选项错误; B 、-|-2|=-2和-(-2)=2互为相反数,故此选项正确;C 、-38=-2和38-=-2,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.13.下列说法中,正确的是( )A .-(-3)2=9B .|-3|=-3C .9=±3D .364-=364-【答案】D【解析】【分析】根据绝对值的意义,乘方、平方根、立方根的概念逐项进行计算即可得.【详解】A. -(-3)2=-9,故A 选项错误;B. |-3|=3,故B 选项错误;C. 9=3,故C 选项错误;D. 因为364-=-4,364-=-4,所以364-=364-,故D 选项正确,故选D.【点睛】本题考查了绝对值的意义,乘方运算、平方根、立方根的运算,熟练掌握各运算的运算法则是解题的关键.14.如图,数轴上表示实数3的点可能是( )A .点PB .点QC .点RD .点S【答案】A【分析】的点可能是哪个.【详解】∵12,的点可能是点P.故选A.【点睛】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.15.1?0,?-,?,?0.10100100013π⋅⋅⋅(相邻两个1之间依次多一个0),其中无理数是()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.无理数就是无限不循环小数,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,因此,【详解】4==,013是有理数.∴无理数有:﹣π,0.1010010001….共有2个.故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.16.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 2 ,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.17.在-1.414,0,π,227,3.14,,3.212212221…,这些数中,无理数的个数为( )A .5B .2C .3D .4 【答案】C【解析】【分析】根据无理数的概念解答即可.【详解】-1.414,0,π,227,3.14,3.212212221…,这些数中,无理数有:π,3.212212221…,无理数的个数为:3个故选:C【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ) A .①②B .②③C .③④D .②③④【答案】B【解析】【分析】根据实数与数轴的关系,有理数是无限循环小数或有限小数,无理数是无限不循环小数,可得答案.【详解】解:①数轴上的点表示实数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数有无限个,故④错误;故选:B.【点睛】本题考查了实数与数轴,实数与数轴上的点一一对应,掌握实数与数轴的关系是解题的关键.19.估计38的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C【解析】【详解】解:由36<38<49,即可得6<38<7,故选C.20.如图,数轴上的点P表示的数可能是()-A5B.5C.-3.8 D.10【答案】B【解析】【分析】【详解】-5 2.2≈,所以P点表示的数是5。

相关文档
最新文档