压力容器应力分析

合集下载

压力容器应力分析

压力容器应力分析
32
rm R2 sin m
m 90 o
rm R2 sin m R2 cos
sj
prm pR2 V 2rm t cos 2t cos 2t
(2-5)
33
sj
p R1 R2 t
sq
(2-3)
将式(2-5)代入
式(2-3)得:
R2 s q s j (2 ) R1
90°时,锥体变成平板,应力
39
D、椭球形壳体
图2-8 椭球壳体的应力
40
推导思路:
PR2 s 2t s q s (2 R2 ) R1
式(2-5)(2-6) 椭圆曲线方程 R1和R2
sq , sj
2 2 2
pR2 p a x (a b ) sj 2t 2t b
● 回转薄壳应力分析 2. 2. 2. 2. 2. 1 2 3 4 5 概述 薄壁圆筒的应力 回转薄壳的无力矩理论 无力矩理论的基本方程 无力矩理论的应用
3
2.1 概述
(1) 应力分析的意义
(1)研究容器在外载荷作用下,有效抵抗变形和
破坏的能力,处理强度、刚度和稳定性问题,保 证容器的安全性和经济性。 (2)压力容器所受载荷 a.压力载荷:均布于容器壳体; b.机械载荷:重力、支座反力、管道的推力等; c.热载荷.
sj
p R1 R2 t
sq
(2-3)
区域平衡方程: 平行圆半径:
V V ' 2rms j t cos 2 prdr 0 (2-4)
r R2 sin
rm
30
◇分析几种工程中典型回转薄壳的薄膜应力: 球形薄壳 承受气体内压的回转薄壳 薄壁圆筒 锥形壳体 椭球形壳体 储存液体的回转薄壳 圆筒形壳体 球形壳体

压力容器应力分析报告

压力容器应力分析报告

压力容器应力分析报告1. 引言压力容器是工业中常见的设备,用于存储和传输压力较高的气体或液体。

在设计和使用压力容器时,应力分析是至关重要的环节,它可以帮助工程师评估容器的结构强度和可靠性。

本报告将介绍如何进行压力容器的应力分析,并给出实例以帮助读者更好地理解。

2. 压力容器的基本原理压力容器是由材料制成的结构,能够承受内部压力的作用。

其设计目标是保证容器在各种工作条件下都能安全运行,并且在设计寿命内不发生破裂或变形。

压力容器主要受到内部压力和外部载荷的影响,因此需要进行应力分析来确定内部应力和变形。

3. 压力容器的材料压力容器的材料选择是应力分析的重要一环。

常见的材料包括钢、铝合金等。

选择合适的材料要考虑容器的工作温度、压力和介质等因素。

不同材料的物理和力学性质会对应力分析产生不同的影响,因此需要通过材料测试和模拟来获取材料参数。

4. 压力容器的边界条件在进行应力分析时,需要确定压力容器的边界条件。

这包括容器的几何形状、支撑方式、固定约束等。

边界条件的选择会直接影响应力分布和变形情况。

通过准确描述边界条件,可以更精确地进行应力分析。

5. 压力容器的应力分析方法压力容器的应力分析可以使用有限元分析方法。

有限元分析是一种数值计算方法,将结构离散成有限数量的小单元,通过求解单元之间的力学关系,得到整个结构的应力和变形情况。

有限元分析可以模拟复杂的几何形状和载荷条件,因此在应力分析中得到了广泛应用。

6. 压力容器的应力分析实例为了更好地理解压力容器的应力分析,我们以一个简单的圆筒形压力容器为例进行分析。

假设容器直径为D,高度为H,材料为钢,内部压力为P。

通过有限元分析软件,可以得到容器内部壁的应力分布情况。

根据分析结果,我们可以评估容器的结构强度,以及在不同工作条件下的变形情况。

7. 结论通过应力分析,我们可以评估压力容器的结构强度和可靠性。

合理选择材料、确定边界条件,并使用适当的分析方法,可以有效地进行应力分析。

压力容器应力分析与安全设计

压力容器应力分析与安全设计
压力容器应力分析与安全设计
钢制压力容器 用材料许用应 力的取值方法
碳素钢或低合金钢>420℃,铬钼合金钢>450℃, 奥氏体不锈钢>550℃时,同时考虑基于高温蠕变极限
或持久强度
的许用应力


压力容器应力分析与安全设计
表9-2 钢制压力容器用材料许用应力的取值方法
材料
许用应力 取下列各值中的最小值/MPa
压力容器应力分析与安全设计
3. 对边缘应力的处理
若用塑性好的材料制造筒体,可减少容器发生破坏的危险 性。 正是由于边缘应力的局部性与自限性,设计中一般不 按局部应力来确定厚度,而是在结构上作局部处理。但对 于脆性材料,必须考虑边缘应力的影响。
压力容器应力分析与安全设计
第二节 压力容器的安全设计
压力容器设计是保障压力容器安全的首要环 节。压力容器设计从安全角度包括强度安全设计和 结构安全设计,两者都离不开正确选材,不同材料 的容器的承载能力与结构可靠程度是不同的。
碳素钢、低合金 钢、铁素体高合
金钢
奥氏体高合金钢
压力容器应力分析与安全设计
4、焊接接头系数——焊缝金属与母材强度的比值,反映容器 强度受削弱的程度。
焊缝缺陷
夹渣、未熔透、 裂纹、气孔等
焊缝热影响区晶粒粗大
薄弱环节
母材强度或塑性降低
影响因素
接头形式 无损检测要求及长度比例
压力容器应力分析与安全设计
焊缝系数的大小与材料的焊接性能、被焊母材的厚度、焊接 结构、坡 口型式、焊接方法、焊缝无损检测长度比例以及焊前 预热处理及焊后热处理等因素有关。目前我国《钢制压力容器》 中的焊缝系数主要依据焊缝结构、坡口型式、无损检测的要求等 确定。焊缝系数的选择见下表。

压力容器应力分析报告

压力容器应力分析报告

压力容器应力分析报告引言压力容器是一种用于储存或者输送气体、液体等介质的设备。

由于容器内的介质压力较高,容器本身需要能够承受这种压力而不发生破裂。

因此,对压力容器进行应力分析是非常重要的,它可以帮助我们判断容器的安全性并提供设计和改进的依据。

本报告旨在对压力容器进行应力分析,以评估其在工作条件下的应力分布情况,并根据分析结果提出相应的建议和改进措施。

1. 压力容器的工作原理和结构在进行应力分析之前,我们首先需要了解压力容器的工作原理和结构。

1.1 工作原理压力容器通过在容器内部创建高压环境来储存或者输送介质。

这种高压状态可以通过液体或气体的压力产生,也可以通过外部作用力施加于容器上。

容器的结构需要能够承受内部或外部压力的作用而不发生破裂。

1.2 结构压力容器通常由壳体、端盖、法兰、密封件等部分组成。

壳体是容器的主要结构部分,可以是圆柱形、球形或者其他形状。

端盖用于封闭壳体的两个端口,而法兰则用于连接不同部分的容器或其他设备。

密封件的选择和设计对于保证容器的密封性和安全性至关重要。

2. 压力容器应力分析方法在进行压力容器应力分析时,我们可以采用不同的方法和工具。

下面将介绍两种常用的应力分析方法。

2.1 解析方法解析方法是一种基于数学模型和理论计算的应力分析方法。

通过建立压力容器的几何模型和材料性质等参数,可以使用解析方程和公式计算容器内部和外部的应力分布情况。

这种方法适用于简单结构和边界条件的容器,具有计算简单、速度快的优点。

2.2 有限元方法有限元方法是一种基于数值计算的应力分析方法。

它将复杂的压力容器分割成有限个小单元,通过求解每个小单元的应力状态,再将它们组合起来得到整个容器的应力分布。

有限元方法可以考虑更多的几何和材料非线性,适用于复杂结构和边界条件的容器,具有更高的精度和可靠性。

3. 压力容器应力分析结果和讨论在进行压力容器应力分析后,我们得到了容器内部和外部的应力分布情况。

根据具体的分析方法和参数,以下是一些可能的结果和讨论。

第2章 压力容器应力分析

第2章 压力容器应力分析

郑州大学化工与能源学院
过程设备设计
2.2.5 回转薄壳的不连续分析
图2-12 组合壳
图2-13 连接边缘的变形
郑州大学化工与能源学院
过程设备设计
2.2.5 回转薄壳的不连续分析
w1 w2
1 2
Q M 0 w1p w1 0 w1M 0 w2p wQ2 w2 0 Q M 1p 1Q 1M 2p 2 2
图2-11 储存液体的球壳
郑州大学化工与能源学院
过程设备设计
2.2.4 无力矩理论的应用
三、无力矩理论的 应用条件 为保证回转薄壳处于薄膜状态,壳体形状、 加载方式及支承一般应满足如下条件: 1、几何形状、载荷、材料连续; 2、壳体的边界处不受横向剪力、弯矩和扭 矩作用。 3、壳体的边界处的约束沿经线的切线方向, 不得限制边界处的扭角与挠度。
第2章 压力容器应力分析
第2.2节
回转薄壳应力分析
过程设备设计
第2-2节 回转薄壳应力分析
压力容器的各种壳体,多属于回转薄壳。 壳体—以两个曲面为界,且曲面之间的距 离远比其他方向尺寸小得多的构件。 壳体的厚度—两曲面之间的距离,用“t或 δ”表示。 壳体的中面—与壳体内、外两个曲面等距 离的曲面。
过程设备设计
第2章
压力容器应力分析
第2章 压力容器应力分析
第2.1节 载荷分析
过程设备设计
第2-1节 载荷分析
载荷:能够在压力容器上产生应力、 应变的 因素,如:压力、风载荷、地震载荷等。 2.1.1 载荷分类:压力载荷和非压力载荷。 1、压力载荷:它是压力容器承受的基本载荷。 一般采用表压。 压力容器中的压力载荷主要来源有: ①泵或压缩机; ②液体膨胀或汽化; ③饱和蒸汽压。 (另外,液体重量产生液体静压力) 压力容器上的压力,可能是内压、外压或两 者都有。

第二章压力容器应力分析

第二章压力容器应力分析

《过程设备设计基础》教案2—压力容器应力分析课程名称:过程设备设计基础专业:过程装备与控制工程任课教师:第2章 压力容器应力分析§2-1 回转薄壳应力分析一、回转薄壳的概念薄壳:(t/R )≤0.1 R----中间面曲率半径 薄壁圆筒:(D 0/D i )max ≤1.1~1.2 二、薄壁圆筒的应力图2-1、图2-2 材料力学的“截面法”三、回转薄壳的无力矩理论1、回转薄壳的几何要素(1)回转曲面、回转壳体、中间面、壳体厚度 * 对于薄壳,可用中间面表示壳体的几何特性。

tpD td pR tpD Dt D p i 22sin 24422====⨯⎰θπθϕϕσσαασπσπ(2)母线、经线、法线、纬线、平行圆(3)第一曲率半径R1、第二曲率半径R2、平行圆半径r(4)周向坐标和经向坐标2、无力矩理论和有力矩理论(1)轴对称问题轴对称几何形状----回转壳体载荷----气压或液压应力和变形----对称于回转轴(2)无力矩理论和有力矩理论a、外力(载荷)----主要指沿壳体表面连续分布的、垂直于壳体表面的压力,如气压、液压等。

P Z= P Z(φ)b、内力薄膜内力----Nφ、Nθ(沿壳体厚度均匀分布)弯曲内力---- Qφ、Mφ、Mθ(沿壳体厚度非均匀分布)c、无力矩理论和有力矩理论有力矩理论(弯曲理论)----考虑上述全部内力无力矩理论(薄膜理论)----略去弯曲内力,只考虑薄膜内力●在壳体很薄,形状和载荷连续的情况下,弯曲应力和薄膜应力相比很小,可以忽略,即可采用无力矩理论。

●无力矩理论是一种近似理论,采用无力矩理论可是壳地应力分析大为简化,薄壁容器的应力分析和计算均以无力矩理论为基础。

在无力矩状态下,应力沿厚度均匀分布,壳体材料强度可以得到合理的利用,是最理想的应力状态。

(3)无力矩理论的基本方程a、无力矩理论的基本假设小位移假设----壳体受载后,壳体中各点的位移远小于壁厚。

考虑变形后的平衡状态时壳用变形前的尺寸代替变形后的尺寸直法线假设----变形前垂直于中面的直线变形后仍为直线,且垂直于变形后的中面。

05_压力容器应力分析_厚壁圆筒弹性应力分析

05_压力容器应力分析_厚壁圆筒弹性应力分析

05_压力容器应力分析_厚壁圆筒弹性应力分析压力容器是广泛应用于石油、化工、冶金、医药等行业的重要设备,用于存储和运输气体或液体。

在使用过程中,由于内外压差的存在,压力容器的壁会产生应力,如果超过了材料的极限承载能力,就会发生破裂事故。

因此,对压力容器的应力分析非常重要,通过分析容器内壁的应力分布情况,可以判断容器的安全性能,从而采取相应的措施保证其安全运行。

厚壁圆筒作为一种常见的压力容器结构,其应力分析是非常有代表性的。

在进行弹性应力分析时,首先需要确定内压力和外压力的大小。

通常情况下,我们假设容器的内部和外部都是完全承受压力的,即容器内部压力和外部压力均匀分布。

其次,我们需要了解容器的内径、外径、壁厚等几何参数,以及容器所使用的材料的弹性模量和泊松比等弹性性质参数。

在厚壁圆筒的弹性应力分析中,一般采用极限状态设计方法进行计算。

首先,可以根据容器内外压力差的大小,计算容器内部的径向应力和环向应力,这两个应力分量是产生破裂的主要因素。

然后,通过应力的叠加原理,将径向应力和环向应力合成为合成应力,进一步计算合成应力与容器材料的屈服强度之间的比值,根据这个比值可以评估容器的安全性能。

在实际应用中,为了保证压力容器的安全性能,通常会将容器的设计和制造有一定的安全裕量。

在计算容器的弹性应力时,需要将其与容器材料的屈服强度进行比较,以确保应力值处于安全范围内。

如果计算得到的应力值超过了材料的屈服强度,就需要重新设计容器的结构或者更换更高强度的材料,以满足安全性能的要求。

总之,压力容器的应力分析是确保容器安全运行的重要手段之一、通过对容器内壁的应力分布进行分析,可以评估容器的安全性能,并采取相应的措施保证其安全运行。

在进行压力容器的设计和制造过程中,应该遵循相应的规范和标准,确保容器的结构和材料能够承受内外压力的作用,从而保证容器在工作过程中不会发生破裂事故,保障工业生产和人身安全。

压力容器应力分析标准

压力容器应力分析标准

压力容器应力分析标准压力容器是一种用于承受内部压力的设备,通常用于储存或加工气体、液体或蒸汽。

在设计和制造压力容器时,应力分析是至关重要的步骤。

应力分析可以帮助工程师确定材料的合适性,以及在使用过程中可能出现的应力集中区域,从而确保压力容器的安全运行。

首先,压力容器应力分析需要遵循一定的标准和规范。

国际上广泛应用的压力容器设计规范包括ASME(美国机械工程师协会)的《压力容器规范》和欧洲的PED(压力设备指令)。

这些规范详细规定了压力容器的设计、制造、检验和使用要求,其中包括应力分析的相关内容。

在进行应力分析时,工程师需要考虑压力容器在运行过程中可能受到的各种载荷,包括内压、外压、温度载荷、地震载荷等。

针对这些载荷,工程师需要进行应力分析,计算压力容器的应力分布情况,以及应力集中的位置和程度。

通过应力分析,工程师可以评估材料的强度是否足够,以及是否需要采取一些措施来减轻应力集中的影响。

此外,应力分析还需要考虑压力容器的几何形状、焊接接头、支撑结构等因素。

这些因素都会对应力分布产生影响,因此在进行应力分析时需要全面考虑。

在实际工程中,工程师通常会利用有限元分析等计算工具来进行应力分析。

有限元分析是一种数值计算方法,可以对复杂结构的应力分布进行精确计算。

通过有限元分析,工程师可以得到压力容器各个部位的应力情况,从而指导后续的设计和制造工作。

总的来说,压力容器应力分析是压力容器设计和制造过程中不可或缺的一部分。

遵循相应的标准和规范,全面考虑各种载荷和因素,并利用适当的计算工具进行应力分析,可以确保压力容器的安全可靠运行。

在未来的工作中,我们需要不断改进应力分析的方法和技术,以适应不断发展的压力容器应用需求。

《压力容器应力分析》课件

《压力容器应力分析》课件
设计标准的多样化 不同国家和地区对压力容器的设 计标准和规范存在差异,导致设 计过程中需要考虑多种因素和标 准。
未来的发展趋势与展望
智能化和自动化技术的应用
随着人工智能、大数据和云计算等技术的发展,压力容器应力分析将 更加智能化和自动化,能够提高分析的精度和效率。
多物理场耦合分析的深入研究
未来将进一步加强对多物理场耦合效应的研究,以更准确地预测压力 容器的复杂行为。
实验法能够提供实际工况下的应力数据,但实验条件难 以完全模拟实际运行环境,成本较高。
有限元法适用于复杂形状和边界条件的压力容器分析, 计算精度较高,应用广泛。
根据实际需求和条件选择合适的分析方法,综合运用多 种方法进行压力容器应力分析是发展趋势。
03
压力容器应力分析的步骤
确定分析目的
确定压力容器应力分析的目的,是为 了评估容器的强度、刚度和稳定性, 还是为了优化设计或解决特定问题。
案例三:某压力容器优化设计
案例概述
某压力容器在设计阶段,需要进行优化设计 以提高其性能和安全性。
结果展示
通过图表和数据,展示优化后的压力容器在 性能和安全性方面的提升情况。
分析方法
采用优化设计方法,对压力容器的结构、材 料和工艺进行多目标优化。
结论
根据分析结果,评估优化设计的可行性和效 果,并提出相应的改进建议。
案例一:某压力容器应力分析
案例概述
某压力容器在正常工作条件下,需要进行全 面的应力分析以确保其安全运行。
分析方法
采用有限元分析方法,对压力容器的各个部 件进行详细的应力分布计算。
结果展示
通过图表和数据,展示压力容器在正常工作 条件下各部件的应力分布情况。
结论
根据分析结果,评估压力容器的安全性能, 并提出相应的优化建议。

2 压力容器应力分析

2 压力容器应力分析

无力矩理论或 薄膜理论(静定)
有力矩理论或 弯曲理论 (静不定)
无力矩理论所讨论的问题都是围绕着中面进行的。
因壁很薄,沿壁厚方向的应力与其它应力相比很小,其它应力 不随厚度而变,因此中面上的应力和变形可以代表薄壳的应 力和变形。
11
第十一页,编辑于星期二:二点 四十二分。
2.1 载荷分析
三、交变载荷
2.1.1 载荷(续)
载荷
过程设备设计
交变载荷
定义——
大小和/或方向随 时间变化
静载荷
定义—— 大小和方向基本上
不随时间变化
12
第十二页,编辑于星期二:二点 四十二分。
2.1 载荷分析
三、交变载荷(续)
2.1.1 载荷(续)
压力载荷
非压力载荷
交变载荷
2
第二页,编辑于星期二:二点 四十二分。
2.1 载荷分析
一、压力
2.1.1 载荷(续)
压内压 外压 内、外压
绝对压力
●以绝对真空为基 准测得的压力。
●通常用于过程 工艺计算。
表压
●以大气压为基准测 得的压力。
●压力容器机械设 计中,一般采用表 压。
厚壳: t / R>1/10 。
薄壁圆柱壳或薄壁圆筒:外直径与内直径的比值 Do/Di ≤1.1~1 .2 。
厚壁圆筒:外直径与内直径的比值Do/Di >1 .2 。 轴对称问题:
22
第二十二页,编辑于星期二:二点 四十二分。
2.2 回转薄壳应力分析
2.2 回转薄壳应力分析
推导思路
特殊壳体(薄壁圆筒)
典型实例
过程设备设计
●间歇生产的压力容器的重复加压、减压; ●由往复式压缩机或泵引起的压力波动; ●生产过程中,因温度变化导致管系热膨胀或收缩,从而

压力容器应力分析

压力容器应力分析

c. 锥形壳体
代入区域方程得:
pR ,
2t

pR t
这与前边
pD 4t

pD 是一样的 2t
母线(mǔxiàn)为直线, xtgx r
cos 将R1R=1∞、,RR2代2=入混合(hùnhé)方程得:σθ=2σφ
代入区域方程得:
pr , 2t cos

pr
t cos
可见:① 平行圆半径 r 越小,应力σφ、σθ也越小,锥顶处应力为零
第二十六页,共129页。
无力矩理论应用条件
压力容器应力
(yìnglì)分析
(1)壳体的厚度、中面曲率和载荷均应连续、没有(méi
yǒu)突变,材料物理性能相同
(2)壳体的边界处不受横向剪力、弯矩和扭矩作用
(3)壳体的边界处的约束沿经线的切向方向,不得限制边 界处的转角与挠度。
实际中同时满足这三个条件非常困难(kùn nɑn),即理 想的无矩状态并不存在。应对的方法是按无力矩理论计算壳 体应力,同时对弯矩较大的区域再用有力矩理论修正。
第八页,共129页。
横向剪力、弯、扭矩 统称为弯曲(wānqū)内 力
压力容器应力分析
有力矩理论或 弯曲理论
无力矩(lì jǔ)理 论或薄膜理论
无矩应力状态
同时考虑薄膜内力和弯曲内力,适用于抗弯 刚度(ɡānɡ dù)大、曲率变化大
只考虑(kǎolǜ)薄膜内力、不考虑 (kǎolǜ)弯曲内力,适用于抗弯刚度小、 曲率变化小 承受轴对称载荷的回转薄壳,仅有径向力 Nφ与环向力Nθ、无弯曲内力的应力状态
第二页,共129页。
薄壳
厚壳
t/R≤1/10
t/R>1/10

压力容器应力分析

压力容器应力分析





(2-69)
2 压力容器应力分析
2.3 平板应力分析
可以看出,最大弯矩和相应的最大应力均在板中心处r=0处 , 2 pR ax M M 3 r m ax m 16
2 3 3 pR ax r m ax m 2 8 t
Te——锥壳当量厚度 te t cos
适用于:
60o
o 若 60 按平板计算,平板直径取锥壳最大直径
2 压力容器应力分析
注意: 除受外压作用外,只要壳体在较大区域内存在压缩薄膜应 2.4 壳体稳定性分析 力,也有可能产生失稳。 例如:塔受风载时,迎风侧产生拉应力,而背风侧产生压 缩应力,当压缩应力达到临界值时,塔就丧失稳定性。 受内压的标准椭圆形封头,在赤道处 稳。 即:不仅受外压的壳体可能失稳,受内压的壳体也可能 失稳。 为压应力,可能失
Et R
R 500 t
修正系数C=0.25
Et cr 0.25 R
(2-101)
2 压力容器应力分析
2.4 壳体稳定性分析
b、联合载荷作用下圆筒的失稳 一般先确定单一载荷作用下的失效应力,计算 单一载荷引起的应力和相应的失效应力之比,再求 出所有比值之和。 若比值的和<1,则筒体不会失稳 若比值的和≥1,则筒体会失稳
2 压力容器应力分析
2.4 壳体稳定性分析
p
p
p a
轴向
周向
b
周向 轴
c
本节讨论:受周向均匀外压薄壁回转壳体的弹性失稳问题
2 压力容器应力分析
2.4 壳体稳定性分析
二、临界压力 1、临界压力
壳体失稳时所承受的相应压力,称为临界压力, 用pcr表示。 外载荷达到某一临界值,发生径向挠曲,并 迅速增加,沿周向出现压扁或波纹。 见表2-5

压力容器的应力分析

压力容器的应力分析

按应用情况
反应压力容器(R)完成物理、化学反应,如反应器、反应釜、分解锅、聚合釜、变换炉等; 换热压力容器(E)热量交换,如热交换器、管壳式余热锅炉、冷却器、冷凝器、蒸发器等; 分离压力容器(S)流体压力平衡缓冲和气体净化分离,如分离器、过滤器、缓冲器、吸收塔、干燥塔等; 储存压力容器:(C,球罐为B)储存、盛装气体、液体、液化气体等介质,如各种形式的贮罐、贮槽、高位槽、计量槽、槽车等。
图片
压力容器的结构图
零部件的二个基本参数:公称直径DN
对于用钢板卷制的容器筒体而言,其公称直径的数值等于筒体内径。 当容器筒体直径较小时,可直接采用无缝钢管制作时,这时容器的公称直径等于钢管的外径。 管子的公称直径(通径)既不是管子的内径也不是管子的外径,而是一个略小于外径的数值。 见P181 表14-1压力容器的公称直径DN
球形壳体
球壳R1=R2=D/2,得: 直径与内压相同,球壳内应力仅是圆筒形壳体环向应力的一半,即球形壳体的厚度仅需圆筒容器厚度的一半。 当容器容积相同时,球表面积最小,故大型贮罐制成球形较为经济。
圆锥形壳体
圆锥形壳半锥角为a,A点处半径为r,厚度为d,则在A点处:
圆锥形壳体
锥形壳体环向应力是经向应力两倍,随半锥角a的增大而增大;a角要选择合适,不宜太大。 在锥形壳体大端r=R时,应力最大,在锥顶处,应力为零。因此,一般在锥顶开孔。
工程上常用的应力分析方法:
有力矩理沦:不仅承受拉应力,还承受弯矩和弯曲应力; 无力矩理沦:只承受拉压应力,不能承受力矩的作用 无力矩理沦有近似性和局限性,其误差在工程计算允许的范围内,计算方法大大简化,该方法常被采用。 应用条件:
圆筒的应力计算
作用力: 由内压作用在端盖上产生轴向拉应力 ,称为经向应力或轴向应力; 由内压作用使圆筒向外均匀膨胀,在圆周切线方向所产生的拉力称为环形应力或周向应力,用表示 常为薄壁容器,筒壁较薄, 可认为 是均匀分布的,径向应力 可忽略不计

压力容器应力分析及其设计

压力容器应力分析及其设计

压力容器应力分析及其设计引言压力容器是一种用于储存或运输压力流体或气体的设备,广泛应用于化工、石油、制药等领域。

由于其工作环境的特殊性,压力容器的设计和应力分析至关重要,直接关系到设备的安全性和稳定性。

本文将介绍压力容器应力分析的基本概念和方法,并探讨压力容器设计的一些考虑因素。

压力容器应力分析在压力容器的设计和使用过程中,应力分析是非常重要的一步。

应力分析的目的是确定容器的强度和稳定性,以确保其在工作压力范围内能够安全可靠地运行。

1. 基本概念在压力容器中,由于内、外侧的压力差异,容器壁面会受到应力的作用。

应力是物体内部原子或分子间相互作用的结果,它可以表现为拉伸、压缩、剪切等形式。

常见的应力包括轴向应力、周向应力和切向应力。

轴向应力是指沿着容器轴线方向的应力,周向应力是指沿着容器周向的应力,切向应力是指垂直于容器壁面的应力。

2. 应力分析方法压力容器的应力分析可以采用数值模拟方法或者经验公式计算。

数值模拟方法通常基于有限元分析(Finite Element Analysis,简称FEA),通过划分网格、建立数学模型并求解,得到各个位置的应力值。

经验公式计算相对简便,适用于一些简单几何形状的压力容器。

常用的经验公式有ASME VIII-1标准中的公式和欧洲标准EN 13445中的公式等。

无论采用数值模拟方法还是经验公式计算,都需要考虑容器的材料特性、内外压力、温度、容器几何形状等因素。

3. 应力分析结果的评估进行应力分析后,需要对分析结果进行评估。

常见的评估指标有应力强度安全系数、应力集中系数、损伤累积等。

应力强度安全系数是指容器的实际应力值与允许应力值之间的比值。

一般要求安全系数大于1,以确保容器在额定工作条件下不会发生破坏。

应力集中系数用于评估容器上的应力集中程度。

过高的应力集中系数可能导致局部破坏和疲劳寿命的降低。

损伤累积是指容器在循环荷载作用下承受的损伤累计量。

如果损伤累积超过一定限制,容器可能发生疲劳破坏。

压力容器的设计—内压薄壁容器应力分析及公式推导

压力容器的设计—内压薄壁容器应力分析及公式推导

dl2
-
2
m Sdl2
sin
d1
2
-
2
Sdl1
sin
d
2
2
=0
((式31-8))
式体 )角( d,ml的 Sd2并 式3d--因夹 l18对 2代 12 与) 各为角 各 s入 ,dmin项微项 Sd式 并 d2d均2体 均很 l1( 对 12ss除除 与 的 小 -iin3n各 s2以d-i, 夹 ddn8微22项 S)因d2S角 12d元,d2均 l1此 很 ldd11体并 ss2d除 d整取小 -iis112的lnn对i22n理2以 与, dd, 夹=各 d=22得dS22整d因 2角S1d2项 d2RlRld12l1理 2=1此 2dl均 d01很 得1和2dd取 ss除 s1小 2lii( nni2n2以, ddd, 很3=d=22-S2822因 小整 12d2d) dR2RlRll1,1此m1理 12=d220d可d取得 12l2取2( , R==223整 d2dR-lRl181理 22)得p
两个相邻的,与壳体 正交的园锥法截面 图3-6 确定环向应力微元体的取法
4
微元体abcd 的受力
上下面: m 内表面:p
环向截面:
微元体受力放大图
图3-7 微小单元体的应力及几何参数
5
2、回转壳体的经向环向应力分析
图3-8 回转壳体的环向应力分析
内压力p在微体abcd上所产生的外力 的合力在法线n上的投影为Pn
建立静力平衡方程式。
思考:为什么不能用横截面?
2
2、回转壳体的经向应力分析
⒈Z轴上的合力为Pz
Pz
4
D2
p
⒉作用在截面上应力的合力 在Z轴上的投影为Nz

压力容器应力分析标准

压力容器应力分析标准

压力容器应力分析标准压力容器是一种用于贮存或传输气体、液体或蒸汽的设备,因此其安全性和可靠性对于生产和使用单位来说至关重要。

在设计和制造压力容器时,必须对其应力情况进行分析,以确保其在工作过程中不会发生破裂或泄漏,从而造成安全事故。

首先,压力容器应力分析的标准主要包括国家标准、行业标准和企业标准。

国家标准是由国家标准化管理委员会制定并颁布的,是对压力容器设计、制造和检验的基本要求和规定。

行业标准是由相关行业协会或组织制定的,是根据国家标准结合行业特点和经验总结出来的具体要求和规定。

企业标准是由企业根据自身生产实际制定的,是对国家标准和行业标准的进一步细化和补充。

其次,压力容器应力分析的内容主要包括静态应力分析、疲劳应力分析和腐蚀应力分析。

静态应力分析是对压力容器在静态工况下受力情况的分析,包括内压、外压、温度等因素对容器壁的应力影响。

疲劳应力分析是对压力容器在循环载荷作用下的疲劳寿命进行评估,包括载荷幅值、载荷频率、材料疲劳性能等因素的考虑。

腐蚀应力分析是对压力容器在腐蚀介质作用下的应力情况进行评估,包括腐蚀速率、腐蚀形式、材料损伤情况等因素的分析。

此外,压力容器应力分析的方法主要包括理论计算方法、有限元分析方法和试验验证方法。

理论计算方法是通过应力公式、变形公式和材料力学性能参数进行计算,得出压力容器的应力情况。

有限元分析方法是通过建立压力容器的有限元模型,利用有限元软件进行应力分析和变形分析。

试验验证方法是通过对压力容器进行压力试验、温度试验、振动试验等方式进行应力情况的验证和评估。

最后,压力容器应力分析的意义在于保证压力容器的安全可靠运行。

通过对压力容器的应力情况进行分析,可以及时发现和解决设计、制造和使用中存在的问题,确保压力容器在工作过程中不会发生破裂或泄漏,从而保障人身和财产的安全。

总之,压力容器应力分析是压力容器设计、制造和使用过程中的重要环节,其标准、内容、方法和意义对于保证压力容器的安全可靠运行具有重要意义。

压力容器的应力分析

压力容器的应力分析

压力容器的应力分析摘要:压力容器是指盛装气体或者液体并承载一定压力的密闭设备,广泛应用于石油化工、能源工业、军工以及科研等各个领域。

压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。

此外,还配有安全装置、表计及完全不同生产工艺作用的内件。

高压容器筒体与封头连接区是高压容器的高应力区之一,本文主要讨论封头和筒体之间的连接区域的应力应变情况。

一.工程背景及意义核能作为一种安全、清洁、高效以及可持续发展的能源已经为各国和各个地区广泛接受,核电是我国能源战略的重要组成组成部分之一,根据《核电中长期发展规划(2005-2020年)》,我国到2020年将实现核电装机容量4000万KW,核电占比从现在的不到2%提高到4%。

积极推进核电建设对于满足经济和社会发展不断增长的能源需求,实现能源、经济和生态环境协调发展以及提升我国综合经济实力和工业技术水平具有重要意义。

反应堆压力容器是核电厂反应堆冷却剂压力边界屏障中的一个重要设备。

它主要用来装载反应堆堆芯,密封高温、高压的冷却剂,为反应堆安全运行提供所必需的堆芯控制和堆内测量的导向和定位。

反应堆压力容器属安全一级设备,因此,要求其在各种工况下均能保持可靠的结构完整性,不会发生容器的破坏和放射性的泄漏。

筒体是压力容器的主要部件,与封头或管板共同构成承压壳体,为物料的储存,完成介质的物理、化学反应及其他工艺用途提供所必需的承压空间。

封头是保证压力容器密封的重要部件。

因此,筒体和封头的连接安全性是设计和使用中至关重要的问题,对它们进行应力评定是十分必要的。

论文以大型先进压水堆核电厂压力容器筒体及封头为研究对象,基于有限元方法,完成了反应堆压力容器筒体及封头在各种工况各种载荷组合作用下的一次应力强度的计算、分析与评定,并分析各个载荷对应力分布的影响,最终得出了结构强度符合规范要求的结论。

在此基础上,本文通过简化整体模型,创建局部模型,对筒体和封头作进一步应力评定,并将计算结果与整体模型的结果进行对比分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

载荷
2.1.1 载荷
压力(包括内压、外压和液体静压力)
非压力载荷 载荷
重力载荷 风载荷 地震载荷 运输载荷 波动载荷 管系载荷 支座反力 吊装力
整体载荷 局部载荷
压力容器
应力、应变的变化
上述载荷中,有的是大小和/或方向随时间变化的交 变载荷,有的是大小和方向基本上不随时间变化的静载荷
压力容器交变载荷的典型实例:
分析载荷作用下压力容器的应力和变形, 是压力容器设计的重要理论基础。
●2.1 载荷分析
2.1.1 载荷 2.1.2 载荷工 况
●2.2 回转薄壳应力分析
●2.3 厚壁圆筒应力分析 ●2.4 平板应力分析 ●2.5 壳体的稳定性分析 ●2.6 典型局部应力
2.2.1 薄壳圆筒的应力 2.2.2 回转薄壳的无力矩理论 2.2.3 无力矩理论的基本方程 2.2.4 无力矩理论的应用 2.2.5 回转薄壳的不连续分析
a.正常操作工况:
容器正常操作时的载荷包括:设计压力、液体静压力、重力 载荷(包括隔热材料、衬里、内件、物料、平台、梯子、管 系及支承在容器上的其他设备重量)、风载荷和地震载荷及 其他操作时容器所承受的载荷。
b. 特殊载荷工况
特殊载荷工况包括压力试验、开停工及检修等工况。 制造完工的容器在制造厂进行压力试验时,载荷一般包括试 验压力、容器自身的重量。
有力矩理论或 弯曲理论 (静不定)
无力矩理论所讨论的问题都是围绕着中面进行的。 因壁很薄,沿壁厚方向的应力与其它应力相比很小, 其它应力不随厚度而变,因此中面上的应力和变形可 以代表薄壳的应力和变形。
二、无力矩理论与有力矩理论 平行圆
j
j
jq
Nq
q
qj
jq
j qj
q
经线
a.
b.
c.
图2-4 壳中的内力分量
2.2 回转薄壳应力分析 2.2.2 回转薄壳的无力矩理论(续)
内力
薄膜内力 Nφ、Nθ、Nφθ、Nθφ
横向剪力 Qφ、Qθ
弯曲内力
Mφ、Mθ、 弯矩扭矩 Mφθ、Mθφ、
无力矩理论或 薄膜理论(静定)
尺寸小得多的构件。 壳体中面: 与壳体两个曲面等距离的点所组成的曲面。
薄壳: 壳体厚度t与其中面曲率半径R的比值(t/R)max≤1/10。
薄壁圆柱壳或薄壁圆筒: 外直径与内直径的比值Do/Di≤1.2。
厚壁圆筒: 外直径与内直径的比值Do /Di≥1.2 。
2.2 回转薄壳应力分析
2.2.1 薄壳圆筒的应力 2.2.2 回转薄壳的无力矩理论 2.2.3 无力矩理论的基本方程 2.2.4 无力矩理论的应用 2.2.5 回转薄壳的不连续分析
①间歇生产的压力容器的重复加压、减压; ②由往复式压缩机或泵引起的压力波动; ③生产过程中,因温度变化导致管系热膨胀或收缩,从 而引起接管上的载荷变化; ④容器各零部件之间温度差的变化; ⑤装料、卸料引起的容器支座上的载荷变化; ⑥液体波动引起的载荷变化; ⑦振动(例如风诱导振动)引起的载荷变化。
2.1.2 载荷工况
中面法线: 过中面上的点且垂直于中面的直线,法线必与回转轴相交。
第一主曲率半径R1: 经线上点的曲率半径。
第二主曲率半径R2: 垂直于经线的平面与中面交线上点的曲率半径。 等于考察点B到该点法线与回转轴交点K2之间长度(K2B)
平行圆半径r: 平行圆半径。
2.2 回转薄壳应力分析 2.2.2 回转薄壳的无力矩理论(续)
B点受力分析
B点
内压P
轴向:经向应力或轴向应力σφ 圆周的切线方向:周向应力或环向应力σθ
壁厚方向:径向应力σr
σθ 、σφ >>σr
三向应力状态
二向应力状态
因而薄壳圆筒B点受力简化成二向应力σφ和σθ
2.2 回转薄壳应力分析 2.2.1 薄壳圆筒的应力(续)
截面法
s
j
t
y
s
q
Di
p
p
x
s
j
s
q
(a)
Process Equipment Design
过程设备设计
过程装备与控制工程教研室
2、压力容器应力分析
CHAPTER Ⅱ STRESS ANALYSIS OF PRESSURE VESSELS
压力容器受到介质压力、支座反力等 多种载荷的作用。
确定全寿命周期内压力容器所受的各种 载荷,是正确设计压力容器的前提。
2.2 回转薄壳应力分析 2.2.1 薄壳圆筒的应力 基本假设: 壳体材料连续、均匀、各向同性;
受载后的变形是弹性小变形;
壳壁各层纤维在变形后互不挤压; 应力2-1所示。
t A
B
Di
p
p BDi D Do
A
图2-1 薄壁圆筒在内压作用下的应力
2.2 回转薄壳应力分析 2.2.1 薄壳圆筒的应力(续)
(b)
图2-2 薄壁圆筒在压力作用下的力平衡
2.2 回转薄壳应力分析
2.2.1 薄壳圆筒的应力(续)
应力 静定
轴向平衡: D 2 p
4
= Dts j
求解 图2-2
圆周平衡:
2
2 0
pRi
sin d
2ts q
sj = pD
4t
sq
pD 2t
s q 2s j
2.1 回转薄壳应力分析 2.2.2 回转薄壳的无力矩理论
一、回转薄壳的几何要素 回转薄壳: 中面是由一条平面曲线或直线绕同平面内的轴线回转而成。 母线: 绕轴线(回转轴)回转形成中面的平面曲线。
极点: 中面与回转轴的交点。 经线平面: 通过回转轴的平面。
经线: 经线平面与中面的交线。
平行圆: 垂直于回转轴的平面与中面的交线称为平行圆。
2.2 回转薄壳应力分析 2.2.2 回转薄壳的无力矩理论
开停工及检修时的载荷主要包括风载荷、地震载荷、容器自 身重量,以及内件、平台、梯子、管系及支承在容器上的其 他设备重量
c.意外载荷工况
紧急状况下容器的快速启动或突然停车、容器内发 生化学爆炸、容器周围的设备发生燃烧或爆炸等意 外情况下,容器会受到爆炸载荷、热冲击等意外载 荷的作用。
2.2 回转薄壳应力分析 概念 壳体: 以两个曲面为界,且曲面之间的距离远比其它方向
K1 O'
R1 R2
平行圆
K2
A'
A x
j θr
z
B

经线 O
a.
K1
K2 x
j
r
z
R1
R
2
b.
图2-3 回转薄壳的几何要素
同一点的第一与第二主曲率半径都在该点的法线上。 曲率半径的符号判别:曲率半径指向回转轴时,其值为正,反之为负。
r 与 R1 、 R2 的 关 系 : j r=R2sin
2.2 回转薄壳应力分析 2.2.2 回转薄壳的无力矩理论
相关文档
最新文档