人教版八年级上数学培优讲义教师版说课材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章全等三角形及其应用
【知识精读】
1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。互相重合的边叫对应边,互相重合的角叫对应角。
2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC ≌△A′B′C′其中,“≌”读作“全等于”。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;
4. 寻找对应元素的方法
(1)根据对应顶点找
如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。
(2)根据已知的对应元素寻找
全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。
通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。
①翻折
如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;
②旋转
如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;
平移
如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。
5. 判定三角形全等的方法:
(1)边角边公理、角边角公理、边边边公理、斜边直角边公理
(2)推论:角角边定理
6. 注意问题:
(1)在判定两个三角形全等时,至少有一边对应相等;
(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。
全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。
【分类解析】全等三角形知识的应用
(1)证明线段(或角)相等
【例1】如图,已知AD=AE,AB=AC.求证:BF=FC
分析:由已知条件可证出ΔACD≌ΔABE,而BF和FC分别位于ΔDBF和ΔEFC中,因此先证明ΔACD≌ΔABE,再证明ΔDBF≌ΔECF,既可以得到BF=FC.
证明:在ΔACD和ΔABE中,
AE=AD
∠A=∠A
AB=AC.
∴ΔACD≌ΔABE (SAS)
∴∠B=∠C(全等三角形对应角相等)
又∵AD=AE,AB=AC.
∴AB-AD=AC-AE
即BD=CE
在ΔDBF和ΔECF中
∠B=∠C
∠BFD=∠CFE(对顶角相等)
BD=CE
∴ΔDBF≌ΔECF (AAS)
∴BF=FC (全等三角形对应边相等)
(2)证明线段平行
【例2】已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AF=CE.求证:AB∥CD
分析:要证AB∥CD,需证∠C=∠A,而要证∠C=∠A,又需证ΔABF≌ΔCDE.由已知BF⊥AC,DE⊥AC,知∠DEC=∠BFA=90°,且已知DE=BF,AF=CE.显然证明ΔABF≌ΔCDE条件已具备,故可先证两个三角形全等,再证∠C=∠A,进一步证明AB∥CD.
证明:∵DE⊥AC,BF⊥AC (已知)
∴∠DEC=∠BFA=90°(垂直的定义)
在ΔABF与ΔCDE中,
AF=CE (已知)
∠DEC=∠BFA (已证)
DE=BF (已知)
∴ΔABF≌ΔCDE(SAS)
∴∠C=∠A (全等三角形对应角相等)
∴AB∥CD (内错角相等,两直线平行)
(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等
【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,取AB 的中点E,连接CD和CE. 求证:CD=2CE
分析:
(ⅰ)折半法:取CD中点F,连接BF,再证ΔCEB≌ΔCFB.这里注意利用BF是ΔACD中位线这个条件。
证明:取CD中点F,连接BF
∴BF=1
2AC,且BF∥AC (三角形中位线定理)
∴∠ACB=∠2 (两直线平行内错角相等) 又∵AB=AC
∴∠ACB=∠3 (等边对等角)
∴∠3=∠2
在ΔCEB与ΔCFB中,
BF=BE
∠3=∠2
CB=CB
∴ΔCEB≌ΔCFB (SAS)
∴CE=CF=1
2CD (全等三角形对应边相等)
即CD=2CE
(ⅱ)加倍法
证明:延长CE到F,使EF=CE,连BF.
在ΔAEC与ΔBEF中,
AE=BE
∠1=∠2 (对顶角相等)
CE=FE
∴ΔAEC≌ΔBEF (SAS)
∴AC=BF, ∠4=∠3 (全等三角形对应边、对应角相等) ∴BF∥AC (内错角相等两直线平行)
∵∠ACB+∠CBF=180o,
∠ABC+∠CBD=180o,
又AB=AC ∴∠ACB=∠ABC
∴∠CBF=∠CBD (等角的补角相等)
在ΔCFB与ΔCDB中,
CB=CB
∠CBF=∠CBD
BF=BD
∴ΔCFB≌ΔCDB (SAS)
∴CF=CD
即CD=2CE
说明:关于折半法有时不在原线段上截取一半,而利用三角形中位线得到原线段一半的线段。例如上面折道理题也可这样处理,取AC中点F,连BF(如图)(B为AD中点是利用这个办法的重要前提),然后证CE=BF.
(4)证明线段相互垂直
【例4】已知:如图,A、D、B三点在同一条直线上,ΔADC、ΔBDO为等腰三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。
分析:本题没有直接给出待证的结论,而是让同学们先根据已知条件推断出结论,然后再证明所得出的结论正确。通过观察,可以猜测:AO=BC,AO⊥BC.
证明:延长AO交BC于E,在ΔADO和ΔCDB中
AD=DC
∠ADO=∠CDB=90o
OD=DB
∴ΔADO≌ΔCDB (SAS)
∴AO=BC, ∠OAD=∠BCD(全等三角形对应边、对应角相等)
∵∠AOD=∠COE (对顶角相等)
∴∠COE+∠OCE=90o
∴AO⊥BC
5、中考点拨:
【例1】如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DF=DE,连结FC.求证:∠F=∠A.
分析:证明两个角相等,常证明这两个角所在的两个三角形全等,在已知图