数学:第四章概率复习课件(北师大版七年级下)
北师大版七年级数学下概率复习课件公开课PPT

(1)P(抽到数字9)= (2)P(抽到的数大于6)=
(3)P(抽到的数字小于 6) (4)P(抽到奇数) ; P(抽到偶数)
2、如图是一个转盘,小颖认为转盘上共有三
种不同的颜色,所以自由转动这个转盘,指针 停在红色、黄色或蓝色的概率都是 1 ,你认 为呢(转盘被等分成四个扇形) 3
(1)下表是统计试验中的部分数据,请补 充完整:
移植总数
10 50 270 400 750 1500 3500 7000 9000 14000
成活数
8 47 235 369 662 1335 3203 6335 8073 12628
成活的频率
0.8 0.94 0.870 0.923 0.883 0.890 0.915 0.905 0.897
①钉尖朝上;②钉尖朝下 掷一枚质地均匀的硬币,落地后会出现两种情况: ①正面朝上;②反面朝下
小组合作讨论交流:
在“掷图钉”试验中,如何求每个结果发生的概率? 在“掷硬币”试验中,如何求每个结果发生的概率?
首先:不是所有事件发生的概率都可以通过理 论计算得到。
其次:不论试验有没有理论概率,事件发生的 频率都具有稳定性,从而用事件发生的频率来 估计该事件发生的概率具有普遍性。
3、一个口袋中装有4个白球,6个红球,这些球 除颜色外完全相同,充分搅匀后随即摸出一球, 发现是白球。
(1)如果将这个白球放回,再摸出一球,那 么它是白球的概率是多少?
(2)如果这个白球不放回,再摸出一球,那 么它是白球的概率是多少?
1、以下说法合理的是( )
A.小明做3次掷图钉的试验,发现2次钉尖朝上,由此 他说钉尖朝上的概率是 2 。
0.902
(2)由下表可以发现,幼树移植成活的 频率在__0_.9 _左右摆动,并且随着移 植棵数越来越大,这种规律愈加明显.
2020春北师大版初中数学七年级下册习题课件--期末复习(六) 概率初步

二、填空题(每小题 4 分,共 20 分)
11.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全
不会做,只能靠猜测选择结果, 1
则小明答对的概率是 4 .
12.(2019·盐城)如图,转盘中 6 个扇形的面积都相等.任意转动转盘 1 次, 1
当转盘停止转动时,指针落在阴影部分的概率为 2 . 13.(2019·铁岭)一个不透明的布袋中只装有红球和白球两种球,它们除
(2)因为奇数包括了 1,3,5, 所以 P(奇数朝上)=1+230+5=290.
03 复习自测
一、选择题(每小题 3 分,共 30 分)
1.下列事件中,属于随机事件的个数是(C )
①打开电视,正在播放广告;②投掷一个普通的骰子,掷得的点数小
于 10;③射击运动员射击一次,命中 10 环;④在一个只装有红球的袋
在大量重复试验中,随着试验次数的增加,事件发生的频率会在一个 常数附近波动,这个常数就是事件发生概率的估计值.
1. 如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一 个边长为 2 m 的正方形,使不规则区域落在正方形内,现向正方形 内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的), 经过大量重复投掷试验,发现小石子落在不 规则区域的频率稳定在常数 0.25 附近, 由此可估计不规则区域的面积是 1 m2.
17.(12 分)小虎要设计一个摸球游戏,使得摸到红球的概率是13,这样他 周末就可以去逛公园了.但妈妈对他的设计要求如下:①至少有四种颜 色的球;②至少有一个黄球. 假如你是小虎,应如何设计这个游戏才有 机会逛公园呢?
解:答案不唯一,如:共有 9 个球,其中有 3 个红球,黄球、白球、 蓝球各 2 个.
奖次 特等奖 一等奖 二等奖 三等奖 圆心角 1° 10° 30° 90°
新北师大版七年级数学下册第四章《4.2图形的全等》优课件(共38张PPT)

(2)
(3)
(4)
(5)
(6)
(7)
(9)
(8)
(10)
(11)
(12)
(13)
(14)
请欣赏并找 出 全 等 图 形
请欣赏并找 出 全 等 图 形
观察下图3组全等三角形,在各组图中,第2 个三角形是怎样由第1个三角形改变位置得到 的?按照相同的方法,在图(1)、(2)、 (3)中分别画出第3、4个三角形
1、你能说出生活中全等图形的例子吗? 2、观察下面两组图形,它们是不是全等图形?为什么?
形状 相同
大小 相同
全等图形的形状和大小都相同
探索空间
沿图形中的虚线,分别把下面图形划分为两个 全等图形(至少找出两种方法)
判断:
(1)两个正方形一定是全等图形--------( × ) (2)面积相等的两个三角形是全等图形-( × )
(3)面积相等的两个正方形是全等形----( √ )
(4)一个图形通过平、旋转、翻折得到的图形
与原图形全等
-------------( √ )
(5)边数相同的图形一定能互相重合---( × )
(6)所有的圆都是全等图形---------------( × )
图中共有多少对全等图形?分别是哪些?
(1)
说一说:
说说你生活中见过的全等图形的例子。
想一想
思 考:观察下图中的两对多边形,其中的一个 可以经过怎样的运动和另一个图形重合?
上面的两对多边形都是全等图形,也称为全等多 边形.两个全等的多边形,经过运动而重合,相互 重合的顶点叫做对应顶点,相互重合的边叫做对应 边,相互重合的角叫做对应角 .
议一议
图形才可能重合,才可能全等。
七年级数学第四章 概率 第1~3节北师大版知识精讲

初一数学第四章概率第1~3节北师大版【本讲教育信息】一. 教学内容:第四章:概率第一节:游戏公平吗第二节:摸到红球的概率第三节:停留在黑砖上的概率【教学要求】1、了解事件发生的可能性及游戏的公平性,确定事件与不确定事件的发生的可能性。
2、由摸球游戏的体验,知道摸到一种颜色的球的可能性就是摸到这种球的概率。
能通过总球数和一种颜色的球数求出摸球的概率。
3、在具体的问题中,不断加深对概率概念的理解,感受概率是描述不确定事件的数学模型,并会求出不确定事件的概率。
【重点及难点】重点:1、理解“游戏对双方公平”的含义,并能对一个游戏的公平性作出正确的判断。
2、掌握一类事件发生概率的计算方法,并能计算一些不确定事件发生的概率。
难点:1、对不公平的游戏规则作修改,使之成为公平游戏。
2、如何设计符合要求的简单概率模型。
【课堂教学】[知识要点]一、游戏公平吗1、游戏对双方公平的含义若甲、乙双方参加的游戏根据规则求得甲获胜的概率要大于乙获胜的概率,或者乙获胜的概率要大于甲获胜的概率,那么这个游戏对甲乙双方是不公平的。
而游戏对双方公平的含义是指双方获胜的概率相等。
2、确定事件和不确定事件的可能性确定事件包括必然事件和不可能事件因为必然事件一定发生,所以用1表示必然事件由于不可能事件一定不会发生,故用0表示不可能事件综上所述,我们可知:确定事件发生的可能性或者为1或者为0由于不确定事件在事先我们无法肯定它会不会发生,故它的发生可能性不为0也不为1,而应该是大于0小于1。
二、摸到红球的概率1、概率的求法:P(摸到红球)=摸到红球可能性的结果数摸到一球所有可能出现的结果数2、设计符合要求的简单概型设计符合要求的简单游戏,应注意以下几点:(1)选择游戏工具(2)制定相应的游戏规则三、1、几何概型所谓几何概型,就是以几何图形为模型的一种概率模型,它具备以下特征:在一个几何图形上,随意的投掷一个小球,则小球落在这个图形中任二个面积相同的区域内的概率相等。
北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

1.三角形内角和定理:三角形三个内角的和等于180°.
2.三角形内角和定理的应用:①在三角形中,已知任意两个内角的度数可以 求出第三个内角的度数;②已知三角形三个内角的关系,可以求出各个内角 的度数;③求一个三角形中各角之间的关系.
3.三角形按角分类:
直角三角形:有一个角是直角的三角形 锐角三角形:三个角都是锐角的三角形 钝角三角形:有一个角是钝角的三角形
∠A、∠C的公共边是
.
,∠A的对边是
栏目索引
,
图4-1-3 答案 ∠B;BC;AC 解析 △ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A、∠C的公共 边是AC.
1 认识三角形
知识点二 三角形三个内角之间的关系
栏目索引
4.(2017广西南宁中考)如图4-1-4,△ABC中,∠A=60°,∠B=40°,则∠C等于
其所在直 直角三角形
线)的交
点位置 钝角三角形
交点在三角形内 交点在直角顶点处 交点在三角形外
三条中线交于三 角形内一点(这一 点称为三角形的 重心)
交点在三角形内
共同点
每个三角形都有三条高、三条中线、三条角平分线,它们(或它们所在的直线) 都分别交于一个点,它们都是线段
1 认识三角形
栏目索引
知识拓展
(1)得到线段垂直;(2)得到角相等 (1)得到线段相等; (2)得到面积相等
得到角相等
1 认识三角形
栏目索引
线段 的位置
锐角三角形 直角三角形
钝角三角形
三条高全在三角形内
三条中线全在三
角形内 一条高在三角形内,另外两条
与两直角边重合
三条角平分线全 在三角形内
三角形内一条,三角形外两条
七年级数学下册 第4章 三角形 4.3 探索三角形全等的条件课件 (新版)北师大版

例2 (2017四川宜宾中考)如图4-3-2,已知点B、E、C、F在同一条直线 上,AB=DE,∠A=∠D,AC∥DF.试说明:BE=CF.
图4-3-2 分析 由AC∥DF可得∠ACB=∠F,又∠A=∠D,AB=DE,可以利用AAS 得到△ABC≌△DEF,根据全等三角形的对应边相等可得BC=EF,都减 去EC即可得BE=CF.
AD BC,
因为DAB CBA,所以△ABD≌△BAC(SAS).
AB AB,
知识点一 判定三角形全等的条件——边边边 1.如图4-3-1,在△ABC和△FED中,AC=FD,BC=ED,要利用“SSS”来判 定△ABC和△FED全等,下面的4个条件中:①AE=FB;②AB=FE;③AE= BE;④BF=BE,可利用的是 ( )
AB=DE,BC=EF (2)已知两角
思路一(找第三边)
思路二(找角)
首先找出AC=DF,然后应用“SSS”判定全等
①找夹角:首先找出∠B=∠E,然后应用 “SAS”判定全等;②找直角用“HL”判定 全等(后面会学到)
思路一(找夹边)
思路二(找角的对边)
首先找出AB=DE,然后应用“ASA”判定全 等
A.①或②
B.②或③
图4-3-1 C.①或③ D.①或④
答案 A 由题意可得,要用“SSS”进行△ABC和△FED全等的判定, 只需AB=FE,若添加①AE=FB,则可得AE+BE=FB+BE,即AB=FE,故①可 以;显然②可以;若添加③AE=BE或④BF=BE,均不能得出AB=FE,故③④ 不可以,故选A.
架不变形,他至少要再钉上
根木条.
()
图4-3-5
A.0 解析 答案
B.1 C.2 D.3 连接AC或BD,构成三角形,三角形具有稳定性. B
七年级数学下册:第四章概率复习教案(北师大版)

北师版七下《第4章概率回顾与思考》教案从容说课在以前概率学习的基础上,本章进一步研究了理论概率与实验概率之间的关系,并通过几个现实生活模型介绍了随机事件的概率的实验估算方法和涉及两步及两步以上实验的随机事件理论概率计算的又一种方法——列表法.本节通过问题的形式引导学生回顾本章内容,梳理知识结构,同时,到本章为止,学生基本完成了义务教育阶段有关概率知识的学习,因此在学生充分思考和交流的基础上,教师可引导学生共同回忆有关概率的知识框架图.对本章知识技能的评价,应当更多地关注其在实际问题情境中的意义,因此,在回顾与思考的教学中,应重视学生举例,关注学生所举例子的合理性、科学性和创造性等,并据此评价学生对知识的理解水平,如对于实验频率与理论概率的关系,教师可以针对学生提出的某个情境与学生展开一定的辨析,并引导学生回忆和总结出两者的辩证关系.教师也可以鼓励学生在课外独立完成一份小结,谈谈学习本章或整个概率有关知识后的收获以及自己的困惑和还想进一步研究的问题.教师还可鼓励和指导学生运用所学的概率知识去解决某些现实问题,然后再进行班级的交流与汇报.第八课时课题回顾与思考教学目标(一)教学知识点1.回顾本章的内容,梳理本章的知识结构,建立有关概率知识的框架图.2.用所学的概率知识去解决某些现实问题,再自我回忆和总结出实验频率与理论概率的关系.(二)能力训练要求1.初步形成评价与反思的意识.2.通过举例,进一步发展学生随机观念和统计观念.3.学会与人合作,并能与他人交流思维的过程和结果.4.形成解决问题的一些策略,体验解决问题策略的多样性,发展实践能力和创新精神.(三)情感与价值观要求1.积极参与回顾与思考的过程,对数学有好奇心和求知欲.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.3.形成实事求是的态度.教学重点引导学生回顾本章内容,梳理知识结构,共同建立有关概率知识的框架图.教学难点结合实例,理解实验频率和理论概率的关系.教学方法交流——引导——反思的方法.教具准备多媒体演示.教学过程Ⅰ.根据问题,回顾本章内容,梳理知识结构.[问题1]某个事件发生的概率是21,这意味着在两次重复试验中,该事件必有一次发生吗?[生]某个事件发生的概率是21,是指当实验次数很大时,这个事件的实验频率稳定于它的理率概率,但我们在前面做过的大量实验中还发现,实验频率并不一定等于理论概率,虽然多次实验的频率逐渐稳定于其理论概率,但也可能无论做多少次实验,实验频率仍是理论概率的一个近似值,而不能等同于理论概率,两者存在着一定的偏差,应该说,偏差的存在是正常的,经常的.[师]这位同学通过大量的实验,真正理解了事件发生的频率与概率之间的关系,真正体会到了概率是描述随机现象的数学模型,而数学频率与理论概率不能等同,两者存在着一定的偏差,例如,在理论上,“随意抛掷一枚硬币,落地后国徽朝上”发生的概率是21,但实验100次,并不能保证50次国徽朝上、50次国徽朝下,事实上,做100次掷币实验恰好50次国徽朝上,50次国徽朝下的可能性仅有80%左右,因此,概率的实验估算、理论计算以及频率及概率的偏差等应是理解概率不可分割的整体.现代社会中有很多的抽奖活动,其中一个抽奖活动的小奖率是1%,是否买100X 奖券,一定会中奖呢?[生]不一定,这和刚才的道理是一样的.[问题2]你能用实验的方法估计哪些事件发生的概率?举例说明.[生]例如可以用实验的方法估计50个人中有2个人生日相同的概率.[生]还可以用实验的方法估计6个人中有2个人生肖相同的概率.[生]著名的投针实验,就是用实验的方法估计针与平行线相交的概率,而且通过此实验还有一个伟大的发现,针与平行线相交的概率P 与π有关系,于是人们用投针实验来估计π的值,而且我们把这种用投针实验来估计π的值的方法叫蒙特卡罗方法,随着计算机等的现代技术的发展,这一方法已广泛应用到现代生活中.[生]我们还可以用实验的方法估计从一定高度掷一个啤酒瓶盖盖面朝上的概率.[生]用实验的方法来估计从一定高度落下的图钉,落地后针尖朝地的概率.……[师]可以说这样的例子举不胜举,而我们通过实验的方法估计这么多事件发生的概率的目的是理解“当实验次数很大时,实验频率是稳定于理论概率,由此来估计理论概率”这一事实的,从而也培养了同学们合作交流的意识和能力.[问题3]有时通过实验的方法估计一个事件发生的概率有一定难度,你是否通过模拟实验来估计该事件发生的概率?举例说明.[生]例如用实验的方法估计50个人中有2个人生日相同的概率需要做大量的调查获得数据,既费时又费力,因此我们可以利用计算器模拟实验来估计此事件的概率.可以两人组成一个小组,利用计算器产生1~366之间的随机数,并记录下来.每产生50个随机数为一次实验,每组做5次实验,看看有几次实验中存在2个相同的整数,将全班的数据集中起来,估计出50个1~366之间的整数中有2个数相同的概率就估计出了50个人中有2个人生日相同的概率,是个很好的方法.[问题4]你掌握了哪些求概率的方法?举例说明.[生]我们从七年级开始学习概率,求概率的方法有如下几种:(1)用概率的计算公式,当实验的结果是有限个,并且是等可能的时.(2)用实验的方法,当实验次数很大时,实验频率稳定于理论概率.(3)可用树状图,求某随机事件发生的概率.(4)用列表法,求某随机事件发生的概率.(5)用计算器模拟实验的方法求某随机事件发生的概率.[师]谁能举例说明上面这几种求概率的方法呢?[生]例如掷一枚均匀的骰子,点数为奇数的概率,就可以用概率的计算公式,即P(点数为奇数)=63=21. [生]掷一枚均匀的骰子,每次实验掷两次,两次骰子的点数和为6的概率既可以用树状图,也可以用列表法求其概率.[师]其他几种方法前面的3个问题中已涉及到,我们在此就不一一说明了.下面我们看一练习题:(多媒体演示).(1)连掷两枚骰子,它们的点数相同的概率是多少?(2)转动如图所示的转盘两次,两次所得的颜色相同的概率是多少?(3)某口袋里放有编号率.为1~6的6个球,先从小摸出一球,将它放回到口袋中后,再摸一次,两次摸到的球相同的概率是多少?(4)利用计算器产生1~6的随机数(整数),连续两次随机数相同的概率是多少?[分析]本题的4个小题具有相同的数学模型,旨在通过多题一解,让学生体会到它们是同一数学模型,培养学生的抽象概括能力,解:(1)列表如下:第二次1 2 3 4 5 6点数第一次点数1 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)根据表格,共有36种等可能的结果,其中点数相同的有(1,1),(2,2),(3,3),(4,),(5,5),(6,6)共六种,因此点数相同的概率是61366 . (2)此题只是将(1)题的1、2、3、4、5、6换成了红、白、蓝、黑、黄、绿而已,因此,两次所得的颜色相同的概率也是61 (3)将第(1)题中的1,2,3,4,5,6换成编号为1~6的6个球,两次摸到的球相同的概率为61. (4)将第(1)题中的1.2,3,4,5,6换成计算器中1~6随机数,连续两次随机数相同的 概率为61. Ⅱ.建立有关概率知识的统计图在学生充分思考和交流的基础上,引导学生共同建立以下有关概率的知识框架图如下:Ⅲ.课时小结本节我们以问题的形式回顾本章的内容,梳理知识结构,在充分思考和交流的基础上,建立了有关概知识的框架图,在自我回忆和总结中找出实验频率与理论概率的关系.Ⅳ.课后作业复习题A 组1,3,4,6题B ,1,2题C 组Ⅴ.活动与探究17世纪的一天,保罗与著名的赌徒梅尔睹钱,每人拿出6枚金币,比赛开始后,保罗胜了一局,梅尔胜了两局,这时一件意外的事中断了他们的赌博,于是他们商量这12枚金币应怎样分配才合理. 保罗认为,根据胜的局数,他应得总数的31,即4枚金币,梅尔得总数的32,即8枚金币;但精通赌博的梅尔认为他赢的可能性大,所以他应得全部赌金,于是,他们请求数学家帕斯卡评判,帕斯卡又求教于数学家费尔马,他们一致的裁决是:保罗应分3枚金币,梅尔应分9枚.帕斯卡是这样解决的:如果再玩一局,或是梅尔胜,或是保罗胜,如果梅尔胜,那么他可以得全部金币(记为1);如果保罗胜,那么两人各胜两局,应各得金币的一半(记为21).由这一局中两人获胜的可能性相等,因此梅尔得金币的可能性应该是两种可能性大小的一半,即梅尔为(1+21)÷2=43,保罗为(0+21)÷2=43.所以保罗为(0+21)÷2=41.所以梅尔分9枚,保罗分3枚. 43,保罗取胜的概率为41,所以梅尔分9枚,保罗分3枚. 帕斯卡和费尔马还研究了有关这类随机事件的更一般的规律,由此开始了概率论的早期研究工作.板书设计。
北师大七年级数学下册第四章概率

4.1 游戏公平吗(1)教学目标:1、经历“猜测—试验—并收集试验数据—分析试验结果”的活动过程.2、了解必然事件、不可能事件和不确定事件发生的可能性大小.3、了解事件发生的等可能性及游戏规则的公平性. 教学重点:对试验数据的分析处理和游戏对双方公平的认识. 教学难点:游戏公平性的理解. 教学准备:多媒体课件 教学过程:一、分四组做游戏:下图是两个可以自由转动的转盘,每个转盘被分成6个相等的扇形.利用这两个转盘做下面的游戏.游戏规则如下:(1)一、二组自由转动转盘A ,三、四组同时自由转动转盘B .(2)转盘停止后,指针指向几,就顺时针走几格,得到一个数字,(如转盘A 中,如果指针指向3,就按顺时针方向走3格,得到数字6)(3)如果得到的数字是偶数,就得1分,否则不得分. (4)转动10次后,记录每次得分的结果,得分高的组为胜.二、议一议:(题见课本)得到结论:对于转盘A ,“最终得到的数字是偶数”这个事件是必然的;对于转盘B ,“最终得到的数字是偶数”这个事件是不确定.由于转盘A 、B 使“最终得到的数字是偶数”事件发生的可能性不相同,所以这样游戏对双方是不公平的.通常用1(或100%)来表示必然事件发生的可能性,用0表示不可能事件发生的可能性.用图表示如下:三、按课本做一做内容做游戏,并画图表示. 四、小结:1.通过做实验知道三种事件发生的可能性大小 2.怎样评价一个游戏对双方是否公平? 五、作业。
习题4.1的1、2题。
不可能发生必然 发生1(100%)21(50%) 不确定事件4.1 游戏公平吗(2)教学目标:经历掷硬币试验和对试验数据处理的过程,通过自己探索与合作交流,体会到掷硬币中两种结果出现的可能性都是50%,深化游戏公平的认识. 教学重点:掷硬币实验及对试验数据的分析处理和游戏对双方公平的认识. 教学难点:掷硬币试验规律的发现和游戏公平性的理解. 教学准备:多媒体课件 教学过程: 一、复习提问:右图是两个可以自由转动的转盘,每个转盘被分成6个相等的扇形.利用这两个转盘做与上一节课相同的游戏.这样的游戏对双方公平吗?说说你的理由.对于转盘A ,“最终得到的数字是偶数”这个事件是必然的;对于转盘B ,“最终得到的数字是偶数”这个事件是不确定.由于转盘A 、B 使“最终得到的数字是偶数”事件发生的可能性不相同,所以这样游戏对双方是不公平的. 二、创设情景境,进一步研究游戏公平问题1.出示课本图文的投影.学生看图读字,教师提问:小明的办法对双方公平吗?导入本节课题. 2.组织学生做掷硬币试验.(1)同桌两人做20次掷硬币试验,并将数据记录在下表(每人掷10次,一人掷币时,另一人记表)(2)累计全班同学的试验结果,分别计算试验累计进行到20次、120次、240次、正面朝上的频率,并完成以试验总次数为横轴、正面朝上的频率为纵轴的折线统计图.3.分析实验结果,发现规律.观察图形看到折线始终在频率为0.5的这条虚线上下波动;当试验总次数较少时,波动幅度会大些,当试验总次数增大时,波动幅度将减小,可以想到当总次数很大时,正面朝上的频率非常接近0.5,也就是说掷硬币时正面朝上的这件事发生的可能性为0.三、小结:1.通过做实验知道不确定事件发生的可能性大小2.什么是游戏公平原则?怎样评价一个游戏对双方是否公平?四、作业。
【精品】北师大七年级数学下册第四章概率

概率大?
二、巩固练习:
黄 红
黑
1、如图是一个转盘,若转到红色则小明胜,转到黑色则小东胜,这个游戏对双 方是否公平?并说明理由.
1 2、你利用摸球设计一个游戏,使得摸到红球的概率为
2 3、请你为班会设计一个游戏, 并说明在你的设计中游戏者获胜的概率是多少? 三、小结: 能通过面积、体积计算事件发生的概率,能设计符合要求的简单事件发生的概 率模型. 四、作业: 课本习题 4.4 的 1、2 题.
2
1
6
3
5
4
6
1
2
3
4
5
对于转盘 A,“最终得到的数字是偶数”这个事件是必然的;对于转盘
B,
“最终得到的数字是偶数”这个事件是不确定.由于转盘
A、 B使“最终得到的
数字是偶数”事件发生的可能性不相同,所以这样游戏对双方是不公平的.
二、创设情景境,进一步研究游戏公平问题
1.出示课本图文的投影.
学生看图读字,教师提问:小明的办法对双方公平吗?导入本节课题.
会到掷硬币中两种结果出现的可能性都是 50%,深化游戏公平的认识.
教学重点: 掷硬币实验及对试验数据的分析处理和游戏对双方公平的认识.
教学难点: 掷硬币试验规律的发现和游戏公平性的理解.
教学准备: 多媒体课件
教学过程:
一、复习提问:
右图是两个可以自由转动的转盘,每个转盘被分成
6个相等的扇形.利用这
两个转盘做与上一节课相同的游戏. 这样的游戏对双方公平吗?说说你的理由.
教学过程:
一、分四组做游戏:
下图是两个可以自由转动的转盘,每个转盘被分成
2022-2023学年初中数学北师大版七年级下册第四章三角形单元复习课课件

本章知识梳理
/
目 录
1.
目录
2.
课标要求
3.
知识梳理
课标要求
1. 理解三角形相关概念(内角、外角、中线、高、角平分线),会 画出任意三角形的中线、高线和角平分线,了解三角形的稳定性 . 2. 掌握三角形的内角和定理(三角形的内角和等于180度),掌握 “三角形任意两边之和大于第三边”. 3. 了解全等图形的概念,理解全等三角形的概念,能识别全等三 角形的对应边、对应角.
3. 如图M4-3,已知△ABC≌△CDE,其中AB=CD,那么下列 结论中,不正确的是(C )
A. AC=CE
B. ∠BAC=∠ECD
C. ∠ACB=∠ECD
D. ∠B=∠D
4. 如图M4-4,全等的三角形是( D )
A. Ⅰ和Ⅱ
B. Ⅱ和Ⅳ C. Ⅱ和Ⅲ D. Ⅰ和Ⅲ
三、SSA是指两个三角形的两边对应相等及一边的对角对应相
等,但是这种判断方法是不能判定这两个三角形全等的,SAS
是指两个三角形的两条对应边相等且两边的夹角对应相等.
【例3】如图M4-5,已知∠ABC=∠DCB,下列所给条件不能
证明△ABC≌△DCB的是( )
A. ∠A=∠D
B. AB=DC
C. ∠ACB=∠DBC D. AC=BD
易错条件都是两条边及一个角对应相等,但是选项B是以 SAS来判定两个三角形全等,而选项D是SSA. 正解:A. 添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选 项不合题意;B. 添加AB=DC可利用SAS定理判定 △ABC≌△DCB,故此选项不合题意;C. 添加∠ACB=∠DBC可利 用ASA定理判定△ABC≌△DCB,故此选项不合题意;D. 添加 AC=BD不能判定△ABC≌△DCB,故此选项符合题意. 答案:D
北师大版七年级数学下册教案(含解析):第四章三角形章末复习

北师大版七年级数学下册教案(含解析):第四章三角形章末复习一. 教材分析北师大版七年级数学下册第四章《三角形》章末复习部分,主要对三角形的相关知识进行总结和复习。
内容包括:三角形的性质、三角形的分类、三角形的判定、三角形的角的性质、三角形的边的关系等。
这部分内容是学生进一步学习几何的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,如线的性质、角的性质等。
但部分学生对于三角形的性质和判定仍存在理解上的困难,对于三角形的角的性质和边的关系掌握不够扎实。
因此,在复习过程中,需要注重巩固基础知识,提高学生的应用能力。
三. 教学目标1.知识与技能:使学生掌握三角形的性质、分类、判定等基本知识,提高学生的空间想象能力和逻辑思维能力。
2.过程与方法:通过复习,培养学生独立思考、合作交流的能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的价值。
四. 教学重难点1.重点:三角形的性质、分类、判定等基本知识。
2.难点:三角形的角的性质和边的关系的运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。
六. 教学准备1.教师准备:整理和准备相关的教学案例、习题等资源。
2.学生准备:完成本章的学习任务,准备好相关的学习资料。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念,激发学生的学习兴趣。
2.呈现(10分钟)教师利用多媒体展示三角形的相关性质、分类和判定等知识,引导学生总结和归纳。
3.操练(10分钟)教师提出问题,学生分组讨论,通过实际操作和举例来巩固三角形的相关知识。
4.巩固(10分钟)教师给出一些练习题,学生独立完成,检验自己对三角形知识的掌握程度。
5.拓展(10分钟)教师提出一些综合性的问题,引导学生运用所学的三角形知识解决问题,提高学生的应用能力。
北师大版七年级下册第四章《概率》(复习课)课件

二、概率的应用
概率在日常生活、科学预测中有着 非常重要而广泛的应用,如在抽奖 时,我们要知道获奖的概率有多 大.像福利彩票、体育彩票,各商 店为促销举行的抓奖、抽奖活动, 都用到概率的知识,在今后的中考 考试中所占的比例会逐渐增大
活动与实践:
做一做:
1、请将下列事件发生的概率标在图中:
(1)清晨,太阳从东方升起; (2)随意掷两个均匀的骰子,朝上面的点数之和为1; (3)自由转动下面的转盘(转盘被等分成6个扇形),指 针停在红色区域中。
2、 如图所示有10张卡片,分别写有0至9十个数字。 将它们背面朝上洗匀后,任意抽出一张.
0123456789
(1)P(抽到数字9)=_______; (2)P(抽到两位数)=______,
P(抽到一位数)=___Байду номын сангаас___; (3)P(抽到的数大于6)=_____,
P(抽到的数小于6)=______; (4)P(抽到奇数)=__________,
P(抽到偶数)=________.
1.连续掷两次硬币,每次都正面朝下 的机会是___;如果连续掷三次硬币, 则每次都正面朝下的机会是______.
第四章概率
建立知识框架图:
实际问题或游戏
理解概率的意义 建立概率模型
可能性在0,1之 间 等可能性与游戏规则的公平性
两种概率模型的简单计算
设计符合要求的简单概率模型 解决实际问题、作决策
1、游戏对双方公平是什么意思?利用硬 币、转盘或小立方体设计一个对比赛双 方都公平的游戏?
游戏对比赛的双方获胜的可能性相同。
新北师大版七年级数学下册《等可能事件的概率》优质教学课件

(选做题)盒子中装有5只红球、6只黑球,求:①从 中取出一球为红球的概率;②记取到红球则小明获胜, 取到黑球则小红获胜,该游戏公平吗?
解:
①P(红球)=
5 11
②P(黑球)= 6
11
∵ 5 < 6 ∴该游戏不公平。
11 11
(正本作业)课本P148习题6.4第1题
12
4、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏 的规则如下:由乙抛掷,同时出现两个正面,乙得1分; 抛出一正一反,甲得1分;谁先积累到10分,谁就获胜.你 认为 甲 (填“甲”或“乙”)获胜的可能性大.
5、任意掷一枚均匀的骰子
1
(1)P(掷出的点数小于4)= __2___ (2)P(掷出的点数是奇数)= ___12__ (3)P(掷出的点数是7)= ___0__
讨论、更正、点拨(2分钟)
如何设计公平的游戏? 1、先分析所有可能发生的结果总数。
如:检测2中共有8个球,有8种结果。 2、再分析所求事件发生可能的结果数。
如:检测2第2题中红球有3个,有3种结果。 白球有5个,有5种结果。 3、比较各事件发生的概率是否相等。
如:检测2第2题中,摸到红球和摸到白球的概率 不相等。 4、通过改变事件发可能的结果数使得各事件发生 的概率相等。
2、会使用列举法求一个事件的概率. 3、会设计简单的公平性游戏。
(中考考点)应用P(A)= m 解决一些简单的实际问题. n
自学指导1(1分钟)
阅读P147“议一议”到例1的内容,思考下列问题:
1、摸球游戏可能出现的结果
__1_号__球__、__2_号__球__、__3_号__球__、__4_号__球__、__5_号球
北师大版七年级数学下册PPT课件

北师大版七年级数学下册PPT课件北师大版七年级数学下册《等可能事件的概率》概率初步PPT 免费下载,共18页。
学习目标 1.理解等可能事件的意义;了解试验结果是有限个和试验结果出现的等可能性。
2.掌握等可能条件下概率的计算方法 3.灵活应用概率的计算方法解决实际问题。
概率的定义刻画...•北师大版七年级数学下册《等可能事件的概率》概率初步PPT免费课件(第2课时),共17页。
知识回顾 1.等可能事件发生的概率公式是什么? P(A)=m/n,其中n是试验所有的等可能的结果总数,m是事件A包含的结果数 2.应用P(A)=m/n求简单事件的概率的步骤: (1)判断:...•北师大版七年级数学下册《等可能事件的概率》概率初步PPT免费课件(第1课时),共16页。
获取新知前面我们用事件发生的频率来估计该事件发生的概率,但得到的往往只是概率的估计值. 那么,还有没有其他求概率的方法呢? 议一议试验1:抛掷一个质地均匀的骰子...•北师大版七年级数学下册《频率的稳定性》概率初步PPT免费下载(第2课时),共22页。
复习旧知 1. 举例说明什么是必然事件?。
2. 举例说明什么是不可能事件。
3. 举例说明什么是不确定事件。
讲授新课问题的引出抛掷一枚均匀的硬币,硬币落下后,会出现两种情...•北师大版七年级数学下册《频率的稳定性》概率初步PPT免费下载(第1课时),共20页。
讲授新课抛掷一枚图钉,落地后会出现两种情况:钉尖朝上,钉尖朝下。
你认为钉尖朝上和钉尖朝下的可能性一样大吗? 直觉告诉我任意掷一枚图钉,钉尖朝上和钉尖朝下的可能性是...•北师大版七年级数学下册《感受可能性》概率初步PPT优秀课件,共24页。
讲授新课思考下列事件(一):如果随机投掷一枚均匀的骰子,那么⒈ 掷出的点数会是10吗?⒉ 掷出的点数一定不超过6吗?⒊ 掷出的点数一定是1吗?思考下列事件(二): 1.玻璃杯从1...•北师大版七年级数学下册《感受可能性》概率初步PPT优质课件,共17页。
数学:4.1《游戏公平吗?》课件(北师大版七年级下)(2019年11月)

(2)当两枚骰子的点数之积为奇数 时,小刚得1分,否则小明得1分.这个 游戏对双方公平吗?为什么?
这个游戏对小刚不利,因为小刚获 胜的概率为 9 1 ,小明获胜的概率为
36 4 27 3 . 36 4
;月子中心 / 月子中心
;
国公 加光禄大夫 仍统本兵 化及意甚忌之 后数日 化及署诸将 分配士卒 乃以德戡为礼部尚书 外示美迁 实夺其兵也 由是怀怨 所获赏物皆赂于智及 智及为之言 行至徐州 舍舟登陆 令德戡将后军 乃与赵行枢 李孝本 尹正卿 宇文导师等谋袭化及 遣人使于孟海公 结为外助 迁延未发 以待使报 许 弘仁 张恺知之 以告化及 因遣其弟士及阳为游猎 至于后军 德戡不知事露 出营参谒 因命执之 并其党与 化及责之曰 "与公戮力共定海内 出于万死 今始事成 愿得同守富贵 公又何为反也?"德戡曰 "本杀昏主 苦其毒害 立足下而又甚之 逼于物情 不获已也 "化及不对 命送至幕下 缢而杀之 裴虔 通 河东人 初 炀帝为晋王 以亲信从 稍迁至监门校尉 帝即位 擢旧左右 授宣惠尉 累从征役 至通议大夫 与司马德戡同谋作乱 先开宫门 骑至成象殿 杀将军独孤盛 执帝于西閤 化及以虔通为光禄大夫 莒国公 化及引兵之北也 令镇徐州 化及败后 归于大唐 即授徐州总管 转辰州刺史 封长蛇男 寻 以隋朝弑逆之罪 除名 徙于岭表而死 王世充 字行满 本西域胡人也 祖支颓褥 徙居新丰 颓褥死 其妻少寡 与仪同王粲野合 生子曰琼 粲遂纳之以为小妻 其父收幼孤 随母嫁粲 粲爱而养焉 因姓王氏 官至怀 汴二州长史 世充卷发豺声 沉猜多诡诈 颇窥书传 尤好兵法 晓龟策推步盈虚 然未尝为人言 也 开皇中 为左翊卫 后以军功拜仪同 授兵部员外郎 善敷奏 明习法律 而舞弄文墨 高下在心 或有驳难之者 世充利口饰非 辞义锋起 从虽知其否而莫能屈 称为明辩 炀帝世 累迁至江都郡丞 时帝数幸江都 世充善候人主颜色 阿谀顺旨 每入言事 帝善之 又以郡丞领江都宫监 乃雕饰池台 阴奏远方 珍物 以媚于帝 由是益昵之 大业八年 隋始乱 世充内怀徼幸 卑身礼士 阴结豪俊 多收众心 江淮间人素轻薄 又属贼盗群起 人多犯法 有系狱抵罪者 世充枉法出之 以树私恩 及杨玄感反 吴人朱燮 晋陵人管崇起兵江南以应之 自称将军 拥众十余万 帝遣将军吐万绪 鱼俱罗讨之 不能克 世充募江都 万余人 击频破之 每有克捷 必归功于下 所获军实 皆推与士卒 身无所取 由此人争为用 功最居多 十年 齐郡贼帅孟让自长白山寇掠诸郡 至盱眙 有众十余万 世充以兵拒之 而羸师示弱 保都梁山为五栅 相持不战 后因其懈驰 出兵奋击 大破之 乘胜尽灭诸贼 让以数十骑遁去 斩首万人 六畜军资 莫 不尽获 帝以世充有将帅才略 始遣领兵 讨诸小盗 所向破之 然性多矫伪 诈为善 能自勤苦 以求声誉 十一年 突厥围帝于雁门 世充尽发江都人往赴难 在军中 垢面悲泣 晓夜不解甲 藉草而坐 帝闻之 以为爱己 益信任之 十二年 迁为江都通守 时厌次人格谦为盗数年 兵十余万 在豆子〈卤亢〉中 世 充破斩之 威振群贼 又击卢明月 破之于南阳 后还江都 帝大悦 自执杯酒以赐之 时世充又知帝好内 乃言江淮良家多有 愿备后庭 无由自进 帝愈喜 因密令世充阅观诸女 资质端丽合法相者 取正库及应入京物以聘纳之 所用不可胜计 帐上所司云敕别用 不显其实 有合意者 则厚赏世充 或不中者 又 以赉之 后令以船送东京 而道路贼起 使者苦役 于淮泗中沉船溺杀之者 前后十数 或有发露 世充为秘之 又遽简阅以供进 是后益见亲昵 遇李密攻陷兴洛仓 进逼东都 官军数败 光禄大夫裴仁基以武牢降于密 帝恶之 大发兵 将讨焉 特发中诏遣世充为将 军于洛口以拒密 前后百余战 互有胜负 世充 乃引军度洛水 逼仓城 李密与战 世充败绩 赴水溺死者万余人 时天寒 大雨雪 兵既度水 衣皆沾湿 在道冻死者又数万人 比至河阳 才以千数 世充自系狱请罪 越王侗遣使赦之 召令还都 收合亡散 屯于含嘉城中 不敢复出 宇文化及杀帝于江都 世充与太府卿元文都 将军皇甫无逸 右司郎卢楚奉侗为 主 侗以世充为吏部尚书 封郑国公 及侗用元文都 卢楚之谋 拜李密为太尉 尚书令 密遂称臣 复以兵拒化及于黎阳 遣使献捷 众皆悦 世充独谓其麾下诸将曰 "文都之辈 刀笔吏耳 吾观其势 必为李密所禽 且吾军人马每与密战 杀其父兄子弟 前后已多 一旦为之下 吾属无类矣 "出此言以激怒其众 文 都知而大惧 与楚等谋 将因世充入内 伏甲而杀之 期有日矣 将军段达遣女婿张志以楚等谋告之 世充夜勒兵围宫城 将军费曜 田世阇等与战于东太阳门外 曜军败 世充遂攻门而入 无逸以单骑遁走 获楚 杀之 时宫门尚闭 世充遣人扣门言于侗曰 "元文都等欲执皇帝降于李密 段达知而以告臣 臣非敢 反 诛反者耳 "文都闻变 入奉侗于乾阳殿 陈兵卫之 令将帅乘城以拒难 兵败 侗命开门以纳世充 世充悉遣人代宿卫者 明日入谒 顿首流涕而言曰 "文都等无状 谋相屠害 事急为此 不敢背国 "侗与之盟 世充寻遣韦节等讽侗 命拜为尚书左仆射 总督内外诸军事 又授其兄惲为内史令 入居禁中 未几 李密破化及还 其劲兵良马多战死 士卒皆倦 世充欲乘其弊而击之 恐人心不一 乃假托鬼神 言梦见周公 乃立祠于洛水之上 遣巫宣言周公欲令仆射急讨李密 当有大功 不则兵皆疫死 世充兵多楚人 俗信妖妄 故出此言以惑之 众皆请战 世充简练精勇得二万余人 马千余匹 营洛水南 密军偃师北山上 时密新得志于化及 有轻世充之心 不设壁垒 世充遣二百余骑 潜入北山 伏溪谷中 令军秣马蓐食 既而宵济 人马奔驰 比明而薄密 密出兵应之 阵未成列而两军合战 其伏兵蔽山而上 潜登北原 乘高而下 压密营 营中乱 无能拒者 即入纵火 密军大惊而溃 降其将张童儿 陈智略 进下偃师 初 世充兄伟 及子玄应隋化及至东郡 密得而囚之于城中 至是 尽获之 又执密长史邴元真妻子 司马郑虔象之母及诸将子弟 皆抚慰之 各令潜呼其父兄 兵次洛口 元真 郑虔象等举仓城以应之 密以数十骑遁逸 世充收其众而还 东尽于海 南至于江 悉来归附 世充又令韦节讽侗 拜己为太尉 置署官属 以尚书省为其 府 寻自称郑王 遣其将高略帅师攻寿安 不利而旋 又帅师攻围谷州 三日而退 明年 自称相国 受九锡 备法物 是后不朝侗矣 有道士桓法嗣者 自言解图谶 世充昵之 法嗣乃上《孔子闭房记》 画作丈夫持一干以驱羊 法嗣云 "杨 隋姓也 干一者 王字也 王居杨后 明相国代隋为帝也 "又取《庄子人间 世》 《德充符》二篇上之 法嗣释曰 "上篇言世 下篇言充 此则相国名矣 当德被人间 而应符命为天子也 "世充大悦曰 "此天命也 "再拜受之 即以法嗣为谏议大夫 世充又罗取杂鸟 书帛系其颈 自言符命而散之于空 或有弹射得鸟而来献者 亦拜官爵 既而废侗 阴杀之 僣即皇帝位 建元曰开明 国号 郑 大唐太宗帅师围之 世充频出兵 战辄不利 诸城相继降款 世充窘迫 遣使请救于窦建德 建德率兵援之 至武牢 太宗破之 禽建德以诣城下 世充将溃围而出 诸将莫有应之者 于是出降 至长安 为仇家所杀 段达 武威姑臧人 父岩 周朔州刺史 达在周 年始三岁 袭爵襄坦县公 及长 身长八尺 美须髯 便弓马 隋文帝为丞相 以为大都督 领亲信兵 常置左右 及践祚 为左直斋 迁车骑将军 督晋王府军事 以击高智慧功 授上仪同 又破汪文进等 加开府 仁寿初 为太子左卫副率 大业初 以藩邸之旧 拜左翊卫将军 从征吐谷浑 进位金紫光禄大夫 帝征辽东 平原郝孝德 清河张金称等并起为盗 帝令达击 之 数为金称等所挫 诸贼轻之 号为段姥 后用鄃令杨善会谋 更与贼战 方致克捷 还京师 以公事坐免 明年 帝征辽东 使达留守涿郡 俄复拜左翊卫将军 高阳魏刀儿聚众 自号历山飞 寇掠燕 赵 达率涿郡通守郭绚击败之 时盗贼既多 达不能因机决胜 唯持重自守 时人皆谓之为怯懦 十二年 帝幸江都 宫 诏达与太府卿元文都等留守东都 李密纵兵侵掠城下 达与监门郎将庞玉 武牙郎将霍世举御之 以功迁左骁卫大将军 王世充之败也 密进据北芒 来薄上春门 达与判户部尚书韦津拒之 达见贼 不阵而走 军大溃 津没于密 及帝崩于江都 达与文都等推越王侗为主 署开府仪同三司 兼纳言 陈国公 元 文都等之谋诛王世充 达预焉 既而阴告世充 达为之内应 及事发 迫越王送文都于世充 世充甚德于达 既破李密 讽越王禅让 世充僣号 以达为司徒 及东都平 坐斩 妻子籍没 论曰 宇文述便辟足恭 柔颜取悦 君所谓可 亦曰可焉 君所谓不 亦曰不焉 无所是非 不能轻重 默默苟容 偷安高位 甘素餐之 责 受彼己之讥 此固君子所不为 亦丘明之深耻 化及以此下才 负恩累叶 时逢崩拆 不能竭命 乃因利乘便 先图干纪 率群不逞 职为乱阶 扰本塞源 裂冠毁冕 衅深指鹿 事切食蹯 天地所不容 人神所同愤矣 世充头筲小器 遭逢时幸 与蒙奖擢 礼越旧臣 而躬为戎首 亲行鸠毒 竟而蛇豕丑类 继踵诛夷 枭獍凶魁 相寻菹戮 垂炯戒于来叶 快忠义于当年 为人臣者 可无殷鉴哉 《北史》 唐·李延寿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(白球)=
2 7
a
9
思维训练:
一位汽车司机准备去商场购物,然后他随意把汽
车停在某个停车场内,停车场分A、B两区,停车
场内一个停车位置正好占一个方格且一个方格除
颜率色是外(完全一1)样,,B则区汽蓝车色停区在域A的区概蓝率色是区(域 的概 )
ห้องสมุดไป่ตู้
4
2
9
A区
B区
a
10
挑战自我
请你设计一个游戏,使某一事件的概率
为
1 4
。(提示:可用:转盘、卡片
、摸球等)
a
11
飞镖随机地掷在下面的靶子上。 1、在每一个靶子中,飞镖投到区域A、B、
C的概率是多少? 2、在靶子1中,飞镖投在区域A或B中的概
率是多少?
3、在靶子2中,飞镖没有投在区域C中的概率 是多少?
AB C
C
B
A
a
12
在学校举办的游艺活动中,数学俱乐部办 了个掷骰子的游戏。玩这个游戏要花四张 5角钱的票。一个游戏者掷一次骰子。如 果掷到6,游戏者得到奖品。每个奖品要 花费俱乐部8元。俱乐部能指望从这个游 戏中赢利吗?做出解释。
a
3
甲产品合格率为98%,乙产 品的合格率为80% ,你认为买 哪一种产品更可靠?
a
4
有5张数字卡片,它们的背面完全相
同,正面分别标有1,2,2,3,4。现
将卡p它片(们,摸的则到背:2号面p (卡朝摸片上到),1=从号中-25卡任片; 意)摸=到-一15 ;张 p (摸到3号卡片)= -15 ; p (摸到4号卡片)= -15 ; p (摸到奇数号卡片)= -25 ;
2
4
1
3a
7
(1)P(摸到红球)=
摸到红球可能出现的 果结 数 摸出一球所有可能出 的现 结果数
(2)P(事件发生)=
此事件可能出现所 的组 结成 果的图形 所有可能出现的组 结成 果的 所图形面
a
8
例1:袋中装有7个除了颜色 不同外完全相同的球,其中2个白 球,2个红球,3个黑球,从中任意 摸出一球,摸到白球的概率是P
最终停留在红色
方砖上的概率
是 1 ,你试着把 每块4 砖的颜色涂
上。
a
15
小结:
1、会判定三类事件(必然事件、不可能事件、 不确定事件)及三类事件发生可能性的大小 (即概率),用图来表示事件发生可能性 的大小。
2、理解概率的意义,会计算摸球等一类事 件的概率。
3、会设计游戏使其满足某些要求。
a
16
第四章 概率复习
a
1
目的要求
(一)会判定三类事件(必然事件、不可能 事件、不确定事件)及三类事件发生可能性 的大小(即概率),用图来表示事件发生 可能性的大小。 (二)理解概率的意义,会计算摸球等一 类事件的概率
(三)会设计游戏使其满足某些要求
a
2
阿强在一次抽奖活动中,只抽
了一张,就中了一等奖,能不能说 这次抽奖活动的中奖率为百分之百? 为什么?
1
解、中奖的概率是 6 ,即6个人玩,有 一个人能中奖,即收2×6=12元,要 送一个8元的奖品,所以能盈利。
a
13
动手操作:
小猫在如图所 示的地板上自由 地走来走去,它 最终停留在红色 方砖上的概率
是 1 ,你试着把 每块4 砖的颜色涂
上。
a
涂色 14
动手操作:
小猫在如图所
示的地板上自由
地走来走去,它
P(摸到偶数号卡片a) = -35 .
5
从一副扑克牌(除去大小王)中
任抽一张。 P (抽到红心)
P (抽到黑桃)
= =
14- 14-
; ;
P (抽到红心3)= -512 ;
P (抽到5)= -113 。
a
6
3请将下列事件发生的概率标在图上: ①从6个红球中摸出1个红球 ②从4个红球中摸出1个白球 ③从3红3白6球中摸出1个白球 ④从红、白、蓝三个球中摸出一个白 球