高中物理人造卫星变轨问题专题

合集下载

高中物理人造卫星变轨问题专题

高中物理人造卫星变轨问题专题

人造卫星变轨问题专题(一) 人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供..轨道半径r 确定后;与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度2r GMa =也都是唯一确定的..如果卫星的质量是确定的;那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的..一旦卫星发生了变轨;即轨道半径r 发生变化;上述所有物理量都将随之变化E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒;其增减由该过程的能量转换情况决定..同理;只要上述七个物理量之一发生变化;另外六个也必将随之变化..(二) 常涉及的人造卫星的两种变轨问题1. 渐变由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化逐渐增大或逐渐减小;由于半径变化缓慢;卫星每一周的运动仍可以看做是匀速圆周运动..解决此类问题;首先要判断这种变轨是离心还是向心;即轨道半径r 是增大还是减小;然后再判断卫星的其他相关物理量如何变化..1) 人造卫星绕地球做匀速圆周运动;无论轨道多高;都会受到稀薄大气的阻力作用..如果不及时进行轨道维持即通过启动星上小型发动机;将化学能转化为机械能;保持卫星应具有的状态;卫星就会自动变轨;偏离原来的圆周轨道;从而引起各个物理量的变化..这种变轨的起因是阻力..阻力对卫星做负功;使卫星速度减小;卫星所需要的向心力r mv 2减小了;而万有引力2r GMm的大小没有变;因此卫星将做向心运动;即轨道半径r 将减小..由基本原理中的结论可知:卫星线速度v 将增大;周期T 将减小;向心加速度a 将增大;动能E k 将增大;势能E p 将减小;有部分机械能转化为内能摩擦生热;卫星机械能E 机将减小..为什么卫星克服阻力做功;动能反而增加了呢 这是因为一旦轨道半径减小;在卫星克服阻力做功的同时;万有引力即重力将对卫星做正功..而且万有引力做的正功远大于克服空气阻力做的功;外力对卫星做的总功是正的;因此卫星动能增加..根据E机=E k+E p;该过程重力势能的减少总是大于动能的增加..2)有一种宇宙学的理论认为在漫长的宇宙演化过程中;引力常量G是逐渐减小的..如果这个结论正确;那么环绕星球将发生离心现象;即环绕星球到中心星球间的距离r将逐渐增大;环绕星球的线速度v将减小;周期T将增大;向心加速度a将减小;动能E k将减小;势能E p将增大..2.突变短时间启动飞行器上的发动机;使飞行器轨道发生突变;使其进入预定的轨道..1)发射同步卫星时;可以先将卫星发送到近地轨道Ⅰ;使其绕地球做匀速圆周运动;速率为v1;变轨时在P点点火加速;短时间内将速率由v1增加到v2;使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q时的速率为v3;此时进行第二次点火加速;在短时间内将速率由v3增加到v4;使卫星进入同步轨道Ⅲ;绕地球做匀速圆周运动..例题1. 某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用;人造卫星到地心的距离从r 1慢慢变到r 2;用E Kl .E K2分别表示卫星在这两个轨道上的动能;则A.r 1<r 2;E K1<E K2B.r 1>r 2;E K1<E K2C.r 1<r 2;E K1>E K2D.r 1>r 2;E K1>E K22. 1飞船在椭圆轨道1上运行;Q 为近地点;P 为远地点;当飞船运动到P 点时点火;使飞船沿圆轨道2运行;A .飞船在QB .飞船在PC .飞船在轨道1上P的速度小于在轨道2上P 的速度D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度 2假设由于飞船的特殊需要;美国的一艘原来在圆轨道运行的飞船前往与之对接;则飞船一定是A .从较低轨道上加速B .从较高轨道上加速C .从同一轨道上加速D .从任意轨道上加速3. 航天飞机在完成对哈勃太间望远镜的维修任务后;在A 点短时A间开动小型发动机进行变轨;从圆形轨道Ⅰ进入椭圆道Ⅱ;B 为轨道Ⅱ上的一点;如图所示..下列说法中正确的有A.在轨道Ⅱ上经过A的机械能大于经过B的机械能B.在A点短时间开动发动机后航天飞机的动能增大了C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度4.我国成功实施了“神舟”七号的载入航天飞行;并实现了航天员首次出舱..飞船先沿椭圆轨道飞行;后在远地点343千米处点火加速;把飞船运行轨道由椭圆轨道变成离地面高度为343千米的圆轨道;在此圆轨道上飞船运行周期约为90分钟..下列正确的是A.飞船变轨前后的机械能相等B.飞船在圆轨道上时航天员出舱前后都处于超重状态C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度1.B2.BC A3.C4.C。

高中物理卫星变轨问题

高中物理卫星变轨问题

作业:
C 卫星在轨道1上经过Q点时的加速度
大于它在轨道2上经过Q点时的加速度 D 卫星在轨道2上经过P点时的加速度 等于它在轨道3上经过P点时的加速度
p
1 23 Q
❖ 卫星变轨
练习如图所示;a b c是在地球大气层外圆形轨道上运行的3颗
人造卫星;下列说法正确的是:
A b c的线速度大小相等;且大于a的线速度 B b c的向心加速度大小相等;且大于a的向心加速度 C c加速可追上同一轨道上的b;b减速可等到同一轨道上的c D a卫星由于某种原因;轨道半径缓慢减小;其线速度将变小
卫星在圆轨 道运行速度
V1
R
1
2
V2
mv12 r
G
Mm r2
F引
θ>900
v 减小
卫星变轨原理
r
v3
F引
椭圆mv32 r
GMr2m
使



v4


v3






运 动
使卫星 v4, 加m 使 速 r42v到 GM r2 m
卫 星 的 回 收
❖ 卫星变轨
卫星如何变轨 以发射同步卫星为例;先进入一
专题 万有引力定律的应用
1 卫星比较问题 2 卫星变轨 问题
两颗人造地球卫星;都在圆形轨道上运行;它 们的质量相等;轨道半径不同;比较它们的向心加 速度an 线速度v 角速度ω 周期T
地球
计算中心天体的质量M 密度ρ
1某星体m围绕中心天体M做圆 周运动的周期为T;圆周运动
的轨道半径为r
M
4 2r3
练习发射地球同步卫星时;先将卫星发射至近地圆轨道1;然后

高一物理必修二第六章 专题强化4 卫星变轨问题和双星问题---学生版

高一物理必修二第六章 专题强化4   卫星变轨问题和双星问题---学生版

专题强化4 卫星变轨问题和双星问题--学生版[学习目标] 1.会分析卫星的变轨问题,知道卫星变轨的原因和变轨前后卫星速度的变化.2.掌握双星运动的特点,会分析求解双星运动的周期和角速度.一、人造卫星的变轨问题1.变轨问题概述(1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mm r 2=m v 2r. (2)变轨运行卫星变轨时,先是线速度v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁.②当卫星加速时,卫星所需的向心力F 向=m v 2r增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁.2.实例分析(1)飞船对接问题飞船与在轨空间站对接先使飞船位于较低轨道上,然后让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道飞船完成对接(如图1甲所示).注意:若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙.图1(2)同步卫星的发射、变轨问题如图2所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMm r 2=m v 2r,进入同步圆轨道3做圆周运动.图2例1 (2019·通许县实验中学期末)如图3所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( )图3A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度针对训练 (多选)(2019·定远育才实验学校期末)航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图4所示.关于航天飞机的运动,下列说法中正确的有( )图4A.在轨道Ⅱ上经过A 的速度小于经过B 点的速度B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度二、双星或多星问题1.双星模型(1)如图5所示,宇宙中有相距较近、质量相差不大的两个星球,它们离其他星球都较远,其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕其连线上的某一固定点做周期相同的匀速圆周运动,通常,我们把这样的两个星球称为“双星”.图5(2)双星问题的特点①两星围绕它们之间连线上的某一点做匀速圆周运动,两星的运行周期、角速度相同. ②两星的向心力大小相等,由它们间的万有引力提供.③两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L .(3)双星问题的处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L 2=m 1ω2r 1,G m 1m 2L2=m 2ω2r 2. 2.多星系统在宇宙中存在类似于“双星”的系统,如“三星”、“四星”等多星系统,在多星系统中:(1)各个星体做圆周运动的周期、角速度相同.(2)某一星体做圆周运动的向心力是由其他星体对它引力的合力提供的.例2 两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图6所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,引力常量为G ,求双星的运行轨道半径r 1和r 2及运行周期T .图6例3 宇宙间存在一些离其他恒星较远的三星系统,如图7所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为L ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O做匀速圆周运动,引力常量为G,下列说法正确的是()图7A.每颗星做圆周运动的角速度为Gm L3B.每颗星做圆周运动的加速度与三星的质量无关C.若距离L和每颗星的质量m都变为原来的2倍,则周期变为原来的2倍D.若距离L和每颗星的质量m都变为原来的2倍,则线速度变为原来的4倍1.(卫星变轨问题)(2019·启东中学高一下学期期中)2019年春节期间,中国科幻电影里程碑的作品《流浪地球》热播,影片中为了让地球逃离太阳系,人们在地球上建造特大功率发动机,使地球完成一系列变轨操作,其逃离过程如图8所示,地球在椭圆轨道Ⅰ上运行到远日点B变轨,进入圆形轨道Ⅱ.在圆形轨道Ⅱ上运行到B点时再次加速变轨,从而最终摆脱太阳束缚.对于该过程,下列说法正确的是()图8A.沿轨道Ⅰ运动至B点时,需向前喷气减速才能进入轨道ⅡB.沿轨道Ⅰ运行的周期小于沿轨道Ⅱ运行的周期C.沿轨道Ⅰ运行时,在A点的加速度小于在B点的加速度D.在轨道Ⅰ上由A点运行到B点的过程,速度逐渐增大2.(卫星、飞船的对接问题)如图9所示,我国发射的“神舟十一号”飞船和“天宫二号”空间实验室于2016年10月19日自动交会对接成功.假设对接前“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )图9A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室轨道半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室轨道半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接3.(双星问题)冥王星与其附近的另一星体卡戎可视为双星系统,冥王星与星体卡戎的质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动,由此可知,冥王星绕O 点运动的( )A.轨道半径约为卡戎的17B.角速度大小约为卡戎的17C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍4.(双星问题)(多选)宇宙中两颗相距很近的恒星常常组成一个双星系统.它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知某双星系统的运转周期为T ,两星到共同圆心的距离分别为R 1和R 2,引力常量为G ,那么下列说法正确的是( )A.这两颗恒星的质量必定相等B.这两颗恒星的质量之和为4π2(R 1+R 2)3GT 2C.这两颗恒星的质量之比m 1∶m 2=R 2∶R 1D.其中必有一颗恒星的质量为4π2R 1(R 1+R 2)2GT 2一、选择题1.(2019·江苏卷)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图1所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r,地球质量为M,引力常量为G.则()图1A.v1>v2,v1=GM rB.v1>v2,v1>GM rC.v1<v2,v1=GM rD.v1<v2,v1>GM r2.(2019·北京市石景山区一模)两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是()A.质量大的天体线速度较大B.质量小的天体角速度较大C.两个天体的向心力大小一定相等D.两个天体的向心加速度大小一定相等3.(2019·定州中学期末)如图2所示,“嫦娥三号”探测器经轨道Ⅰ到达P点后经过调整速度进入圆轨道Ⅱ,再经过调整速度变轨进入椭圆轨道Ⅲ,最后降落到月球表面上.下列说法正确的是()图2A.“嫦娥三号”在地球上的发射速度大于11.2 km/sB.“嫦娥三号”由轨道Ⅰ经过P 点进入轨道Ⅱ时要加速C.“嫦娥三号”在轨道Ⅲ上经过P 点的速度大于在轨道Ⅱ上经过P 点的速度D.“嫦娥三号”稳定运行时,在轨道Ⅱ上经过P 点的加速度与在轨道Ⅲ上经过P 点的加速度相等4.(多选)如图3所示,a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )图3A.b 、c 的线速度大小相等,且大于a 的线速度B.a 加速可能会追上bC.c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD.a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大5.(2019·杨村一中期末)如图4所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕其连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )图4A.m 1、m 2做圆周运动的线速度之比为3∶2B.m 1、m 2做圆周运动的角速度之比为3∶2C.m 1做圆周运动的半径为25L D.m 2做圆周运动的半径为25L6.(2019·榆树一中期末)如图5所示,我国发射“神舟十号”飞船时,先将飞船发送到一个椭圆轨道上,其近地点M 距地面200 km ,远地点N 距地面340 km.进入该轨道正常运行时,通过M 、N 点时的速率分别是v 1和v 2,加速度大小分别为a 1和a 2.当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,开始绕地球做匀速圆周运动,这时飞船的速率为v 3,加速度大小为a 3,比较飞船在M 、N 、P 三点正常运行时(不包括点火加速阶段)的速率和加速度大小,下列结论正确的是( )图5A.v 1>v 3>v 2,a 1>a 3>a 2B.v 1>v 2>v 3,a 1>a 2=a 3C.v 1>v 2=v 3,a 1>a 2>a 3D.v 1>v 3>v 2,a 1>a 2=a 37.我国未来将建立月球基地,并在绕月轨道上建造空间站.如图6所示,关闭发动机的航天飞机仅在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆的近月点B 处与空间站对接.已知空间站C 绕月轨道半径为r ,周期为T ,引力常量为G ,月球的半径为R .那么以下选项正确的是( )图6A.月球的质量为4π2r 3GT 2 B.航天飞机到达B 处由椭圆轨道进入空间站圆轨道时必须加速C.航天飞机从A 处到B 处做减速运动D.月球表面的重力加速度为4π2R T 28.(2019·武邑中学调研)某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2之间的距离为r ,已知引力常量为G ,由此可求出S 2的质量为( )A.4π2r 2(r -r 1)GT 2B.4π2r 13GT 2C.4π2r 3GT2 D.4π2r 2r 1GT 29.(多选)如图7所示,在嫦娥探月工程中,设月球半径为R ,月球表面的重力加速度为g 0.飞船在半径为4R 的圆形轨道Ⅰ上运动,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 时,再次点火进入近月轨道Ⅲ绕月球做圆周运动,忽略月球的自转,则( )图7A.飞船在轨道Ⅲ上的运行速率大于g 0RB.飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的运行速率C.飞船在轨道Ⅰ上的向心加速度小于在轨道Ⅱ上B 处的向心加速度D.飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=4∶110.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做匀速圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时匀速圆周运动的周期为( )A.n 3k 2T B.n 3k T C.n 2k T D.n kT11.(多选)(2019·雅安中学高一下学期期中)国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O 做匀速圆周运动,如图8所示,此双星系统中体积较小成员能“吸食”另一颗体积较大星体表面物质,达到质量转移的目的,被吸食星体的质量远大于吸食星体的质量.假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )图8A.它们做圆周运动的万有引力保持不变B.它们做圆周运动的角速度不断变大C.体积较大星体圆周运动轨迹半径变大D.体积较大星体圆周运动的线速度变大12.(2019·扬州中学模拟)进行科学研究有时需要大胆的想象,假设宇宙中存在一些离其他恒星较远的、由质量相等的四颗星组成的四星系统(忽略其他星体对它们的引力作用),这四颗星恰好位于正方形的四个顶点上,并沿外接于正方形的圆形轨道运行,若此正方形边长变为原来的一半,要使此系统依然稳定存在,星体的角速度应变为原来的( )A.1倍B.2倍C.12倍 D.22倍二、非选择题13.中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为h 1,飞船飞行5圈后进行变轨,进入预定圆轨道,如图9所示.设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,忽略地球的自转,求:图9(1)飞船在B 点经椭圆轨道进入预定圆轨道时是加速还是减速?(2)飞船经过椭圆轨道近地点A 时的加速度大小.(3)椭圆轨道远地点B 距地面的高度h 2.14.(2019·厦门一中模拟)如图10所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间距离为L.已知星球A、B的中心和O三.点始终共线,星球A和B分别在O的两侧.引力常量为G(1)求两星球做圆周运动的周期;(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2.已知地球和月球的质量分别为5.98×1024kg 和7.35×1022 kg.求T2与T1两者平方之比.(计算结果保留四位有效数字)11。

专题六:卫星变轨问题问题的理解及相关问题的解决思路

专题六:卫星变轨问题问题的理解及相关问题的解决思路

P地球 Q 轨道1 轨道2 专题六:卫星变轨问题问题的理解及相关问题的解决思路1.假如一个作匀速圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作匀速圆周运动,则:A.根据公式,可知卫星运动的线速度将增大到原来的2倍。

B.根据公式,可知卫星所需的向心力将减小到原来的。

C.根据公式,可知地球提供的向心力将减小到原来的。

D.根据上述(B)和(C)中给出的公式,可知卫星运动的线速度将减小到原来的。

2. 发射地球同步卫星时,先将卫星发射至近地圆形轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步轨道3。

轨道1、2相切于P 点如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )A.卫星在轨道3上的运行速率大于轨道1上的速率B.卫星在轨道3上的角速度小于在轨道3上的角速度C.卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D.卫星在椭圆轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度3.某人造地球卫星因受高空稀薄气体的阻力作用,绕地球运转的轨道会慢慢改变.某次测量中卫星的轨道半径为1r ,后来变为2r 且1r >2r 。

以1K E 、2K E 分别表示卫星在这两个轨道的动能.1T 、2T 分别表示卫星在这两个轨道绕地球运动的周期,则有 ( )A. 1K E <2K E 2T <1TB. 1K E <2K E 2T >1TC. 1K E >2K E 2T <1T D .1K E >2K E 2T >1T4.某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫星到地心的距离从r 1慢慢变到r 2,用E Kl .E K2分别表示卫星在这两个轨道上的动能,则(A)r 1<r 2,E K1<E K2 (B)r 1>r 2,E K1<E K2 (C)r 1<r 2,E K1>E K2 (D)r 1>r 2,E K1>E K25.人造飞船首先进入的是距地面高度近地点为200km ,远地点为340km 的的椭圆轨道,在飞行第五圈的时候,飞船从椭圆轨道运行到以远地点为半径的圆行轨道上,如图所示,试处理下面几个问题(地球的半径R=6370km ,g=9.8m/s 2):(1)飞船在椭圆轨道1上运行,Q 为近地点,P 为远地点,当飞船运动到P 点时点火,使飞船沿圆轨道2运行,以下说法正确的是A .飞船在Q 点的万有引力大于该点所需的向心力B .飞船在P 点的万有引力大于该点所需的向心力C .飞船在轨道1上P 的速度小于在轨道2上P 的速度D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度(2)假设由于飞船的特殊需要,美国的一艘原来在圆轨道运行的飞船前往与之对接,则飞船一定是A .从较低轨道上加速B .从较高轨道上加速C .从同一轨道上加速D .从任意轨道上加速6.发射地球同步卫星时,先将卫星发射到近地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送人同步圆轨道3。

人教版(2019)必修第二册第七章万有引力与航天 专题 变轨与双星

人教版(2019)必修第二册第七章万有引力与航天 专题 变轨与双星

专题 卫星变轨问题和双星问题班级 姓名 学号一、人造卫星的变轨问题 1.变轨问题概述 (1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mmr 2=m v 2r.(2)变轨运行卫星变轨时,先是线速度v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁.②当卫星加速时,卫星所需的向心力F 向=m v 2r增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁. 2.实例分析同步卫星的发射、变轨问题如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMmr 2=m v 2r,进入同步圆轨道3做圆周运动.例1如图为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( ) A.卫星在轨道3上的速率大于在轨道1上的速率 B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度针对训练1航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图4所示.关于航天飞机的运动,下列说法中正确的有( ) A.在轨道Ⅱ上经过A 的速度小于经过B 点的速度 B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度 C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度二、双星问题1.双星模型(1)如图所示,宇宙中有相距较近、质量相差不大的两个星球,它们离其他星球都较远,其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕其连线上的某一固定点做周期相同的匀速圆周运动,通常,我们把这样的两个星球称为“双星”. (2)双星问题的特点①两星围绕它们之间连线上的某一点做匀速圆周运动,两星的运行周期、角速度相同. ②两星的向心力大小相等,由它们间的万有引力提供. ③两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L .(3)双星问题的处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L 2=m 1ω2r 1,G m 1m 2L2=m 2ω2r 2.例2 两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( ) A.质量大的天体线速度较大 B.质量小的天体角速度较大 C.两个天体的向心力大小一定相等 D.两个天体的向心加速度大小一定相等针对训练2 两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,引力常量为G ,求双星的运行轨道半径r 1和r 2及运行周期T .巩固训练1.2019年春节期间,中国科幻电影里程碑的作品《流浪地球》热播,影片中为了让地球逃离太阳系,人们在地球上建造特大功率发动机,使地球完成一系列变轨操作,其逃离过程如图所示,地球在椭圆轨道 Ⅰ 上运行到远日点B 变轨,进入圆形轨道 Ⅱ.在圆形轨道 Ⅱ 上运行到B 点时再次加速变轨,从而最终摆脱太阳束缚.对于该过程,下列说法正确的是( ) A.沿轨道 Ⅰ 运动至B 点时,需向前喷气减速才能进入轨道 Ⅱ B.沿轨道Ⅰ运行的周期小于沿轨道Ⅱ运行的周期C.沿轨道 Ⅰ 运行时,在A 点的加速度小于在B 点的加速度D.在轨道 Ⅰ 上由A 点运行到B 点的过程,速度逐渐增大2.如图所示,我国发射的“神舟十一号”飞船和“天宫二号”空间实验室于2016年10月19日自动交会对接成功.假设对接前“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室轨道半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室轨道半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接3.冥王星与其附近的另一星体卡戎可视为双星系统,冥王星与星体卡戎的质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动,由此可知,冥王星绕O 点运动的( ) A.轨道半径约为卡戎的17 B.角速度大小约为卡戎的17C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍4.1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图1所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则( ) A.v 1>v 2,v 1=GM r B.v 1>v 2,v 1>GMr C.v 1<v 2,v 1=GMr D.v 1<v 2,v 1>GMr5.如图,“嫦娥三号”探测器经轨道 Ⅰ 到达P 点后经过调整速度进入圆轨道 Ⅱ,再经过调整速度变轨进入椭圆轨道 Ⅲ,最后降落到月球表面上.下列说法正确的是( ) A.“嫦娥三号”在地球上的发射速度大于11.2 km/s B.“嫦娥三号”由轨道Ⅰ经过P 点进入轨道Ⅱ时要加速C.“嫦娥三号”在轨道Ⅲ上经过P 点的速度大于在轨道Ⅱ上经过P 点的速度D.“嫦娥三号”稳定运行时,在轨道Ⅱ上经过P 点的加速度与在轨道Ⅲ上经过P 点的加速度相等6.(多选)如图所示,a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A.b 、c 的线速度大小相等,且大于a 的线速度B.a 加速可能会追上bC.c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD.a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大 7.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕其连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )A.m 1、m 2做圆周运动的线速度之比为3∶2B.m 1、m 2做圆周运动的角速度之比为3∶2C.m 1做圆周运动的半径为25LD.m 2做圆周运动的半径为25L8.中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为h 1,飞船飞行5圈后进行变轨,进入预定圆轨道,如图9所示.设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,忽略地球的自转,求: (1)飞船在B 点经椭圆轨道进入预定圆轨道时是加速还是减速? (2)飞船经过椭圆轨道近地点A 时的加速度大小. (3)椭圆轨道远地点B 距地面的高度h 2. 参考答案例1 答案 B解析 卫星在圆轨道上做匀速圆周运动时有: G Mmr 2=m v 2r,v =GMr因为r 1<r 3,所以v 1>v 3,A 项错误, 由开普勒第三定律知T 3>T 2,B 项正确;在Q 点从轨道1到轨道2需要做离心运动,故需要加速. 所以在Q 点v 2Q >v 1Q ,C 项错误.在同一点P ,由GMmr 2=ma n 知,卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P点的加速度,D 项错误. 针对训练1答案 ABC解析 在轨道Ⅱ上由A 点运动到B 点,由开普勒第二定律可得经过A 的速度小于经过B 的速度,A 正确;从轨道Ⅰ的A 点进入轨道Ⅱ需减速,使万有引力大于所需要的向心力,做近心运动,所以在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度,B 正确;根据开普勒第三定律R 3T 2=k ,椭圆轨道的半长轴小于圆轨道的半径,所以在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,C 正确;在轨道Ⅱ上和在轨道Ⅰ上通过A 点时所受的万有引力相等,根据牛顿第二定律,加速度相等,D 错误. 例2 答案 C解析 双星系统的结构是稳定的,故它们的角速度相等,故B 项错误;两个星球间的万有引力提供向心力,根据牛顿第三定律可知,两个天体的向心力大小相等,而天体质量不一定相等,故两个天体的向心加速度大小不一定相等,故C 项正确,D 错误;根据牛顿第二定律,有:G m 1m 2L 2=m 1ω2r 1=m 2ω2r 2,其中:r 1+r 2=L 故r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,故v 1v 2=r 1r 2=m 2m 1故质量大的天体线速度较小,故A 错误. 针对训练2答案 Lm 2m 1+m 2 Lm 1m 1+m 24π2L 3G (m 1+m 2)解析 双星间的万有引力提供了各自做圆周运动的向心力,对m 1:Gm 1m 2L 2=m 1r 1ω2, 对m 2:Gm 1m 2L2=m 2r 2ω2,且r 1+r 2=L ,解得r 1=Lm 2m 1+m 2,r 2=Lm 1m 1+m 2.由G m 1m 2L 2=m 1r 14π2T 2及r 1=Lm 2m 1+m 2得周期T =4π2L 3G (m 1+m 2).巩固训练 1.答案 B 2.答案 C解析 飞船在同一轨道上加速追赶空间实验室时,速度增大,所需向心力大于万有引力,飞船将做离心运动,不能实现与空间实验室的对接,选项A 错误;同时,空间实验室在同一轨道上减速等待飞船时,速度减小,所需向心力小于万有引力,空间实验室将做近心运动,也不能实现对接,选项B 错误;当飞船在比空间实验室半径小的轨道上加速时,飞船将做离心运动,逐渐靠近空间实验室,可实现对接,选项C 正确;当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室,不能实现对接,选项D 错误. 3.答案 A解析 双星系统内的两颗星运动的角速度相等,B 错误.双星的向心力为二者间的万有引力,所以向心力大小相等,D 错误.根据m 1ω2r 1=m 2ω2r 2,得r 1r 2=m 2m 1=17,A 正确.根据v =ωr ,得v 1v 2=r 1r 2=17,C 错误. 4.答案 B解析 根据开普勒第二定律知,v 1>v 2,在近地点画出近地圆轨道,因为过近地点做匀速圆周运动的速度为v =GMr,由于“东方红一号”在椭圆轨道上运动,所以v 1>GMr,故B 正确.5.答案 D6.答案 BD解析 因为b 、c 在同一轨道上运行,故其线速度、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,由v =GMr可知,v b =v c <v a ,故选项A 错;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来到切(或交)点时,a 就追上了b ,故选项B 正确;当c 加速时,c 受的万有引力F <m v c 2r c,故它将偏离原轨道,做离心运动,当b 减速时,b 受的万有引力F >m v b 2r b ,它将偏离原轨道,做近心运动,所以无论如何c 也追不上b ,b 也等不到c ,故选项C 错;对a 卫星,当它的轨道半径缓慢减小时,由v =GMr可知,r 减小时,v 逐渐增大,故选项D 正确. 7.答案 C解析 设双星m 1、m 2距转动中心O 的距离分别为r 1、r 2,双星绕O 点转动的角速度均为ω,据万有引力定律和牛顿第二定律得G m 1m 2L 2=m 1r 1ω2=m 2r 2ω2,又r 1+r 2=L ,m 1∶m 2=3∶2,所以可解得r 1=25L ,r 2=35Lm 1、m 2运动的线速度分别为v 1=r 1ω,v 2=r 2ω, 故v 1∶v 2=r 1∶r 2=2∶3.综上所述,选项C 正确. 8.答案 (1)加速 (2)gR 2(R +h 1)2 (3)3gR 2t 24n 2π2-R 解析 (2)在地球表面有mg =GMmR 2① 根据牛顿第二定律有:G Mm(R +h 1)2=ma A ②由①②式联立解得,飞船经过椭圆轨道近地点A 时的加速度大小为a A =gR 2(R +h 1)2.(3)由万有引力提供向心力,有G Mm (R +h 2)2=m 4π2T 2(R +h 2)③由题意可知,飞船在预定圆轨道上运行的周期为T =tn ④由①③④式联立解得h 2=3gR 2t 24n 2π2-R .。

第七章专题强化卫星变轨问题和双星问题—人教版高中物理必修第二册课件(共24张PPT)

第七章专题强化卫星变轨问题和双星问题—人教版高中物理必修第二册课件(共24张PPT)

D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度
图4
解析 在轨道Ⅱ上由A点运动到B点,由开普勒第二定律可知,经过A的速度小于经
过B的速度,A正确;
从轨道Ⅰ的A点进入轨道Ⅱ需减速,使万有引力大于所需要的向心力,做近心运动, (卫星变轨问题)(2019·启东中学高一下学期期中)2019年春节期间,中国科幻电影里程碑的作品《流浪地球》热播,影片中为了让地球逃离太阳系,人们在地球上建造特大功率发动
力作用,三星在同一平面内绕三角形中心O做匀速圆周运动,引力常量为G,下列说法正确的是 (2)某一星体做圆周运动的向心力是由其他星体对它引力的合力提供的.
r 在解轨析道Ⅱ双上星运系动统的内周的期两小颗于星在运轨动道的角Ⅰ速上度运相动等的,周B期错3误; 根据开普勒第三定律T =k,椭圆轨道的半长轴小于圆轨道的半径,所以在轨道Ⅱ上 在卫轨星道 变Ⅱ轨上时经,过先A是的线加速速度度大小小于v发在生轨变道化Ⅰ导上致经需过要A的的加2向速心度力发生变化,进而使轨道半径r发生变化.
在同一点 P,由GMr2m=man 知,卫星在轨道 2 上经过 P 点的加速度等于它在轨道
3 上经过 P 点的加速度,D 项错误.
总结 提升
判断卫星变轨时速度、加速度变化情况的思路 1.判断卫星在不同圆轨道的运行速度大小时,可根据“越远越慢”的规律判断. 2.判断卫星在同一椭圆轨道上不同点的速度大小时,可根据开普勒第二定律判 断,即离中心天体越远,速度越小. 3.判断卫星由圆轨道进入椭圆轨道或由椭圆轨道进入圆轨道时的速度大小如何 变化时,可根据离心运动或近心运动的条件进行分析. 4.判断卫星的加速度大小时,可根据 a=mF=GMr2判断.
针对训练 (多选)(2019·定远育才实验学校期末)航天飞机在完成对哈勃空间望远镜

高中物理新教材同步必修第二册 第7章 专题强化 卫星的变轨和双星问题

高中物理新教材同步必修第二册 第7章 专题强化 卫星的变轨和双星问题

卫星的变轨和双星问题[学习目标] 1.知道卫星变轨的原因,会分析卫星变轨前后的物理量变化.2.知道航天器的对接问题的处理方法.3.掌握双星运动的特点,会分析双星的相关问题.一、卫星的变轨问题1.如图是飞船从地球上发射到绕月球运动的飞行示意图.(1)从绕地球运动的轨道上进入奔月轨道,飞船应采取什么措施?为什么?(2)从奔月轨道进入月球轨道,又应采取什么措施?为什么?答案 (1)从绕地球运动的轨道上加速,使飞船做离心运动.当飞船加速时,飞船所需的向心力F 向=m v 2r增大,万有引力不足以提供飞船所需的向心力,飞船将做离心运动,向高轨道变轨. (2)飞船从奔月轨道进入月球轨道应减速.当飞船减速时,飞船所需的向心力F 向=m v 2r 减小,万有引力大于所需的向心力,飞船将做近心运动,向低轨道变轨.2.如图,发射卫星时,先将卫星发射至近地圆轨道Ⅰ,在Q 点点火加速做离心运动进入椭圆轨道Ⅱ,在P 点点火加速,使其满足GMm r 2=m v 2r,进入圆轨道Ⅲ做圆周运动.(1)设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在椭圆轨道Ⅱ上经过Q 点和P 点时的速率分别为v Q 、v P ,试比较这几个速度的大小关系.(2)试比较卫星在轨道Ⅰ、Ⅱ、Ⅲ上运行时的周期T 1、T 2、T 3的大小关系.(3)试比较卫星在轨道Ⅰ上的加速度大小a 1,轨道Ⅲ上的加速度大小a 3,椭圆轨道上经过Q 点和P 点的加速度大小a Q 、a P 的大小关系.答案 (1)①圆轨道上v 1>v 3②从圆轨道Ⅰ在Q 点加速进入椭圆轨道,则v Q >v 1③从椭圆轨道Ⅱ在P 点加速进入圆轨道Ⅲ,则v 3>v P④在椭圆轨道上v Q >v P ,所以v Q >v 1>v 3>v P .(2)由开普勒第三定律知:T 3>T 2>T 1.(3)由GMm r 2=ma 得a =GM r 2,知a 与卫星到地心的距离有关,所以不同轨道上同一点的加速度相同,则a 1=a Q >a P =a 3.例1 在高空运行的同步卫星功能失效后,往往会被送到同步轨道上空几百公里处的“墓地轨道”,以免影响其他在轨卫星并节省轨道资源.如图所示,2022年1月22日,我国实践21号卫星在地球同步轨道“捕获”已失效的北斗二号G2卫星后,成功将其送入“墓地轨道”.已知同步轨道和“墓地轨道”的轨道半径分别为R 1、R 2,转移轨道与同步轨道、“墓地轨道”分别相切于P 、Q 点,地球自转周期为T 0,则北斗二号G2卫星( )A .在“墓地轨道”运行时的速度大于其在同步轨道运行的速度B .在转移轨道上经过P 点的加速度大于在同步轨道上经过P 点的加速度C .在转移轨道上P 点的速度小于转移轨道上Q 点的速度D .沿转移轨道从P 点运行到Q 点所用最短时间为T 04(R 1+R 2)32R 13答案 D解析 根据GMm r 2=m v 2r ,可得v =GM r ,可知在“墓地轨道”运行时的速度小于其在同步轨道运行的速度,故A 错误;在转移轨道上经过P 点和在同步轨道上经过P 点时受到的万有引力相同,由GMm r2=ma 可知,B 错误;由开普勒第二定律可知,C 错误;由开普勒第三定律R 13T 02=(R 1+R 22)3T 12,可得沿转移轨道从P 点运行到Q 点所用最短时间为t =T 12=T 04(R 1+R 2)32R 13,故D 正确.判断卫星变轨时速度、加速度变化情况的思路1.判断卫星在不同圆轨道的运行速度大小时,可根据“越远越慢”的规律判断.2.判断卫星在同一椭圆轨道上不同点的速度大小时,可根据开普勒第二定律判断,即离中心天体越远,速度越小.3.判断卫星为实现变轨在某点需要加速还是减速时,可根据离心运动或近心运动的条件进行分析.4.判断卫星的加速度大小时,可根据a =F 万m =G M r2判断. 针对训练 (多选)2021年5月15日7时18分,我国发射的“天问一号”火星探测器成功着陆于火星.如图所示,“天问一号”被火星捕获之后,需要在近火星点P 变速,进入环绕火星的椭圆轨道.下列说法正确的是( )A .“天问一号”由轨道Ⅰ进入轨道Ⅱ,需要在P 点加速B .“天问一号”在轨道Ⅰ上经过P 点时的加速度等于在轨道Ⅱ上经过P 点时的加速度C .“天问一号”在轨道Ⅰ上的运行周期小于在轨道Ⅱ上的运行周期D .“天问一号”的发射速度必须大于11.2 km/s答案 BD解析 由题图可知,“天问一号”火星探测器由轨道Ⅰ进入轨道Ⅱ的过程,需要在P 点减速,A 错误;由G Mm r 2=ma ,解得a =G M r2,可知探测器在轨道Ⅰ上经过P 点与在轨道Ⅱ上经过P 点时的加速度相等,B 正确;根据开普勒第三定律a 3T2=k ,由于轨道Ⅰ的轨道半长轴大于轨道Ⅱ的轨道半长轴,故探测器在轨道Ⅰ上的运行周期大于在轨道Ⅱ上的运行周期,C 错误;发射“天问一号”必须克服地球引力的束缚,因此要大于地球第二宇宙速度11.2 km/s ,故D 正确.二、航天器的对接问题若使航天器在同一轨道上运行,航天器加速会进入较高的轨道,减速会进入较低的轨道,都不能实现对接,故要想实现对接,可使航天器在半径较小的轨道上加速,然后进入较高的空间轨道,逐渐靠近其他航天器,两者速度接近时实现对接.例2 如图所示,我国发射的“神舟十一号”飞船和“天宫二号”空间实验室自动交会对接成功.假设对接前“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接答案 C解析飞船在同一轨道上加速追赶空间实验室时,速度增大,所需向心力大于万有引力,飞船将做离心运动,不能实现与空间实验室的对接,选项A错误;空间实验室在同一轨道上减速等待飞船时,速度减小,所需向心力小于万有引力,空间实验室将做近心运动,也不能实现对接,选项B错误;当飞船在比空间实验室半径小的轨道上加速时,飞船将做离心运动,逐渐靠近空间实验室,可在两者速度接近时实现对接,选项C正确;当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室,不能实现对接,选项D错误.三、双星或多星问题1.双星模型(1)如图所示,宇宙中有相距较近、质量相差不大的两个星球,它们离其他星球都较远,其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕其连线上的某一固定点做周期相同的匀速圆周运动,通常,我们把这样的两个星球称为“双星”.(2)特点①两星围绕它们之间连线上的某一点做匀速圆周运动,两星的运行周期、角速度相同.②两星的向心力大小相等,由它们间的万有引力提供.③两星的轨道半径之和等于两星之间的距离,即r1+r2=L,两星轨道半径之比等于两星质量的反比.(3)处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L 2=m 1ω2r 1,G m 1m 2L 2=m 2ω2r 2. 2.多星系统在宇宙中存在“三星”“四星”等多星系统,在多星系统中:(1)各个星体做圆周运动的周期、角速度相同.(2)某一星体做圆周运动的向心力是由其他星体对它万有引力的合力提供的.例3 两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,引力常量为G ,求双星的运行轨道半径r 1和r 2及运行周期T .答案 见解析解析 双星间的万有引力提供了各自做匀速圆周运动的向心力,对m 1:Gm 1m 2L 2=m 1r 1ω2 对m 2:Gm 1m 2L 2=m 2r 2ω2,且r 1+r 2=L 解得r 1=Lm 2m 1+m 2,r 2=Lm 1m 1+m 2由G m 1m 2L 2=m 1r 14π2T 2及r 1=Lm 2m 1+m 2得 周期T =2πL L G (m 1+m 2). 例4 (多选)宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三颗星体的质量相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星体位于同一直线上,两颗星体围绕中央星体做匀速圆周运动,如图甲所示;另一种是三颗星体位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行,如图乙所示.设这两种构成形式中三颗星体的质量均为m ,且两种系统中各星体间的距离已在图甲、乙中标出,引力常量为G ,则下列说法中正确的是( )A .直线三星系统中外侧每颗星体做匀速圆周运动的线速度大小为Gm LB .直线三星系统中外侧每颗星体做匀速圆周运动的周期为4πL 35GmC .三角形三星系统中每颗星做匀速圆周运动的角速度大小为23Gm L 3 D .三角形三星系统中每颗星做匀速圆周运动的加速度大小为3Gm L 2答案 BD 解析 直线三星系统中,星体做匀速圆周运动的向心力由其他两颗星体对它的万有引力的合力提供,有G m 2L 2+G m 2(2L )2=m v 2L , 解得v =12 5Gm L, 由T =2πL v 可得,T =4πL 35Gm , 故A 错误,B 正确;三角形三星系统中,星体做匀速圆周运动的向心力由其他两颗星体对它的万有引力的合力提供,如图所示,有2Gm 2L 2cos 30°=mω2L2cos 30°,解得ω= 3Gm L 3,由2G m 2L2cos 30°=ma ,可得a =3Gm L 2,故C 错误,D 正确.训练1 卫星的变轨问题1.(2019·江苏卷)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则( )A .v 1>v 2,v 1=GM rB .v 1>v 2,v 1>GM rC .v 1<v 2,v 1=GM r D .v 1<v 2,v 1>GM r答案 B解析 根据开普勒第二定律知,v 1>v 2,在近地点画出近地圆轨道,如图所示,由GMm r 2=m v 2r 可知,过近地点做匀速圆周运动的速度为v =GM r ,由于“东方红一号”在椭圆轨道上运动,所以v 1>GM r ,故选B.2.(多选)(2021·哈尔滨市第五十八中学校高一期末)“嫦娥一号”探月卫星沿地月转移轨道到达月球,在距月球表面200 km 的P 点进行第一次“刹车制动”后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,如图所示.之后,卫星在P 点经过几次“刹车制动”,最终在距月球表面200 km 的圆形轨道Ⅲ上绕月球做匀速圆周运动.用T 1、T 2、T 3分别表示卫星在椭圆轨道Ⅰ、Ⅱ和圆形轨道Ⅲ上运行的周期,用a 1、a 2、a 3分别表示卫星运动到P 点的加速度,则下列说法正确的是( )A .T 1>T 2>T 3B .T 1<T 2<T 3C .a 1>a 2>a 3D .a 1=a 2=a 3答案 AD解析 根据开普勒第三定律可知,A 正确,B 错误;在3个轨道上经过P 点时,卫星受到月球的万有引力相等,根据牛顿第二定律可知,C错误,D正确.3.2020年我国实施“天问一号”计划,将通过一次发射,实现“环绕、降落、巡视”三大任务.如图所示,探测器经历椭圆轨道Ⅰ→椭圆轨道Ⅱ→圆轨道Ⅲ的变轨过程.Q为轨道Ⅰ远火点,P为轨道Ⅰ近火点,探测器在三个轨道运行时都经过P点.则探测器()A.沿轨道Ⅰ运行至P点速度大于运行至Q点速度B.沿轨道Ⅱ运行至P点的加速度大于沿轨道Ⅲ运行至P点加速度C.沿轨道Ⅱ运行的周期小于沿轨道Ⅲ运行的周期D.从轨道Ⅰ进入轨道Ⅱ时需在P点加速答案 A解析由开普勒第二定律知,A正确;经过P点时的加速度是由火星对探测器的引力产生,=ma知,B错误;根据开普勒第三定律知,C错误;探测器从轨道Ⅰ进入轨道Ⅱ时由G Mmr2需在P点减速,故D错误.4.(多选)如图是我国发射“神舟七号”载人飞船的入轨过程.飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行的周期约为90分钟.下列判断正确的是()A.飞船变轨前后的线速度相等B.飞船在圆轨道上时航天员出舱前后都处于失重状态C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度答案BC解析飞船点火加速变轨,变轨前后的线速度不相等,故A错误;飞船在圆轨道上时,航天员出舱前后,航天员所受地球的万有引力提供航天员做圆周运动的向心力,航天员此时的加速度就是万有引力加速度,即航天员出舱前后均处于完全失重状态,故B正确;因为飞船在圆形轨道上的周期为90分钟,小于同步卫星的周期,根据ω=2π可知,C正确;飞船变轨前T通过椭圆轨道远地点时的加速度与变轨后沿圆轨道运动的加速度相等,故D错误.5.2019年春节期间,中国科幻电影里程碑的作品《流浪地球》热映,影片中为了让地球逃离太阳系,人们在地球上建造特大功率发动机,使地球完成一系列变轨操作,其逃离过程如图所示,地球在椭圆轨道Ⅰ上运行到远日点B变轨,进入圆形轨道Ⅱ.在圆形轨道Ⅱ上运行到B 点时再次加速变轨,从而最终摆脱太阳束缚.对于该过程,下列说法正确的是(图中A点为近日点)()A.沿轨道Ⅰ运动至B点时,需向前喷气减速才能进入轨道ⅡB.沿轨道Ⅰ运行的周期小于沿轨道Ⅱ运行的周期C.沿轨道Ⅰ运行时,在A点的加速度小于在B点的加速度D.在轨道Ⅰ上由A点运行到B点的过程,速度逐渐增大答案 B解析地球沿轨道Ⅰ运行至B点时,需向后喷气加速才能进入轨道Ⅱ,选项A错误;因轨道Ⅰ的半长轴小于轨道Ⅱ的半径,根据开普勒第三定律可知,地球沿轨道Ⅰ运行的周期小于沿可知,地球沿轨道Ⅰ运行时,在A点的加速轨道Ⅱ运行的周期,选项B正确;根据a=GMr2度大于在B点的加速度,选项C错误;根据开普勒第二定律可知,地球在轨道Ⅰ上由A点运行到B点的过程中,地球逐渐远离太阳,速度逐渐减小,选项D错误.6.(多选)“嫦娥五号”从地球发射到月球过程的路线示意图如图所示.关于“嫦娥五号”的说法正确的是()A .在P 点由a 轨道转变到b 轨道时,速度必须变小B .在Q 点由d 轨道转变到c 轨道时,要加速才能实现(不计“嫦娥五号”的质量变化)C .在b 轨道上,“嫦娥五号”在P 点的速度比在R 点的速度大D .“嫦娥五号”在a 、b 轨道上正常运行时,通过同一点P 时,加速度相等答案 CD解析 “嫦娥五号”在a 轨道上的P 点进入b 轨道,需加速,使万有引力小于需要的向心力而做离心运动,选项A 错误;在Q 点由d 轨道转变到c 轨道时,必须减速,使万有引力大于需要的向心力而做近心运动,选项B 错误;根据开普勒第二定律知,在b 轨道上,“嫦娥五号”在P 点的速度比在R 点的速度大,选项C 正确;根据Gm 地m r2=ma n ,知“嫦娥五号”在a 、b 轨道上正常运行时,通过同一点P 时,加速度相等,选项D 正确.7.(多选)2021年5月15日,我国自主研制的火星探测器“天问一号”成功着陆火星.如图所示,着陆火星前探测器成功进入环火星半长轴为R 1的椭圆轨道,然后实施近火星制动,顺利完成“太空刹车”,被火星捕获,进入环火星半径为R 2、周期为T 的圆轨道.则关于“天问一号”探测器,下列说法正确的是( )A .探测器由椭圆轨道进入圆轨道应该在P 点加速B .探测器沿椭圆轨道从P 点运动到Q 点速度减小C .探测器在P 点变轨前后,加速度将增大D .探测器沿椭圆轨道由P 点运动到Q 点所需的最短时间为R 13R 23·T 2 答案 BD解析 探测器由椭圆轨道实施近火星制动,因此进入圆轨道应该在P 点减速,选项A 错误;由开普勒第二定律知,选项B 正确;探测器在P 点变轨前后,万有引力不变,加速度不变,选项C 错误;根据开普勒第三定律有R 13T 12=R 23T2 解得T 1=R 13R 23T ,因此探测器沿椭圆轨道由P 点运动到Q 点所需的最短时间t =T 12=R 13R 23·T 2,选项D 正确.训练2 双星及多星问题1.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星中心之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )A .m 1、m 2做圆周运动的线速度之比为3∶2B .m 1、m 2做圆周运动的角速度之比为3∶2C .m 1做圆周运动的半径为25LD .m 2做圆周运动的半径为25L答案 C解析 设双星m 1、m 2距转动中心O 的距离分别为r 1、r 2,双星绕O 点转动的角速度相等,设为ω,据万有引力定律和牛顿第二定律得G m 1m 2L 2=m 1r 1ω2=m 2r 2ω2,又r 1+r 2=L ,m 1∶m 2=3∶2 所以可得r 1=25L ,r 2=35Lm 1、m 2运动的线速度分别为v 1=r 1ω,v 2=r 2ω, 故v 1∶v 2=r 1∶r 2=2∶3. 综上所述,故选C.2.(多选)(2021·重庆市永川北山中学校高二开学考试)宇宙中两颗相距较近、相互绕转的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,不至于因为万有引力的作用而吸引到一起.如图所示,某双星系统中A 、B 两颗天体绕O 点做匀速圆周运动,它们的轨道半径之比r A ∶r B =1∶2,则两颗天体的( )A .质量之比m A ∶mB =2∶1 B .角速度之比ωA ∶ωB =1∶1C .线速度大小之比v A ∶v B =2∶1D .向心力大小之比F A ∶F B =2∶1 答案 AB解析 双星都绕O 点做匀速圆周运动,由两者之间的万有引力提供向心力,角速度相等,设为ω,根据牛顿第二定律,对A 星有G m A m BL 2=m A ω2r A对B 星有G m A m BL2=m B ω2r B ,故m A ∶m B =r B ∶r A =2∶1根据双星的运动条件有角速度之比为ωA ∶ωB =1∶1,向心力大小之比为F A ∶F B =1∶1,由v =ωr可得线速度大小之比为v A ∶v B =r A ∶r B =1∶2,故选A 、B.3.“开普勒-47”系统位于天鹅座内,距离地球大约4 900光年.这一系统有一对互相围绕运行的恒星,运行周期为T ,其中大恒星的质量为M ,小恒星的质量只有大恒星质量的三分之一.已知引力常量为G ,则下列判断正确的是( ) A .小恒星、大恒星的转动半径之比为1∶1 B .小恒星、大恒星的转动半径之比为1∶2 C .两颗恒星相距3GMT 23π2 D .两颗恒星相距3GMT 24π2答案 C解析 设两恒星间的距离为L ,小恒星、大恒星的轨道半径分别为r 1、r 2,小恒星质量为M 1,则M 1=13M ,两恒星运动的周期相同,角速度相同,所需的向心力由万有引力提供,有G M 1ML 2=Mr 2ω2=M 1r 1ω2,可得r 1r 2=M M 1=3,故A 、B 错误;由A 、B 项分析知,r 1=34L ,又GMM 1L 2=M 1r 14π2T2,解得L =3GMT 23π2,故C 正确,D 错误. 4.(2021·杭州第二中学月考)天文学家们推测,超大质量黑洞由另外两个超大质量黑洞融合时产生的引力波推射出该星系核心区域.两个黑洞逐渐融入到新合并的星系中央并绕对方旋转,这种富含能量的运动产生了引力波.假设在合并前,两个黑洞互相绕转形成一个双星系统,如图所示,若黑洞A 、B 的总质量为1.3×1032 kg ,两黑洞中心间的距离为2×105 m ,产生的引力波的周期和黑洞做圆周运动的周期相当,则估算该引力波周期的数量级为(G =6.67× 10-11N·m 2/kg 2)( )A .10-7 s B .10-5 s C .10-3 s D .10-1 s答案 C解析 A 、B 的周期相同,角速度相等,靠相互的万有引力提供向心力,有:Gm A m B L 2=m A r A 4π2T 2=m B r B 4π2T 2,解得:G ()m A +m B L 2=4π2LT 2,将黑洞A 、B 的总质量为1.3×1032 kg ,两黑洞中心间的距离L =2×105 m 代入,解得T ≈6.0×10-3 s ,则该引力波周期的数量级为10-3 s ,选项C 正确.5.如图所示,由恒星A 与恒星B 组成的双星系统绕其连线上的O 点各自做匀速圆周运动,经观测可知恒星B 的运行周期为T .若恒星A 的质量为m ,恒星B 的质量为2m ,引力常量为G ,则恒星A 与O 点间的距离为( )A.32GmT 29π2 B.39GmT 232π2 C.3GmT 2108π2D.327GmT 24π2答案 A解析 双星系统两个恒星的角速度相同,周期相同,设恒星A 和恒星B 的轨道半径分别为r A 和r B ,对A 根据万有引力提供向心力得G m ·2m L 2=m 4π2T 2r A对B 根据万有引力提供向心力得G m ·2m L 2=2m 4π2T 2r B又L =r A +r B联立解得r A =32GmT 29π2故A 正确,B 、C 、D 错误.6.(多选)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗中子星都看作是质量均匀分布的球体,由这些数据、引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( ) A .质量之积 B .质量之和C .速率之和D .各自的自转角速度答案 BC解析 两颗中子星运动到某位置的示意图如图所示每秒转动12圈,角速度已知,中子星运动时,由万有引力提供向心力得 Gm 1m 2l 2=m 1ω2r 1① Gm 1m 2l 2=m 2ω2r 2② l =r 1+r 2③由①②③式得G (m 1+m 2)l 2=ω2l ,所以m 1+m 2=ω2l 3G ,质量之和可以估算.由线速度与角速度的关系v =ωr 得 v 1=ωr 1④ v 2=ωr 2⑤由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算. 质量之积和各自的自转角速度无法求解.故选B 、C.7.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做匀速圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时两星做匀速圆周运动的周期为( ) A.n 3k 2T B.n 3kT C.n 2kT D.n kT 答案 B解析 设两恒星原来的质量分别为m 1、m 2,距离为L , 双星靠彼此的万有引力提供向心力,则有 G m 1m 2L 2=m 1r 14π2T 2 G m 1m 2L 2=m 2r 24π2T 2 并且r 1+r 2=L 解得T =2πL 3G (m 1+m 2)当两星总质量变为原来的k 倍,两星之间距离变为原来的n 倍时 T ′=2πn 3L 3Gk (m 1+m 2)=n 3kT 故选B.8.(多选)国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O 做匀速圆周运动,如图所示,此双星系统中体积较小成员能“吸食”另一颗体积较大星体表面物质,达到质量转移的目的,被吸食星体的质量远大于吸食星体的质量.假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )A .它们做圆周运动的万有引力保持不变B .它们做圆周运动的角速度不断变大C .体积较大星体圆周运动轨道半径变大D .体积较大星体圆周运动的线速度变大 答案 CD解析 设体积较小者质量为m 1,轨道半径为r 1,体积较大者质量为m 2,轨道半径为r 2,两者球心之间的距离为L ,由F =Gm 1m 2L 2知F 增大,A 错误;由Gm 1m 2L 2=m 1ω2r 1,Gm 1m 2L2=m 2ω2r 2得:ω=G (m 1+m 2)L 3,因(m 1+m 2)及L 不变,故ω不变,B 错误;轨道半径r 2=Gm 1ω2L2,因m 1增大,故r 2变大,C 正确;线速度大小v 2=ωr 2,因r 2变大,故v 2变大,D 正确.9.(多选)如图所示,三颗质量均为M 的星球位于边长为L 的等边三角形的三个顶点上.如果它们中的每一颗都在相互的引力作用下沿外接于等边三角形的圆轨道运行而保持等边三角形不变,已知引力常量为G ,下列说法正确的是( )A .其中一个星球受到另外两个星球的万有引力的合力大小为3GM 22L 2B .其中一个星球受到另外两个星球的万有引力的合力指向圆心OC .它们运行的轨道半径为32LD .它们运行的速度大小为GML答案 BD解析 根据万有引力定律,任意两颗星球之间的万有引力为F 1=G M 2L 2,方向沿着它们的连线,其中一个星球受到另外两个星球的万有引力的合力为F =2F 1cos 30°=3G M 2L 2,方向指向圆心O ,选项A 错误,B 正确;由r cos 30°=L 2,解得它们运行的轨道半径r =33L ,选项C 错误;由3G M 2L 2=M v 2r,可得v =GML ,选项D 正确.。

第5章 专题强化7 卫星变轨问题 双星模型

第5章 专题强化7 卫星变轨问题 双星模型

专题强化七卫星变轨问题双星模型【目标要求】1会处理人造卫星的变轨和对接问题2掌握双星、多星系统,会解决相关问题3会应用万有引力定律解决星球“瓦解”和黑洞问题.题型一卫星的变轨和对接问题1 .变轨原理(I)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道I上,卫星在轨道IA4 2上做匀速圆周运动,有心如图所示.(2)在A点(近地点)点火加速,由于速度变大,所需向心力变大,卫星做离心运动进入椭圆轨道∏.(3)在椭圆轨道4点(远地点)将做近心运动,>〃崇,再次点火加速,使"七~,进入圆轨道m.2 .变轨过程分析(1)速度:设卫星在圆轨道I和In上运行时的速率分别为0、6,在轨道∏上过A点和B点时速率分别为OAeB.在A点加速,则VA>V∖,在B点加速,则V3>Vβf又因*3,故有V A>V∖>V3>V B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道I还是轨道∏上经过A点,卫星的加速度都相同,同理,卫星在轨道∏或轨道III上经过8点的加速度也相同.(3)周期:设卫星在I、II、In轨道上的运行周期分别为T H T2.Γ3,轨道半径分别为八、皿半长轴)、m由开普勒第三定律捻=々可知。

VT'2<T⅛.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在I、【I、In轨道的机械能分别为西、E2、E3,从轨道I到轨道I【和从轨道∏到轨道H1都需要点火加速,则E∣<E2<E3∙考向1卫星变轨问题中各物理量的比较【例H2023年2月,“天问一号”探测器成功实施近火制动,进入环火椭圆轨道,并于2023年5月软着陆火星表面,开展巡视探测等工作,探测器经过多次变轨后登陆火星的轨迹示意图如图所示,其中轨道I、In为椭圆,轨道II为圆.探测器经轨道I、n、In运动后在。

点登陆火星,O点是轨道I、n、In的切点,0、。

专题30 卫星的变轨问题、天体追及相遇问题、双星和多星问题(解析版)

专题30 卫星的变轨问题、天体追及相遇问题、双星和多星问题(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题30 卫星的变轨问题、天体追及相遇问题、双星和多星问题导练目标 导练内容目标1 卫星的变轨问题 目标2 天体追及相遇问题 目标3双星和多星问题一、卫星的变轨问题 1.两类变轨简介两类变轨离心运动近心运动示意图变轨起因 卫星速度突然增大卫星速度突然减小万有引力与 向心力的 大小关系 G Mmr 2<m v 2rG Mmr 2>m v 2r2.变轨前后各运行物理参量的比较(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v1、v3,在轨道Ⅰ上过A点和B点时速率分别为v A、v B。

在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。

(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A 点,卫星的加速度都相同,同理,经过B点加速度也相同。

(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3。

(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒。

若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3。

①在A点,由圆周Ⅰ变至椭圆Ⅰ时,发动机向后喷气,推力做正功,动能增加、势能不变、机械能增加;②在B点,由椭圆Ⅰ变至圆周Ⅰ时,发动机向后喷气,推力做正功,动能增加、势能不变、机械能增加;反之也有相应的规律。

【例1】2013年12月6日,“嫦娥三号”携带月球车“玉兔号”运动到地月转移轨道的P点时做近月制动后被月球俘获,成功进入环月圆形轨道Ⅰ上运行,如图所示。

在“嫦娥三号”沿轨道Ⅰ经过P点时,通过调整速度使其进入椭圆轨道Ⅰ,在沿轨道Ⅰ经过Q点时,再次调整速度后又经过一系列辅助动作,成功实现了其在月球上的“软着陆”。

卫星变轨问题、双星模型(原卷版)—2025年高考物理一轮复习

卫星变轨问题、双星模型(原卷版)—2025年高考物理一轮复习

卫星变轨问题、双星模型素养目标:1.会处理人造卫星的变轨和对接问题。

2.掌握双星、多星系统,会解决相关问题。

3.会应用万有引力定律解决星球“瓦解”和黑洞问题。

1.神舟十六号载人飞船入轨后顺利完成人轨状态设置,采用自主快速交会对接模式成功对接于天和核心舱径向端口。

对接过程的示意图如图所示,神舟十六号飞船处于半径为1r 的圆轨道Ⅰ,运行周期为T 1,线速度为1v ,通过变轨操作后,沿椭圆轨道Ⅱ运动到B 处与天和核心舱对接,轨道Ⅱ上A 点的线速度为2v ,运行周期为T 2;天和核心舱处于半径为3r 的圆轨道Ⅲ,运行周期为T 3,线速度为3v ;则神舟十六号飞船( )A .213v v v >>B .T 1>T 2>T 3C .在轨道Ⅱ上B 点处的加速度大于轨道Ⅲ上B 点处的加速度D .该卫星在轨道Ⅰ运行时的机械能比在轨道Ⅲ运行时的机械能大考点一 卫星的变轨和对接问题1.卫星发射模型(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上,卫星在轨道Ⅰ上做匀速圆周运动,有G Mmr 12=m v 2r 1,如图所示。

(2)在A 点(近地点)点火加速,由于速度变大,所需向心力变大,GMm r 12<m v A 2r 1,卫星做离心运动进入椭圆轨道Ⅱ。

(3)在椭圆轨道B 点(远地点),G Mm r 22>m v B 2r 2,将做近心运动,再次点火加速,使G Mm r 22=m v B ′2r 2,进入圆轨道Ⅲ。

思考 若使在轨道Ⅲ运行的宇宙飞船返回地面,应如何操作?2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在椭圆轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B ,四个速度关系为v A >v 1>v 3>v B 。

(2)向心加速度在A 点,轨道Ⅰ上和轨道Ⅱ上的向心加速度关系a ⅠA =a ⅡA ,在B 点,轨道Ⅱ上和轨道Ⅲ上的向心加速度关系a ⅡB =a ⅢB ,A 、B 两点向心加速度关系a A >a B 。

高中物理人教版《必修第二册》教案讲义:卫星的变轨问题及宇宙航行的几个问题辨析

高中物理人教版《必修第二册》教案讲义:卫星的变轨问题及宇宙航行的几个问题辨析

人造卫星的发射过程要经过多次变轨方可到达预定轨道,在赤道上顺着地球自转方向发射卫星到圆点点火加速,速度变大,进入椭圆轨道Ⅱ再次点火加速进入圆轨道Ⅲ卫星变轨问题分析方法速度大小的分析方法.①卫星做匀速圆周运动经过某一点时,其速度满足以此为依据可分析卫星在两个不同圆轨道上的②卫星做椭圆运动经过近地点时,卫星做离心运动,m v2.以此为依据可分析卫星沿椭圆轨r道和沿圆轨道通过近地点时的速度大小(即加速离心.发射“嫦娥三号”的速度必须达到第三宇宙速度.在绕月圆轨道上,卫星周期与卫星质量有关.卫星受月球的引力与它到月球中心距离的平方成反比.在绕月轨道上,卫星受地球的引力大于受月球的引力明白第三宇宙速度是指被发射物体能够脱离太阳系的最小发射速度,而“嫦娥三号”没有脱离太阳的引力范要熟记万有引力的表达式并清楚是万有引力提供卫星做圆如图所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步卫星圆,到达远地点Q时再次变轨,进入同步卫星轨设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道点的速率为v2,沿转移轨道刚到达远地点,在同步卫星轨道上的速率为v4,则下列说法正确的是点变轨时需要加速,Q点变轨时要减速点变轨时需要减速,Q点变轨时要加速D.v2>v1>v4>v3练2发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示,卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()A.卫星在轨道3上的运行速率大于在轨道1上的运行速率B.卫星在轨道3上的角速度大于在轨道1上的角速度C.卫星在轨道1上运动一周的时间大于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度反思总结卫星变轨问题关键词转化二、有关宇宙航行的几个问题辨析辨析1.发射速度与运行速度的比较(1)发射速度在地面以某一速度发射一个物体,发射后不再对物体提供动力,在地面离开发射装置时的速度称为发射速度,三个宇宙速度都是指发射速度.(2)运行速度运行速度是指做圆周运动的人造卫星稳定飞行时的线速度,对于人造地球卫星,轨道半径越大,则运行速度越小.(3)有的同学这样认为:沿轨道半径较大的圆轨道运行的卫星的发射速度大,发射较为困难;而轨道半径较小的卫星发射速度小,发射较为容易.这种观点是片面的.因为高轨卫星的发射难易程度与发射速度没有多大关系,如果我们在地面上以7.9km/s 的速度水平发射一个物体,则这个物体可以贴着地面做圆周运动而不落到地面;如果速度增大,则会沿一个椭圆轨道运动.速度越大,椭圆轨道的半长轴就越大;如果这个速度达到11.2km/s,则这个物体可以摆脱地球的引力.可见,无论以多大速度发射一个物体或卫星,都不会使之成为沿较大的圆轨道做圆周运动的人造卫星,高轨卫星的发射过程是一个不断加速变轨的过程,并不是在地面上给一个发射速度就可以的.【典例2】(多选)如图所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则()A.该卫星的发射速度必定大于11.2km/sB.卫星在同步轨道Ⅱ上的运行速度大于7.9km/sC.在椭圆轨道上,卫星在P点的速度大于在Q点的速度D.卫星在Q点通过加速实现由轨道Ⅰ进入轨道Ⅱ辨析2.分清三个不同(1)重力和万有引力的向心加速度等于重力加速度g 的运动周期有可能是20小时如图所示,地球赤道上的山丘e,近地资源卫星均在赤道平面上绕地心做匀速圆周运动.设、v3,向心加速度分别为v2<v33<a2已知地球赤道上的物体随地球自转的线速度大小为近地卫星线速度大小为,地球同步卫星线速度大小为设近地卫星距地面高度不计,同步卫星距地面高度约为地倍.则下列结论正确的是(。

专题 卫星的变轨问题(课件)高中物理(人教版2019必修第二册)

专题  卫星的变轨问题(课件)高中物理(人教版2019必修第二册)
垂直起飞、转弯飞行、进入轨道这样三个阶段。
由于在地球表面附近大气稠密,对火箭的阻力很大,为了尽快离开大气层,
通常采用垂直向上发射;垂直发射的另一个优点有时要在适当的位
置短时间启动卫星上的
发动机,使卫星的速度
发生突变,让其运行轨
道发生改变,最终到达
于动力飞行状态,要消耗大量燃料。如果发射同步卫星,还必须在赤道上
建立发射场,有一定局限性。
变轨发射(即近地发射):运载火箭消耗的燃料少,发射场的位置也不
受限制。目前,各国发射同步卫星都采用第二种方法,但这种方法在操
作和控制上都比较复杂。
发射人造地球卫星的运载火箭一般分为三级,其发射后的飞行过程大致包括
2
向前点火减速
Mm
v
G 2 m
r
r
近心运动
三、变轨过程1——低轨到高轨
低圆轨道(Ⅰ)——P点加速(向后喷气)


P
v1
v2
·

离心运动
v4
v3
Q
椭圆转移轨道(Ⅱ)——Q点加速(向后喷气)
离心运动
高圆轨道(Ⅲ)
3
使卫星加速到v 2
切点Q
切点P
2
mv 2
Mm
使
G 2
R
R
v4
2
v3
1
加速
v1
v2>v1
度的大小关系是(

P
1
2
3
Q
)所以VQ2与VQ3速
问题4、卫星在1轨道和3轨道做的都是圆周运动,所以根据“高轨低速长周期”,得
Vp1与VQ3的速度大小关系是(

问题5、综合以上分析得出卫星在轨道上各点速度的大小关系(

专题强化一:卫星变轨问题和双星问题—人教版高中物理必修二课件

专题强化一:卫星变轨问题和双星问题—人教版高中物理必修二课件
√C.飞船先在比空间实验室轨道半径小的轨道上加速,加速
后飞船逐渐靠近空间实验室,两者速度接近时实现对接 D.飞船先在比空间实验室轨道半径小的轨道上减速,减速
后飞船逐渐靠近空间实验室,两者速度接近时实现对接
第六章专题强化一:卫星变轨问题和 双星问 题—人 教版高 中物理 必修二 课件 (共17张PPT)
√B.沿轨道Ⅰ运行的周期小于沿轨道Ⅱ运行的周期
C.沿轨道 Ⅰ 运行时,在A点的加速度小于在B点的加速度 D.在轨道 Ⅰ 上由A点运行到B点的过程,速度逐渐增大
第六章专题强化一:卫星变轨问题和 双星问 题—人 教版高 中物理 必修二 课件 (共17张PPT)
第六章专题强化一:卫星变轨问题和 双星问 题—人 教版高 中物理 必修二 课件 (共17张PPT)
一、人造卫星的变轨问题
2.实例分析 (1)飞船对接问题 飞船与在轨空间站对接 先使飞船位于较低轨道上,然后让飞船合理地加速,使飞船沿 椭圆轨道做离心运动,追上高轨道飞船完成对接(如图甲所示). 注意:若飞船和空间站在同一轨道上,飞船加速时无法追上空 间站,因为飞船加速时,将做离心运动,从而离开这个轨道. 通常先使后面的飞船减速降低高度,再加速提升高度,通过适 当控制,使飞船追上空间站时恰好具有相同的速度,如图乙.
D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度
第六章专题强化一:卫星变轨问题和 双星问 题—人 教版高 中物理 必修二 课件 (共17张PPT)
第六章专题强化一:卫星变轨问题和 双星问 题—人 教版高 中物理 必修二 课件 (共17张PPT)
达标检测
1.(卫星变轨问题)2019年春节期间,中国科幻电影里程碑的作品《流浪地球》热播, 影片中为了让地球逃离太阳系,人们在地球上建造特大功率发动机,使地球完成一 系列变轨操作,其逃离过程如图所示,地球在椭圆轨道 Ⅰ 上运行到远日点B变轨, 进入圆形轨道 Ⅱ.在圆形轨道 Ⅱ 上运行到B点时再次加速变轨,从而最终摆脱太阳 束缚.对于该过程,下列说法正确的是 A.沿轨道 Ⅰ 运动至B点时,需向前喷气减速才能进入轨道 Ⅱ

专题 卫星的变轨问题和追及相遇问题 高一物理(人教版2019)(解析版)

专题 卫星的变轨问题和追及相遇问题 高一物理(人教版2019)(解析版)

专题11 卫星的变轨问题和追及相遇问题一、卫星的变轨问题1.2018年5月21日5点28分,在我国西昌卫星发射中心,由中国航天科技集团有限公司抓总研制的嫦娥四号中继星“鹊桥”搭乘长征四号丙运载火箭升空。

卫星由火箭送入近地点约200公里、远地点约40万公里的地月转移轨道1。

在远地点40万公里处点火加速,由椭圆轨道变成高度为40万公里的圆轨道2,在此圆轨道上飞船运行周期等于月球公转周期。

下列判断正确的是( )A .卫星在轨道1的运行周期大于在轨道2的运行周期B .卫星在圆轨道2的P 点向心加速度小于轨道1上的P 点向心加速度C .卫星在此圆轨道2上运动的角速度等于月球公转运动的角速度D .卫星变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度 【答案】C【解析】A .由开普勒第三定律得33122212R R T T 轨道1的半长轴小于轨道2的半径,故卫星在轨道1的运行周期小于在轨道2的运行周期,A 错误;BD .根据牛顿第二定律,万有引力提供向心力,提供卫星的向心加速度,同一位置,万有引力一定,向心加速度相等,卫星变轨前通过椭圆轨道远地点时的加速度等于变轨后沿圆轨道运动的加速度BD 错误;C .圆轨道2上飞船运行周期等于月球公转周期,故卫星在此圆轨道2上运动的角速度等于月球公转运动的角速度,C 正确。

故选C 。

2.如图所示,“嫦娥一号”探月卫星进入月球轨道后,首先在椭圆轨道Ⅰ上运动,P 、Q 两点是轨道Ⅰ的近月点和远月点,Ⅰ是卫星绕月做圆周运动的轨道,轨道Ⅰ和Ⅰ在P 点相切,关于该探月卫星的运动,下列说法正确的是( )A .卫星在轨道Ⅰ上运动周期大于在轨道Ⅰ上运动的周期B .卫星由轨道Ⅰ进入轨道Ⅰ必须要在P 点加速C .卫星在轨道Ⅰ上运动时,P 点的速度小于Q 点的速度D .卫星在轨道Ⅰ上运动时,P 点的加速度小于Q 点的加速度 【答案】A【解析】A .根据开普勒第三定律可知,卫星在轨道Ⅰ上运动周期大于在轨道Ⅰ上运动的周期,故A 正确;B .卫星由轨道Ⅰ进入轨道Ⅰ必须要在P 点减速,做近心运动,故B 错误;C .根据开普勒第二定律,卫星在轨道Ⅰ上运动时,近地点P 点的速度大于远地点Q 点的速度,故C 错误;D .卫星在轨道Ⅰ上运动时,根据2MmG ma R ,P 点的加速度大于Q 点的加速度,故D 错误。

高一物理【人造卫星的发射、变轨问题】专题

高一物理【人造卫星的发射、变轨问题】专题

高一物理【人造卫星的发射、变轨问题】专题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示。

(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。

(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做匀速圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ。

(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。

2.三个运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B 点速率分别为v A、v B。

在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。

(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同。

(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3。

我国正在进行的探月工程是高新技术领域的一次重大科技活动,在探月工程中飞行器成功变轨至关重要。

如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞行器在距月球表面高度为3R的圆形轨道Ⅰ上运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动,则()A.飞行器在B点处点火后,速度增加B.由已知条件不能求出飞行器在轨道Ⅱ上的运行周期C.在只有万有引力作用的情况下,飞行器在轨道Ⅱ上通过B点的加速度大于在轨道Ⅲ上通过B点的加速度D.飞行器在轨道Ⅲ上绕月球运行一周所需的时间为2πR g0[解析]在椭圆轨道近月点变轨成为圆轨道,要实现变轨应给飞行器点火减速,减小所需的向心力,故点火后速度减小,故A错误;设飞行器在近月轨道Ⅲ绕月球运行一周所需的时间为T 3,则mg 0=mR 4π2T 32,解得T 3=2π R g 0,根据几何关系可知,轨道Ⅱ的半长轴a =2.5R ,根据开普勒第三定律a 3T2=k 以及飞行器在轨道Ⅲ上的运行周期,可求出飞行器在轨道Ⅱ上的运行周期,故B 错误,D 正确;在只有万有引力作用的情况下,飞行器在轨道Ⅱ上通过B 点的加速度与在轨道Ⅲ上通过B 点的加速度相等,故C 错误。

(完整版)人造卫星变轨问题

(完整版)人造卫星变轨问题

人造卫星变轨问题一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。

轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GMr T 32π=、向心加速度2r GM a =也都是确定的。

如果卫星的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。

同理,只要上述物理量之一发生变化,另外几个也必将随之变化。

在高中物理中,会涉及到人造卫星的两种变轨问题。

二、渐变由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。

如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。

如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。

由于这种变轨的起因是阻力,阻力对卫星做负功,使卫星速度减小,所需要的向心力r mv 2减小了,而万有引力大小2r GMm 没有变,因此卫星将做向心运动,即半径r 将减小。

由㈠中结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大。

三、突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标。

如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在P 点点火加速,在短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。

第一次加速:卫星需要的向心力r mv 2增大了,但万有引力2rGMm 没变,因此卫星将开始做离心运动,进入椭圆形的转移轨道Ⅱ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人造卫星变轨问题专题
(一) 人造卫星基本原理
绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。

轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度2r GM a =也都是唯一确定的。

如果卫星的质量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。

一旦卫星发生了变轨,即轨道半径r 发生变化,上述所有物理量都将随之变化(E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒,其增减由该过程的能量转换情况决定)。

同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。

(二) 常涉及的人造卫星的两种变轨问题
1. 渐变
由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化
(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r 是增大还是
减小,然后再判断卫星的其他相关物理量如何变化。

1) 人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。

如果不及时进行轨道维持(即通过启动星上小型发动机,将化学能转化为机械能,
保持卫星应具有的状态),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各
个物理量的变化。

这种变轨的起因是阻力。

阻力对卫星做负功,使卫星速度减小,卫星所需要的向心力r mv 2减小了,而万有引力2r GMm
的大小没有变,因此卫星将
做向心运动,即轨道半径r 将减小。

由基本原理中的结论可知:卫星线速度v 将增大,周期T 将减小,向心加速
度a 将增大,动能E k 将增大,势能E p 将减小,有部分机械能转化为内能(摩擦
生热),卫星机械能E 机将减小。

为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小,
在卫星克服阻力做功的同时,万有引力(即重力)将对卫星做正功。

而且万有引
力做的正功远大于克服空气阻力做的功,外力对卫星做的总功是正的,因此卫星
动能增加。

根据E 机=E k +E p ,该过程重力势能的减少总是大于动能的增加。

2) 有一种宇宙学的理论认为在漫长的宇宙演化过程中,引力常量G 是逐渐减小的。

如果这个结论正确,那么环绕星球将发生离心现象,即环绕星球到中心星球间的
距离r 将逐渐增大,环绕星球的线速度v 将减小,周期T 将增大,向心加速度a 将减小,动能E k 将减小,势能E p 将增大。

2. 突变
由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道。

1) 发射同步卫星时,可以先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1;变轨时在P 点点火加速,短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q 时的速率为v 3;此时进行第二次点火加速,在短时间内将速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。

例题
1. 某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫
星到地心的距离从r 1慢慢变到r 2,用E Kl .E K2分别表示卫星在这两个轨道上的动能,则
A.r 1<r 2,E K1<E K2
B.r 1>r 2,E K1<E K2
C.r 1<r 2,E K1>E K2
D.r 1>r 2,E K1>E K2
2. (1)飞船在椭圆轨道1上运行,Q 为近地点,P 为远地点,当飞船运动到P 点时轨道1
轨道2
v 2 v 3 v 4
v 1 Q
P Ⅰ
Ⅲ Ⅱ
点火,使飞船沿圆轨道2运行,以下说法正确的是( )
A .飞船在Q 点的万有引力大于该点所需的向心力
B .飞船在P 点的万有引力大于该点所需的向心力
C .飞船在轨道1上P 的速度小于在轨道2上P 的速度
D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度
(2)假设由于飞船的特殊需要,美国的一艘原来在圆轨道运行的飞船前往与之对接,则飞船一定是
A .从较低轨道上加速
B .从较高轨道上加速
C .从同一轨道上加速
D .从任意轨道上加速
3. 航天飞机在完成对哈勃太间望远镜的维修任务后,在A 点短时间开动小型发动机
进行变轨,从圆形轨道Ⅰ进入椭圆道Ⅱ,B 为轨道Ⅱ上的一点,如图所示。

下列说法中正确的有 A .在轨道Ⅱ上经过A 的机械能大于经过B 的机械能
B .在A 点短时间开动发动机后航天飞机的动能增大了
C .在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期
D .在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度
4. 我国成功实施了“神舟”七号的载入航天飞行,并实现了航天员首次出舱。

飞船
A
B 轨道Ⅰ 轨道Ⅱ
先沿椭圆轨道飞行,后在远地点343千米处点火加速,把飞船运行轨道由椭圆轨道变成离地面高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。

下列正确的是( )
A.飞船变轨前后的机械能相等
B.飞船在圆轨道上时航天员出舱前后都处于超重状态
C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度
D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度
1.B
2.BC A
3.C
4.C。

相关文档
最新文档