投入产出数学模型练习题 数学建模

合集下载

《数学建模 建立函数模型解决实际问题》试卷及答案_高中数学必修第一册_人教A版

《数学建模 建立函数模型解决实际问题》试卷及答案_高中数学必修第一册_人教A版

《数学建模建立函数模型解决实际问题》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、某公司每小时生产零件的数量与时间的关系可以用下面哪个函数模型来表示?每天工作8小时,且生产数量随着工龄增加而增加。

A、f(t) = 100 + 2tB、f(t) = 100 + 2t^2C、f(t) = 100 + 2t^3D、f(t) = 100 + 2e^t2、一个城市为了改善交通状况,计划拓宽一条现有道路。

现有道路的宽度为10米,经过调查发现,道路的宽度每增加1米,道路的日均车流量会减少100辆。

设道路宽度从10米增加到x米,日均车流量减少的辆数为(100(x−10))。

根据上述情况,下列哪个函数模型描述了道路宽度与日均车流量之间的关系?A.(y=1000x)B.(y=1000(10−x))C.(y=1000(x+10))D.(y=1000(10−x))3、已知某工厂生产某种产品,每增加一个工人的工作效率,每天能多生产50个产品。

现有10名工人,每天能生产1000个产品。

设工人人数为x,每天生产的产品数量为y,根据题意可建立函数模型为()A. y = 50x + 1000B. y = 50x + 100C. y = 50x + 50D. y = 50x - 10004、某次数学建模活动中,参与者需要根据给定的数据建立一个线性函数模型来描述某种商品的销售量与价格之间的关系。

已知当价格为10元时,销售量为200件;当价格为15元时,销售量为150件。

若设销售量为y,价格为x,则建立的线性函数模型为()。

x)A、(y=200−53x)B、(y=−200+53C、(y=−200+5x)D、(y=−200+10x)5、在研究某种商品的需求关系时,研究人员得到一组数据如下:商品价格(元)为10, 15, 20, 25, 30,商品销售量(件)为500, 450, 400, 350, 300。

为了建立商品价格与销售量之间的关系,最适合采用的数学模型是:A. 二次函数模型B. 线性函数模型C. 几何模型D. 对数函数模型6、在解决实际问题时,以下哪个函数模型最适合描述某城市人口随时间的变化?A、一次函数模型C、对数函数模型D、幂函数模型7、若一家工厂每天生产x件产品,每件产品的成本为c元,售价为p元,每天的固定成本为f元,则该工厂的日利润y与x的关系式为:A)y = x(p - c) - fB)y = x(c - p) - fC)y = x(c - p) + fD)y = x(p - c) + f8、已知某工厂生产一批产品,根据实验数据得出每增加一个工时,产品的合格率增加2%,生产x个工时后,产品的合格率为y%,那么函数模型可以表示为:A、y = 2x + 1B、y = 2x² + 1C、y = x + 2D、y = 2x² + 2(x + 1)二、多选题(本大题有3小题,每小题6分,共18分)1、以下哪些函数模型可以用来描述现实生活中的实际问题?A. 线性函数模型B. 二次函数模型C. 指数函数模型D. 对数函数模型2、一个直角三角形的两直角边长分别为a和b,斜边长为c。

数学建模的综合应用练习题

数学建模的综合应用练习题

数学建模的综合应用练习题数学建模是将现实问题转化为数学形式,并通过数学方法进行求解的过程。

它在科学研究、工程设计、经济决策等领域具有重要的应用价值。

为了提高对数学建模方法的理解和应用能力,以下将提供一些综合应用练习题,帮助读者巩固数学建模的知识和技能。

综合应用练习一:投资决策问题某公司打算在国内设立新的工厂,用于生产一个新产品。

该产品的市场需求与时间的关系由函数 Q(t) = a * e^(bt) 给出,其中 t 是时间(年),Q(t) 是产品市场需求量,且 a、b 均为常数。

假设公司在 t=0 时刻开始投资建厂,并在 t=T 时刻开始生产。

为了降低风险,公司希望在 t=T 之前尽可能准确预测产品的市场需求量,并根据市场需求调整投资计划。

要求:1. 建立数学模型,根据给定的 Q(t) 函数和其他相关因素,预测在t=T 时刻的市场需求量。

2. 根据市场需求量的预测结果,帮助公司决策是否继续投资建厂。

3. 给出合理的建议,包括投资额、生产规模等。

综合应用练习二:车辆路径优化问题某物流公司需要将若干辆货车从起始点分别送到不同的目的地,为了降低总体运输成本,公司希望找到一条最短路径,使得每辆车都按照最优路径行驶。

给定起始点和目的地之间的距离矩阵 D,矩阵中的元素 D[i][j] 表示从点 i 到点 j 的距离。

假设所有货车行驶的速度一致,且货车行驶的时间只取决于距离。

要求:1. 建立数学模型,根据给定的距离矩阵 D,求解各辆货车的最优路径,并计算总体的运输成本。

2. 通过数值计算的方法,给出最优路径和最小运输成本。

3. 分析车辆路径优化问题的特点和不足之处,并提出改进方案。

综合应用练习三:股票投资问题某投资者希望通过股票市场获取较高的回报率,并控制风险。

他手中有一定的资金,打算按照一定的投资策略进行投资。

假设某股票市场中,某一支股票每日的涨跌幅符合一个已知的概率分布。

投资者希望根据该概率分布,制定出一个合理的投资策略。

投入产出数学模型练习题 数学建模

投入产出数学模型练习题 数学建模

投入产出数学模型经济应用案例投入产出数学模型的应用领域很广,常用于分析经济系统的部门结构和比例关系、进行经济预测、调整经济计划等各个方面。

由投入产出模型的理论知道,只要经济系统各个部门的生产技术条件没有变化,就可将报告期的投入产出数学模型直接应用于计划期的经济工作。

下面将以实例说明其在经济中的应。

例题设某个地区的经济系统划分为工业、农业、其他产业三个部门。

上一年度三个部门的生产与消耗情况如下表所示:生产与消耗情况表假定该系统三个部门的生产技术条件都没有变化,从而该系统的直接消耗系数矩阵不变,由此建立的产品分配方程组和产值构成方程组也不变。

在此基础上,分别分析该系统的报告期投入产出数学模型在计划期经济计划工作方面的下列应用。

(1)在经济预测中的应用假定根据上例所示经济系统的生产发展情况,预计该系统工业、农业、其他产业三个部门的计划期总产品将在报告期总产品的基础上分别增长9%、7%、6%。

由于在生产过程中系统内部存在着复杂的产品消耗关系,故一般说来,各个部门最终产品的增长幅度与总产品的增长幅度并不一致。

试预测该系统最终产品的增长情况。

(2)在制订计划中的应用投入产出数学模型为合理制订经济系统的生产计划提供了一个科学的方法。

根据社会需要确定社会产品的原则,先通过对计划期需要量的预测,确定系统各个部门的最终产品,再利用投入产出数学模型推算出各个部门的总产品,在此基础上编制经济系统计划期的投入产出表,作为安排各个部门计划期生产活动的依据。

现假定通过预测,引例所示经济系统三个部门的计划期最终产品需要量分别为工业部门:1216y=亿元,农业部门:2716y=亿元,其他产业部门:3120y=亿元。

试确定计划期总产品、部门间流量及计划期各部门净产值。

(3)在调整计划中的应用以上介绍了如何根据对最终产品的需求,制订经济系统的生产计划。

但是在执行计划时,可能由于不可预测的原因,导致系统某些部门的最终产品出现缺口(计划产量小于需要量),或者某些部门的最终产品出现余量(计划产量大于需求量),从而破坏了经济系统原计划的平衡性。

投入产出模型实例

投入产出模型实例

量。设下个生产周期甲、乙产品的总产量和可提供的商品量分别为 x1、x2 和 y1、y2 则可
得下表
50
A
250 35
250
125
12050
0.2 0.14
100
1.25 0.25
I
1 0
0 1
I
A
1 0.2 0 0.14
0 1.25 1 0.25
0.8 0.14
1.25
0.75

投入产出模型实例 例 1: 假设某企业在所考察的期间内,生产甲、乙两种产品。生产过程中,甲、乙两种产 品的产品量,可提供的商品量及互相提供消耗的数量关系统计如下表(表中第一列的两个数 分别表示生产 250t 甲产品时甲产品和乙产品的消耗量,第二列的两个数分别表示生产 100 m3 乙产品时甲产品和乙产品的消耗量)。
(1)假设在下一个生产周期内,设备和技术条件不变,商品需求量增加。其中甲增加到 85t,
乙增加到 50 m3 。应该如何计划甲、乙两种产品的总产量才能满足市场需求?
(2)假设下一个生产周期计划总产量甲为 260t,乙为 110 m3 ,那么可提供给市场的商品
量各是多少?
通过上述表格,我们可以求出甲、乙两种产品各生产单位产品量时对甲、乙产品的消耗
0.8 0.14
1.25 0.75
x1 x2
70.5 46.1
虽然计划总产量增加了,由于比例不当,在下一个生产周期内甲产品的商品量反而减少了。
y1 y2
85 50
带入(2)
x1 x2
0.8 0.14
1.25 0.75
1 Βιβλιοθήκη y1 y2297 122
在下个生产周期,甲、乙计划总产量为 297t、122m3 时扣除消耗掉的产品量后的商品量才

数学建模投入产出模型

数学建模投入产出模型
1.3459 0.2504 0.3443 ( I A) 1 0.5634 1.2676 0.4930 0.4382 0.4304 1.2167
x ( I A) 1 y y ( I A) x
若 ①最终产品
y (100,200,300)T x ( 287.96,457.76,494.91) y (300,200,300)T x (557.14,570.44,582.55)
企 业 I-O 模 型
例:某企业 I-O表
企业内部消耗
产品Ⅰ 产品 Ⅱ 产品Ⅲ 1 2 3
合计
平衡 因子
最终 产品 20 10 1210
总产品
自 产 产 品 外 购 材 料
产品Ⅰ 吨 产品 Ⅱ 吨 产品Ⅲ 吨
480
140 750
620 750
10 10 5
650 770 1215
原料Ⅰ 吨
原料Ⅱ 水 电 煤 吨 吨 吨 吨
因为 A 1 max aij max aij 1
j i 1 j i 1
n
n
所以 ( I A)
1

Ak (bij ) nn bij 0
k 1

i, j
所以 y 0有 x ( I A) 1 y 0 I O为可行的 又因为 V 0 由V T P T ( I A) P T V T ( I A) 1 0 所以 I O为有利。 证毕
投入产出数学模型
三 数学模型 :
1 投入产出表:实物型、价值型
投入—产出表
作为消耗部门 生产部门 农 工 业 业 . . . 1 2
*
最终 产品 总产出 新 创 造 价 值

线性代数案例03(投入产出问题)

线性代数案例03(投入产出问题)

【模型假设】假设不考虑价格变动等其他因素.
【模型建立】设煤矿, 电厂, 铁路分别产出 x 元, y 元, z 元刚好满足需求. 则有下表
消 耗
煤 电 运
表 3 消耗与产出情况
产出(1 元)
产出
煤电运
消耗
0 0.6 0.5 x
0.6y + 0.5z
0.3 0.ቤተ መጻሕፍቲ ባይዱ 0.1 y 0.3x + 0.1y + 0.1z
0.2 0.1 0 z
0.2x + 0.1y
订单
60000 100000
0
根据需求, 应该有 即
⎧⎪ ⎨
x y
− (0.6 y − (0.3x
+ +
0.5z) = 60000 0.1y + 0.1z) = 100000
,
⎪⎩z − (0.2x + 0.1y) = 0
⎧⎪⎨−x0−.30x.6+y0−.90y.5−z
(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值. (2) 如果这三个企业接到外来订单分别为 50 万元, 60 万元, 40 万元, 那么他们各生产多少 才能满足需求?
= 60000 0.1z = 100000
⎪⎩−0.2x − 0.1y + z = 0
【模型求解】在 Matlab 命令窗口输入以下命令 >> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\b Matlab 执行后得 x=
Matlab 实验题 某乡镇有甲、乙、丙三个企业. 甲企业每生产 1 元的产品要消耗 0.25 元乙企业的产品和

数学建模案例分析--线性代数建模案例20例

数学建模案例分析--线性代数建模案例20例

线性代数建模案例汇编目录案例一. 交通网络流量分析问题1案例二. 配方问题4案例三. 投入产出问题6案例四. 平板的稳态温度分布问题7案例五. CT图像的代数重建问题11案例六. 平衡结构的梁受力计算13案例七. 化学方程式配平问题16案例八. 互付工资问题17案例九. 平衡价格问题19案例十. 电路设计问题20案例十一. 平面图形的几何变换22案例十二. 太空探测器轨道数据问题24案例十三. 应用矩阵编制Hill密码25案例十四. 显示器色彩制式转换问题27案例十五. 人员流动问题29案例十六. 金融公司支付基金的流动31案例十七. 选举问题33案例十八. 简单的种群增长问题34案例十九. 一阶常系数线性齐次微分方程组的求解36 案例二十. 最值问题38附录数学实验报告模板错误!未定义书签。

案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。

根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。

【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪--⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪⎪-- ⎪⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩ 即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩可得213141500200100x x x x x x =-+⎧⎪=-⎨⎪=+⎩, 123242500300600x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 132343200300300x x x x x x =+⎧⎪=-+⎨⎪=+⎩, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等, 整个图中进入和离开的车数相等.图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模. 【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克). 【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩ 【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭−−−−→初等行变换101012000000⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成. 【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩(*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求? 【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩, 即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab 执行后得 x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量,A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令T 1T 2 T 3 T 4 10080908060506050>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x’Matlab执行后得ans =82.9167 70.8333 70.8333 60.4167可见T1 = 82.9167, T2 = 70.8333, T3 = 70.8333, T4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 15-16.Matlab实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab软件求解该线性方程组.(3) 用Matlab中的函数mesh绘制三维平板温度分布图.案例五. CT图像的代数重建问题X射线透视可以得到3维对象在2维平面上的投影, CT则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT图像这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明.3⨯3图像各点的灰度值水平方向上的叠加值x1 = 1 x2 = 0 x3 = 0 x1 + x2 + x3 = 1x4 = 0 x5 = 0.5 x6 = 0.5 x4 + x5 + x6 = 1x7 = 0.5 x8 = 0 x9 = 1 x7 + x8 + x9 = 1.5 竖直方向上的叠加值x1 + x4 + x7= 1.5x2 + x5 + x8= 0.5x3 + x6 + x9= 1.5i色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x xx x xx x x++=⎧⎪++=⎪⎨⎪++=⎪⎩显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x1 = 1,x2 + x4 = 0,x3 + x5 + x7 = 1,x 6 + x 8 = 0.5, x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组. 【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5,x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1; 1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0; 0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1]; >> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol =4.2305e-015. ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000 可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6, 1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解. (2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况. 【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G2 = 100牛顿, 长L2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N1 = N3,竖直方向受到的合力为零, 故N2 + N4 = G1,以点A为支点的合力矩为零, 故(L1sinθ1)N3 + (L1cosθ1)N4 = (12L1cosθ1)G1.图16 两杆受力情况对于杆2类似地有AC杆1杆2CN1N2N3N5N6G1G2A B杆1杆2π/6π/4N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (12L 2cos θ2)G 2.此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4; >> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0; 0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2); 0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’ Matlab 执行后得 ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反. 参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 157- 158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组. (2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.【模型准备】某厂废水中含K, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:K + 2KOH + Cl 2 = KO+ 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KO +KOH +Cl 2 ===CO 2+N 2+KCl +H 2O.(注: 题目摘自XX 省XX 外国语学校2008-2009学年高三第三次月考化学试卷) 【模型建立】设x 1KO +x 2KOH +x 3Cl 2 === x 4CO 2 +x 5N 2 +x 6KCl +x 7H 2O,则1261247141527362222x x x x x x xx x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得 ans =1 2 3/2 1 1/2 3 1 可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KO + 4KOH + 3Cl 2 ===2CO 2+ N 2+ 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s , 未知数的个数就是化学方程式中的项数n .当r(A ) = n -1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k 为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A ) ≤n -2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程. Matlab 实验题配平下列反应式(1) FeS + KMnO 4 + H 2SO 4—— K 2SO 4 + MnSO 4 + Fe 2(SO 4)3 + H 2O + S ↓ (2) Al 2(SO 4)3 + Na 2CO 3 + H 2O —— Al(OH)3↓+ CO 2↑+ Na 2SO 4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子), (2) 每人的日工资一般的市价在60~80元之间, (3) 日工资数应使每人的总收入和总支出相等.求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表可得2610451044310x y z xx y z y x y z z++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’ Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤k ≤ 80.也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1,x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩. 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8]; >> x = null(A,’r ’); format short, x ’ Matlab 执行后得ans =0.9394 0.8485 1.0000 可见上述齐次线性方程组的通解为x = k(0.9394, 0.8485, 1)T.这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:产出分配购买者煤炭石油电力钢铁制造运输0 0 0.2 0.1 0.2 0.2 煤炭0 0 0.1 0.1 0.2 0.1 石油0.5 0.1 0.1 0.2 0.1 0.1 电力0.4 0.1 0.2 0 0.1 0.4 钢铁0 0.1 0.3 0.6 0 0.2 制造0.1 0.7 0.1 0 0.4 0 运输等的平衡价格.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB扩展板【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11vi⎛⎫⎪⎝⎭记录输入电压和输入电流(电压v以伏特为单位, 电流i以安培为单位), 用22vi⎛⎫⎪⎝⎭记录输出电压和输入电流. 若22vi⎛⎫⎪⎝⎭= A11vi⎛⎫⎪⎝⎭,则称矩阵A为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫⎪-⎝⎭. 【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫⎪-⎝⎭, 则上面的梯形网络无法实现. 因为v 2这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2, 但把R 1= 8, R 2 = 2代入上第三个方程却不能使等式成立.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25简单的回路案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现. 【模型假设】设平移变换为(x , y ) → (x +a , y +b )旋转变换(绕原点逆时针旋转θ角度)为(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)放缩变换(沿x 轴方向放大s 倍, 沿y 轴方向放大t 倍)为(x , y ) → (sx , ty )【模型求解】R 2中的每个点(x , y )可以对应于R 3中的(x , y , 1). 它在xOy 平面上方1单E 12位的平面上. 我们称(x , y , 1)是(x , y )的齐次坐标. 在齐次坐标下, 平移变换(x , y ) → (x +a , y +b )可以用齐次坐标写成(x , y , 1) → (x +a , y +b , 1).于是可以用矩阵乘积1001001a b ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1x a y b +⎛⎫⎪+ ⎪⎝⎭实现.旋转变换(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)可以用齐次坐标写成(x , y , 1) → (x cos θ-y sin θ, x sin θ + y cos θ, 1). 于是可以用矩阵乘积cos sin 0sin cos 0001θθθθ-⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=cos sin sin cos 1x y x y θθθθ-⎛⎫⎪+ ⎪⎝⎭实现.放缩变换(x , y ) → (sx , ty )可以用齐次坐标写成(x , y , 1) → (sx , ty , 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现.【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译,: 人民邮电, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令 >>clear all , clc,>>t=[1,3,5,11,13,15]*pi/8; >>x=sin(t); y=cos(t); >>fill(x,y,'r'); >>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26Matlab绘制的图形(1) 写出该图形每个顶点的齐次坐标;; 最后进行横(2) 编写Matlab程序, 先将上面图形放大0.9倍; 再逆时针旋转3坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.案例十二. 太空探测器轨道数据问题太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x1, …, x k,它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.图28 火星探测器【模型准备】令X k = [x1, …, x k]. 在雷达进行数据分析时需要计算出矩阵G k = X k X k T. 一旦接收到数据向量x k+1,必须计算出新矩阵G k+1. 因为数据向量到达的速度非常快, 随着k的增加, 直接计算的负担会越来越重. 现需要给出一个算法, 使得计算G k的负担不会因为k的增加而加重.【模型求解】因为G k = X k X k T=[x 1, …, x k ]T 1T k⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦x x =T 1k i i i =∑x x ,G k +1 = X k +1T1k +X =[X k , x k +1]T T 1k k +⎡⎤⎢⎥⎣⎦X x = X k X k T +x k +1T 1k +x =G k +x k +1T 1k +x ,所以一旦接收到数据向量x k +1, 只要计算x k +1T1k +x , 然后把它与上一步计算得到的G k相加即可. 这样计算G k 的负担不会因为k 的增加而加重.【模型分析】计算机计算加法的时间与计算乘法的时间相比可以忽略不计. 因此在考虑计算矩阵乘积的负担时, 只要考察乘法的次数就可以了. 设x k 的维数是n , 则X k = [x 1, …, x k ]是n ⨯k 的矩阵, G k = X k X k T 是n ⨯n 的矩阵. 直接计算G k = X k X k T 需要做n 2k 次乘法. 因而计算的负担会随着k 的增加而增加. 但是对于每一个k , 计算x k Tk x 始终只要做n 2次乘法.Matlab 实验题用Matlab 编写一个程序用于处理这个问题.案例十三. 应用矩阵编制Hill 密码密码学在经济和军事方面起着极其重要的作用. 现代密码学涉及很多高深的数学知识. 这里无法展开介绍.图29 XX 通信的基本模型密码学中将信息代码称为密码, 尚未转换成密码的文字信息称为明文, 由密码表示的信息称为密文. 从明文到密文的过程称为加密, 反之为解密. 1929年, 希尔(Hill)通过线性变换对待传输信息进行加密处理, 提出了在密码史上有重要地位的希尔加密算法. 下面我们略去一些实际应用中的细节, 只介绍最基本的思想.【模型准备】若要发出信息action, 现需要利用矩阵乘法给出加密方法和加密后得到的密文, 并给出相应的解密方法.。

建模案例一:投入产出分析

建模案例一:投入产出分析

建模案例一:投入产出分析实例 一个城镇有三个主要企业:煤矿、电厂和地方铁路作为它的经济系统。

生产价值一元的煤,需消耗0.25元的电费和0.35元的运输费;生产价值一元的电,需消耗0.40元的煤费、0.05元的电费和0.10元的运输费;而提供价值一元的铁路运输服务,则需消耗0.45元的煤费、0.10元的电费和0.10元的运输费。

假设在某个星期内,除了这三个企业间的彼此需求外,煤矿还得到了50000元的订单,电厂得到了25000元的电量供应要求,而地方铁路得到了价值30000元的运输需求。

试问:(1) 这三个企业在这个星期各生产多少产值才能满足内外需求?(2) 除了外部需求,试求这星期各企业之间的消耗需求,同时求出各企业新创造的价值(即产值中除去各企业的消耗所剩的部分)。

(3) 如果煤矿需要增加总产值10000元,它对各个企业的产品或服务的完全需求分别将是多少?解:(1)设煤矿、电厂和地方铁路在这个星期内生产的总产值分别为123,,x x x 元,由于“中间产品(作为系统内各企业的消耗)+最终产品(外部需求)=总产品”,从而建立分配平衡线性方程组为12311232123300.400.45500000.250.050.10250000.350.100.1030000x x x x x x x x x x x x +++=⎧⎪+++=⎨⎪+++=⎩记12300.400.45500000.250.050.10,,250000.350.100.1030000x A x x y x ⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥=== ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭则可以将线性方程组写成矩阵形式Ax y x +=,即()E A x y -=通过求解此线性方程组,即可求出三个企业在这个星期内生产的总产值123,,x x x 。

>> A=[0,0.40,0.45;0.25,0.05,0.10;0.35,0.10,0.10];>> y=[50000,25000,30000]';>> B=eye(3)-A;>> x=B\yx =1.0e+005 *1.14460.65400.8511所以,煤矿、电厂和地方铁路在这个星期内生产的总产值分别为12114460,65400,x x ==385110x =元。

投入产出数学模型练习题解答 数学建模

投入产出数学模型练习题解答 数学建模

投入产出数学模型练习题解答(1)在经济预测中的应用该系统的计划期总产品和最终产品分别记为()123,,x x x x '= 和()123,,y y y y '= 。

根据表中报告期的总产品数据以及预计的计划期总产品增长幅度,该系统三个部门的计划期总产品应分别为工业部门: ()156019%610.4x =+=亿元农业部门: ()234017%363.8x =+=亿元 其他产业部门:()328016%296.8x =+=亿元将这些数据代入产品分配平衡方程组,可求得 ()y I A x =-即 1230.650.30.25610.4213.420.150.80.15363.8154.960.20.10.9296.8108.66y y y --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪=--= ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭⎝⎭ 由此可对该系统三个部门的计划期最终产品及其相对于报告期最终产品的增长幅度作出预测工业部门:1213.42y =亿元,增长213.4219211.2%192-= 农业部门:2153.96y =亿元,增长153.961466.1%146-= 其他产业部门:2108.66y = ,增长108.661062.5%106-= 根据预测结果,可对该系统的计划期最终产品与实际需要是否相符作出判断,避免出现大的偏差。

(2)在制订计划中的应用将数据代入产品分配方程组,可求得()1x I A y -=-即 1230.7050.2950.24521664010.1650.5350.1351764000.3650.1750.1250.475120320x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由此可知,该系统三个部门的计划期总产品分别为工业部门:1640x = 亿元 农业部门:2400x = 亿元其他产业部门:3320x = 亿元用上述三个部门的总产品分别乘该系统的直接消耗系数矩阵中对应列的元素,可得到该系统计划期部门间流量的矩阵6400.354000.33200.256400.154000.23200.156400.24000.13200.1⨯⨯⨯⎛⎫ ⎪⨯⨯⨯ ⎪ ⎪⨯⨯⨯⎝⎭224120809680481284032=⎛⎫ ⎪ ⎪ ⎪⎝⎭工业农业其他工业农业其他再将上述三个部门的总产品(总产值)代入产值构成平衡方程组,可求得该系统三个部门的计划期净产值分别为11(1,2,,)nj ij j i z a x j n =⎛⎫=-= ⎪⎝⎭∑工业部门:110.30.3640192z x ==⨯=亿元农业部门:220.40.4400160z x ==⨯=亿元 其他产业部门:330.50.5320160z x ==⨯=亿元 根据以上所求得的各项数据即可编制出该系统的计划期投入产出表(3)在调整计划中的应用将该系统计划期的总产品调整量和最终产品调整量分别记作()123,,x x x x '∆=∆∆∆ 和()123,,y y y y '∆=∆∆∆。

投入产出学练习及答案汇总

投入产出学练习及答案汇总

例:假设有一张包含3个产品部门的简化价值型表,要求:1、填补表中的数字2、直接消耗系数矩阵、完全消耗系数矩阵、完全需要系数矩阵并建立相应的数学模型3、中间投入系数矩阵、初始投入系数矩阵4、直接固定资产折旧系数的行向量、直接劳动者报酬系数的行向量、直接生产税净额系数的行向量、直接营业盈余系数的行向量2.直接消耗系数矩阵:完全需求系数矩阵:完全消耗系数矩阵:中间投入系数矩阵:建立行模型:Y=(I-A)X建立列模型:3.价值模型的主要系数直接固定资产折旧系数:元素:向量:直接劳动者报酬系数:元素:向量:直接生产税净额和营业盈余系数:元素:向量:4.直接固定资产折旧系数的行向量:直接劳动者报酬系数的行向量:直接生产税净额系数的行向量:直接营业盈余系数的行向量:第五章根据上述报告期地区投入产出模型计算出:1.本地区产品的直接消耗系数矩阵和完全消耗系数矩阵2.外地输入产品的直接消耗系数矩阵和完全消耗系数矩阵3.根据报告期地区产品的消耗结构与初始投入结构,在输出不变的情况下,若计划期本地区3个部门的最终产品需求量为224亿元、400亿元、350亿元时,试求出此时(1)计划期地区各部门产品的总产出(2)计划期地区投入产出表的第Ⅰ象限流量矩阵(3)计划期地区投入产出表的第Ⅲ象限流量矩阵第五章课后习题第4题第六章根据上述资料,如果确定以下方面的生产问题:(1)如果该厂计划下阶段生产钢材最终产品100吨,那么其他自产产品总产量和外购产品的消耗量应该如何安排?(2)在计划生产过程中,由于某种原因需要调整计划,原计划销售钢坯80吨、钢材100吨,现调整追加到钢坯100吨、钢材150吨。

那么计划调整后,其他自产产品的投入量需增加多少?外购量需增加多少?当调整计划,使原计划销售钢坯80吨、钢材100吨,现调整追加到钢坯100吨、钢材150吨时,计划调整后,各自产产品的投入量需分别增加生铁89.6吨、钢锭112吨、钢坯80吨、钢材50吨。

数学建模、层次分析法、投入产出模型

数学建模、层次分析法、投入产出模型

2013第十届五一数学建模联赛承诺书我们仔细阅读了五一数学建模联赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其它公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。

我们授权五一数学建模联赛赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号为(从A/B/C中选择一项填写):我们的参赛报名号为:参赛组别(研究生或本科或专科):所属学校(请填写完整的全名)参赛队员(打印并签名) :1.2.3.日期:年月日获奖证书邮寄地址:邮政编码2013第十届五一数学建模联赛编号专用页竞赛评阅编号(由竞赛评委会评阅前进行编号):裁剪线裁剪线裁剪线竞赛评阅编号(由竞赛评委会评阅前进行编号):参赛队伍的参赛号码:(请各参赛队提前填写好):2013第十届五一数学建模联赛题目关键词摘要随着经济的发展,公路运输业逐渐成为一个城市经济发展的命脉,是社会经济发展中的重要基础设施和支柱产业。

对国内生产总值产生巨大影响。

本文通过层次分析以及投入产出法对公路运输业对GDP的影响进行定量分析,把影响量化并考虑公路运输业前期所产生的对资源的占用问题进一步优化模型问题一:通过对GDP的经济分析,得出影响GDP的因素主要在交通建设阶段以及之后的交通运输和随之带动的相关产业的发展具体表现为交通建设时对道路建设的原材料需求以及人力资源需求,还表现为交通运输业客货运输的发展对经济的拉动以及旅游业的发展。

然后利用投入产出法对这些影响因素进行求解得出各因素对经济的贡献率,从而进一步阐述对GDP的影响。

投入产出表的数学模型

投入产出表的数学模型
0.8947 = -0.1404 -0.0526 -0.0111 -0.1053 299.25 0.8889 -0.2632 1980 -0.0333 0.8246 638.4
178.54 = 1549.98 (亿元) 445.26
例:若把农业、工业、“其他”三个部门的最终使用由现在 的175亿元、1410亿元、395亿元分别增长4%、8%和10%,直接消 耗系数同上,试测算各部门的总产出。
175 × 104% = 182 Y 解:由题意知 = 1410 × 108% = 1522.8 395 × 110% = 434.5
(a11 a 21 a n1 ) X 1G1 X 1 (a a a ) X G X 12 22 n2 2 2 2 ...... (a1n a 2 n a nn ) X n Gn X n
第二列各直接消耗系 数之和,用C2表示; 第n列各直接消耗系 数之和,用Cn表示。 把该式变 形可得投 入产出表 的列模型 (见下页)




∑xi ∑xi … ∑xi d1 v1 T1 r1 G1 X1 d2 v2 T2 r2 G2 X2 dn vn Tn rn Gn Xn
… ∑Ei
∑Y ’i
∑Mi ∑X
最 初 投 入
固定资产折 旧 劳动者报酬 生产税净额 营业盈余 合 计

∑dj ∑vj ∑Tj ∑rj ∑Gj ∑Xj
… …

0.8947 -0.1404 -0.0526
-0.0111 0.8889 -0.0333
-0.1053 -0.2632 0.8254

数学建模生产调度试题及答案

数学建模生产调度试题及答案

2011年南通大学数学建模竞赛试题如何进行生产调度某公司是一家机械工程的公司,现有41台机械,其种类如表1所示:表1 机械种类及成本情况由于机械损耗和燃油费,每种机械的运营成本并不相同,表3是4种机械100天的平均运营成本。

目前,公司承接4个工程项目,由于4个项目来源于不同客户,并且工作的难易程度不同,因此,各项目的合同对有关机械的收费标准不同,具体情况如表2:表2 不同项目和各种机械的收费标准为了保证工程质量,各项目中必须保证机械结构符合客户的要求,具体情况如表3所示:表3 各项目对机械结构的要求说明:(1)项目IV ,由于技术要求较高,机械D 不能参加;(2)机械A 相对稀少,而且是保证质量的关键,因此,各项目客户对机械A 的配备要求不能少于一定数目的限制。

各项目对其他机械也有不同的限制或要求;(3)各项目客户对总机械数都有限制;(4)项目III ,IV 每台机械每天有50元的管理费开支;问题一:估计4种机械的每天的费用,并估计出4种机械的每天的费用的95%的置信区间。

问题二:由于收费是按机械数计算的,而且4个项目总共同时最多需要的机械台数是10+16+11+18=55,多于公司现有机械数41台,应如何合理地分配现有的机械力量,使公司每天的直接收益最大?问题三:若由于燃油费的上涨,导致每种机械的运营成本上涨10%,请问需要调整分配方案吗?如上涨10%呢?请就不同上涨幅度进行讨论,给出一套因应预案。

2011年南通大学数学建模竞赛编号专用页参赛队员(打印并签名):队员1:,学院,电话队员2:,学院,电话队员3:,学院,电话竞赛评阅编号(由竞赛组委会评阅前进行编号):2011年南通大学数学建模竞赛题目如何进行生产调度摘要本问题是一个数据处理及目标线性优化问题。

对于问题一估计4种机械的每天费用,根据所给数据,建立一个样本模型,对样本进行均值矩估计,即将4种机械100天的费用求的平均值近似看做是4种机械的每天费结果如下表:对于问题二,4计算4种机械对应4个项目的总收益减去总的运营成本及管理开支,再根据4种机械数目总量及4个项目对机械的要求建立线性规划模型,列出目标函数以及约束条件,通过LINGO涨幅度,这里引入上涨幅度变量进行控制,并分别进行线性规划计算,得出各种涨幅下的分配方案作为一套因应预案。

数学建模生产计划问题

数学建模生产计划问题

数学建模⽣产计划问题第⼀题:⽣产计划安排2)产品ABC的利润分别在什么范围内变动时,上述最优⽅案不变3)如果劳动⼒数量不增,材料不⾜时可从市场购买,每单位元,问该⼚要不要购进原材料扩⼤⽣产,以购多少为宜4)如果⽣产⼀种新产品D,单件劳动⼒消耗8个单位,材料消耗2个单位,每件可获利3元,问该种产品是否值得⽣产答:max3x1+x2+4x3! 利润最⼤值⽬标函数x1,x2,x3分别为甲⼄丙的⽣产数量st!限制条件6x1+3x2+5x3<45! 劳动⼒的限制条件3x1+4x2+5x3<30! 材料的限制条件End!结束限制条件得到以下结果1.⽣产产品甲5件,丙3件,可以得到最⼤利润,27元2.甲利润在—元之间变动,最优⽣产计划不变3. max3x1+x2+4x3st6x1+3x2+5x3<45end可得到⽣产产品⼄9件时利润最⼤,最⼤利润为36元,应该购⼊原材料扩⼤⽣产,购⼊15个单位4. max3x1+x2+4x3+3x4st6x1+3x2+5x3+8x4<453x1+4x2+5x3+2x4<30endginx1ginx2ginx3ginx4利润没有增加,不值得⽣产第⼆题:⼯程进度问题某城市在未来的五年内将启动四个城市住房改造⼯程,每项⼯程有不同的开始时间,⼯程周期也不⼀样,下表提供了这些项⽬的基本数据。

⼯程1和⼯程4必须在规定的周期内全部完成,必要时,其余的⼆项⼯程可以在预算的限制内完成部分。

然⽽,每个⼯程在他的规定时间内必须⾄少完成25%。

每年底,⼯程完成的部分⽴刻⼊住,并且实现⼀定⽐例的收⼊。

例如,如果⼯程1在第⼀年完成40%,在第三年完成剩下的60%,在五年计划范围内的相应收⼊是*50(第⼆年)+*50(第三年)+(+)*50(第四年)+(+)*50(第五年)=(4*+2*)*50(单位:万元)。

试为⼯程确定最优的时间进度表,使得五年内的总收⼊达到最⼤。

答:假设某年某⼯程的完成量为Xij, i表⽰⼯程的代号,i=1,2,3,j表⽰年数,j=1,2,3,如第⼀年⼯程1完成X11,⼯程3完成X31,到第⼆年⼯程已完成X12,⼯程3完成X32。

投入产出模型作业参考答案

投入产出模型作业参考答案

设某地区的经济分为工业.农业和其他生产部门,其拖如铲除表1所示。

(1)试求直接消耗系数; (2)试求完全消耗系数;(3)如果计划期农业的最终产品为350亿元,工业为2300亿元,其他部门为450亿元,请计算出各部门在计划期的总产品分别为多少亿元? 表1 某地区的拖如产出表(亿元)解:(1)计算直接消耗系数:直接消耗系数jij ij x x a =∴ 100.06006011==a05.0380019012==a 05.06003013==a 150.06009021==a 40.03800152022==a 30.060018023==a 05.06003031==a 025.038009532==a 10.06006033==a ∴ 直接消耗矩阵 ⎪⎪⎪⎪⎭⎫⎝⎛=1.0025.005.03.04.015.005.005.010.0A(2)计算完全消耗系数:完全消耗系数矩阵 I A I B --=-1)(而 ⎪⎪⎪⎪⎭⎫⎝⎛------=⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎭⎫⎝⎛=-9.0025.005.03.06.015.005.005.09.01.0025.005.03.04.015.005.005.01.0100010001)(A I ∴⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎭⎫⎝⎛------=---133.1053.0072.059.0718.1319.0096.0098.0133.19.0025.005.03.06.015.005.005.09.0)(11A I∴ I A I B --=-1)(⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎭⎫ ⎝⎛=133.0053.0072.059.0718.0319.0096.0098.0133.0100010001133.1053.0072.059.0718.1319.0096.0098.0133.1 (3)依题意,如果计划期农业的最终产品为350亿元,工业为2300亿元,其他部门为450亿元,则各部门在计划期的总产出计算如下:()TYA I X 65743286664502300350133.1053.0072.059.0718.1319.0096.0098.0133.1)(1=⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛=-=- 即农业、工业和其他部门在计划期的总产出分别为666亿元、4328亿元和657亿元。

【数学建模】投入产出模型

【数学建模】投入产出模型
§8.3 投入产出模型
投入产出
• 一. 投入产出表 • 1. 概念: • 产品:各生产部门生产的商品 • 中间产品:继续投入生产过程的产品 • 最终产品:推出生产过程的产品 • 投入:生产过程中各部门的投入 • 中间投入:中间产品的物质消耗 • 外购资源:非中间产品的物出
• 三. 模型的分析 • 1. 可行性 • 模型是可行的, 如果对任何非负的最终需求 y ≥ 0 模型总有非负解 x ≥0. • 定理 1. 模型对任何非负的需求 y ≥ 0 有非 1− a −a 1− a > 0, −a 负解 x ≥0, 当且仅当 1 − a > 0 , , | D |> 0
0.112 0.073 0.110 ⎤ ⎥ 0.289 0.013 0.017 ⎥ ⎥ 0.140 0.430 0.198 ⎥ 0.167 0.133 0.154 ⎦
A=
投入产出
• 20. 完全消耗系数 bij , bjkakj : 产品 j 通过产品 k
对产品 i 的需求量 , 则有
bij = aij + ∑ bik a kj , i , j = 1,
k =1
⎡0.047 ⎢0.009 B=⎢ ⎢0.067 ⎢ ⎣0.045
n
,n
• 令 B = (bij) 则有 B = A + BA, B ( I – A) = A • B = A ( I – A)-1 = ( I – A) – I = D-1– I. • B 从完全需求的角度反映出各部门深层次的相 互间的依赖关系 .
1193.1 113.4
298.2
538.4
1491.3 651.8
1004.5 774.2 3921.8 2956 1680 8400

数学建模综合练习

数学建模综合练习

数学建模综合练习第一章数学建模方法论1.举出两三个实例说明建立数学模型的必要性,包括实际问题的背景,建模目的,需要大体上什么样的模型以及怎样应用这种模型.2.怎样解决下面的实际问题.包括需要哪些数据资料,要作些什么观察、试验以及建立什么样的数学模型等.(1)估计一个人体内血液的总量.(2)为保险公司制定人寿保险计划(不同年龄的人应缴纳的金额和公司赔偿的金额).(3)估计一批日光灯管的寿命.(4)确定火箭发射至最高点所需的时间.(5)决定十字路口黄灯亮的时间长度.(6)为汽车租赁公司制订车辆维修、更新和出租计划.(7)一高层办公楼有4部电梯,早晨上班时间非常拥挤,试制订合理的运行计划3.下面是众所周知的智力游戏:人带猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米.试设计一个安全过河方案,并使渡河次数尽量地少.4.假定人口的增长服从这样的规律:时间t的人口为x (t),t到t+∆t时间内人口的增长与x m- x(t)成正比(其中x m为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.5.为了培养想象力、洞察力,考察对象时除了从正面分析外,还常常需要从侧面或反面思考,试尽可能迅速地回答下列的问题:(1)某甲早8:00从山下旅馆出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅馆.某乙说,甲必在2天中的同一时刻经过路径中的同一地点.为什么?(2)甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同,甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站.问开往甲乙两站的电车经过丙站的时刻表是如何安排的?(3)某人住T市在他乡工作,每天下班后乘火车于6:00抵达T市车站,他的妻子驾车准时到车站接他回家.一日他提前下班搭乘早一班火车于5:30抵T市车站,随即步行回家,他的妻子像往常一样驾车前往,在半路上遇到他,即接他回家,此时发现比往常提前10分钟.问他步行了多长时间.6.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗?比如洁银牙膏50g装的每支1.50元,120g装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象.(1)分析商品价格c与商品重量w的关系.价格由生产成本、包装成本和其它成本决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素.(2)给出单位重量价格c与w加c减小的程度变小.解释实际意义是什么?7.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角α应多大(如图1).若知道管道长度,需用多长布条(可考虑两端的影响).如果管道是其它形状呢?8.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,k >r .在每一生产周期T 内,开始的一段时间(0<t <T 0)一边生产一边销售,后来的一段时间(T 0<t <T )只销售不生产,画出贮存量)(t q 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期.讨论k 》r 和k ≈ r 的情况.第二章 初等数学模型1.在2.5节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.2.设某产品的售价为p ,成本为q ,售量为x (与产量相等),则总收入与总支出分别为px I =,qx C =.试在产销平衡的情况下建立最优价格模型.3.在最优价格模型中,如果考虑到成本q 随着产量x 的增加而降低,试做出合理的假设,重新求解模型.4.在考虑最优价格模型问题时,设销售期为T ,由于商品的损耗,成本q 随时间增长,设q =q 0 +βt ,β为增长率.又设单位时间的销售量为x = a – bp (p 为价格).今将销售期分为0< t <T /2和T /2< t <T 两段,每段的价格固定,记作p 1,p 2.求p 1,p 2的最优值,使销售期内的总利润最大.如果要求销售期T 内的总销售量为Q 0,再求p 1,p 2的最优值.第三章 微分方程模型1.对于技术革新的推广,在下列几种情况下分别建立模型.(1)推广工作通过已经采用新技术的人进行,推广速度与采用新技术的人数成正比,推广是无限的.(2)总人数有限,因而推广速度还会随着尚未采用新技术人数的减少而降低. (3)在(2)的前提下考虑广告等媒介的传播作用.2.建立铅球掷远模型.不考虑阻力,设铅球初速度为v ,出手高度为h ,出手角度为α(与地面夹角),建立投掷距离与v ,h ,α的关系式,并求v ,h 一定的条件下求最佳出手角度.3.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:xN rx t xln )(= ,其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为h =Ex .讨论渔场鱼量的平衡点及其稳定性,求最大持续产量h m 及获得最大产量的捕捞强度E m 和渔场鱼量水平x *0.4.在一种溶液中,化学物质A 分解而形成B ,其速度与未转换的A 的浓度成比例.转换A 的一半用了20分钟,把B 的浓度y 表示为时间的函数,并作出图象.第四章 运筹学模型1.一家保姆公司专门向顾主提供保姆服务.根据估计,下一年的需求是:春季6000人日,夏季7500人日,秋季5500人日,冬季9000人日.公司新招聘的保姆必须经过5天的培训才能上岗,每个保姆每季度工作(新保姆包括培训)65天,保姆从该公司而不从顾主那里得到报酬,每人每月工作800元.春季开始时公司拥有120名保姆,在每个季度结束后,将有15%的保姆自动离职. (1)如果公司不允许解雇保姆,请你为公司制定下一年的招聘计划.(建立数学模型) (2)如果在每个季度结束后允许解雇保姆,请为公司制定下一年的招聘计划.(建立数学模型)2.某工厂生产两种产品A、B分两班生产,每周生产总时间为80小时,两种产品的预测销售量、生产率和赢利如下表制定一合理的生产方案,要求依次满足下列目标:(1)充分利用现有能力,避免设备闲置;(2)周加班时间限制在10小时以内;(3)两种产品周生产品量应满足预测销售,满足程度的权重之比等于它们单位利润之比;(4)尽量减少加班时间.例3 医院为病人配制营养餐,要求每餐中含有铁不低于50单位,蛋白质不低于40单位,钙不低于42单位.假设仅有两种食品A和B可供配餐,相关数据见下表.试问,如何购买两种食品进行搭配,才能即使病人所需营养达到需求,又使总花费最低?第六章线性代数相关模型国民经济各个部门之间存在着相互依存的关系,每个部门在运转中将其他部门的产品或半成品经过加工(称为投入)变为自己的产品(称为产出),如何根据各部门间的投入—产出关系,确定各部门的产出水平,以满足社会的需求,是投入产出综合平衡模型研究的课题.试讨论如下的简化问题.设国民经济仅由农业、制造业、和服务业三个部门构成,已知某年它们之间的投入产出关系、外部需求、初始投入等如表3-2-1所示(数字表示产值,单位为亿元).表3-2-1 国民经济各个部门间的关系表中第一行数字表示,农业总产出为100亿元,其中15亿元农产品用于农业生产本身(如提供种子),20亿元用于制造业(如提供木材、毛皮),30亿元用于服务业,剩下35亿元农产品用来满足外部需求(包括消费、积累、出口等).可以类似的解释第二、三、行数字.第一列数字中,15亿元如前所述,30亿元是制造业对农业的投入(如提供农具),20亿元是服务业对农业的投入,35亿元的初始投入包括工资、税收、进口等,总投入100亿元与总产出相等.假定每个部门的产出与投入是成正比的,由表3-2-1能够确定这三个部门的投入产出表,如表3-2-2。

数学建模模拟(专科组题目)

数学建模模拟(专科组题目)

数学建模模试题C 题企业是一个有机的整体,企业管理是一个完整的系统,由许多子系统组成。

在企业的管理中,非常关键的一部分是科学地安排生产。

对于生产、库存与设备维修更新的合理安排对企业的生存和发展具有重要的意义。

已知某工厂要生产7种产品,以I,II,III,IV,V,VI,VII来表示,但每种产品的单件利润随市场信息有明显波动,现只能给出大约利润如下。

该厂有4台磨床、2台立钻、3台水平钻、1台镗床和1台刨床可以用来生产上述产品。

已知生产单位各种产品所需的有关设备台时如下表。

从1月到6月,维修计划如下:1月—1台磨床,2月—2台水平钻,3月—1台镗床,4月—1台立钻,5月—1台磨床和1台立钻,6月—1台刨床和1台水平钻,被维修的设备当月不能安排生产。

每种产品当月销售不了的每件每月存储费为5元,但规定任何时候每种产品的存储量均不能超过100件。

1月初无库存,要求6月末各种产品各储存50件。

若该工厂每月工作24天,每天两班,每班8小时,要求(1)该厂如何安排生产,使总利润最大;(2)若对设备维修只规定每台设备在1—6月份内均需安排1个月用于维修(其中4台磨床只需安排2台在上半年维修),时间可灵活安排。

重新为该厂确定一个最优的设备维修计划。

D 题某保险公司只提供一年期的综合车险保单业务,这一年内,若客户没有要求赔偿,则给予额外补助。

所有参保人被分为0,1,2,3四类。

类别越高,从保险费中得到的折扣越多。

在计算保险费时,新客户属于0类,在客户延续其保险单时,若在上一年没有要求赔偿,则可提高一个类别;若客户在上一年要求过赔偿,如果可能则降低两个类别,否则为0类。

客户退出保险,则不论是自然的还是事故死亡引起的,将退还其保险金的适当部分。

现在政府准备在下一年开始实施安全带法规,如果实施了该法规,虽然每年的事故数量不会减少,但事故中受伤司机和乘员数肯定会减少,从而医药费将有所下降。

这是政府预计会出现的结果,从而期望减少保险费的数额。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

投入产出数学模型经济应用案例
投入产出数学模型的应用领域很广,常用于分析经济系统的部门结构和比例关系、进行经济预测、调整经济计划等各个方面。

由投入产出模型的理论知道,只要经济系统各个部门的生产技术条件没有变化,就可将报告期的投入产出数学模型直接应用于计划期的经济工作。

下面将以实例说明其在经济中的应。

例题设某个地区的经济系统划分为工业、农业、其他产业三个部门。

上一年度三个部门的生产与消耗情况如下表所示:
生产与消耗情况表
假定该系统三个部门的生产技术条件都没有变化,从而该系统的直接消耗系数矩阵不变,由此建立的产品分配方程组和产值构成方程组也不变。

在此基础上,分别分析该系统的报告期投入产出数学模型在计划期经济计划工作方面的下列应用。

(1)在经济预测中的应用
假定根据上例所示经济系统的生产发展情况,预计该系统工业、农业、其他产业三个部门的计划期总产品将在报告期总产品的基础上分别增长9%、7%、6%。

由于在生产过程中系统内部存在着复杂的产品消耗关系,故一般说来,各个部门最终产品的增长幅度与总产品的增长幅度并不一致。

试预测该系统最终产品的增长情况。

(2)在制订计划中的应用
投入产出数学模型为合理制订经济系统的生产计划提供了一个科学的方法。

根据社会需要确定社会产品的原则,先通过对计划期需要量的预测,确定系统各个部门的最终产品,再利用投入产出数学模型推算出各个部门的总产品,在此基础上编制经济系统计划期的投入产出表,作为安排各个部门计划期生产活动的依据。

现假定通过预测,引例所示经济系统三个部门的计划期
最终产品需要量分别为工业部门:
1216
y=亿元,农业部门:
2716
y=亿元,其他产业部门:
3120
y=亿元。

试确定计划期
总产品、部门间流量及计划期各部门净产值。

(3)在调整计划中的应用
以上介绍了如何根据对最终产品的需求,制订经济系统的生产计划。

但是在执行计划时,可能由于不可预测的原因,导致系统某些部门的最终产品出现缺口(计划产量小于需要量),或者某些部门的最终产品出现余量(计划产量大于需求量),从而破坏了经济系统原计划的平衡性。

在这种情况下,可以利用投入产出数学模型及时调整原有的生产计划,重新协调各个部门的生产活动,使经济系统恢复平衡。

现假定在计划期内,上例所示经济系统的工业部门由于产品积压,需要减少9.5亿元最终产品;农业部门为了扩大出口,需要增加6亿元最终产品。

试说明如何对该系统原有的生产计划作出相应的调整。

相关文档
最新文档