人教版版七年级数学下册《立方根》精品教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《立方根》精品教案
教学目标:
了解立方根和开立方的概念;掌握立方根的性质;会求一个数的立方根. 重点:
立方根的运算 难点:
立方根的概念及其运算 教学流程: 一、知识回顾
问题1:什么叫做平方根?
如果一个数的平方等于a ,那么这个数叫做a 的平方根(也叫二次方根). 即:x 2=a ,那么x 叫做a 的平方根
a 的平方根记作:_______ 9的平方根记作:_______ 144的平方根记作:_______ 答案:a ±,9±,144± 追问:怎么求一个数的平方根? 填空:
(1)2的平方根是________; (2)0的平方根是________; (3)-16的平方根是____________. 答案:2±,0,没有平方根 问题2:平方根具有什么性质呢?
正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 二、探究1
问题:要制作一种容积为27m 3的正方体形状的包装箱,这种包装箱的棱长应该是多?
追问1:你还记得正方体的体积与棱长有什么关系吗? 答案:V =a 3
追问2:谁的立方等于27呢?
解:设这种包装箱的棱长为x m,则
x3=27
∵33=27
∴x=3
定义:如果一个数的立方等于a,那么这个数叫做a的立方根(也叫三次方根).即:x3=a,那么x叫做a的立方根
∵33=27
∴____是27的立方根
答案:3
练习1:求下列各数的立方根:
解:(1)∵(-3)3=-27
∴-27的立方根是-3
(2)∵(3
2
)3=
3
3
8
∴
3
3
8
的立方根是
3
2
(3)∵(-4)3=-64
∴-64的立方根是-4
填空:
答案:1,-8,27,-27,1,-2,3,-3
定义:求一个数的立方根的运算,叫做开立方.追问:左右两图中的运算有什么关系?
想一想:到现在我们学了哪些运算?
答案:加、减、乘、除、乘方、开方.
三、探究2
根据立方根的意义填空.
∵( 2 )3=8,∴8的立方根是();
∵()3=0.064 , ∴0.064的立方根是();
∵()3=0,∴0的立方根是();
∵()3=-8 ,∴-8的立方根是();
∵()3=
8
27
-,∴
8
27
-的立方根是().
答案:2,0.4,0.4,0,0,-2,-2,
2
3
-,
2
3
-
追问:你能发现正数、0和负数的立方根各有什么特点吗?
立方根的性质:
(1)正数的立方根是正数;(2)负数的立方根是负数;(3)0的立方根是0.
一个数a
读作:“三次根号a”,
被开方数:a;根指数:3;根指数3,不能省略!
8的立方根,表示为:__________的立方根
8
的根指数是2,根指数2,可以省略!
思考:你能归纳出平方根和立方根的异同点吗?
练习2
(1)8
27
的立方根是
2
3
±()
(2) 25的平方根是5 ()
(3)-64没有立方根()
(4)-4的平方根是±2()
(5) 0的平方根和立方根都是0 ()
答案:×,×,×,×,√
追问1:立方根是它本身的数有那些? 答案:0,±1
追问2:算术平方根是它本身的数有那些? 答案:0,1 四、探究3
填空,你能发现其中的规律吗?
______,______ ,
=______,______ ,
______ 答案:-2,-2,=,-3,-3,=
规律:=. 例:求下列各式的值 :
123.();(
解:
14(;122-=-();334
-(
练习3:求下列各式的值 :
3123.-();()
解:12;
3
25
=-();339=-() 五、探究4
问题1:用计算器求下列各式的值:
(1(20.001).
解:(1) 8 、=,
显示:2.
2=.
(2) 1845、=,
显示:12.264 940 81.
12.265≈.
强调:有些计算器要用到第二功能键来求一个数的立方根.
答案:如第(1)问中,按键顺序为:2nd F 8 、=
问题2:利用计算器计算,并将计算结果填在表中,你发现了什么规律?
规律:被开方数的小数点向右(或向左)移动3位,其算术平方根的小数点向右(或向左)移动1位.
问题3:0.001)吗?并利用刚才的得到规律说出
4.624≈0.4624≈0.04624≈46.24≈
想一想: 答:不能
六、应用提高
1. 你能比较3,4 解:∵33=27,
∴ 3=
∵ 43=64 ,
∴4=
3
3
50
64
∴3
3
504
强调:被开方数越大,对应的立方根也越大. 2. 求下列各式中的 x :
(1)9x 3+72=0; (2)2(x -1)3=54. 解: (1) 9x 3+72=0 9x 3=-72 x 3=-8 ∵(-2)3=-8