东北大学19秋学期《线性代数》在线平时作业2答案
↓答案↓东大19秋学期《国际法Ⅱ》在线平时作业3(参考)
B、新约不能完全取代旧约
C、新约须经丙国承认方能生效
D、丙国与甲乙两国间适用旧约
正确答案:
第7题,被誉为"国际法之父"的是( )
A、萨维尼
B、格劳秀斯
C、巴托鲁斯
D、胡伯
正确答案:
第8题,被称为国际民用航空活动的宪章性文件的是( )
A、《芝加哥公约》
第24题,在国际法主体中,拥有完全权利能力和行为能力的主体是政府间国际组织。
T、对
F、错
正确答案:
第25题,根据有关庇护的一般国际法规则,一个国家庇护外国人通常是在本国驻外使馆内。
T、对
F、错
正确答案:
【奥鹏】[东北大学]19秋学期《国际法Ⅱ》在线平时作业3
试卷总分:100 得分:100
第1题,以下关于《日内瓦公约》的适用范围,表述正确的是( )
A、可以对非缔约国紧急适用
B、不适用于有非缔约国参加的战争或武装冲突
C、只适用于国家之间的战争
D、不适用于一国内部的内战
正确答案:
B、《华沙公约》
C、《蒙特利尔公约》
D、海牙公约
正确答案:
第9题,戴某为某省政府的处级干部。两年前,戴父在甲国定居,并获甲国国籍。2006年7月,戴父去世。根据有效遗嘱,戴某赴甲国继承了戴父在甲国的一座楼房。根据甲国法律,取得该不动产后,戴某可以获得甲国的国籍,但必须首先放弃中国国籍。于是戴某当时就在甲国填写了有关表格,声明退出中国国籍。其后,戴某返回国内继续工作。针对以上事实,根据我国《国籍法》的规定,下列哪项判断是正确的?( )
A、甲国
B、乙国
奥鹏东师 《线性代数》练习题参考答案.doc
《线性代数》练习题一 参考答案练习题第1套参考答案一、单项选择题1. C2. C3. B4. B5. A6. D7. C8. A 二、填空题 1.213531ββα+-= 2. 0 3. ()()B r A r ≤ 4. 8 5. 相关 6. () 1 , 17 , 2- - 7. ()()A r b A r = 三、计算及证明题1.给定向量组:() 3 , 1 , 1 , 1 1---=α,() 1 , 3 , 1 , 1- 2--=α,() 1 , 1 , 3 , 1- 3--=α,() 1 , 1- , 1 , 3- 4-=α,求:(1) 向量组4321 , , , αααα的秩;(2) 该向量组的一个极大无关组,并将其余向量用极大无关组线性表示。
解:对⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------1113113113113111进行初等行变换,得⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000110010101001,则(1) 向量组4321 , , , αααα的秩为3;(2) 该向量组的一个极大无关组为 , , 321ααα,且3214αααα++-=2.如果向量组n ααα , , , 21Λ线性无关,证明:向量组 , , , 211Λααα+n ααα+++Λ21 线性无关。
证明:设 ()()02121211=+++++++b n k k k ααααααΛΛ 整理得 ()()0232121=+++++++++n n n n k k k k k k k αααΛΛΛ 由于向量组n ααα , , , 21Λ是线性无关的,所以有:⎪⎪⎩⎪⎪⎨⎧==+++=+++0003221n nn k k k k k k k ΛΛΛΛΛΛ 解得⎪⎪⎩⎪⎪⎨⎧===00021n k k k ΛΛ 所以向量组 , , , 211Λααα+n ααα+++Λ21 是线性无关的。
3. 设X B AX =+,其中⎪⎪⎪⎭⎫ ⎝⎛---=101111010A ,⎪⎪⎪⎭⎫⎝⎛--=350211B ,求X 。
东北大学19秋学期《生产管理(二)》在线平时作业3答卷
18.强调交叉功能和产品并行开发和相关联流程的过程称之为并行工程。( )
答案:正确
19.成本可能是主要的竞争维度中最容易竞争获胜的方面。( )
答案:错误
20.婚礼请帖的生产流程是工艺专业化流程。( )
答案:正确
D.在AOA中,节点也称为事件。
E.以上全部都对。
答案:E
4.运作管理适用范围
A.大多数服务部门
B.仅限服务部门
C.大多数制造部门
D.有企业,无论制造业还是服务业
E.仅限制造部门
答案:D
5.总需求计划和净需求计划之间的区别是:
A.总需求计划可以不用计算机处理,但净需求计划必须用户计算机处理。
A.因素分析法
B.量本利分析
C.运输模型
D.线性回归分析
E.交叉图分析
答案:A
7.分派方法包括在表格中添加或减去适当的数字以计算最低的( )
A.利润。
B.步骤数。
C.分派数。
D.每行范围。
E.机会成本。
答案:E
8.一条装配线由5个工序组成,各工序的工时定额分别为:3分、6分、7分、4分和8分,节拍为5分/件,其最小工作地数为( )。
答案:正确
14.库存管理面临的一个重大挑战是保持库存投资和顾客服务水平的均衡。( )
答案:正确
15.高德拉特认为,不应该平衡能力,而应该平衡物流。( )
答案:错误
16.聚焦工厂是一种只限于生产一种或一类高度相似产品的生产设施。
答案:正确
17.配送过程中的库存,即在供应链中移动的产品叫在途库存。( )
E.Material risk planning。
[东北大学]19秋学期《常用电器控制技术(含PLC)Ⅰ》在线平时作业1[参考答案]
19秋学期《常用电器控制技术(含PLC)Ⅰ》在线作业1
试卷总分:100 得分:100
一、判断题 (共 15 道试题,共 60 分)
1.中间继电器的主要用途是:信号传递和放大,实现多路同时控制,起到中间转换的作用答案:正确
2.DZ5-20型自动空气开关不设专门的灭弧装置。
()答案:错误
3.电路图不能与接线图或接线表混合绘制
答案:正确
4.直流电动机启动方法有直接启动、电枢回路串电阻启动、降压启动
答案:正确
5.DZ5-20型自动空气开关中的电磁脱扣器就是欠压脱扣器。
()
答案:错误
6.异步电动机空载运行时的功率因数很高。
答案:错误
7.使用中间输出指令可以将简单逻辑块程序组成复杂逻辑块程序。
答案:错误
8.第1代PLC的功能仅限于开关量的逻辑控制和数字处理。
答案:错误
9.复位指令是给指定位地址的“位”置1,并结束一个逻辑串。
答案:错误
10.HH系列铁壳开关开关盖开启后,可以自由合闸。
()答案:错误
11.晶体管时间继电器也称半导体时间继电器或电子式时间继电器。
()答案:正确
12.先“与”后“或”可不用嵌套指令中的括号。
答案:正确
13.异步电动机不论在电网负载和应用数量上都要高于同步电动机。
答案:正确
14.继电器不能根据非电量的变化接通或断开控制电路。
()答案:错误。
东大19秋学期《线性代数》在线平时作业123满分答案
19秋学期《线性代数》在线平时作业1 试卷总分:100 得分:100一、单选题(共20 道试题,共100 分)1.{图}A.DB.CC.BD.A答案:C2.{图}A.DB.CC.BD.A答案:D3.{图}A.AB.BC.CD.D答案:A4.{图}A.AB.BC.CD.D答案:B5.{图}A.DB.CC.BD.A答案:D6.{图}A.B.C.D.答案:D7.{图}A.DB.CC.BD.A答案:B8.{图}A.AB.BC.CD.D答案:D9.{图}A.DB.CC.BD.A答案:A10.{图}A.AB.BC.CD.D答案:C11.{图}A.DB.CC.BD.A答案:C12.{图}A.AB.BC.CD.D答案:B 13.{图}B.BC.CD.D答案:D14.{图}A.DB.CC.BD.A答案:D15.{图}A.DB.CC.BD.A答案:A16.{图}A.AC.CD.D答案:A17.{图}A.DB.CC.BD.A答案:A18.{图}A.DB.CC.BD.A答案:D19.{图}A.AB.BD.D答案:B20.{图}A.DB.CC.BD.A答案:B19秋学期《线性代数》在线平时作业2 试卷总分:100 得分:100一、单选题(共20 道试题,共100 分)1.{图}A.AB.BC.CD.D答案:A2.{图}A.DC.BD.A答案:B3.{图}A.AB.BC.CD.D答案:B4.{图}A.DB.CC.BD.A答案:B5.{图}A.DB.CD.A答案:B6.{图}A.DB.CC.BD.A答案:B7.{图}A.DB.CC.BD.A答案:A8.{图}A.AB.BC.C答案:A9.{图}A.DB.CC.BD.A答案:D10.{图}A.DB.CC.BD.A答案:A11.{图}A.DB.CC.BD.A答案:A12.{图}A.AB.BC.CD.D答案:D13.{图}A.DB.CC.BD.A答案:B14.{图}A.AB.BC.CD.D答案:A15.{图}A.AB.BC.CD.D答案:C16.{图}A.DB.CC.BD.A答案:A17.{图}A.AB.BC.CD.D答案:D18.{图}A.DB.CC.BD.A答案:D19.{图}A.AB.BC.CD.D答案:A20.{图}A.AB.BC.CD.D答案:D19秋学期《线性代数》在线平时作业3 试卷总分:100 得分:100一、单选题(共20 道试题,共100 分)1.{图}A.B.C.D.答案:D2.{图}A.AB.BC.CD.D答案:C3.{图}A.DB.CC.BD.A答案:AA.AB.BC.CD.D答案:A5.{图}A.AB.BC.CD.D答案:C6.{图}A.AB.BC.CD.D答案:D 7.{图}B.BC.CD.D答案:C8.{图}A.AB.BC.CD.D答案:D9.{图}A.DB.CC.BD.A答案:A10.{图}A.DC.BD.A答案:A11.{图}A.DB.CC.BD.A答案:A12.{图}A.AB.BC.CD.D答案:C13.{图}A.DB.CD.A答案:B14.{图}A.AB.BC.CD.D答案:D15.{图}A.DB.CC.BD.A答案:B16.{图}A.DB.CC.B答案:C17.{图}A.DB.CC.BD.A答案:C18.{图}A.DB.CC.BD.A答案:D19.{图}A.AB.BC.CD.D20.{图}A.DB.CC.BD.A答案:D。
最新奥鹏东北大学21春学期《结构力学Ⅱ》在线平时作业2-参考答案
D结构必须是静定的
【答案】:D
11.多跨静定梁截面K的内力影响线图形的非零竖标布满BCDE
【选项】:
A对
B错
【答案】:A
12.竖向荷载P分别作用于A点和B点时。B点产生的竖向位移是不同的
【选项】:
A对
B错
【答案】:A
13.图中所示结构的弯矩是正确的( )
【选项】:
A对
B错
【答案】:B
14.在小变形条件下,结构位移计算和变形位能计算均可应用叠加原理
【选项】:
A对
B错
【答案】:A
15.对于静定结构,没有变形就没有位移
【选项】:
A对
B错
【答案】:B
16.
【选项】:
A对
B错
【答案】:A
17.力法方程的物理意义是多余未知力作用点沿力方向的平衡条件方程()
【选项】:
A对
B错
【答案】:B
18.简支梁跨中任意截面K的弯矩影响线的物理意义是:单位力P=l作用在截面K时整个梁的弯矩图形
A力×长度
B无量纲
C力
D长度
【答案】:C
3.图示结构各杆EI=常数,其C端的水平位移为
【选项】:
A 225/(4EI)
B 225/(8EI)
C 0
D 801/(EI)
【答案】:C
4.图示梁A截面的转角为
【选项】:
A
B
C
D
E 1
【答案】:C
5.图示桁架中零杆个数为
【选项】:
A 0
B 1
C 2
D 3
【答案】:D
东北大学
东大奥鹏远程教育
↓答案↓东大19秋学期《行政诉讼法》在线平时作业2(参考)
【奥鹏】[东北大学]19秋学期《行政诉讼法》在线平时作业2 试卷总分:100 得分:100第1题,李某之子在部队演习中死亡,部队将《烈士证书》发给李某,李某一直凭该证书领取抚恤金,2007年,民政局换发《烈士证书》时,未将其换发给李某,遂停止向李某发放抚恤金。
李某得知后向法院提起诉讼。
下列选项正确的是( ) A、人民法院不予受理 B、人民法院不予立案 C、人民法院应当予以受理 D、李某应向其子原所属部队申请解决正确答案: 第2题,有权提起行政诉讼的公民季某死亡,其()可以提起诉讼。
A、朋友陈某 B、单位领导黄某 C、弟弟季某 D、生前非法同居的岳某正确答案: 第3题,因不动产提起的行政诉讼,由()人民法院管辖。
A、原告所在地 B、被告所在地 C、中级人民法院 D、不动产所在地正确答案: 第4题,甲市A 区政府依钱某申请作出复议决定,维持甲市A区公安局对钱某作出的罚款300元的行政处罚决定,钱某不服欲提起诉讼,下列哪种说法正确?() A、甲市A区人民法院对本案有管辖权 B、甲市中级人民法院对本案有管辖权 C、甲市A区人民法院和甲市中级人民法院均有管辖权 D、本案必须先经过复议,对复议决定不服才能提起行政诉讼正确答案: 第5题,关于行政诉讼中的证据保全申请,下列哪一选项是正确的?( ) A、应当在第一次开庭前以书面形式提出 B、应当在举证期限届满前以书面形式提出 C、应当在举证期限届满前以口头形式提出 D、应当在第一次开庭前以口头形式提出正确答案: 第6题,对限制人身自由的行政强制措施不服提起的诉讼,由()人民法院管辖。
A、原告所在地 B、被告所在地 C、原告所在地或被告所在地 D、最先立案的正确答案: 第7题,公民、法人或者其他组织对()不服的,不能提起行政诉讼。
A、行政处罚 B、行政处分C、行政许可 D、行政强制措施正确答案: 第8题,经复议的案件,复议机关改变原行政行为的,( )为被告。
东北大学线性代数期末试题 及答案
由于
x1 + ax2 = 0, x2 + bx3 = 0, x3 + cx4 = 0, x4 + dx1 = 0 .
1 a00
01b0
D=
= 1 − abcd ,
0 01c
d 001
5分 10 分
故当 abcd ≠ 1时,即当且仅当 x1 = x2 = x3 = x4 = 0 时,二次型 f (x1, x2, x3, x4 ) = 0 .
⇔ α1, a2,,αr 与 β1, β2,, βl 都是α1, a2,,αs , β1, β2,, βt 的极大线性无关组
⇔ R{α1, a2,,αs} = R{β1, β2,, βt}= R{α1, a2,,αs , β1, β2,, βt} .
(2)若
x
使
Ax
=
0
,则必使
β1 = (1,−1,0)T , β2 = (1,1,−1)T .
12 分
将α = (1,1,2)T , β1 = (1,−1,0)T , β2 = (1,1,−1)T 单位化,得正交矩阵
1
6
Q
=
1
6 2
6
1 2 −1 2
0
1
3
−
1
3 1
3
.
16 分
1 1
1
1 1
2
6 2
3 0
6 6
6
则 A = QΛQT
=
1
6 2
6
−1 2
0
1
−
3 1
3
2
东北大学线性代数第四章课后习题详解线性方程组
基本教学要求:1.理解非齐次线性方程组有解的充分必要条件,理解齐次线性方程组有非零解的充分必要条件.2.理解齐次线性方程组的基础解系及通解等概念.3.理解非齐次线性方程组解的结构及通解等概念.4.掌握用线性方程组的初等变换求通解的方法.第四章 线性方程组一、线性方程组1. 线性方程组的表示形式(1)代数形式 11112121n n 12112222n n 2m11m22mn n m a x a x a x b ,a x a x a x b ,a x a x a x b .+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (4.1)记()11121n 21222n 12n m1m2mn a a a a a a A ,,,a a a ∆⎛⎫ ⎪ ⎪==ααα ⎪⎪⎝⎭()()11121n 121222n 212n m1m2mnm a a a b A a a a b B ,,,,a a a b ∆⎛⎫⎧β⎪⎪⎪==⎨ ⎪⎪αααβ⎪⎩⎝⎭(2)矩阵形式Ax =β. (4.2)(3)向量形式1122n n x x x α+α++α=β. (4.3)2. 基本概念非齐次线性方程组——当(4.1)式中的12m b ,b ,,b 不全为零. 齐次线性方程组——当(4.1)式中的12m b ,b ,,b 全为零.线性方程组的解(解向量)——使(4.1)式成立的12n x ,x ,,x 的一组取值12n c ,c ,,c (T 12n (c ,c ,,c )).解线性方程组(4.1)是指求解的集合(简称解集合).同解线性方程组——解集合完全相同的线性方程组.系数矩阵/增广矩阵——由变量前的系数构成的矩阵A/由变量前的系数与右端常数构成的矩阵B. 线性方程组的初等变换——互换两个方程的位置;用一个不为零的数乘某个方程; 某个方程的倍数加到另一个方程.二、解线性方程组解线性方程组涉及三个问题:1.解的存在性问题;2.解的数目问题;3.解的结构问题. 1. 解的存在性问题(P 86)注意到,线性方程组经初等变换得到的是同解方程组.即()()C C 0Ax CAx C A CA C ≠=β⇔=βββ可逆一般地,对于增广矩阵(A )β,存在可逆矩阵C ,使C 0(A )(CA C )≠ββ=不妨设r E A OO''β⎛⎫⎪''β⎝⎭, (4.4)1即 12x A x ,Ax .''+=β⎧=β⇔⎨''ο=β⎩ (4.4)2其中T T 11r 2r 1n x (x ,,x ),x (x ,,x )+==.由此可见,若''β=ο,则方程组有解,此时R (A)R (A )=β;若''β≠ο,方程组无解,此时R (A)1R (A )+=β.即有如下结论:定理4.1(解的存在定理) 线性方程组(4.2)有解的充分必要条件是R(A)=R(A β). (定理4.1 P 86)例4.1(例4.1 P 86) 判定线性方程组123123123 x 2x 3x 1,2x 3x 4x 5, x 3x 5x 1+-=⎧⎪+-=⎨⎪+-=-⎩是否有解.解 2131r 2r r r 12311 23 1(A )234501 2313510 122----⎛⎫⎛⎫⎪⎪β=-→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭32311 23101 2 30 0 0 1---⎛⎫⎪→- ⎪ ⎪⎝⎭r r r r R(A)=2, R(A β)=3,故无解.2. 解的数目问题方程组(4.2)有解,即同解方程组(4.4)2有解.当r=n 时,由式(4.4)2得同解方程组x '=β,此时方程组有唯一解x '=β. (4.5)1若r<n ,同解方程组为12x A x ''+=β,亦即12x A x ''=β-, (4.5)2其中T T 11r 2r 1n x (x ,,x ),x (x ,,x )+==,此时有无穷多解,称1x 为固定变量,2x 为自由变量.令22x =c ,带入(4.5)2,即得全部解(称为通解)1n r 2x A c,c R x c,-''=β-⎧∈⎨=⎩. (4.6)定理4.2(解的数目定理) n 元线性方程组(4.2)当R(A β)= R(A)=n 时有唯一解;当R(A β)=R(A)<n 时有无穷多个解. (定理4.2 P 88)定理4.3 n 元齐次线性方程组A x =ο,当R(A)=n 时只有零解;当R(A)<n 时有无穷多个解. (定理4.3 P 88)例4.2(例4.2 P 88) λ为何值时,线性方程组123412341234 x 2x 3x x 1,3x 5x 6x 2x 5,2x 3x 3x x +-+=⎧⎪+-+=⎨⎪+-+=λ⎩ 有解?并在有解时求出全部解.解 1231 1(A )3562 52331 -⎛⎫⎪β=- ⎪ ⎪-λ⎝⎭2131r 3r r 2r 1 23 1 1 01 31 2 01 3 1 2λ---⎛⎫ ⎪→-- ⎪ ⎪---⎝⎭12322r 2r r r r (2)10 31 5 013 1 2 00 0 0 4λ+-⨯--⎛⎫ ⎪→-- ⎪ ⎪-⎝⎭所以,当λ=4时,R(A)=R(A β)=2,方程有无穷多解,通解为112212123142x 53c c ,x 23c c ,c ,c R x c ,x c ,=-+⎧⎪=-+-⎪∈⎨=⎪⎪=⎩.例4.3(例4.3 P 88) 齐次线性方程组123123123x x +x 0,x x +x 0,x x +x 0λ+=⎧⎪+λ=⎨⎪+λ=⎩ 是否有非零解?3. 解的结构问题(1)齐次线性方程组解的结构解的性质:记V {x Ax }==ο——解集合(V 是向量空间,见本章第三节).,则有 ①如果12,V ξξ∈,那么12V ξ+ξ∈; ②如果V,k ξ∈为任意常数,那么k V ξ∈.推论 齐次线性方程组的任意有限个解的任意线性组合仍然是它的解(P 89).定义4.1 V 的“极大线性无关组”称为齐次线性方程组A x =ο的基础解系. (定义4.1 P 89)定义4.1表明,当A x =ο有无穷多解,其任意一个解都可由其基础解系线性表示.定理4.4(基础解系存在定理) 对于n 元齐次线性方程组A x =ο,如果R(A)=r<n ,则它有基础解系,且基础解系含n-r 个解向量. (定理4.4 P 90)A x =ο的通解(全部解的一般表达式)为(P 91)1122n r n r c c c --ξ+ξ++ξ, 12n r c ,c ,,c R -∈,其中12n r ,,,-ξξξ为A x =ο的一个基础解系.例4.4(类似例4.4 P 91) 解齐次线性方程组12345123451234512345 x x x x x 0,2x x x x 4x 0,4x 3x x x 6x 0, x 2x 4x 4x x 0.+--+=⎧⎪++++=⎪⎨+--+=⎪⎪+---=⎩ 解 213141r 2r r 4r r r 11111111112111401332A 43116013321244101332-------⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=→⎪ ⎪--- ⎪ ⎪------⎝⎭⎝⎭3212422(1)1111110223013320133200000000000000000000r r r r r r r -++---⎛⎫⎛⎫⎪ ⎪----⎪ ⎪→→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭.R(A)=2<5,故有无穷多解,同解方程组为13452345334455x 2x 2x 3x ,x 3x 3x 2x x x ,x x ,x x .=---⎧⎪=++⎪⎪=⎨⎪=⎪⎪=⎩ 通解为12312345x 223x 332x c 1c 0c 0010x 001x ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,123c ,c ,c R ∈. (其中(-2,3,1,0,0)T , (-2,3,0,1,0)T , (-3,2,0,0,1)T 是一个基础解系.)例4.5(例4.5 P 92) 设4阶矩阵A=(α1,α2,α3,α4),α1,α2线性无关,α1+α2+α3+α4=ο,α1+2α2-α3-2α4=ο,求齐次线性方程组A x =ο的通解.解 分析:求通解的关键是 .已知条件表明 .(2)非齐次线性方程组解的结构 称A x =ο为A x =β的导出组.解的性质:若记C {x Ax }==β——解集合(C 不是向量空间,见本章第三节),则 ①如果12,C ξξ∈,那么12V ξ-ξ∈; ②如果C,V η∈ξ∈,那么C η+ξ∈;③如果0C η∈,那么A x =β的任意一个解η都可以表示为0η=η+ξ,其中V ξ∈.A x =β的通解为(P 93)01122n r n r c c c --η+ξ+ξ++ξ,12n r c ,c ,,c R -∈.其中0η是A x =β的一个解(称为特解),12n r ,,,-ξξξ是A x =ο的一个基础解系.例4.6 解线性方程组123412341234 x 2x 4x 3x 1,3x 5x 6x 4x 1,4x 5x 2x 3x 2.++-=⎧⎪++-=⎨⎪+-+=-⎩ 解 12 431(A )35 641452 32-⎛⎫⎪β=- ⎪ ⎪--⎝⎭213132122r 3r r 4r r 3r r 2r (1)r 1 2 4310165203181561 0873016520 0 00 01 08 730 1 65 20 0 0 0 0---+--⎛⎫⎪→--- ⎪⎪---⎝⎭--⎛⎫⎪→--- ⎪ ⎪⎝⎭--⎛⎫⎪→- ⎪ ⎪⎝⎭R(A β)=R(A)=2<4,有无穷多解,同解方程组为1342343344x 38x 7x ,x 26x 5x ,x x ,x x .=-+-⎧⎪=-+⎪⎨=⎪⎪=⎩ 通解为121234x 387x 265c c x 010001x --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 12c ,c R ∈.(其中(-3,2,0,0)T 为特解,(8,-6,1,0)T , (-7,5,0,1)T 为导出组的一个基础解系.)例4.8(例4.7 P 94) 问a,b 为何值时,线性方程组123412341234234 x x x x 0,2x 3x x 4x 1,3x 2x ax x b, 2x 2x ax 2+++=⎧⎪+++=⎪⎨+++=⎪⎪-+=⎩ 无解?有唯一解?有无穷多个解?并在有无穷多个解时,求其通解.解 方法一(cramer 法则)4221313242c c c c c c c c c c 2111110002314211132a 131a 31022a022a 210002100(a 4).31a 4002a 4---+--=------==----所以,当a ≠4时,方程组有唯一解.而当a=4时,11110111102314101121(A )3241b 0112b 1022a202242⎛⎫⎛⎫ ⎪ ⎪-⎪ ⎪β=→⎪ ⎪--+ ⎪ ⎪--⎝⎭⎝⎭10211011210000b 100000--⎛⎫⎪- ⎪→ ⎪+ ⎪⎝⎭. 可见,当b ≠-1时,R(A)=2<R(A|β)=3,此时方程组无解;当b=-1时,R(A)=R(A β)=2,方程组有无穷多个解,同解方程组为1342343344x 12x x ,x 1 x 2x ,x x ,x x .=--+⎧⎪=+-⎪⎨=⎪⎪=⎩ 通解为 121234x 12 1x 112c c x 01 000 1x --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 12c ,c R ∈.方法二(初等变换法 P 94)例4.9(例4.6 P 93) 设η1=(1,1,1,1)T , η2=(1,2,3,4)T , η3=(1,-1,2,3)T 都是4元非齐次线性方程组的A x =β的解,且R(A)=2,求方程组A x =β的通解.解 分析:三个解η1,η2,η3说明 ,R(A)=2则说明 .三、向量空间什么是向量空间?向量空间是符合一定条件的集合.为什么讲向量空间?当集合为向量空间时,该集合中的任意一个元素都可由该集合中的“极大线性无关组”线性表示.定义4.2 设V 是非空的n 维向量集合,如果V 对向量的加法和数乘运算是封闭的,则称V 是向量空间. (定义4.2 P 95)集合V 对向量的加法和数乘运算是封闭的是指: (1)如果,V αβ∈,那么V α+β∈; (2)如果V,k R α∈∈,那么k V α∈.例如,齐次线性方程组的解集合V 是向量空间,故也称为解空间;非齐次线性方程组的解集合C 不是向量空间.n 维向量集合R n 是向量空间.由向量组α1,α2,…,αm 的任意线性组合组成的集合L(α1,α2,…,αm )={k 1α1+k 2α2+…+k m αm |k 1,k 2,…,k m ∈R}是一个向量空间,称为由向量α1,α2,…,αm 生成的向量空间.例4.10(例4.8 P 96)定义4.3 设V 和U 是向量空间,如果V ⊂U ,则称V 是U 的子空间. (定义4.3 P 96)例如,n 元齐次线性方程组的解空间V 就是n 维向量空间R n 的一个子空间.定义4.4 向量空间V 的“极大无关组”称为V 的基,“极大无关组”的秩r 称为V 的维数,V 则称为r 维向量空间. (定义4.4 P 96)规定:不存在基的向量空间(即仅含零向量的向量空间)的维数为0.正交基——由正交向量组构成的基 规范正交基——由规范正交向量组构成的基例如,n 元齐次线性方程组的解空间V 是n-R(A)维向量空间,基础解系即是V 的基.R n 是n 维向量空间,标准单位向量组ε1,ε2,…,εn 即是R n 的一组规范正交基.生成空间L(α1,α2,…,αm )是R(α1,α2,…,αm )维向量空间,α1,α2,…,αm 的极大线性无关组即是L(α1,α2,…,αm )的基.例如,集合V 1={(0, a 2,…,a n )|a 2,…,a n ∈R}是向量空间,标准单位向量组e 2,…,e n 是V 1的一组规范正交基,V 1是n-1维向量空间.定义4.5 设α1,α2,…,αr 是向量空间V 的一个基,那么V 中向量α可以表示为α=x 1α1+x 2α2+…+x r αr ,称x 1,x 2,…,x r 为向量α在基α1,α2,…,αr 下的坐标. (定义4.5 P 97)例4.11(例4.9 P 97)解 分析:向量组是基的条件 .如果β1,β2,…,βr 是向量空间V 的另一组基,那么存在可逆矩阵C ,使(β1,β2,…,βr )=(α1,α2,…,αr )C . (4.10)C 称为由基α1,α2,…,αr 到基β1,β2,…,βr 的过渡矩阵.式(4.10)称为基变换公式.设向量α在基β1,β2,…,βr 下的坐标为(y 1,y 2,…,y r )T ,那么1122r r112212r 12r r r y y y y y yy (,,,)(,,,)C y y α=β+β++β⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=βββ=ααα ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.于是,α在基α1,α2,…,αr 下的坐标1122r r x y x y C x y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (4.11) 式(4.11)称为坐标变换公式.例4.12(例4.10 P 98) 已知向量空间R 3中的两个基:α1=(1,0,0)T ,α2=(-1,1,0)T ,α3=(-1,-1,1)T ,e 1=(1,0,0)T , e 2=(0,1,0)T , e 3=(0,0,1)T ,求由基α1,α2,α3到基e 1,e 2,e 3的过渡矩阵,并求向量β=(1,2,3)T 在基α1,α2,α3下的坐标.解 α1=e 1,α2=-e 1+e 2,α3=-e 1-e 2+e 3,即(α1,α2,α3)=(e 1,e 2,e 3)111011001--⎛⎫ ⎪- ⎪ ⎪⎝⎭.于是由基α1,α2,α3到基e 1,e 2,e 3的过渡矩阵C 为1111112011011001001---⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭C .令β=x 1α1+x 2α2+x 3α3,则β在基α1,α2,α3下的坐标为(x 1,x 2,x 3)T =(α1,α2,α3)-1β=C (e 1,e 2,e 3)-1β= C β=(9,5,3)T .四、习题(P 101)选择题:1.提示:(1,0,1,0)T 是A x =ο的基础解系,则有α1+α3=ο ⇒ 排除A,C与 R(A)=4-1=3 ⇒1234*****A O R(A )1R(A )4R(A),,,1A A O A x 0α⎧≠⇒≥⎪⎧≤-=⎨⎪=⇒⎨⎪=ααα⎪⎩⎩的解都是 ⇒ R(A *)=1 ⇒ 排除B ,选D2. 提示: C 0r 12E A b (A b)(CA Cb)=O O b ≠⎛⎫'→ ⎪⎝⎭不妨 有解表明R(A)=R(A b ),对任意的b 都有解则表明R(A b )=m. 选B3. 选D4. 选C5. 选D6. 提示:|A|=0且A ij ≠0 ⇒ R(A)=n-1 ⇒ 选A7. 选C8. 选C9. 选B10. 选D11. 提示:|A|=0 ⇒ R(A)<nD i ≠0 ⇒ R(A|b )=n 选A12. 选C填空题:1. k=n-r , r=n2. r=n r<n3. 提示:A 是正交矩阵且a 11=1 ⇒ a 12=a 13=a 21=a 31=0⇒ A(1,0,0)T =(a 11,a 21,a 31)T =(1,0,0)T =b4. 提示:AB=O ⇒ B 的列向量都是A x =ο的解B ≠O ⇒ A x =ο有非零解 ⇒ R(A)<m 或 |A|=05. 提示:AB=AC ⇒ A(B-C)=O ⇒ R(A)<n6. a=-2解答题:2.(3) 解 2131r 4r r 3r 11026110264111105172531100041618------⎛⎫⎛⎫ ⎪ ⎪---→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭23223123r 15r 4r r r r r r (5)11026011755001221001101017001210⨯-++-⨯---⎛⎫ ⎪→-- ⎪ ⎪--⎝⎭-⎛⎫ ⎪→-- ⎪ ⎪-⎝⎭R(A)=R(A|β)<4,有无穷多解.同解方程组为14243444x x 1,x x 7, x 2x 10,x x .=+⎧⎪=-⎪⎨=+⎪⎪=⎩ 通解为(1,-7,10,0)T +c(1,1,2,1)T , c ∈R .3. 提示:32121r r 2r r 4r 10110141224122614230001---λλ⎛⎫⎛⎫ ⎪ ⎪λ+→λ+ ⎪ ⎪ ⎪ ⎪λ+-λ+⎝⎭⎝⎭4. 提示:向量β能不能由向量组α1,α2,α3线性表示等同于非齐次线性方程组(α1,α2,α3)x =β是否有解.1 1 1 11 1 11 2a 2 b+2 30 a b+4103a a 2b 303a a 2b 311 110a b+4100a+5b+120--⎛⎫⎛⎫ ⎪ ⎪+→ ⎪ ⎪ ⎪ ⎪-+--+-⎝⎭⎝⎭-⎛⎫ ⎪→ ⎪ ⎪⎝⎭(1)当a=0且b ≠-12/5时, 11 1111110a b+4100 1000a+5b+12000 01--⎛⎫⎛⎫ ⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,有R(A)=2<R(A β)=3,此时β不能由向量组α1,α2,α3线性表示.(1) (2)当a+5b+12=0时,R(A)=R(A β)=2,这时β能由向量组α1,α2,α3线性表示,但表示式不唯一.由(2) 11 11 0a b+4100a+5b+12011 1 1101(b 4)a 1101(b 4)a 1a 01 1 1,a 000 0 000 0 0111 1110(b 5)(b 400 114)00 0 0-⎛⎫ ⎪ ⎪ ⎪⎝⎭---+-⎛⎫⎛⎫ ⎪ ⎪+→-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭→-++⎛⎫ ⎪+→ ⎪ ⎪⎝⎭)001 1(b 4),a 0000 0⎧⎪⎪⎪⎪⎨⎛⎫⎪ ⎪⎪+= ⎪⎪ ⎪⎪⎝⎭⎩有 1211(1)a a β=-α+α 或 13b 51b 4b 4+β=α+α++. (3) (3)当a(a+5b+12)≠0时,R(A)=R(A β)=3,这时β能由向量组α1,α2,α3唯一线性表示.由11 1111 1 1 0a b+4101(b+4)a 1a 00a+5b+12000 1 010011a 010 1a 001 0--⎛⎫⎛⎫ ⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-⎛⎫ ⎪→ ⎪ ⎪⎝⎭, (4) 有1211(1)a aβ=-α+α. (5) 5.提示:方程组(Ⅱ)的系数矩阵的秩=增广矩阵的秩=3.因为方程组(Ⅰ)与方程组(Ⅱ)同解,所以它们的解也是方程组[(Ⅰ)+(Ⅱ)]的解,从而方程组[(Ⅰ)+(Ⅱ)]满足:系数矩阵的秩=增广矩阵的秩=3.23123415161425263r 2r r r r r r r 2r r 2r r (a 1)r r r r r 111111006601212010540012100121 1a1110a 100021b 1401b 212223c 1001c 21100660105400121000--------+--⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪--→ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭---→-53r (b 2)r 5(a 1)4(a 1)00b 242000c 401006601054001210005(a 1)4(a 1)0002(4b)b 4000c 40--⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪-- ⎪ ⎪-⎝⎭-⎛⎫ ⎪- ⎪ ⎪-→ ⎪--- ⎪ ⎪-- ⎪ ⎪-⎝⎭因为系数矩阵的秩=增广矩阵的秩=3,所以a-1=0,b-4=0,c-4=0 ⇒ a=1,b=c=4.6. 提示:BA 的行向量都是方程组P x =ο的解⇒ P(BA)T =P(A T B T )=OB ⇒可逆 PA T =O⇒ A 的行向量也都是方程组P x =ο的解7. 提示: AB=O ⇒ B 的列向量都是方程组A x =ο的解B ≠O ⇒ 方程组A x =ο有非零解 ⇒ R(A)<n ,故|A|=08. 提示:设A=(α1,α2,…,αn ),并取x =e i (i=1,2,…,n),那么由A x =ο即得αi =ο(i=1,2,…,n),所以A=O.9. 提示:由A η=b ⇒ a=c.10. 提示:11a 14(A B)=1a 112a 1122⎛⎫ ⎪- ⎪ ⎪--⎝⎭123r r r a 2a 2a 2001a 112a 1122+++++⎛⎫ ⎪→- ⎪ ⎪--⎝⎭32r 2r a 2a 1a 2a 100000000000000012112121121101021122033060110211100000120000411100140010a 1012a 1a 1a 1002212010a 1a 12100+=-=≠-≠⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→--→--→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭⎛⎫ ⎪→- ⎪ ⎪-⎝⎭⎛⎫ ⎪→---- ⎪ ⎪---⎝⎭→----2a 1a 1⎧⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎛⎫⎪⎪⎪ ⎪⎨⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪- ⎪⎪--⎪⎝⎭⎩⎩当a=1时,无解;当a ≠-2且a ≠1时,解唯一;当a=-2时,解不唯一.11. 提示:A ηi =β(i=1,2,…,n)⇒ A(k 1η1+k 2η2+…+k s ηs )=(k 1+k 2+…+k s )β=β⇔ k 1+k 2+…+k s =112. 解 A 的各行元素之和都等于零,即A (1,1,…,1)T =οT ,所以(1,1,…,1)T 是A x =ο的解.另因R(A)=n-1,所以(1,1,…,1)T 是基础解系.于是A x =ο的通解为c(1,1,…,1)T ,c ∈R .13. 提示:设B=(β1,β2,…,βs ),则AB=O ⇔ A(β1,β2,…,βs )=O⇔ A βi =ο,i=1,2,…,s ,⇒ B 的各列都是A x =ο解⇒ R(B)≤n-R(A)⇒ R(A)+R(B)≤n14. 提示:n ijlj j 1A 0,a A 0,i,l 1,2,,n,i l ====≠∑()n ijlj j 1T k1k2kn R(A)n,a A 0,i,l 1,2,,n R(A)n,A A ,A ,,A =⇒<==⇒<=ο∑ 又 ()kl k1k2kn R(A)n 1,A 0A ,A ,,A .≥-⎧⎪≠⇒⎨≠ο⎪⎩ 所以R(A)=n-1,且(A k1, A k2, …,A kn )T 是A x =ο的一个基础解系.15. 提示:234123,,R(A)32⇒ααα⎧=⎨α=α-α⎩线性无关T 1232A(1,2,1,0)α=α-α⇒-=ο,T 1234A(1,1,1,1)β=α+α+α+α⇒=β,故A x =β的通解为(1,1,1,1)T + c(1,-2,1,0)T , c ∈R .16. 提示:因为A≠O,AB=O ,所以R(A)≥1, R(A)+R(B)≤3,因此R(B)≤2.于是若k≠9,则R(B)=2,R(A)=1,此时A x =ο的通解为c 1(1,2,3)T +c 2(3,6,k)T , c 1,c 2∈R.若k=9,则R(B)=1.那么(1)当R(A)=2时,A x =ο的通解为c(1,2,3)T , c ∈R ;(2)当R(A)=1时,A x =ο的同解方程为ax+by+cz=0,通解为c 1(b,-a,0)T +c 2(c,0,-a)T , c 1,c 2∈R .17. V 1是n-1维向量空间,一个基为(1,0,…,0,-1)T , (0,1,…,0,-1)T ,…, (0,0,…,1,-1)T .V 2不是.18. 提示:(1) 因为(β1,β2,β3)=(α1,α2,α3)C ,所求过渡矩阵为C=(α1,α2,α3)-1(β1,β2,β3)=…(2) 设α=(α1,α2,α3)x ,则x =(α1,α2,α3)-1α=…19. 提示:设采购前后仓库A,B,C 三件物品的件数分别为x 0,y 0,z 0和x 1,y 1,z 1,则x 1=0.3y 0+0.5z 0+x 0, y 1=0.3x 0+y 0, z 1=0.6y 0+z 0,即x 0+0.3y 0+0.5z 0 =290,0.3x 0+ y 0 =330,0.6y 0+ z 0=380.五、计算实践实践指导:(1)了解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充要条件.(2)理解齐次线性方程组的基础解系及通解等概念.(3)理解非齐次线性方程组解的结构及通解等概念.(4)掌握用行初等变换求线性方程组通解的方法.例4.1 a,b 为何值时,线性方程组123123123123(1a)x x x 1, 2x (2a)x 2x 2, 3x 3x (3a)x 3,4x 4x 4x (4a).+++=⎧⎪+++=⎪⎨+++=⎪⎪++=+⎩ 无解,有解?并在有解时求其解.解 ()1a 11122a 22A 333a 34444a +⎛⎫ ⎪+ ⎪β= ⎪+ ⎪+⎝⎭10a 10a 10a 10a 22a 22333a 34444a ++++⎛⎫ ⎪+ ⎪→ ⎪+ ⎪+⎝⎭. 当a≠-10时,111122a 22(A )333a 34444a ⎛⎫ ⎪+ ⎪β→ ⎪+ ⎪+⎝⎭11111,a 0111111a a 1111a 0,a 000⎧⎛⎫⎪ ⎪⎪⎪→≠⎪⎪⎛⎫⎪ ⎪ ⎪⎪⎝⎭ ⎪→⎨ ⎪⎛⎫⎪ ⎪ ⎪⎪⎝⎭ ⎪⎪==⎪⎪ ⎪⎪⎝⎭⎩ ⇒ 当a≠-10且a≠0,无解;当a=0,有无穷多个解,通解为(1,0,0)T +c 1(-1,1,0)T +c 2(-1,0,1)T , c 1,c 2∈R.当a=-10时,()9111010201028221411A 337301510000000000--⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪β→→ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭ 14111411012102010320032000000000--⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭ 1011100140101201012002320013400000000--⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭ ⇒ 当a=-10,有唯一解(-1/4,-1/2,-3/4)T .例4.2 证明:*n,R(A)n, R(A )1,R(A)n 1,0,R(A)n 1.=⎧⎪==-⎨⎪<-⎩证 *AA A E = ******ij **ij R(A)n A 0A R(A )nAA O R(A)R(A )n R(A)n 1R(A )1A 0R(A )1R(A)n 1A 0A O R(A )0=⇒≠⇒⇒=⎧=⇒+≤⎪=-⇒⇒=⎨∃≠⇒≥⎪⎩<-⇒∀=⇒⇒=可逆=六、知识扩展1.设A 是m×n 矩阵,B 是n×m 矩阵,则线性方程组AB x =ο[D ].(A)当n>m 时仅有零解;(B)当n>m 必有非零解;(C)当n<m 时仅有零解; (D)当n<m 时必有非零解. (2002 数三)提示:AB 是m×m 矩阵,R(AB)≤min{ R(A), R(B)}⇒ 当m≤n ,R(AB)≤m ,由此推不出R(AB)=m 或必≠m ⇒ 排除A,B ;当n≤m ,R(AB)≤n ⇒ AB x =ο有非零解 ⇒ 排除C ,故选D.2.设A 是m×n 矩阵,A x =ο是A x =β的导出组,则下列结论正确的是[D ].(A)若A x =ο仅有零解,则A x =β有唯一解;(B)若A x =ο有非零解,则A x =β有无穷多个解;(C)若A x =β有无穷多个解,则A x =ο仅有零解;(D)若A x =β有无穷多个解,则A x =ο有非零解.提示:由(A)、(B)推不出R(A)=R(A β);由(C)、(D)可推出R(A)<n ,故选(D).3.非齐次线性方程组A x =β中未知量个数为n ,方程个数为m ,系数矩阵的秩为r ,则[A ].(A) 当r=m 时, 则A x =β有解;(B) 当r=n 时, 则A x =β有唯一解;(C) 当n=m 时, 则A x =β有唯一解;(D) 当r<n 时, 则A x =β有无穷多个解.(1997 数四)提示:由(B)、(C)、(D)推不出R(A)=R(A β),而由(A)可推出R(A)=R(A β)= m ,故选(A).4.设n 阶矩阵A 的伴随矩阵A *≠O ,若η1,η2,η3,η4是非齐次方程组A x =β的互不相等的解,则对应的齐次方程组A x =ο的基础解系[B ].(A)不存在;(B )仅含一个非零解向量;(C)含有两个线性无关的解向量;(D)含有三个线性无关的解向量.提示:A *≠O ⇒ R(A)≥n -1η1,η2,η3,η4是互不相等的解 ⇒ R(A)<n⇒ R(A)=n-1 ⇒ A x =ο的基础解系仅含一个非零解向量,故选D.5.已知非齐次线性方程组123412341234 x x x x 14x 3x 5x x 1ax x 3x bx 1+++=-⎧⎪++-=-⎨⎪++-=⎩有3个线性无关的解,(1)证明方程组系数矩阵A 的秩R(A)=2;(2)求a,b 的值及方程组的通解.提示:(1)非齐次线性方程组有3个线性无关的解, 所以其导出组至少有两个解,因此R(A)≤2.又()21321r 4r r 1a r ar 11111(A )43511a 13b 111111011530042a b 4a 542a -+---⎛⎫ ⎪β=-- ⎪ ⎪-⎝⎭-⎛⎫ ⎪→-- ⎪ ⎪--+--⎝⎭⇒ R(A)≥2 ⇒ R(A)=2(2) R(A)=R(A β)=2 ⇒42a 0a 2b 4a 50b 3-==⎧⎧⇒⎨⎨-+-==-⎩⎩1111112064(A )43511011532133100000--⎛⎫⎛⎫ ⎪ ⎪β=--→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭于是通解为(-4,0,3,0)T +c 1(-2,1,1,0)T +c 2(-6,0,5,1)T , c 1,c 2∈R.6.已知四元齐次线性方程组(Ⅰ) 12312342x 3x x 0 x 2x x x 0+-=⎧⎨++-=⎩和另一个四元齐次线性方程组(Ⅱ)的一个基础解系α1=(2,-1,a+2,1)T , α2=(-1,2,4,a+8)T ,(1)求方程组(Ⅰ)的一个基础解系;(2)当a 为何值时,方程组(Ⅰ) 与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解. (2002 数四)提示:(1) (Ⅰ)的一个基础解系为β1=(5,-3,1,0)T , β2=(-3,2,0,1)T .(2) 设方程组(Ⅰ)与(Ⅱ)有非零公共解,于是将(Ⅱ)的通解k 1α1+k 2α2代入(Ⅰ)中,得()()()112a 1k 0a 1k a 1k 0+=⎧⎪⎨+-+=⎪⎩ 当a≠-1时,k 1=k 2=0,则(Ⅰ)与(Ⅱ)无非零公共解;当a=-1时,k 1,k 2任意,故此时(Ⅰ)与(Ⅱ)有非零公共解,且全部非零公共解为k 1α1+k 2α2,k 1,k 2为不全为零的任意实数.7.已知向量组β1=(0,1,-1)T ,β2=(a,2,1)T ,β3=(b,1,0)T 与向量组α1=(1,2,-3)T ,α2=(3,0,1)T ,α3=(9,6,-7)T 有相同的秩,且β3可由α1,α2,α3线性表示,求a,b 的值. (2000 数二) (答案:a=15,b=5)提示:()123123αααβββ1390ab 206121317110⎛⎫ ⎪→ ⎪ ⎪---⎝⎭ 11103122130124220002a 13b 5⎛⎫ ⎪⎪ ⎪→ ⎪ ⎪--- ⎪ ⎪⎝⎭⇒ R(A)=2因β3可由α1,α2,α3线性表示,故b-5=0,即b=5.()123123αααβββb 51100310a 150=-⎛⎫ ⎪→ ⎪ ⎪-⎝⎭ 因为R(A)=R(B)=2,故a-15=0,即a=15.8.设A 是实方阵,证明:线性方程组A x =ο与A T A x =ο是同解方程组. (2000数三) 提示:显然A x =ο的解是A T A x =ο的解;反之,若x 是A T A x =ο的解,则x T A T A x =0 ⇔ |A x =ο|=0 ⇔ A x =ο,故x 也是A x =ο的解.9.设向量组(α1,α2,…,αt )是齐次线性方程组A x =ο的一个基础解系,向量β不是方程组A x =ο的解.证明:向量组β,β+α1,β+α2,…,β+αt 线性无关.提示:方法一由α1,α2,…,αt 是齐次线性方程组A x =ο的一个基础解系,β不是方程组A x =ο的解,知β,α1,α2,…,αt 线性无关.令k 0β+k 1(β+α1)+k 2(β+α2)+…+k t (β+αt )=ο即(k 0+k 1 +k 2+…+k t )β+k 1α1+k 2α2+…+k t αt =ο01t 011t t k k k 0k 0 k 0k 0k 0k 0+++==⎧⎧⎪⎪==⎪⎪⇒⇒⎨⎨⎪⎪⎪⎪==⎩⎩ 故向量组β,β+α1,β+α2,…,β+αt 线性无关.方法二由α1,α2,…,αt 是齐次线性方程组A x =ο的一个基础解系,β不是方程组A x =ο的解,知β,α1,α2,…,αt 线性无关.另有()()()()12t 12t t 1t 1 ,,,,111010,,,,BK 001∆+⨯+ββ+αβ+αβ+α⎛⎫ ⎪ ⎪=βααα= ⎪ ⎪⎝⎭ 而K 可逆,故β,β+α1,β+α2,…,β+αt 线性无关.10. 设A 是n 阶矩阵,α是n 维列向量,若秩T AR R(A)α⎛⎫= ⎪αο⎝⎭,则线性方程组[D ].(A) A x =α必有无穷多个解;(B) A x =α必有唯一解;(C) T Ax y α⎛⎫⎛⎫=ο ⎪⎪αο⎝⎭⎝⎭仅有零解; (D) T Ax y α⎛⎫⎛⎫=ο ⎪⎪αο⎝⎭⎝⎭必有非零解. (2001 数三) 提示:T AR R(A)α⎛⎫= ⎪αο⎝⎭ ⇒ T A R n 1α⎛⎫<+ ⎪αο⎝⎭ ⇒ 排除C ,选D 此外,由T AR R(A )R(A)α⎛⎫≥α≥ ⎪αο⎝⎭⇒ R(A α)= R(A) ⇒ A x =α有解,但不能确定是有唯一解,还是有无穷多个解,故排除A,B .11. 设α=(1,2,1)T ,β=(1,1/2,0)T ,γ=(0,0,8)T ,A=αβT ,B=βT α,求解方程2B 2A 2x =A 4x +B 4x +γ. 提示:241120A 210,B 2,A 2A,A 8A 1120⎛⎫ ⎪==== ⎪ ⎪⎝⎭方程化简为8(A-2E)x =γ,解之得x =(1/2,1,0)T +c(1,2,1)T , c ∈R.12.设11a A 010,b 1111λ⎛⎫⎛⎫ ⎪ ⎪=λ-= ⎪ ⎪ ⎪ ⎪λ⎝⎭⎝⎭,已知线性方程组A x =b 存在2个不同的解,(Ⅰ)求λ和a ;(Ⅱ)求方程组A x =b 的通解. (2010(一)(二)(三))13.设矩阵222a 1a 2a A 1a 2a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,现矩阵A 满足方程A x =b ,其中x =(x 1,x 2,…x n )T ,b=(1,0,…,0)T , (1)求证|A|=(n+1)a n ; (2)a 为何值时,方程组有唯一解?求x 1;(3)a 为何值时,方程组有无穷多解?求通解. (2008(一)(二)(三))提示:(1)2222n2a12a130a1a2a2Aa2a11a2aa2a 2a130a124(n1)a.a31n10an====++或22n n-1n-22n2n n-1n-1n-221n222nnn2a1a2aD2aD a D1a2aD aD a(D aD)a(D aD)a(3a2a)aD(n1)a.--==-⇒-=-=-=-=⇒=+(2)当a≠0时,方程组有唯一解,根据Cramer法则,得n1n11nnD na nxD(n1)a(n1)a--===++.(3)当a=0时,方程有无穷多解,通解为x=(0,1,0,…,0)T+c(1,0,0,…,0)T, c∈R.。
最新奥鹏东北大学20秋学期《文献检索与写作》在线平时作业2-参考答案
D利用主题途径检索有利于提高查全率
【答案】:D利用主题途径检索有利于提高查全率|
5.在万方数据知识服务平台上,不支持的算符是
【选项】:
A and
B or
C not
D same
【答案】:D same |
6.逻辑算符不包括
【选项】:
A near
B and
C or
D not
B <p><span style="font-size:16px;font-family:宋体">字段检索常用代码来表示</span></p>
C <p><span style="font-size:16px;font-family:宋体">各数据库基本检索字段标识符号完全相同</span></p>
D <p><span style="font-size:16px;font-family:宋体">检索时,系统只对指定字段进行匹配运算</span></p>
C <p><span style="font-size:16px;font-family:宋体">情报是激活的那部分知识</span></p>
D <p><span style="font-size:16px;font-family:宋体">文献是信息、知识、情报的载体。</span></p>
【答案】:A <p><span style="font-size:B6px;font-family:宋体">知识来源于信息,是理性化、优化和系统化了的信息;</span></p> |B <p><span style="font-size:B6px;font-family:宋体">情报是解决特定问题的知识;</span></p> |C <p><span style="font-size:B6px;font-family:宋体">情报是激活的那部分知识</span></p> |D <p><span style="font-size:B6px;font-family:宋体">文献是信息、知识、情报的载体。</span></p> |
地大《线性代数》在线作业二答案
地大《线性代数》在线作业二答案
地大《线性代数》在线作业二答案1
n阶方阵可逆的充要条件是它的行列式不等于0.
A 错误
B 正确
正确答案:B
2
齐次线性方程组任意两个解之线性组合仍然是原方程组的解
A 错误
B 正确
正确答案:B
3
反对称矩阵的主对角线上的元素和为0
A 错误
B 正确
正确答案:B
4
等价的两个线性无关向量组所含有向量的个数一定相等。
A 错误
B 正确
正确答案:B
5
二次型为正定的充要条件是对应的矩阵为正定矩阵
A 错误
B 正确
正确答案:B
6
对矩阵A,B,r(AB)=r(A)r(B)
A 错误
B 正确
正确答案:A
7
两个矩阵A与B,若AB=0则一定有A=0或者B=0
A 错误
B 正确
正确答案:A
8
(1,1,0), (1,0,1), (0,1,1)构成为3维向量空间的一个基。
A 错误
B 正确
正确答案:B
9
两个行列式相等的正交矩阵的乘积也是正交矩阵
A 错误。
东北大学线性代数_第三章课后答案详解向量组的线性相关性
第三章 向量组的线性相关性基本教学要求:1. 理解n 维向量的概念.2. 理解向量的线性组合、线性相关和线性无关的概念.3. 掌握向量的线性相关和线性无关的有关理论及判断方法.4. 了解向量组的极大线性无关组与秩的概念,会求向量组的极大线性无关组及秩.5. 理解矩阵的秩的概念,掌握求秩的方法.一、向量及其运算 1. 向量的概念有大小无方向的量,叫做数量或标量.既有大小又有方向的量则是向量,又称矢量,用有序数组表示:12n a a a ⎛⎫⎪⎪ ⎪ ⎪⎝⎭或 ()12,,,n a a a .前者称为n 维列向量,后者称为n 维行向量.列向量通常记作a 、或a 、或α,对应的行向量则相应地记作Ta 、或Ta 、或T α.如不特别说明,向量一般常指列向量. 以下讨论主要针对实向量.2. 向量的运算因为向量是矩阵,所以它有许多与矩阵相同的运算及运算规律(P 62):(1)相等; (2)加法; (3)数乘; (4)转置,但向量没有矩阵形式的“乘法”和“逆”,而有所谓的“向量的乘法”运算——内积.向量的加法和数乘运算称为向量的线性运算.例3.1(例3.1 P 62)(5)内积(P 63) 设向量1212(,,,),(,,,)T T n n a a a b b b αβ==,令1122[,]n n a b a b a b αβ=+++,称[,]αβ为α与β的内积.例如,内积的性质:①[,][,]αββα=(对称性);②[,][,][,]αβγαγβγ+=+,[,][,]k k αβαβ=(线性性); ③[,]0αα≥.当且仅当αο=时,[,]0αα=(正定性).2n a =++为向量α的长度(或范数),记为α(或α).当1α=时,称α为单位向量.如果αο≠,则1αα是与α同方向的单位向量.对任意非零向量αβ、,称[,],arccosαβαβαβ=⋅,(0,αβπ≤≤)为向量α与β的夹角.如果[,]=0αβ,则称α与β正交.3.应用(1)向量表示线性方程组(P 65) 考虑线性方程组1111221n n 12112222n n 2m11m22mn n m a x a x a x b ,a x a x a x b ,a x a x a x b .+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(1)若设1i 12i 2i mi m a b a ba (i 1,2,,n),b a b ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则(1)式可表示为1122n n x a x a x a b +++=. (2)(2)向量表示矩阵(P 64)111121n 21222n 2m1m2mn m a a a a a a A a a a ⎛⎫α⎛⎫ ⎪ ⎪α ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪α⎝⎭⎝⎭或 ()11121n 21222n 12n m1m2mn a a a a a a A a a a ⎛⎫⎪⎪=βββ ⎪⎪⎝⎭,12m ,,,ααα与12n ,,,βββ分别称为矩阵A 的行向量组与列向量组.二、向量组的线性相关性 1. 基本概念由同维数的列向量(或行向量)组成的集合叫做向量组.定义3.1 对向量β和向量组12s ,,,ααα,若存在一组数12s k ,k ,,k 使1122s s k k k β=α+α++α, (3) 则称向量β可由向量组12s ,,,ααα线性表示,也称β是向量组12s ,,,ααα的一个线性组合. (P 64)例如:3112210--⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭表明向量⎪⎪⎭⎫ ⎝⎛-23可由向量组⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-0111,线性表示.例如:10532436327⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭是向量组1052,3,6327⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭的一个线性组合,而1052236327⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-+-- ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭是向量组1052,3,6327⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭的另一个线性组合.根据定义3.1,方程组(2)有解可表述为向量b 可由向量组12n a ,a ,,a 线性表示.式(3)可以用分块矩阵的乘积形式表示为(P 64)1212s s k k (,,,)k ⎛⎫ ⎪ ⎪β=ααα ⎪ ⎪⎝⎭;(当12s ,,,,βααα为列向量时)或 1212s s (k ,k ,,k )α⎛⎫ ⎪α ⎪β= ⎪ ⎪α⎝⎭. (当12s ,,,,βααα为行向量时)定义3.2 对向量β和向量组12s ,,,ααα,若存在一组不全为零的数12s k ,k ,,k 使1122s s k k k α+α++α=ο, (4)则称向量组12s ,,,ααα线性相关;否则,称向量组12s ,,,ααα线性无关.(P 65)定义3.2表明: 向量组12s ,,,ααα线性相关,即齐次线性方程组1122s s x x x α+α++α=ο有非零解. (P 65) 向量组12s ,,,ααα线性无关,即齐次线性方程组1122s s x x x α+α++α=ο只有零解. (P 65)又根据Cramer 法则,有n 个n 维向量线性相关⇔n 个向量构成的矩阵的行列式为0. n 个n 维向量线性无关⇔n 个向量构成的矩阵的行列式不为0.例如,311022100--⎛⎫⎛⎫⎛⎫⎛⎫--+= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭表明向量组311,,210--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭线性相关.0700230321321 =⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-k k k ,即0723032001321 =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-k k k .由于只有零解,所以向量组1002,3,0327⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭线性无关.定义3.3一组两两正交的非零向量称为正交向量组.由单位向量构成的正交向量组称为规范正交向量组. (P 66)例如,n 维标准单位向量组e 1=(1,0,…,0)T , e 2=(0,1,…,0)T , …, e n =(0,0,…,1)T是一个规范正交向量组.2. 有关结论(P 66-68) (1)向量组12s ,,,ααα线性相关⇔12s ,,,ααα中至少有一个向量可由其余向量线性表示. (定理3.3 P 67)向量组12s ,,,ααα线性无关⇔12s ,,,ααα中任意一个向量不能由其余向量线性表示.(2)一个向量α线性相关⇔α=ο. (P 66) 一个向量α线性无关⇔α≠ο.(3)两个向量,αβ线性相关 k l ⇔α=ββα或=(几何上,即,αβ共线或平行). (P 66) 两个向量,αβ线性无关 k l ⇔α≠ββ≠α且(几何上,即,αβ不共线或不平行).(4)三个向量,,αβγ线性相关,即,,αβγ共面. (P 66) 三个向量,,αβγ线性无关,即,,αβγ不共面.(5)正交向量组线性无关. (定理3.1 P 66)标准单位向量组是线性无关向量组.(6)若向量组有一个部分组线性相关,则该向量组线性相关.(部分相关,整体相关) (定理3.2 P 67) 线性无关向量组的任一部分组线性无关.(整体无关,部分无关) (推论2 P 67)推论 含有零向量的向量组线性相关. (推论1 P 67)(7)设向量组12s ,,,ααα线性无关,12s ,,,,αααβ线性相关,则β可由向量组12s ,,,ααα线性表示,且表示式唯一.(表示式中的系数称为β关于向量组12s ,,,ααα的坐标) (定理3.4 P 67)(8)线性相关向量组的缩短向量组线性相关.线性无关向量组的加长向量组线性无关. (定理3.5 P 68) 证 设()Ti 1i 2i mi a ,a ,,a (i 1,2,,s)α==是一组m 维向量,令1122s s k k k α+α++α=ο,即1111221s s 2112222s sm11m22ms s a k a k a k 0,a k a k a k 0,a k a x a k 0.+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(5) 不妨去掉最后一个方程(这对应于12s ,,,ααα同时去掉了最后一个分量),有1111221s s 2112222s sm 111m 122m 1s s a k a k a k 0,a k a k a k 0,a k a x a k 0.---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩(6) 显然,若方程组(5)有非零解,那么方程组(6)也必然有非零解,即线性相关向量组的缩短向量组线性相关.反之,若方程组(6)只有零解,那么方程组(5)也必然只有零解,即线性无关向量组的加长向量组线性无关.例如,(9)任意n+1个n 维向量线性相关. 证 设12n 1,,,+ααα为n+1个n 维向量,那么①若12n ,,,ααα线性相关,则12n 1,,,+ααα线性相关;②若12n ,,,ααα线性无关,则由Cramer 法则知,线性方程组1122n n n 1x x x +α+α++α=α有唯一解,即n 1+α可由12n ,,,ααα线性表示,故12n 1,,,+ααα线性相关.推论任意m 个n(n<m)维向量线性相关.3. 向量组线性相关/线性无关的判定方法(1)观察法;(2)定义法;(3)基本结论法;(4)秩法(第三、四节). 三、秩 (一)向量组的秩 1. 向量组的等价设有两个向量组:(Ⅰ)α1,α2,…,αr ;(Ⅱ)β1,β2,…,βs .定义3.4 若向量组(Ⅰ)中的每个向量都可由向量组(Ⅱ)线性表示,则称向量组(Ⅰ)可由向量组(Ⅱ)线性表出;若向量组(Ⅰ)与向量组(Ⅱ)可以互相线性表出,则称它们等价. (定义3.10 P 69)向量组等价的性质:1)反身性;2)对称性;3)传递性. (P 69)若向量组(Ⅰ)可由向量组(Ⅱ)线性表出,则有s ×r 矩阵C 使(α1,α2,…,αr )=(β1,β2,…,βs )C ,C 为表出矩阵.记A=(α1,α2,…,αr ), B=(β1,β2,…,βs ),上式即为A=BC.实际上,A=BC既表示A的列向量组可由B的列向量组线性表出,也表示A的行向量组可由C的行向量组线性表出.注意:当A、B为同型矩阵,A、B的行(列)向量组等价,必有矩阵A、B等价;反之,矩阵A、B等价,它们的行(列)向量组未必等价. (P70)定理3.1如果向量组α1,α2,…,αm线性无关,则有规范正交向量组ε1,ε2,…,εm与之等价. (定理3.6P70) 证令β1=α1,β2=α2+k1β1且[β2,β1]=0,得k1=-[α2,β1]/[β1,β1],所以β2=α2-([α2,β1]/[β1,β1])β1,βm=αm+k1β1+…+k m-1βm-1且[βm,β1]=0, [βm,β2]=0,…, [βm,βm-1]=0,得k1=-[αm,β1]/[β1,β1], k2=-[αm,β2]/[β2,β2],…, k m-1=-[αm,βm-1]/[βm-1,βm-1],所以βm=αm-([αm,β1]/[β1,β1]) β1-…-([αm,βm-1]/[βm-1,βm-1]) βm-1,则β1,β2,…,βm是正交向量组,且(α1,α2,…,αm)=(β1,β2,…,βm)[][][][][][]2221m111112m,,,,,,101001⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝αβαβββββαβββ⎭,故向量组β1,β2,…,βm与向量组α1,α2,…,αm等价.再将向量组β1,β2,…,βm规范化,便得到与α1,α2,…,αm等价的规范正交向量组ε1,ε2,…,εm.例3.2(例3.5 P70)定义3.5 如果实矩阵A满足AA T=E,则称A为正交矩阵. (定义3.11 P71)正交矩阵的性质:(1)A 1=±;(2)实矩阵A 为正交矩阵的充分必要条件是A 的行向量组(或列向量组)为规范正交向量组.2. 极大线性无关组定义3.6 如果向量组T 中有一部分向量组α1,α2,…,αr 满足: (1)α1,α2,…,αr 线性无关;(2)T 中任一向量β与α1,α2,…,αr 线性相关,则称α1,α2,…,αr 为向量组T 的一个极大线性无关向量组,简称极大无关组.(定义3.12 P 71)极大无关组的含义:向量组中没有比“极大无关组”“更大的”的线性无关向量组.注意:一个向量组可能有极大无关组,也可能没有极大无关组;可能有一个极大无关组,也可能有多个极大无关组.如:只有零向量的向量组没有极大无关组;线性无关的向量组只有一个极大无关组;102,,013⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭有多个极大无关组.定理3.2 向量组与它的任一极大线性无关组等价. (定理3.7 P 72) 推论1 向量组中的任意两个极大线性无关组等价. (推论 P 72)定理3.3 若列向量组α1,α2,…,αr 线性无关,且(α1,α2,…,αr )A=O ,则A=O . (定理3.8 P 72)定理3.4 等价的线性无关向量组含有相同个数的向量. (定理3.9 P 72) 推论 一个向量组的所有极大线性无关组中的向量个数相等. (推论 P 72)定义3.7 一个向量组的极大线性无关组中的向量个数称为向量组的秩,记为R(·)或rank(·). (定义3.13 P 72)规定:不存在极大无关组的向量组的秩为0. 例如,102R ,,2013⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=.相关结论: (1){}12s R ,,,s ααα≤.(2)对于任意的同维向量组12s ,,,ααα和12t ,,,βββ,总有{}{}{}{}{}{}12s 12t 12s 12t 12s 12t max R ,,,,R ,,,R ,,,,,,,R ,,,R ,,,αααβββ≤αααβββ≤ααα+βββ (3)若向量组12s ,,,ααα可由向量组12t ,,,βββ线性表出,则{}{}12s 12t R ,,,R ,,,ααα≤βββ.(定理3.10 P 73)推论1 等价的向量组的秩相等. (推论1 P 73) 推论2 若向量组12s ,,,ααα线性无关,且可由向量组12t ,,,βββ线性表出,则s t ≤. (推论2P 73)推论3 若向量组12s ,,,ααα可由向量组12t ,,,βββ线性表出,且s t >,则12s ,,,ααα线性相关. (推论3 P 73)推论4 任意m 个n(n<m)维向量线性相关. (推论4 P 73)求极大无关组的方法:(1)观察法;(2)基本结论法;(3)初等变换法(第四节).(二)矩阵的秩定义3.8 在一个m n ⨯矩阵A 中任选k 个行与k 个列(1k min{m,n}≤≤),位于这些行、列交叉处的k 2个元素按原相互位置关系所形成的k 阶行列式,称为矩阵A 的一个k 阶子式. (定义3.14 P 73)定义3.9 若矩阵A 有不等于零的r 阶子式,且所有r+1阶子式(如果存在的话)全等于零,则r 称为矩阵A 的秩,记为R(·)或rank(·). (定义3.15 P 73)定义3.9指出:(1) 矩阵的秩为r ,则矩阵所有r+1及以上阶子式(如果存在的话)都等于零; (2) 矩阵的秩是矩阵不等于零的最高阶子式的阶数; (3) 0≤R(A)≤min{m,n}; (4) R(A T )= R(A);(5) 可逆矩阵的秩等于矩阵的阶数.例3.3(例3.6 P 74) 求矩阵A 和B 的秩,其中1234512302312456,0003421000000A B ⎛⎫⎛⎫⎪⎪⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭.2. 求矩阵的秩定理3.5初等变换不改变矩阵的秩. (定理3.11 P 74)推论1 若A ~B ,则R(A)= R(B). (推论 P 75) 推论2行阶梯形矩阵的秩等于元素不全为零行的行数.定理3.5、推论1和推论2给出了一个求矩阵秩的方法:对矩阵做初等行变换将其化为行阶梯形矩阵,行阶梯形矩阵中元素不全为零行的行数即为矩阵的秩.例3.4(类似例3.8 P 75)求矩阵12101210A 10112022-⎛⎫⎪--⎪= ⎪-⎪-⎝⎭的秩. 解 因为2131434123+,221210121012101210000002011011020100002022042000---↔---⎛⎫⎛⎫⎛⎫⎪⎪⎪--- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪--⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭r r r r r r r r r r , 所以R(A)2=.例3.5(例3.7 P 75) 证明:R(AB )≤min{R(A),R(B)}. 证 因为()()R AB R AB A ≤,而()()12c c BAB A O A -→,所以()()()R AB R O A R A ≤=.又()()()()()T T T T R AB R (AB)R B A R B R B ==≤=,所以R(AB)min{R(A),R(B)}≤.3. 求向量组的秩与极大无关组定理3.6 矩阵的秩等于矩阵的行向量组的秩(称为矩阵的行秩),也等于矩阵的列向量组的秩(称为矩阵的列秩). (定理3.12 P 76)证A ~B(对A 作行变换,B 是A 的行最简形矩阵)⇒R(A)=R(B),A 、B 的行向量组等价又R(B)=R(B 的行向量组)⇒R(A)=R(B 的行向量组)=R(A 的行向量组)又R(A)=R(A T )⇒R(A T )=R(A T 的行向量组)=R(A 的列向量组) ⇒ R(A)=R(A 的列向量组)定理3.6给出了求向量组秩的方法:首先由向量组构成矩阵,然后求矩阵的秩,从而得向量组的秩.例3.6求向量组α1=(1,2,-1,3)T , α2=(1,3,2,5)T , α3=(-2,2,-4,3)T , α4=(1,-5,-6,-8)T , α5=(2,-3,-7,-5)T 的秩. 解 A =(α1,α2,α3,α4,α5)=2131413242233211212112122325301677124670325535385029111111212112120167701677,00161616001110033300000-+-----⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪→⎪ ⎪-----⎪ ⎪----⎝⎭⎝⎭--⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪→→ ⎪ ⎪---⎪ ⎪-⎝⎭⎝⎭r r r r r r r r r r所以R(α1,α2,α3,α4,α5)=3.定理3.7 完全的初等行变换不改变矩阵的列向量组的线性相关性;完全的初等列变换不改变矩阵的行向量组的线性相关性.例 3.7(例 3.9 P 76) 讨论向量组α1=(1,2,-1,3)T , α2=(1,3,2,5)T , α3=(-2,2,-4,3)T , α4=(1,-5,-6,-8)T , α5=(2,-3,-7,-5)T 的线性相关性,求极大无关组,并用极大无关组表示其余向量.解 A=(α1,α2,α3,α4,α5)=2131413242123233261121211212232530167712467032553538502911111121211212016770167700161616001110033300000r r r r r r r r r r r r r -+---+---⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪→⎪ ⎪-----⎪ ⎪----⎝⎭⎝⎭--⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪→→⎪ ⎪---⎪ ⎪-⎝⎭⎝⎭→312211010100010101101011,011100111000000000r r r --⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→⎪ ⎪---- ⎪⎪⎝⎭⎝⎭故R(α1,α2,α3,α4,α5)=3,说明α1,α2,α3,α4,α5中任意4个向量都线性相关.α1,α2,α3 (α1,α2,α4、α1,α2,α5都)是一个极大无关组,且α4=-α2-α3,α5=α1-α2-α3.定义3.10 若矩阵的秩等于矩阵的行数,则称矩阵是行满秩的;若矩阵的秩等于矩阵的列数,则称矩阵是列满秩的.既是行满秩又是列满秩的矩阵称为满秩矩阵(即可逆矩阵).求秩的方法:(1)观察法;(2)定义法;(3)基本结论法;(4)初等变换法.常识结论:(1)R(AB)min{R(A),R(B)}≤ (2)R(AB)R(A)R(B)A ≥+-的列数(3)max{R(A),R(B)}R(A B)R(A)R(B)≤≤+ 简证:见向量组的基本结论 (4)R(A B)R(A)R(B)±≤+ 简证:∵12c c (A B B)(A B)±→∴R(A B)R(A B B)R(A B)R(A)R(B)±≤±=≤+四、向量应用实例[实例3-1] 几何应用 [实例3-2] 混凝土配制问题 [实例3-3] 药方配制问题五、习题(P 80-84) 选择题:1-5. AC B C A6. 提示:AB=C ,A=CB -1表明,A 与C 的列向量组可以互相线性表出,故选B.7. 提示:当c 1≠0时,|(α1,α2,α3)|≠0, |(α1,α2,α4)|≠0,故排除选项A,B. |(α1,α3,α4)|≡0,故选C.当c 3+c 4≠0时,|(α2,α3,α4)|≠0,故排除选项D.填空题:1. 提示:方法一α1,α2,α3,α4线性相关⇔|(α1,α2,α3,α4)|=0⇒k=-5/13方法二初等变换法α1,α2,α3,α4线性相关⇔R(α1,α2,α3,α4)<42. 提示:β可由α1,α2线性表示⇔线性方程组(α1,α2)x=β有解⇔(α1,α2,β)~B,R(α1,α2,β)=R(α1,α2)⇒k=-19/23. 提示:设A=(α1,α2,α3,α4),作初等变换A=(α1,α2,α3,α4)~B (B为A的行最简矩阵)⇒R(A)=R(B)=44.提示:α1,α2,α3线性无关⇔|(α1,α2,α3)|≠0⇒abc≠0三、解答题:1. 略.2. 提示:(1) 能.α2,α3,α4线性无关⇒α2,α3线性无关⇒若α1,α2,α3线性相关,则α1必可由α2,α3线性表示(2)不能.因为若α4可由α1,α2,α3线性表示,则α4就可由α2,α3线性表示,这与α2,α3,α4线性无关矛盾.3. 提示:(1)-(3)可用行列式法判断,(3)-(4)可用初等变换法4.提示:设A=(α1T,α2 T,α3 T,α4 T),然后对A作行初等变换,将A化为行最简矩阵.5.提示:设A=(α1,α2,α3),则当|(α1,α2,α3)|≠0时,β可由α1,α2,α3唯一线性表示,且表达式唯一.6. 提示:(1)当k1,k2,…,k m全为零时等式自然成立;否则,若k1=0,此时等式为k2α2+…+k mαm=ο,由于α2,…,αm 线性无关,得k2=…=k m=0,所以k1,k2,…,k m或全不为零.(2)由(1)知l1,l2,…,l m全不为零.设a=k1/l1,则两式相减,得(k 1-a l 1)α1+(k 2-a l 2)α2+…+(k m -a l m )αm =ο,因k 1-a l 1=0,由(1)知(k 2-a l 2)=…=(k m -a l m )=0,即k 1/l 1= k 2/l 2=…=k m /l m .8. 提示:令 k 1(a α1-α2)+k 2(b α2-α3)+k 3(c α3-α1)=ο, (1) 即(k 1a-k 3)α1+(k 2b-k 1)α2+(k 3c-k 2)α3=ο.α1,α2,α3线性无关⇒k 1a-k 3=0, k 2b-k 1=0, k 3c-k 2=0 (2)式(2)是关于k 1,k 2,k 3的齐次线性方程组,所以a α1-α2,b α2-α3,c α3-α1线性相关⇔存在不全为零的k 1,k 2,k 3使式(1)成立,即方程组(2)有非零解.⇔a11b00abc 101c--=⇒=-.9. 提示:因为α1,α2,…,αs 线性相关,所以存在不全为零的数k 1,k 2,…,k s 使k 1α1+k 2α2+…+k s αs =ο.设i 是k 1,k 2,…,k s 中不为零的数的最大下标,由α1≠ο可知i>1,于是αi 就可由α1,…,αi-1线性表示.10. 证112223n n 1k ()k ()k ()α+α+α+α++α+α=ο, 即 1n 1122n 1n n (k k )(k k )(k k )-+α++α+++α=ο.因12n ,,,ααα线性无关,得1n 1122233n 1n n k k 0k 1001k k 0k 1100k k 0k A 0110001k k 0k ∆-+=⎧⎛⎫⎛⎫ ⎪⎪⎪+= ⎪⎪ ⎪⎪⎪ ⎪+=⇔=κ=ο⎨ ⎪ ⎪⎪ ⎪ ⎪⎪⎪ ⎪+=⎪⎝⎭⎩⎝⎭. 而1n A 1(1)+=+-0,2, n n ⎧=⎨⎩为偶数,为奇数.所以,当n 为偶数时,α1+α2,α2+α3,…,αn +α1线性相关; 当n 为奇数时,α1+α2,α2+α3,…,αn +α1线性无关.11.提示:n 个n 维向量α1,α2,…,αn 线性相关⇔存在不全为零的数k 1,k 2,…,k n 使k 1α1+k 2α2+…+k n αn =ο.⇔|(α1,α2,…,αn )|=0. (克拉默法则)12.证 因为e 1, e 2, …, e n 可由α1,α2,…,αn 线性表出,所以R(e 1, e 2, …, e n )≤R(α1,α2,…,αn ).又因为α1,α2,…,αn 可由e 1, e 2, …, e n 线性表出,所以R(α1,α2,…,αn )≤R(e 1, e 2, …, e n ).因此R(α1,α2,…,αn )=n ,α1,α2,…,αn 线性无关.13. 证 充分性 因为任一n 维向量都可由α1,α2,…,αn 线性表示,所以标准单位向量组e 1, e 2, …, e n 可由α1,α2,…,αn 线性表出,于是由第11题可知,α1,α2,…,αn 线性无关.必要性 设α1,α2,…,αn 线性无关,因n+1个n 维向量线性相关,所以任一n 维向量β都可由α1,α2,…,αn 线性表示.14. 提示:先进行schimidt 正交化,然后规范化.15.提示:方法一 令A=(α1,α2,α3,α4,β),则()1234111110112123a 24b 3351a 85⎛⎫ ⎪-⎪ααααβ= ⎪++ ⎪+⎝⎭1111112100112101121012100100225200010a b a b a a -⎛⎫⎛⎫⎪⎪-- ⎪ ⎪→→ ⎪ ⎪++ ⎪⎪-++⎝⎭⎝⎭1021001121,10000000021000110100,110010100010a b b a a b a a b a ⎧-⎛⎫⎪ ⎪-⎪ ⎪=-⎪ ⎪⎪ ⎪ ⎪⎝⎭⎪⎪⎛⎫⎪-→ ⎪⎨+ ⎪⎪++ ⎪⎪ ⎪⎪≠-+ ⎪⎪ ⎪⎪ ⎪+⎪ ⎪⎪⎝⎭⎩当当所以,(1)当a=-1且b≠0时,β不能由α1,α2,α3,α4线性表示. (2)当a≠-1时,β能由α1,α2,α3,α4唯一地线性表示为1232b a b 1ba 1a 1a 1++β=-α+α+α+++. (3)当a=-1且b=0时,β能由α1,α2,α3,α4线性表示,但表示不唯一.方法二 向量β能不能由向量组α1,α2,α3,α4线性表示等同于非齐次线性方程组1234(,,,)x αααα=β是否有解.根据克拉默法则,令|(α1,α2,α3,α4)|=0,得a=-1,否则,a ≠-1. 所以当a ≠-1时,此时β可由α1,α2,α3,α4唯一地线性表示; 当a=-1时,对矩阵(α1,α2,α3,α4,β)作初等行变换,得()123410210011210000b 00000-⎛⎫⎪- ⎪ααααβ= ⎪⎪⎝⎭,所以当a=-1且b≠0时,β不能由α1,α2,α3,α4线性表示.16.解 向量组α1,α2与向量组β1,β2,β3等价,即α1,α2与β1,β2,β3可以互相线性表出,并且R(α1,α2)=R(β1,β2,β3).4332431323113231110110422211120021111310204222r r r r r r +++⎛⎫⎛⎫ ⎪⎪-- ⎪ ⎪→ ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭3213231021110000000000r r ↔⎛⎫⎪⎪→ ⎪⎪⎝⎭12312121231012321201121212,,,00000000001101101120,,,0000000000⎧-⎛⎫⎪ ⎪⎪ ⎪⇒βββαα⎪ ⎪⎪ ⎪⎪⎝⎭→⎨-⎛⎫⎪ ⎪⎪ ⎪⎪⇒ααβββ ⎪⎪ ⎪⎪⎝⎭⎩可由线性表出可由线性表出17. 提示:根据极大线性无关组的定义.18.(3)解 213123202310231 0343001304710013r r r r----⎛⎫⎛⎫ ⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭32r r 02310013,0000 R 2.+-⎛⎫ ⎪→ ⎪ ⎪⎝⎭∴=(4)解 322141r r r 3r r r 17253143172531435375941322013 5475941341002202532483015---⎛⎫⎛⎫⎪ ⎪⎪ ⎪→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭42313132323231r 225r r r r 17r r r r 2r r r r 31r 02531910020011025319100200110000000010028010500110000 R 3.⨯---↔-↔-⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪→→ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪ ⎪→ ⎪ ⎪- ⎪⎪⎝⎭∴=,19. 提示:x y y x 2y x 2y x 2y A y x y y x y y y x y y x 111111y x y 0x y 0,x 2y 0y y x 00x y 000000y x y y x 0,x 2y 0y y x 0y x x y 111000,x 2y 0x y R(A)1000+++⎛⎫⎛⎫ ⎪ ⎪=→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎧⎛⎫⎛⎫⎪ ⎪ ⎪→-+≠⎪ ⎪ ⎪ ⎪ ⎪⎪-⎪⎝⎭⎝⎭→⎨⎛⎫⎛⎫⎪ ⎪ ⎪⎪→+= ⎪ ⎪⎪ ⎪ ⎪--⎪⎝⎭⎝⎭⎩⎛⎫ ⎪+≠=⇒= ⎪ ⎪⎝⎭→且111010,x 2y 0x y R(A)3001000y x 0,x 2y 0x y R(A)00y x x y 000y x 0,x 2y 0x y R(A)20y x x y ⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎛⎫⎪⎪ ⎪⎪+≠≠⇒=⎪ ⎪⎪ ⎪⎪⎪⎝⎭⎪⎩⎨⎧⎛⎫⎪⎪ ⎪⎪+==⇒=⎪ ⎪⎪ ⎪⎪--⎪⎪⎝⎭⎨⎪⎛⎫⎪⎪ ⎪⎪⎪+=≠⇒= ⎪⎪⎪ ⎪--⎪⎪⎝⎭⎩⎩且且且 所以 0,x y 0,1,x y 0,R(A)2,x 2y 0,3,x 2y x y.==⎧⎪=≠⎪=⎨=-≠⎪⎪≠-≠⎩且20. 提示:按阶梯形矩阵构造1030011000000100000100000⎛⎫⎪-- ⎪ ⎪⎪ ⎪ ⎪⎝⎭ 或 1030011000000100000100011⎛⎫⎪-- ⎪⎪⎪⎪ ⎪⎝⎭……21. 证∵12c c (A+B B)(A B)-→∴R(A B)R(A B B)R(A B)R(A)R(B)+≤+=≤+22.证∵21c c (B)A O A O E B E O +-⎛⎫⎛⎫→ ⎪ ⎪⎝⎭⎝⎭A O R EB ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭≥R(A)+R(B) A O R =E O ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭A 的列数∴R(A)+R(B)≤A 的列数23.证∵A 2-A=(A-E)A=O∴R(A-E)+R(A)≤n (第22题) ∵ E=(E-A)+A∴R(E)=R((E-A)+A)≤R(A-E)+R(A) (第21题) ∴R(A-E)=n-r24. 提示:E-A 2=(E-A)(E+A)=O, 2E=(E+A)+(E-A)25. 证因为A 的秩为r ,所以存在n 阶初等行矩阵P 1,P 2,…,P k 与m 阶初等列矩阵Q 1,Q 2,…,Q l ,使得()rr k2112l r r m n m n rE O E P P P AQ Q Q =E O O O O ⨯⨯⨯⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭.令()r 11111112krl 21r m n rE P P PP Q=E O Q Q Q O ------⨯⨯⎛⎫= ⎪⎝⎭,,则A=PQ,其中()()()()r rr m n r E R P R =R Q R E O r O ⨯⨯⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭.26.解det(B)1231231231232323123233123123det(,24,39)det(,3,5)det(,3,2)det(,,2)2det(,,) 2.=α+α+αα+α+αα+α+α=α+α+αα+αα+α=α+α+αα+αα=ααα=ααα=27. 提示:设A=(α1,α2,α3,β1,β2,β3),则312r r r 101111101111A 013a 23013a 23115135001a 01--⎛⎫⎛⎫ ⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭2131323r 2r r r r r r 1011112102(a 1)00001a 011001+a 100104a 20001a 01----⎧⎛⎫⎪ ⎪→--⎪ ⎪⎪⎪-⎪⎝⎭⎨⎛⎫⎪ ⎪⎪→ ⎪⎪ ⎪-⎪⎝⎭⎩R(A)=3, R(B )≥2.(1)因为α1,α2,α3不能由β1,β2,β3线性表出,所以R(B)<R(A),故a=1. (2)β1=2α1+4α2-α3,β2=α1+2α2,β3=α3.28. 解 因为向量α=(2,4,-3)与向量β=(-1,-2,3/2)平行,所以直线L 1与L 2平行.又直线L 1过点(1,2,3),且点(1,2,3)也在直线L 2上,所以直线L 1与L 2重合.六、计算实践实践指导:(1)理解向量线性组合、线性相关和线性无关的概念; (2)了解向量线性相关和线性无关的有关理论,掌握判别方法;(3)理解向量组的极大线性无关组和向量组的秩的概念,理解矩阵秩的概念; (4)会求向量组的极大线性无关组及秩,会求矩阵的秩.例3.1设三阶矩阵()T 122A 212,a,1,1304-⎛⎫⎪== ⎪ ⎪⎝⎭α,已知Aα与α线性相关,求a.解()TA a,2a 3,3a 4α=++,Aα与α线性相关a 2a 33a 4a 1a 11++⇒==⇒=-. 例3.2 已知()()1231234R ,,R ,,,3,ααα=αααα=()1235R ,,,4αααα=,证明:()12354R ,,,4αααα-α=.解 ()()1231234R ,,R ,,,3ααα=αααα=⇒4112233k k k α=α+α+α12354(,,,)αααα-α()()12351122331212353,,,k k k 100k 010k ,,,001k 0001=αααα-α-α-α-⎛⎫⎪-⎪=αααα ⎪- ⎪⎝⎭()()123541235R ,,,R ,,,4⇒αααα-α≤αααα=()()()()1235112123543123512354 ,,,100k 010k ,,,001k 0001R ,,,R ,,,-⇒αααα-⎛⎫ ⎪-⎪=αααα-α ⎪- ⎪⎝⎭⇒αααα≤αααα-α ⇒()12354R ,,,4αααα-α=例3.3 已知向量组α1=(1,2,-1,1),α2=(2,0,t,0),α3=(0,-4,5,-2)的秩是2,求t .解1231211A 20t 00452α-⎛⎫⎛⎫ ⎪ ⎪=α= ⎪ ⎪ ⎪ ⎪α--⎝⎭⎝⎭1211121104t 220452045200t 30--⎛⎫⎛⎫ ⎪ ⎪→-+-→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭.()R A 2t 3=⇔=,故t 3=.例3.4设n m m n n A B E ⨯⨯=,则[A ]. (A )n m m n R(A )R(B )n ⨯⨯==; (B)n m m n R(A )n,R(B )m ⨯⨯==; (C)n m m n R(A )m,R(B )n ⨯⨯==; (D)n m m n R(A )R(B )m ⨯⨯==.例3.5若n m m n n A B E (n m)⨯⨯=<,证明:n m m n R(A )R(B )n ⨯⨯==.证明 反证法.显然m n R(B )n ⨯≤.若m n R(B )n ⨯<,则n n m m n n R(E )min(R(A ),R(B ))n ⨯⨯=≤<,这是矛盾的结果,所以必有()n m R A n ⨯=.同理,有()m n R B n ⨯=.例3.6n A 0=说明什么? 答: 说明n A 不可逆;(第二章)齐次线性方程组n A x =ο有非零解; (第一、四章)()n R A n <;(第三章)n A 的行向量组线性相关; 行秩n <;(第三章) n A 的列向量组线性相关; 列秩n <;(第三章)n A 的标准形为rE O (r n)O O ⎛⎫<⎪⎝⎭;(第二、三章) 0是n A 的特征值. (第五章)例3.7设向量组Ⅰ:α1,α2,…,αr 可由向量组Ⅱ:β1,β2,…,βs 线性表示,下列命题正确的是[A ]. (A )若向量组Ⅰ线性无关,则r s ≤; (B)若向量组Ⅰ线性相关,则r s >; (C)若向量组Ⅱ线性无关,则r s ≤; (D)若向量组Ⅰ线性相关,则r s >.例3.8设(β1,β2,…,βs )=(α1,α2,…,αt )A t×s ,且α1,α2,…,αt 线性无关,试判断β1,β2,…,βs 的线性相关性.七、知识扩展1. 设α1,α2,…,αn 为n 维列向量组,A 是m×n 矩阵,下列选项正确的是[A ].(2006 数一) (A) 若α1,α2,…,αn 线性相关,则A α1,Aα2,…,Aαn 线性相关; (B) 若α1,α2,…,αn 线性相关,则A α1,Aα2,…,Aαn 线性无关; (C) 若α1,α2,…,αn 线性无关,则A α1,Aα2,…,Aαn 线性相关; (D) 若α1,α2,…,αn 线性无关,则A α1,Aα2,…,Aαn 线性无关. 提示:∵12n 12n (A ,A ,,A )A(,,,)ααα=ααα∴12n 12n R(A ,A ,,A )R(A(,,,))ααα=ααα12n min{R(A),R(,,,)}≤ααα若α1,α2,…,αn 线性相关,则12n R(A ,A ,,A )n ααα<. 选A .注意到,若α1,α2,…,αn 线性无关,则R(A α1,A α2,…,A αn )=R(A).2. 已知向量组α1,α2,α3,α4线性无关,则向量组[C ]. (1994 数一)(A) α1+α2, α2+α3, α3+α4, α4+α1线性无关; (B) α1-α2, α2-α3, α3-α4, α4-α1线性无关; (C)α1+α2, α2+α3, α3+α4, α4-α1线性无关; (D) α1+α2, α2+α3, α3-α4, α4-α1线性无关. 提示:观察法3.设A,B 为满足AB=O 的任意两个非零矩阵,则必有[A ]. (2004 数一) (A) A 的列向量组线性相关,B 的行向量组线性相关; (B) A 的列向量组线性相关,B 的列向量组线性相关; (C) A 的行向量组线性相关,B 行向量组线性相关; (D)A 的行向量组线性相关,B 的列向量组线性相关. 提示:方法一()()A O,B O,R A R B A ≠≠+≤的列向量数n()()()()R A 1,R B 1R A n 1,R B n 1≥≥⎧⎪⇒⎨≤-≤-⎪⎩,故选A . 方法二设1212n n A (,,,)O,B O β⎛⎫⎪β⎪=ααα≠=≠ ⎪ ⎪β⎝⎭,i1i2in 1j 2j nj (a ,a ,,a ),(b ,b ,,b )⇒∃≠ο≠οi11i22in n 1j 12j 2nj n a a a ,b b b ,β+β++β=ο⎧⇒⎨α+α++α=ο⎩故选A .4.设n 维列向量组α1,α2,…,αm (m<n)线性无关,n 维列向量组β1,β2,…,βm 线性无关的充要条件为[D ].(2000 数一)(A) 向量组α1,α2,…,αm 可由向量组β1,β2,…,βm 线性表示; (B) 向量组β1,β2,…,βm 可由向量组α1,α2,…,αm 线性表示; (C) 向量组α1,α2,…,αm 与向量组β1,β2,…,βm 等价; (D) 矩阵A=(α1,α2,…,αm )与矩阵B=(β1,β2,…,βm )等价.提示:因为m m E E A ~,B ~A,B O O ⎛⎫⎛⎫⇒ ⎪ ⎪⎝⎭⎝⎭等价,故选D .(A)⇒β1,β2,…,βm 线性无关;反之,β1,β2,…,βm 线性无关⇒(A).例如,100010001⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭与 1 ,0,1.(B)⇒β1,β2,…,βm 线性无关.(C)⇒β1,β2,…,βm 线性无关;反之,β1,β2,…,βm 线性无关⇒(C). **注意向量组等价与矩阵等价的差别5.设四维向量组α1=(1+a,1,1,1)T ,α2=(2,2+a,2,2)T ,α3=(3,3,3+a,3)T ,α4=(4,4,4,4+a)T ,问a 为何值时α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余量用该极大线性无关组线性表出.(2006 数一)提示:()12341a23412a 34,,,123a 41234a +⎛⎫ ⎪+ ⎪αααα= ⎪+ ⎪+⎝⎭ i 11i r r c c i 2,3,4i 2,3,41a23410a234a a 000a 00a0a 000a 0a00a 000a -+==++⎛⎫⎛⎫⎪⎪- ⎪ ⎪→→⎪ ⎪- ⎪⎪-⎝⎭⎝⎭⇒当a=0或a=-10时,α1,α2,α3,α4线性相关.且当a=0时,R (α1,α2,α3,α4)=1,一个极大线性无关组为α1;当a=-10时,R (α1,α2,α3,α4)=3,一个极大线性无关组为α2,α3,α4.6. 设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p +2)T,α4=(-2,-6,10,p)T ,问:(1)p 为何值时,该向量组线性无关? 此时用α1,α2,α3,α4表示向量α=(4,1,6,10)T .(2) p 为何值时,该向量组线性相关? 此时求它的秩和一个极大线性无关组. (1999)(答案:p≠2,p=2) 提示:方法一 初等行变换法(1)()12341132413261,,,15110631p 2p 10--⎛⎫⎪--⎪ααααα= ⎪-⎪+⎝⎭()()())p 2113 24021 43001 01000p 21p 10002010021p p 2~0010100011p p 2≠--⎛⎫⎪---- ⎪ ⎪⎪--⎝⎭⎛⎫ ⎪-- ⎪⎪ ⎪⎪--⎝⎭故p≠2,这时()()123421p 1p 2p 2p 2--α=α+α+α+α--. (2) p=2,秩为3,一个极大线性无关组为α1,α2,α3.(另一个极大线性无关组为α1,α3,α4.) 方法二 行列式法 计算1234,,,αααα113211321326021415110001031p 2p 0p 20p 20p 2---------==-+-≠⇒≠⎧⎨=⇒=⎩当p≠2,令()1234,,,x αααα=α,计算()())()()12341132413261,,,15110631p 2p1010002010021p p 2,0010100011p p 2--⎛⎫⎪-- ⎪ααααα=⎪-⎪+⎝⎭⎛⎫ ⎪-- ⎪⎪ ⎪⎪--⎝⎭得()()123421p 1p 2p 2p 2--α=α+α+α+α--.7.设R(A m×n )=m<n ,则下述结论正确的是[C ]. (A)A m×n 的任意m 个列向量必线性无关. (B)A m×n 的任意一个m 阶子式不等于零. (C)若矩阵B 满足BA=O ,则B=O.(D)A m×n 通过初等行变换必可以化为(E m O)的形式. 提示:T T BA OA B O =⇒=T T T R(A)R(B)R(A )R(B )A ⇒+=+≤的列数m =R(B)0B O ⇒=⇒=,故选C .(D)的正确说法是A m×n 通过初等变换必可以化为(E m O)的形式.8.设A 是m×n 矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,矩阵B=AC 的秩为r 1,则[C ]. (A)r>r 1;(B)r<r 1; (C)r=r 1;(D)r 与r 1的关系依C 而定.(1994 数三)提示:由B=AC 及C 是n 阶可逆矩阵知B ~A ,故选C .9.设A,B 都是n 阶非零矩阵,且AB=O ,则A 和B 的秩(A)必有一个等于零; (B)都小于n ;(C)一个小于n ,一个等于n ; (D)都等于n.(1994 数四)提示:由A,B 都是n 阶非零矩阵,且AB=O⇒()()A O,B O,R A R B A ≠≠+≤的列向量数n⇒()()()()R A 1,R B 1,R A n 1,R B n 1,≥≥⎧⎪⎨≤-≤-⎪⎩故选B .10.设A 是4×3矩阵,且R(A)=2,而102B 020103⎛⎫⎪= ⎪ ⎪-⎝⎭,则R(AB)=2. (1996 数一)提示:B 可逆.11.已知矩阵123Q 24t 369⎛⎫⎪= ⎪ ⎪⎝⎭及3阶非零矩阵P 满足PQ=O ,则[C ].(A) t=6时,P 的秩必为1; (B) t=6时,P 的秩必为2; (C)t≠6时,P 的秩必为1;(D) t≠6时,P 的秩必为2. (1993 数一)提示:t=6时,R(Q)=1, R(P)≤2;t≠6时,R(Q)=2, R(P)≤1. 又因P ≠O ⇒R(P)≥1,故选C.12.设122A 4t3311-⎛⎫ ⎪= ⎪ ⎪-⎝⎭,B 为3阶非零矩阵,且AB=O ,则t=-3. (1997 数一) 提示:AB OR(A)R(B)A =⇒+≤的列向量数3B O R(B)1≠⇒≥所以R(A)2≤.但显然R(A)2≥,故R(A)2=.于是由A 0t 3=⇒=-.或由21331r r r r 3r 122122122A 4t 30t 1401131107700t 3------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭R(A)2t 30t 3=⇒+=⇒=-.13.设矩阵k1111k 11A 11k 1111k ⎛⎫⎪⎪= ⎪⎪⎝⎭,且R(A)=3,则k=-3.提示:k 3k 3k 3k 31k 11A ~11k 1111k ++++⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭k 30001k 100~10k 10100k 1+⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭()R A 3k 3=⇒=-.14.设n(n ≥3)阶矩阵1a a a a1a a A aa 1a a a a1⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,若矩阵A 的秩为n-1,则a 必为 (A)1; (B)11n -; (C) -1; (D)1n 1-. (1998 数三) 提示:()()()n 1a 1n 1a 1n 1a 1a1a A ~a a1⎛-+-+-+⎫⎪⎪ ⎪⎪⎝⎭11101a 01,a n 1001a ~000a 1a 01,a=n 1a 01a ⎧⎛⎫⎪ ⎪-⎪ ⎪≠-⎪ ⎪-⎪ ⎪-⎪⎝⎭⎨⎛⎫⎪ ⎪⎪-⎪⎪-⎪-⎪ ⎪⎪-⎝⎭⎩ n 31,a 1,1R(A)n,a 1a ,n 11n 1,a=.n 1≥⎧⎪=⎪⎪⇒=≠≠-⎨-⎪⎪--⎪⎩-且 故选B.。
【东北大学】21春学期《大学英语(四)》在线平时作业2【答案】
21春学期《大学英语(四)》在线平时作业2红字部分为答案!一、单选题1.59. The information we have got ______ that the area has a hot climate all the year round.A.directsB.indicatesC.claimsD.contains2.56. You cannot ______ it, for I saw you in the very act of doing it.A.denyB.rejectC.withdrawD.avoid3.99. In recent years much more emphasis has been put __________ developing the students' productive skills.A.overB.ontoC.inD.on4.37. Mark often attempts to escape ______ whenever he breaks traffic regulations.A.having been finedB.to be finedC.to have been finedD.being fined5.105. Though he was born and brought up in America, he can speak ____Chinese.A.smoothB.fluentC.fluidD.flowing6.80. I doubt whether he can _______ his efforts much longer as he looks very tired.A.hold upB.hold onC.keep onD.keep up7.83. This official proposal met with even more _______ than Temple’s original plan.A.depressionB.barricadeC.resistanceD.friction8.94. As a public relations officer, he is said _______ some very influential people.A.to have been knowingB.to be knowingC.to have knownD.to know9.50. A year ago the first volume in this series successfully ______ the pattern which is here continued.A.establishedanizedC.proceeded "D.represented10.31. At best, this is only a temporary substitute ______ the other one.A.toB.fromC.forD.with11.85. When we finally _______ to get home after the tiring journey, we could hardly movea step further.A.triedB.managedC.succeeded "D.endeavored12.81. My father has lived a long life, and done enough to _______ great respect in his town.A.employB.achieveeD.win13.103. Rod is determined to get a seat for the concert __________ it means standing ina queue all night.A.providedB.whateverC.even ifD.as if14.35. Come and see me whenever ______ .A.you are convenientB.you will be convenientC.it is convenient to youD.it will be convenient to you15.39. I like black coffee so much because the stronger it is, ______ .A.I like it betterB.the more I likeC.the better I like itD.I like it more16.108. If the building project __________ by the end of this month is delayed, the construction company will be fined.A.to be completedB.is completedC.being completedpleted17.115. Eating too much fat can _____ heart disease and cause high blood pressure.A.contribute toB.attribute toC.attend toD.devote to18.52. She had often ______ about her father's choice of doctor and knew now that she had been right.A.protestedplainedC.accusedD.concerned19.25. It seemed a pity ______ they ate it after all the trouble they had taken in making it.A.whenB.sinceC.thatD.what20.73. The great fire ______ the forest to a few tress.A.shiftedB.switchedC.reducedD.decreased。
(精选)线性代数课后作业及参考答案
(精选)线性代数课后作业及参考答案《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003,则A-1等于()A.130012001B.100120013C. 1 3 00 010 00 1 2D. 1 2 00 10013.设矩阵A=312101214---,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解2η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<n< bdsfid="226" p=""></n<>B.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。
东北大学线性代数笔试考试题
东 北 大 学 考 试 试 卷(A 卷答案) 2011 — 2012学年 第二学期课程名称:线性代数 (共2页)┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (15分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛=322222221A ,求1*)(-A 。
其中*A 是矩阵A 的伴随矩阵。
解 由于02≠-=A ,所以,A 可逆。
5分 于是,11*2---==A A A A 10分所以,⎪⎪⎪⎭⎫ ⎝⎛---------=2/311111112/121)(1*-=-A A 15分 分) 设向量⎪⎪⎪⎭⎫ ⎝⎛-=1211α,⎪⎪⎪⎭⎫ ⎝⎛=1122α,⎪⎪⎪⎭⎫ ⎝⎛-=2113α,⎪⎪⎪⎭⎫⎝⎛=a 92β,问 a 取何值时向量β可由向量组321,,ααα线性表示?表示式是否唯一?并求表示式。
解 由于⎪⎪⎪⎭⎫ ⎝⎛--=a 21191122121),,,(321βααα⎪⎪⎪⎭⎫ ⎝⎛+--→233053302121a ⎪⎪⎪⎭⎫ ⎝⎛+--→70003/51103/16101a 5分所以,7-=a 时,向量β可由向量组321,,ααα线性表示,且表示式不唯一。
10分表示式为: R k k k k ∈++-+=,)3/5()3/16321αααβ( 15分 分) 证明⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛++=R c b a c b c b a a V ,,|00是32⨯R 的子空间,求V 的一组基和维数。
并在V 上定义内积运算,使V 成为欧几里得空间(不用证明)。
解 由于⎪⎪⎭⎫ ⎝⎛++=∀001111111c b c b a a A ,R k V c b c b a a B ∈∈⎪⎪⎭⎫⎝⎛++=,00222222都有: V c c b b c c b b a a a a B A ∈⎪⎪⎭⎫ ⎝⎛++++++++=+00212121212121, V kc kb kc kb ka ka kA ∈⎪⎪⎭⎫ ⎝⎛++=001111111 所以,V 是32⨯R 的子空间。
2020-2021春秋季-东北大学《线性代数X》
一、计算下列各行列式1.4001000000100a a D a a =,2.4xa a a a x a a D a a x a aaax=.二、已知 10 阶矩阵1001000001000000110000A ⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭L L L LL L L L L L,A E λ-求. 三、解下列矩阵方程1.⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311*********X .2.B XA =,其中⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---=132321,433312120B A .四、设311032015A ⎛⎫⎪= ⎪ ⎪⎝⎭, (1)求2A E -和1(2)A E --.(2)若矩阵A , X 满足AX = A + 2X , 求矩阵X .五、设122343123119A t -⎛⎫ ⎪= ⎪⎪-⎝⎭,问t 为何值,可使(1)R (A ) =2;(2) R (A ) =3.六、设)(5)(2)(3321a a a a a a +=++-, 其中T a )3,1,5,2(1=,T a )10,5,1,10(2=,T a )1,1,1,4(3-=,求a . 七、讨论向量组123412313153,,,21220545a a a a --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭的线性相关性,并求它的一个最大无关组. 八、 求解下列非齐次线性方程组:1.⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x 2.,,.1234134123422163121071x x x x x x x x x x x ++-=⎧⎪-+-=-⎨⎪++-=⎩ 九、a 取何值时?非齐次线性方程组12341234123412341,24,436,244x x x x x x x x x x x x x x x x a+--=⎧⎪+++=⎪⎨+--=⎪⎪+--=⎩ 有解, 在有解时求其通解.十.求下列矩阵的特征值和特征向量1.122054;021A --⎛⎫ ⎪= ⎪ ⎪--⎝⎭2.141130002A --⎛⎫ ⎪= ⎪⎪⎝⎭.十一、将对称矩阵⎪⎪⎭⎫ ⎝⎛--=3223A相似对角化.线性代数复习题参考答案一、1. 22(1)a a -2. ()33()x a x a +-二、101010λ-三、1. 22182533-⎛⎫ ⎪ ⎪--⎝⎭ 2. 211474--⎛⎫⎪-⎝⎭四、(1) 111121012,032013011-⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭; (2) 342074023-⎛⎫⎪- ⎪ ⎪-⎝⎭五、(1) t =-3 ;(2) t ≠-3 . 六、(1,2,3,4)T a =七、秩为3,1234,,,a a a a 线性相关,124,,a a a 为一最大线性无关组.八、1. 12111222100010000x y k k z w ⎛⎫⎛⎫⎛⎫-⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2. 121234631850100010x x k k x x -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭九、1a =-时有解,通解为121234223332100010x x k k x x --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 十.1.特征值为1233,1λλλ===;对应于13λ=的全部特征值向量为1112,01k k ⎛⎫⎪-≠ ⎪ ⎪⎝⎭对应于221λλ==的全部特征值向量为1001,01k l ⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭其中数 k ,l 不同时为零.2.特征值为1231,2λλλ===;对应于121λλ==的全部特征值向量为1121,00k k -⎛⎫ ⎪≠ ⎪ ⎪⎝⎭; 对应于32λ=的全部特征值向量为2211,01k k -⎛⎫ ⎪≠ ⎪ ⎪⎝⎭. 十一、1111P -⎛⎫= ⎪⎝⎭,11005P AP -⎛⎫=⎪⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:A
17.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:A
18.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:D
19.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:A
12.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:A
13.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:B
14.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:D
15.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:D
20.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:A
参考选择:A
8.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:D
9.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:D
10.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:A
11.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
东大19秋学期《线性代数》在线平时作业2
试卷总分:100得分:100
一、单选题(共20道试题,共100分)
1.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:D
2.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:B
3.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:C
4.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:B
5.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:B
6.{图}
A.D
B.C
C.B
D.A
【运用所学知识,完成上述题目】
参考选择:B
7.{图}
A.D
B.C
D.A
【运用所学知识,完成上述题目】