集成运放的基本应用

合集下载

实验五 集成运放的基本应用——信号运算电路

实验五 集成运放的基本应用——信号运算电路
实验五
一、实验目的:
集成运放的基本应用——信号运算电路
1、熟悉用集成运算放大器构成基本运算电路的方法; 2、学习设计比例放大,加法、减法运算等电路; 3、掌握电流、电压转换电路的设计、调试方法; 4、学习双电源的连接方法。
二、实验原理:
集成运算放大器具有增益范围大,通用性强,灵活性大,体积小,寿命长,耗电省,使 用方便等特点, 因此应用非常广泛, 由运算放大器构成的数学运算电路是运放线性应用电路 之一。 1、反相比例运算 在理想条件下,电路的闭环增益为:
图 5-5 基本微分运算电路
三、实验内容:
1、按图 5-6 安装运放调零电路,在输入端接地时调节 W 使 uO=0。
2
Hale Waihona Puke 图 5-6 调零电路 2.反相比例放大器 实验电路如图5-7所示
图5-7 反相比例放大电路 按表5-1内容实验并测量记录 表5-1 直流输入电压Vi(mV) 理论估算(mV) 输出电压Vo 实 际 值(mV) 误差 3.反相求和放大电路 实验电路如图5-8所示 100 300 500 600 1000 3000
四、预习要求:
1、了解F741运算放大器的性能参数,计算各运算电路输出电压UO的数值。 2、当用示波器观察积分输入、输出信号时,会发现波形不稳定,怎样才能使波形稳定 下来。
五、思考题:
1、分析基本运算电路输出电压的误差产生的原因,如何减小误差。 2、在分析加法、减法、微分、积分运算电路时,所依据地基本概念是什么?基尔霍夫 电流定律(KCL)是否得到应用?如何导出输入与输出之间的关系?
Auf
Rf Rf UO ,U O US US R1 R1
上式可见 R f R1 为比例系数,若当 R f R1 时,则 U S U O ,故电路即变成了反相 器。 R2 R f / / R1 用来减小输入偏置电流引起的误差。

集成运算放大器基本应用(模拟运算电路)实训指导

集成运算放大器基本应用(模拟运算电路)实训指导

集成运算放大器基本应用 (模拟运算电路)实训指导(特别提醒:实验电路图中可能存在有的元器件数值与实验电路板中的不相同,实验时应以实验电路板中的为准。

另外,由于元器件老化、湿度变化、温度变化等诸多因素的影响所致,实验电路板中所标的元器件数值也可能与元器件的实际数值不一致。

有的元器件虽然已经坏了,但仅凭肉眼看不出来。

因此,在每次实验前,应该先对元器件(尤其是电阻、电容、三极管)进行单个元件的测量(注意避免与其它元器件或人体串联或并联在一块测量)。

并记下元器件的实际数值。

否则,实验测得的数值与计算出的数值可能无法进行科学分析。

)一.实验目的1.研究由集成运放组成的比例、加法、减法和积分等基本运算电路的功能。

2.了解运算放大器在实际应用时应考虑的一些问题。

二.实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

基本运算电路。

1)反相比例运算电路电路如图8—1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为i F O U R RU 1-=为了减小输入级偏置电流引起的运算误差,在同相端应接入平衡电阻R 2=R 1||R F 。

U OOU U图8—1 图8—22)反相加法电路电路如图8—2,输出电压与输入电压之间的关系为)(2211i F i F O U R RU R R U +-=R 3= R 1‖R 2‖R F 3)同相比例运算电路图8—3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U ⎪⎪⎭⎫ ⎝⎛+=11 R 2 = R 1‖R F当R 1 ∞,U o =U i ,即得到如图8—3(b)所示的电压跟随器,图中R 2=R F ,用以减小漂移和起保作用。

一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些集成运算放大器(Operational Amplifier,简称OP-AMP) 是现代电子技术中常用的一种集成电路,广泛应用于信号放大、积分、微分、比较、滤波、波形变换、逻辑运算等电路中。

本文将介绍一些集成运算放大器的应用。

一、信号放大集成运算放大器广泛应用于信号放大电路中,其直接或变压器耦合输入方式具有低输入电阻、高输入阻抗、低噪声、高增益和宽带等特性。

在应用中,可通过精心设计放大器电路,控制反馈,实现高增益稳定运行。

二、积分电路积分电路是信号处理电路中的基本电路,它能将信号输入与时间积分,输出的是输入信号积分后的值。

集成运算放大器常用于积分电路的设计,其放大电压信号,然后通过电容对信号进行积分。

例如,在三角形波发生器电路中,可通过电容积分得到正弦波信号,而集成运算放大器的内部电路通常包含差分放大器,可将输入信号转化为电压差,用于驱动电容,完成积分计算。

三、微分电路微分电路是在信号处理中广泛应用的一种电路,它能够将信号对时间的微分操作,其输出电压是输入信号微分后的值。

集成运算放大器也常用于微分电路的设计中,可通过对输入信号进行微分计算得到输出信号。

例如,在测量热电偶温度时,可将温度信号输入到集成运算放大器中,通过差分放大器将信号转化为电压差,然后用电阻对信号进行微分计算,输出即为最终温度值。

四、比较电路比较电路是一种将两个信号进行比较然后输出比较结果的电路,它广泛应用于数字电路、自动控制、计算机硬件等领域。

集成运算放大器常用于比较电路中,它的输出能够根据电压的大小关系取两个输入信号中的一个。

例如,电压比较器是一种常见的电路,它采用集成运算放大器作为比较电路的核心元件,用于比较两个不同电压的大小关系,以便输出相应的状态。

五、滤波器滤波器是一种通过对输入信号进行滤波操作,抑制或增强特定频率信号的电路。

集成运算放大器广泛应用于滤波电路的设计中,其内部电路包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等类型。

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告集成运算放大器的基本应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种广泛应用于电子电路中的重要器件。

它具有高增益、低失调、宽带宽等特点,可以实现信号放大、滤波、积分、微分等功能。

在本次实验中,我们将通过几个基本应用实验,探索集成运算放大器的工作原理和应用场景。

实验一:非反相放大器非反相放大器是Op-Amp最常见的应用之一。

它通过将输入信号与放大倍数相乘,输出一个放大后的信号。

我们在实验中使用了一个标准的非反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。

实验结果显示,输出信号的幅度和输入信号的幅度相比,增大了放大倍数倍。

而相位方面,输出信号与输入信号的相位保持一致。

这说明非反相放大器能够有效放大输入信号,并且不改变其相位。

实验二:反相放大器反相放大器是Op-Amp另一种常见的应用。

它与非反相放大器相比,输入信号与放大倍数相乘后取反,输出一个反向的放大信号。

我们在实验中使用了一个反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。

实验结果显示,输出信号的幅度与输入信号的幅度相比,同样增大了放大倍数倍。

但是相位方面,输出信号与输入信号相差180度。

这说明反相放大器能够有效放大输入信号,并且改变其相位。

实验三:积分器积分器是Op-Amp的另一个重要应用。

它可以将输入信号进行积分运算,输出一个积分后的信号。

我们在实验中使用了一个积分器电路,将一个方波信号作为输入,观察输出信号的变化。

实验结果显示,输出信号呈现一个斜率逐渐增大的曲线,表明输入信号得到了积分。

这说明积分器能够有效对输入信号进行积分运算,输出一个积分后的信号。

实验四:微分器微分器是Op-Amp的又一个重要应用。

它可以将输入信号进行微分运算,输出一个微分后的信号。

我们在实验中使用了一个微分器电路,将一个正弦波信号作为输入,观察输出信号的变化。

集成运放的类型及应用

集成运放的类型及应用

集成运放的类型及应用集成运放(即集成式运算放大器)是一种高增益、高输入阻抗以及低输出阻抗的电子放大器,广泛应用于电路设计和信号处理等领域。

下面将详细介绍集成运放的类型及应用。

1. 类型:目前,常见的集成运放有多种类型,包括普通运放、仪表运放、高速运放、低功耗运放等。

普通运放:普通运放是最常见的一种集成运放,具有宽带宽、高增益、高输入阻抗和低输出阻抗的特点。

它的主要应用领域包括信号放大、滤波、理想运算放大器电路设计等。

仪表运放:仪表运放是一种精密运放,具有高共模抑制比、低偏置电流和低噪声的特点。

它的主要应用领域包括电压、电流、温度等测量,以及精密仪器和设备的信号放大等。

高速运放:高速运放是一种具有高增益带宽积(GBW)和快速响应特性的运放,适用于高频信号处理和快速信号放大等应用。

它的主要应用领域包括通信系统、高速数据传输、高速采样和测量等。

低功耗运放:低功耗运放是针对低电源电压和低功耗要求而设计的集成运放。

它可以在低电源电压下正常工作,并具有低静态功耗和低失调电压的特点。

它的主要应用领域包括移动设备、便携式仪器和电池供电系统等。

2. 应用:集成运放作为一种重要的电子器件,在电路设计和信号处理等领域应用广泛。

下面列举一些常见的应用示例:信号放大:集成运放最常见的应用就是信号放大。

通过调整运放的增益,可以将微弱的传感器信号放大到适合后续处理的范围,如压力传感器、温度传感器等。

滤波器:集成运放可以被用来设计各种类型的滤波器,如低通滤波器、高通滤波器、带通滤波器等。

滤波器的设计可以通过选择运放的反馈电阻和电容来实现。

运算放大器电路设计:运算放大器电路是运放最重要的应用之一。

基于运算放大器的电路可以实现加法、减法、乘法、除法、积分、微分等运算,并被广泛应用于模拟电路设计、自动控制系统等领域。

电压和电流测量:仪表运放常用于电压和电流测量。

通过仪表运放的高共模抑制比和低偏置电流特性,可以实现高精度和高稳定性的电压和电流测量。

集成运放应用电路设计360例

集成运放应用电路设计360例

集成运放应用电路设计360例集成运放(Operational Amplifier,简称Op-amp)是现代电子技术中常用的一种电子器件。

它是一种高增益、直流耦合放大器,能够在很宽的频带内传输信号。

它具有输入阻抗极高、输入电阻极低、输出阻抗极低、增益高、频率响应宽广、抗干扰能力强等特点。

因此,集成运放被广泛应用于各种电子设备和电路中,包括放大器、滤波器、振荡器、比较器和积分器等。

本文将介绍360个集成运放应用电路设计,具体内容如下:1.放大器电路:集成运放最基本的应用之一就是作为放大器使用。

通过调整集成运放的反馈电阻和输入电阻,可以实现不同的放大倍数。

比如,放大器电路可以用于音频放大、信号调理、传感器信号放大等。

2.滤波器电路:集成运放可以组成各种滤波器电路,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

滤波器电路可以用于信号处理、音频处理、通信等领域。

3.比较器电路:比较器是一种将输入信号与参考电压进行比较,并产生开关型输出信号的电路。

集成运放可以很方便地组成比较器电路,常用于电压比较、数字信号处理等应用。

4.仪器放大器电路:仪器放大器是一种专门用于放大微弱信号、提供高的共模抑制比和高输入阻抗的放大器。

通过集成运放,可以设计出高性能的仪器放大器电路,用于传感器信号放大、生物电信号处理等。

5.积分器电路:积分器电路可以对输入信号进行积分操作,常用于信号处理、电力电子等领域。

通过集成运放,可以很方便地实现积分器电路的设计。

6.振荡器电路:振荡器是一种能产生固定频率、稳定振幅的信号源。

集成运放可以作为振荡器电路的关键部件,实现正弦波振荡器、方波振荡器、三角波振荡器等。

7.波形发生器电路:通过集成运放,可以设计出各种波形发生器电路,包括正弦波发生器、方波发生器、三角波发生器和脉冲波发生器等。

8.限幅器电路:限幅器是一种将输入信号限制在一定范围内的电路。

通过集成运放,可以设计出各种限幅器电路,用于信号处理、电压调节等。

集成运算放大器的基本应用,波形发生器实验报告

集成运算放大器的基本应用,波形发生器实验报告

集成运算放大器的基本应用,波形发生器实验报告集成运算放大器实验报告集成运算放大器实验报告2.4.1 比例、加减运算电路设计与实验由运放构成的比例、求和电路,实际是利用运放在线性应用时具有“虚短”、“虚断”的特点,通过调节电路的负反馈深度,实现特定的电路功能。

一、实验目的1.掌握常用集成运放组成的比例放大电路的基本设计方法;2.掌握各种求和电路的设计方法;3.熟悉比例放大电路、求和电路的调试及测量方法。

二、实验仪器及备用元器件(1)实验仪器(2)实验备用器件三、电路原理集成运算放大器,配备很小的几个外接电阻,可以构成各种比例运算电路和求和电路。

图 2.4.3(a)示出了典型的反相比例运算电路。

依据负反馈理论和理想运放的“虚短”、“虚断”的概念,不难求出输出输入电压之间的关系为?o?A??i??RfR1i 2.4.1式中的“-”号说明电路具有倒相的功能,即输出输入的相位相反。

当Rf?R1时,?oi,电路成为反相器。

合理选择Rf、R1的比值,可以获得不同比例的放大功能。

反相比例运算电路的共模输入电压很小,带负载能力很强,不足之处是它的输入电阻为Ri?R1,其值不够高。

为了保证电路的运算精度,除了设计时要选择高精度运放外,还要选择稳定性好的电阻器,而且电阻的取值既不能太大、也不能太小,一般在几十千欧到几百千欧。

为了使电路的结构对称,运放的反相等效输入电阻应等于同相等效输入电阻,(a)中,应为RP?R1//Rf,R??R?,图2.4.3电阻称之为平衡电阻。

(a) 反相比例运算电路(b) 同相比例运算电路图2.4.3 典型的比例运算电路图 2.4.3(b)示出了典型的同相比例运算电路。

其输出输入电压之间的关系为?o?A??i?(1?RfR1)?i 2.4.2由该式知,当Rf?0时,?o??i,电路构成了同相电压跟随器。

同相比例运算电路的最大特点是输入电阻很大、输出电阻很小,常被作为系统电路的缓冲级或隔离级。

集成运放的分类及应用

集成运放的分类及应用

集成运放的分类及应用集成运放(Operational Amplifier, OP-AMP)是一种基本的电子元件,具有非常广泛的应用。

根据性能特点和应用功能的不同,可以将集成运放分为以下几类。

1. 低噪声运放:低噪声运放在信号处理、放大和传输等领域中应用广泛。

这些运放通常具有非常低的输入等效噪声、电压噪声和电流噪声,能够保持信号的高精确度。

它们常用于音频放大器、传感器信号放大、音频电平计等高要求的应用上。

2. 高速运放:高速运放具有快速的频率响应和瞬态响应,可以实现高速信号处理。

这些运放主要应用于高速数据转换、通信、视频处理、宽带放大器等领域。

高速运放还常用于模拟环路控制系统、高速采样和保持电路等。

3. 低功耗运放:低功耗运放适用于需要长时间使用,对电源的耗电量要求较低的应用。

它们通常具有低功耗和低供电电压,能够降低系统的能耗。

这种运放广泛应用于便携式设备、传感器网络、能量收集系统等。

4. 高精度运放:高精度运放能够实现精确的信号测量和放大,具有高精度的增益、低偏移电压、低温漂移等特点。

这些运放适用于精密测量、自动控制、医疗仪器等需要高精度信号处理的应用。

5. 低电压运放:低电压运放适用于低电压供电系统,能够在低电源电压下正常工作。

这些运放通常具有低电源电压、低功耗和低电流功耗等特点。

它们广泛应用于便携式设备、电池供电系统、太阳能电池等。

6. 特殊功能运放:这类运放具有特殊的性能或功能,用于特定的应用。

例如,差分放大器用于抑制共模噪声,比较器用于信号比较和触发,自耦变压器用于隔离输入和输出信号等。

这些特殊功能运放能够满足特定应用的需求。

集成运放广泛应用于各种电路和系统中,包括:- 信号放大和处理:可以将微弱的传感器信号放大到合适的范围,如温度传感器、压力传感器等。

- 运算放大器:可以实现加法、减法、乘法、积分、微分等运算,用于信号处理、滤波和控制电路等。

- 比较器:用于信号比较和触发,常用于开关控制、触发器电路、模拟开关等。

集成运算放大器的基本应用模拟运算电路实验报告

集成运算放大器的基本应用模拟运算电路实验报告

集成运算放大器的基本应用模拟运算电路实验报告实验目的:1. 学习集成运算放大器的基本应用;2. 掌握模拟运算电路的基本组成和设计方法;3. 理解反馈电路的作用和实现方法。

实验器材:1. 集成运算放大器OP07;2. 双电源电源供应器;3. 多用途万用表;4. 音频信号发生器;5. 电容、电阻、二极管、晶体管等元器件。

实验原理:集成运算放大器是一种高增益、高输入阻抗、低输出阻抗、具有巨大开环增益的差分放大器。

在应用中,我们通常通过反馈电路来控制放大器的增益、输入输出阻抗等特性,从而使其实现各种模拟运算电路。

常用的反馈电路有正向电压反馈、负向电压反馈和电流反馈等。

各种反馈电路的实现方法有所不同,但基本思想都是引入一个反馈回路来控制电路的传递函数,从而实现对电路特性的控制。

实验内容:1. 非反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

2. 非反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

3. 非反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

4. 反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

5. 反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

6. 反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

7. 增益和带宽测试选择合适的集成运算放大器,按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

实验数据及分析:根据实验中所得到的数据,可以绘制出放大倍数和频率的曲线图,从中可以看出电路的增益特性和带宽特性。

实验结论:通过本次实验,我们学习了集成运算放大器的基本应用,掌握了模拟运算电路的基本组成和设计方法,理解了反馈电路的作用和实现方法,同时也提高了我们的实验操作能力。

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告一、实验目的。

本实验旨在通过对集成运算放大器的基本应用进行实验操作,加深对集成运算放大器的工作原理和基本应用的理解,掌握集成运算放大器的基本特性和应用技巧,提高实验操作能力和动手能力。

二、实验仪器与设备。

1. 集成运算放大器实验箱。

2. 示波器。

3. 直流稳压电源。

4. 电阻、电容等元器件。

5. 万用表。

6. 示波器探头。

三、实验原理。

集成运算放大器(Operational Amplifier,简称Op-Amp)是一种高增益、直流耦合的差动放大器,具有输入阻抗高、输出阻抗低、增益稳定、频率响应宽等特点,广泛应用于模拟电路中。

在本实验中,我们将学习集成运算放大器的基本特性和应用技巧,包括集成运算放大器的基本参数、基本电路和基本应用。

四、实验内容。

1. 集成运算放大器的基本参数测量。

a. 输入失调电压的测量。

c. 增益带宽积的测量。

2. 集成运算放大器的基本电路实验。

a. 非反相放大电路。

b. 反相放大电路。

c. 比较器电路。

d. 电压跟随器电路。

3. 集成运算放大器的基本应用实验。

a. 信号运算电路。

b. 信号滤波电路。

c. 信号调理电路。

五、实验步骤。

1. 连接实验仪器与设备,按照实验要求进行电路连接。

2. 分别测量集成运算放大器的输入失调电压、输入失调电流和增益带宽积。

3. 搭建集成运算放大器的基本电路,观察输出波形并记录实验数据。

4. 进行集成运算放大器的基本应用实验,观察输出波形并记录实验数据。

六、实验数据与分析。

1. 输入失调电压测量数据。

输入失调电压,0.5mV。

平均输入失调电压,0.55mV。

2. 输入失调电流测量数据。

输入失调电流,10nA。

输入失调电流,12nA。

平均输入失调电流,11nA。

3. 增益带宽积测量数据。

增益带宽积,1MHz。

4. 实验数据分析。

通过测量数据的分析,我们可以得出集成运算放大器的输入失调电压较小,输入失调电流也较小,增益带宽积较大,符合集成运算放大器的基本特性。

第2章 集成运放及其基本应用

第2章   集成运放及其基本应用

集成运放的电压传输特性
uO=f(uP-uN)
在线性区: uO=Aod(uP-uN) Aod是开环差模放大倍数。
非线 性区
由于Aod高达几十万倍,所以集成运放工作在线性区时的 最大输入电压(uP-uN)的数值仅为几十~一百多微伏。 (uP-uN)的数值大于一定值时,集成运放的输出不是 +UOM , 就是-UOM,即集成运放工作在非线性区。
RL
RE2
RC4
T9
R2
第2级:差动放大器
第3级:单管放大器
Hale Waihona Puke -UEE集成运算放大器符号
国内符号:
反相输入端 u- 同相输入端 u+
- + +
输出端 uo
同相输入端: 该端输入信号变化的极性与输出端相同
反相输入端: 该端输入信号变化的极性与输出端相反
美国符号:
u- u+


uo
运 算 放 大 器 外 形 图
集成电路运算放大器
集成运算放大器是一种高电压增益,高输入 电阻和低输出电阻的多级直接耦合放大电路。
运算放大器方框图
1.输入级 使用高性能的差分放大电路,它必 须对共模信号有很强的抑制力,而且采用双端输 入双端输出的形式。
2.电压放大级 要提供高的电压增益,以保证 运放的运算精度。中间级的电路形式多为差分电 路和带有源负载的高增益放大器。 3.输出级 由PNP和NPN两种极性的三极 管或复合管组成,以获得正负两个极性的输出电 压或电流。具体电路参阅功率放大器。
4.偏置电路 提供稳定的几乎不随温度而变化 的偏置电流,以稳定工作点。 另举例说明集成运放内部结构
集成运放内部结构(举例)
极 性 判 RC1 断 RC2

集成运放的实际应用

集成运放的实际应用

集成运放的实际应用集成运放(Integrated Operational Amplifier)是一种常见的电子器件,广泛应用于各种电路中。

它的主要功能是放大电压信号,并具有高输入阻抗和低输出阻抗的特点。

集成运放的应用非常广泛,下面将介绍几个与集成运放相关的实际应用。

集成运放在音频放大器中的应用非常常见。

音频放大器是将低功率音频信号放大为较大功率的电子设备,常见的应用场景包括音响系统、汽车音频设备等。

集成运放作为音频放大器的核心部件,能够提供高品质的音频放大效果。

它可以放大音频信号的幅度,同时保持音频信号的准确性和稳定性,使得音乐、语音等声音更加清晰、真实。

集成运放在模拟计算器中的应用也非常重要。

模拟计算器是一种能够进行各种数学运算的电子设备,广泛应用于科学研究、工程设计等领域。

在模拟计算器中,集成运放可以用于实现各种数学运算,如加法、减法、乘法、除法等。

它的高精度和稳定性能保证了计算结果的准确性,提高了计算器的可靠性和实用性。

集成运放还在信号调理中起到了重要的作用。

信号调理是指对输入信号进行处理和优化,以满足特定的要求。

在信号调理中,集成运放可以用于滤波、放大、补偿等操作。

例如,在传感器信号处理中,集成运放可以用于放大微弱的传感器信号,提高信号的可靠性和稳定性。

又如,在音频信号处理中,集成运放可以用于实现音频信号的均衡和控制,使得音频信号更加优质和适合特定的应用场景。

集成运放还在仪器仪表中有着广泛的应用。

仪器仪表是一种测量和控制物理量的设备,广泛应用于科学实验、工程测试等领域。

在仪器仪表中,集成运放可以用于放大和处理测量信号,提高测量的精确度和可靠性。

例如,在电压测量中,集成运放可以用于放大微弱的电压信号,使其达到适合测量的范围。

又如,在温度测量中,集成运放可以用于放大和补偿传感器产生的微弱信号,提高温度测量的精确度和稳定性。

集成运放在实际应用中发挥着重要的作用。

它广泛应用于音频放大器、模拟计算器、信号调理和仪器仪表等领域,为这些设备提供了高品质的信号放大和处理功能。

集成运放的典型应用

集成运放的典型应用

集成运放的典型应⽤上⼀贴我们讲了集成运算放⼤器的原理,对集成运放有了⼀个初步的了解,其实在综保插件⾥应⽤的两个集成运放LM339是作为电压⽐较器应⽤的,通过电流互感器传来的电流信号转换成电压信号,与插件内部设定的电压信号进⾏⽐较,当电流互感器传来的信号⼤于插件内部设定的电压信号时,综保插件就会认为照明主回路有短路故障,从⽽驱动执⾏电路切断主回路的交流接触器控制电源。

漏电保护电路也同短路保护电路⼀样,进⾏电压⽐较来判断设备是不是漏电的。

集成运算放⼤器是这样组成⽐较电路:集成运算放⼤器 ,简称为集成运放.它实际上是⼀个⾼增益的多级直接耦合放⼤器 ,最早⽤于模拟计算机 ,并由此⽽得名.随着电⼦技术的⾼速发展 ,集成运放不断升级换代 ,其性能参数和技术指标不断提⾼ ,⽽价格⽇益降低.它的应⽤早已超出运算的范畴之外 ,已成为⼀种通⽤性很强的功能性器件 ,它的应⽤犹如六、七⼗年代⽆线电电路中的三极管⼀样 ,已成为现代电⼦电路中的核⼼器件 ,正如三级管⼀样 ,如略去电源端和调零端以外 ,集成运放的符号也有三个端 ,即反相输⼊端、同相输⼊端和输出端.图1 集成运放符号集成运放的⾼增益 ,其含义是开环电压放⼤倍数趋于⽆穷⼤ ,其次输⼊电阻⾼ ,⼏乎不从信号源索取电流;输出电阻低 ,带负载的能⼒很强.这三点是集成运放多项性能指标中的集中体现.尤其是前两条 ,是分析运放线性应⽤的原始依据 ,即可以演变为所谓 “虚短” 和 “虚断” 的两条重要性质.由于输出和输⼊可写为:U0 = Au (U+ - U- ) ,因为开环电压放⼤倍数Au趋于⽆穷⼤ ,线性应⽤时:U+ = U- ,即 “虚短” .⾮线性应⽤时 ,某时刻两输⼊端谁的电位⾼ ,输出就反映谁的特征 ,即:当U+ > U- ,输出U0 趋于正向饱和;当U+ < U- ,输出U0趋于负向饱和.这是集成运放运⽤于⾮线性状态的本质特征.电压⽐较器就是集成运放在⾮线性状态下的具体应⽤.所谓电压⽐较器 ,就是⼀种⽤来⽐较输⼊信号电压⼤⼩的电⼦电路.它可以将连续变化的模拟信号转换成仅有两个状态的矩形波.集成运放⼯作在⾮线性区时 ,两个输⼊端谁的电位⾼ ,输出就反映谁的特征 ,这是构成电压⽐较器的理论基础.如下图 2所⽰为最基本的电压⽐较器和其电压传输特性图.其中两个输⼊端中⼀个端⼦为参考端 ,参考电压为UR ,另⼀个端⼦(⽐如反相端)作为信号输⼊端 ,将信号电压与参考电压相⽐较 ,当信号电压⼩于参考电压时 ,输出为⾼电平 ,反之输出为低电平.由此得到如图的电压传输特性曲线.如此简单的电压⽐较器 ,增加限幅保护电路、引⼊正反馈去影响参考电压值等措施就可得到⼏种电压⽐较器的原型电路.⽐如:1.过零⽐较器:参考电压为零 ,输⼊信号每过零时 ,输出发⽣跃变 ,它实际上是⼀个单限⽐较器.最简单的应⽤是可以将正弦波变为⽅波.2.滞回⽐较器:利⽤正反馈来影响原来的参考电压使参考电位与此时的输出状态有关 ,从⽽消除在原来的参考电位附近输⼊信号由于受⼲扰⽽产⽣的空翻现象.3.双限⽐较器:由两个单限⽐较器组成所谓的双限⽐较器(也称为窗⼝⽐较器) ,可以将输⼊信号按需要范围进⾏选取.正是这样简单的电压⽐较器 ,在⾮正弦波产⽣变换电路、延时定时电路、⾃动控制及有关模数接⼝电路中得到了⼴泛的应⽤.如下图3所⽰为⽅波发⽣器的原形电路.它实质上是由⼀个带有正反馈的电压⽐较器和负反馈延时微分电路组成 ,同相端的参考电压由 R1 和 R2 将输出电压分压得到 ,在输出⾼电平或低电平时 ,使之电容充电或放电 ,电容两端得到的电压跟此时的参考电压 U+ 去⽐较 ,从⽽使电路的输出状态来回翻转输出⽅波.在⽅波发⽣器的基础上 ,将电容的充放电回路分开 ,即可得到矩形波发⽣器.在矩形波发⽣器的基础上后⾯加接⼀级积分电路 ,并稍微调整电路结构即可得到三⾓波发⽣器和锯齿波发⽣器.它们是⽰波器中扫描电压信号的基本产⽣电路.555定时器是包含模拟与数字的⼀种综合性中规模集成电路器件.其中模拟部分的核⼼就是由三个5千欧电阻分压器提供参考电压的两个电压⽐较器 ,上⾯的反相⽐较器是以 2P 3UCC作为参考电压 ,下⾯的同相⽐较器是以1P 3UCC作为参考电压.两者的输出分别控制基本 RS触发器的 R端和 S端 ,以触发器的输出作为定时器的输出 ,并以它的反端去控制放电三极管的导通与截⽌.正是这样巧妙地结合,使555定时器加上简单的 RC外围电路 ,便可构成单稳态触发器、施⽶特触发器、多谐⾃激振荡器等应⽤型电路.这⾥⾯ ,两个电压⽐较器将输⼊信号或电容上充放电⽽得的电压值跟参考电压 2P 3UCC和1P 3UCC去⽐较 ,从⽽转换成⾼电平或低电平 ,去控制触发器动作 ,输出所需要的电压波形进⽽控制执⾏机关,从⽽实现了电路的⾃动控制、延时、定时等多项功能 ,⽽电压⽐较器在此发挥出了⾄关重要的作⽤.同上情况相似 ,在并⾏⽐较型AP D转换器中 ,根据量化单位的⼤⼩ ,由 n 个分压电阻组成的分压电路得到(n - 1)个阶梯型电压值作为(n - 1)个电压⽐较器的反相端的参考电压 ,跟加在同相端的采样保持后的模拟信号电压⽐较 ,使每个⽐较器输出⾼电平或低电平 ,并通过其后⾯的缓冲寄存器得到(n - 1)位⼆进制数 ,完成了将模拟信号转换为数字信号的关键的⼀步.综上所述:电压⽐较器是集成运放的⼀种⾮线性应⽤.变化的、随机的输⼊信号跟另⼀个端的参考电压进⾏⽐较 ,使输⼊信号转换成只有⾼电平或低电平的输出信号 ,当输⼊信号电压等于参靠电压(即阈值)时 ,输出状态发⽣翻转.能实现这⼀点的关键就是取决于集成运放优良的性能 ,即开环电压放⼤倍数⽆穷⼤.但是实际运放的开环电压放⼤倍数不可能⽆穷⼤ ,除去运放的响应时间及零点漂移等因素 ,其⽐较误差及上升(下降)沿的陡度决定于运放的开环电压放⼤数 ,其值越⼤ ,产⽣的误差越⼩ ,上升(下降)沿越竖直.假设运放的开环电压放⼤倍数为 10的6次⽅,运放的输出饱和压降为 ±10V ,则产⽣的阈值误差为 ± 10 µV ,可见产⽣的误差是很⼩的.深刻理解电压⽐较器为集成运放在⾮线性应⽤下的本质特征 ,并在教学中将其应⽤实例适时地进⾏归纳、总结、⽐较 ,这对提⾼教学质量 ,丰富学⽣的知识 ,培养学⽣的创新能⼒ ,都有着重要的意义.。

实验八集成运算放大器的基本应用(i)

实验八集成运算放大器的基本应用(i)

40 模拟电子技术实验实验八集成运算放大器的基本应用(I)─模拟运算电路一、实验目的1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2.了解运算放大器在实际应用时应考虑的一些问题。

二、实验设备与器件三、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

1.理想运放的特性在大多数情况下,运放可被视为理想器件,就是将运放的各项技术指标理想化,理想运放需要满足下列条件:开环电压增益A ud=∞输入阻抗r i=∞输出阻抗r o=0带宽f BW=∞失调与漂移均为零等。

理想运放在线性应用时的两个重要特性:(1)输出电压U O与输入电压之间满足关系式U O=A ud(U+-U-)由于A ud=∞,而U O为有限值,因此,U+-U-≈0。

即U+≈U-,称为“虚短”。

(2)由于r i=∞,故流进运放两个输入端的电流可视为零,即I IB=0,称为“虚断”。

这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

2.基本运算电路(1)反相比例运算电路实验八 集成运算放大器的基本应用(Ⅰ) 41电路如图8-1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为i 1F O U R R U -=为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。

图8-1 反相比例运算电路 图8-2 反相加法运算电路(2)反相加法电路电路如图8-2所示,输出电压与输入电压之间的关系为)(i22F i11F O U R RU R R U +-= R 3=R 1 / / R 2 / / R F (3)同相比例运算电路(a) 同相比例运算电路 (b) 电压跟随器图8-3 同相比例运算电路图8-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1F O )(1U R R U += R 2=R 1 / / R F42 模拟电子技术实验当R 1→∞时,U O =U i ,即得到如图8-3(b)所示的电压跟随器。

集成运放的基本应用

集成运放的基本应用

集成运放的应用范围
信号放大
集成运放可以用于信号 的放大,实现信号的传
输和处理。
滤波器
集成运放可以用于构成 各种滤波器,如低通、 高通、带通、带阻滤波
器等。
电压比较器
模拟电路
集成运放可以用于构成 电压比较器,用于信号 的阈值检测和波形整形。
集成运放还可以用于模 拟电路中,如模拟运算 放大器、模拟乘法器等。
在模拟运算电路中的应用
01
02
03
加法器
集成运放可以构成加法器 电路,将多个输入信号按 比例相加,输出结果。
减法器
集成运放也可以构成减法 器电路,将两个输入信号 按比例相减,输出结果。
积分器
集成运放还可以构成积分 器电路,用于对输入信号 进行积分运算,输出结果。
在有源滤波器中的应用
低通滤波器
集成运放可以用于低通滤 波器,用于滤除高频噪声 或干扰,保留低频信号。
集成运放的功耗问题
总结词
集成运放的功耗问题主要表现在静态功耗和动态功耗上。
详细描述
静态功耗是指集成运放处于静止状态时的功耗,动态功耗则是指在工作状态下,随着输入 信号的变化而产生的功耗。
解决方案
可以采用低功耗的器件和电路设计,同时优化电源电压和时钟频率来降低功耗。此外,还 可以采用动态功耗管理技术,根据实际需求动态调整功耗。
05
集成运放的常见问题与解决 方案
集成运放的噪声问题
01
总结词
集成运放的噪声问题主要来源于内部元件的不完美性和外部环境的干扰。
02 03
详细描述
集成运放的制造过程中,由于工艺限制,内部元件难免存在不完美性, 这导致了噪声的产生。此外,外部环境的电磁干扰也可能对集成运放造 成噪声干扰。

集成运算放大器的基本应用

集成运算放大器的基本应用

集成运算放大器的基本应用
集成运算放大器(Operational Amplifier,简称Op Amp)是一
种高增益、直流耦合的放大电路。

它广泛应用于电子电路中,具有非常重要的作用。

常见的集成运算放大器IC芯片有
LM741、LM358、LM324等。

以下是集成运算放大器的基本应用:
1. 比较器:将两个电压进行比较,输出高电平或低电平。

比较器具有电压转换和开关控制的功能,常用于电压检测、信号选择和自动控制等方面。

2. 增益放大器:将输入信号进行放大,输出信号比输入信号大。

这种电路可以放大微小信号,如传感器输出、电源噪声等。

3. 运算放大器:进行数学运算,如加减乘除、积分、微分和求反向比等。

这种电路通常用于信号处理、滤波、振荡和控制等方面。

4. 反馈电路:利用Op Amp的高增益和稳定性,通过反馈电路实现精确控制。

反馈电路包括正反馈和负反馈两种,应用广泛,如DC稳压电源、振荡器、电压跟随器和信号隔离器等。

5. 信号滤波:利用Op Amp的高增益和频率特性,设计高性能的RC滤波器和二阶滤波器。

这种电路可以提取出特定频率的
信号,去除噪声和干扰,应用于音频、通信和仪器等方面。

总之,集成运算放大器广泛应用于各种电子电路中,可以实现信号放大、滤波、比较和控制等多种功能,是电子工程师必不可少的工具。

集成运算放大器的应用基础

集成运算放大器的应用基础
If=IR1=
U R1
2.电压放大倍数
由图5-16可见R1和Rf组成分压器,反馈电压
Uf=Uo
R1 R f R1
由于Ui=Uf,则
Ui=Uo
R1 R f R1
或Uo=
R1 R f R1
Ui=(1+
Rf R1
)Ui
由上式可得电压放大倍数
Rf Uo Auf= =1+ R1 Ui
上式表明:同相输入放大电路中输出 电压与输入电压的相位相同,大小成比 例关系,比例系数(1+)。 在图5-16中如果把 Rf 短路( Rf=0), 把 R1 断开( R1→∞),则 Auf=1。即输入 信号Ui和输出信号Uo大小相等,相位相同。
由于集成运放的差模输入电阻 Rid→∞,输入 偏置电流IB≈0,不向外部索取电流,因此两输 入端电流为零。即Ii-=Ii+=0,这就是说,集 成运放工作在线性区时,两输入端均无电流, 称为“虚断”。 由于理想运放开环电压放大倍数为无穷大, 最大输出电压UO=Aud(U+-U-)为一有限值, 所以两输入端电位近似相同,即U-=U+。由此 可见,集成运放工作在线性区时,两输入端电 位相等,称为“虚短”。
三、运算放大器的基本电路
(一)反相输入放大电路 (二)同相输入放大电路
(一)反相输入放大电路
1.“虚地”的概念
2.电压放大倍数 3.输入电阻,输出电阻
图5-15所示为反相输入放大电路, 输入信号经R1加到反相输入端,Rf为反馈 电阻,经Rf把输出信号电压Uo反馈到反相 端,构成深度电压并联负反馈。
3.输入电阻、输出电阻
由于采用了深度电压串联负反馈,该 电路具有很高的输入电阻和很低的输出 电阻。(Rif→∞,Ro→0)。这是同相输入 式放大电路的重要特点。

3.集成放大器的基本应用

3.集成放大器的基本应用

(5)验证输出信号与输入信号的幅度是否相等。 (6)逐渐提高输入信号 V 的幅度,记录相应输出电 压 V 值。注意观测放大器饱和时的输出电压幅度, 此时增益将偏离1。 (7)将输入电压恢复为1.0V,用实验三的方法测量 跟随器的传递函数(增益和相移随频率的变化), 并画成Bode图。测量频率范围:10Hz~2MHz, 频率较低时每10倍为一个测量点,当幅度和相位 变化明显时、每逢1-2-5为一个测量点。
管脚④ 负电源端 VEE 管脚⑤ 失调调零端 管脚⑥ 输出端 管脚⑦ 正电源端 管脚⑧ 空脚 VCC 图4-1(b)给出的是开环增益的频率响应图,图 4-1(c)是μA741运算放大器失调电压调零接线图。
(a)
(b)
图4-1
(c)
2、集成运放基本应用电路 集成运放的开环差模电压增益Avd很大,但受温度 影响明显、很不稳定,而且开环运用时运算放大器的 频带很窄,如μA741只有7Hz左右,显然难以满足交 流信号的放大要求。要使集成运放实现信号的稳定放 大,加反馈网络构成深度负反馈电路是必要条件。采 用负反馈构成闭环电路虽然会降低电压增益,但可以 提高电压增益的稳定性,可将频带扩展到 (1 A )倍,这 里 是反馈网络的反馈系数。另外深度负反馈还可以 改善输入电阻、输出电阻等,使它们接近理想。
技术指标 开环差模电压增益 Avd 输入电阻 Ri
理想值
实际值范围
5103 ~5106 106Ω~1015Ω∞源自∞输出电阻共模抑制比
Ro
CMRR
0

5Ω~500Ω
90dB ~140dB
摆率
SR
fT


0.2V/μs~50V/μs
0.1MHz~60MHz
单位增益带宽
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u0
(1
6 12 )u02
6 12
u01
3 2
u02
1 2
u01
19 V
6V
2
减法器
加法器
同相放大器
例 3. 差分运算电路的设计
条件: Rf = 10 k
要求: uo = uI1 2uI2
uO
Rf R1
Rf 2
R1
uI2
(1 Rf ) R3 R1 R2 R3
R1 = 5 k
uI1
满足“虚断”
§5.2 基本运算电路
一、比例运算电路 二、加减运算电路 三、积分运算电路和微分运算电路 四、对数运算电路和指数运算电路
研究的问题
(1)运算电路:运算电路的输出电压是输入电压某种 运算的结果,如加、减、乘、除、乘方、开方、积分、微 分、对数、指数等。
(2)描述方法:运算关系式 uO=f (uI) (3)分析方法:“虚短”和“虚断”是基本出发点。
uO uM (i2 i3 )R4
i3
uM R3
uO
R2 R4 R1
(1
R2
∥ R3
R4
)
uI
若要求Ri 100k,则R1 100k 若比例系数为100,R2 R4 100k,则R3 1k
2.同相比例运算电路-同相输入
uN uP uI
uO uN Rf
uN R
uO
(1
Rf R
3) R’=R∥Rf
保证输入级的对称性
4) 若要Ri=100kΩ,比例系数为-100,则R=100kΩ, Rf= 104kΩ
Rf太大,噪声大。如何利用相对小 的电阻获得-100的比例系数?
T 形反馈网络反相比例运算电路
利用R4中有较大电流来获得较大数值的比例系数。
i2
i1
uI R1
uM
R2 R1
uI
R1
R1 2R2
uo uo2 uo1
uo
(1
2R2 R1
)(uI2
uI1)
显然调节R1
可以改变放大
器的增益。
例2:求u0的数值。
解:
u01
Rf R1
uI1
Rf R2
uI 2
Rf R3
uI 3
4 2 4(6) 46 8V
u02
(1
Rf R
)uI 4
(1 4) (3) 9V 2
设 R1∥ R2∥ R3∥ R4= R∥
i1 i2 i3 i4 iR iRf
uI1 uP uI2 uP uI3 uP uP
R1
R2
R3
R4
uN uN uO
R
Rf
uP uN
uO
Rf
(uI1 R1
uI2 R2
uI3 ) R3
与反相求和运算电路 的结果差一负号
3. 加减运算
uN uP 0 iF iR1 iR2 iR3 uO uI1 uI2 uI3 R f R1 R2 R3
uO
( Rf R1
uI1
Rf R2
uI2
Rf R3
uI3)
1. 反相求和
方法二:利用叠加原理
首先求解每个输入信号单独作用时的输出电压,然后将所 有结果相加,即得到所有输入信号同时作用时的输出电压。
同理可得
uO2
Rf R2
uI2
uO1
Rf R1
uI1
uO3
Rf R3
uI3
uO
1
uO2
uO3
Rf R1
uI1
Rf R2
uI2
Rf R3
uI3
2. 同相求和
Rf
设 R1∥ R2∥ R3∥ R4= R∥
利用叠加原理求解: 令uI2= uI3=0,求uI1单独
作用时的输出电压
uO1
(1
Rf R
)
R2 ∥ R3 ∥ R4 R1 R2 ∥ R3 ∥ R4
uI1
同理可得, uI2、 uI3单独作用时的uO2、 uO3,形式与 uO1相同, uO =uO1+uO2+uO3 。
物理意义清楚,计算麻烦!
在求解运算电路时,应选择合适的方法,使运算结果 简单明了,易于计算。
2. 同相求和
Rf
学习运算电路的基本要求
(1)识别电路; (2)掌握输出电压和输入电压运算关系式的求解方法。
一、比例运算电路
+
_
1. 反相比例运算电路-反相输入
iN=iP=0, uN=uP=0--虚地
在节点N:
iF
iR
uN uO Rf
uI
uN R
1) 电路引入了电压并联负反馈
uO
Rf R
uI
2) 电路的输入电阻Rif= R ,输 出电阻Ro= 0
) uI
1) 电路引入了电压串联负反馈
2) 输入电阻为∞
3) 电阻R’= R∥Rf
4) 共模抑制比KCMR≠∞
运算关系的分析方法:节点电流法
同相输入比例运算电路的特例:电压跟随器
uO uN uP uI
1) F 1 2) Ri ,Ro 0
三、加减运算电路
1. 反相求和
方法一:节点电流法
利用求和运算电路的分析结果
设 R1∥ R2∥ Rf= R3∥ R4 ∥ R5
uO
Rf R1
uI1
Rf R2
uI2
Rf R3
uI3
Rf R4
uI4
uO
Rf R
(uI2 uI1)
实现了差分 放大电路
例1:求数据放大器的输出表达式,并分析R1的作用。
uR1 uI1 uI 2
uI1 uI 2 uo1 uo2
uO
1 RC
uI (t2
t1)
uO (t1)
利用积分运算的基本关系实现不同的功能
1) 输入为阶跃信号时的输出电压波形 2) 输入为方波时的输出电压波形 3) 输入为正弦波时的输出电压波形
波形变换
移相
例1:画出积分器 的输出波形。
解:
uO
1 RC
uIdt
(a) 阶跃输入信号
第五章 集成运放的基本应用
第五章 集成运放的基本应用
§5.1 理想集成运放 §5.2 基本运算电路 §5.3 模拟乘法运算电路 §5.4 有源滤波器 §5.5 电压比较器
§5.1 理想集成运放
1. 理想运放的参数特点
Aod、 rid 、fH 均为无穷大,ro、失调电压及其温漂、失 调电流及其温漂、噪声均为0。
2. 集成运放的线性工作区: uO=Aod(uP- uN)
电路特征:引入电压负反馈。
无源网络
因为uO为有限值, Aod=∞, 所以 uN-uP=0,即
uN=uP…………虚短路
因为rid=∞,所以 iN=iP=0………虚断路
2. 集成运放的非线性工作区:
电路特征:开环或引入正反馈。
uN<uP,uO=+UOH uN>uP,uO=-UOH
R3 1 R2 R3 3
R2 = 2R3
R2// R3= R1//Rf = 5//10
R2= 10 k R3= 5 k
四、积分运算电路和微分运算电路
1. 积分运算电路
uI C duc R dt
uO
uC
1 C
uI dt R
uO
1 RC
uIdt
uO
1 RC
t2 t1
uIdt
uO
(t1)
若uI在t1~t2为常量,则
相关文档
最新文档