电容的模型、选型、容值计算与PCB布局布线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1电容结构及模型
1.1模型
电容的基本公式是:
式(1)显示,减小电容器极板之间的距离(d)和增加极板的截面积(A)将增加电容器的电容量。
1.2寄生参数与阻抗的频率特性
电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。图2是电容器在不同工作频率下的阻抗(Zc)。
1.2.1降低去耦电容ESL的方法
去耦电容的ESL是由于内部流动的电流引起的,使用多个去耦电容并联的方式可以降低电容的ESL影响,而且将两个去耦电容以相反走向放置在一起,从而使它们的内部电流引起的磁通量相互抵消,能进一步降低ESL。(此方法适用于
任何数目的去耦电容,注意不要侵犯DELL公司的专利)
1.3不同电容的参数特性
电解电容器一般都有很大的电容量和很大的等效串联电感。由于它的谐振频率很低,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,所以只能使用在低频滤波上。同时,大电容还可以起到局部电荷池的作用,可以减少局部干扰通过电源耦合出去。
钽电容器一般都有较大电容量和较小等效串联电感,因而它的谐振频率会高于电解电容器,并能使用在中高频滤波上。
瓷片电容器电容量和等效串联电感一般都很小,因而它的谐振频率远高于电解电容器和钽电容器,所以能使用在高频滤波和旁路电路上。由于小电容量瓷片电容器的谐振频率会比大电容量瓷片电容器的谐振频率要高,因此,在选择旁路电容时不能光选用电容值过高的瓷片电容器。
1.4电容并联改善特性
为了改善电容的高频特性,多个不同特性的电容器可以并联起来使用。图 3 是多个不同特性的电容器并联后阻抗改善的效果。
1.4.1电容并联时注意封装
在为每个电容选择封装类型时必须谨慎。通常BOM表中会规定所有的无源元器件都要选用相同的尺寸,如都用0805电容。图10为三只电容并联后的阻抗与频率关系。
由于每只电容采用相同的封装,故它们的高频响应相同。实际上,这就抵消了更小电容的采用!相反,封装尺寸应该随同电容值一起微缩,见图11。
2电容器的并联和反谐振
2.1反谐振
当电容器的电容不足,或者目标阻抗以及插入损耗由于高 ESL 和 ESR 难以实现时,可能需要并联多个电容器,如图 10 所示。在这种情况下,必须注意出
现在这些电容器中的并联谐振(称为反谐振),如图 11 所示,可以看到从电源端的阻抗由于反谐振会趋向于变大。
反谐振是发生在两个电容器间的自谐振频率不同时的一种现象。如图 12 所示,并联谐振发生在其中一个电容器的电感区以及另一个电容器的电容区的频率范围内。并联谐振造成该频率范围的总阻抗增加。因此,在出现反谐振的频率范围,插入损耗会变小。
图10 电容并联可能出现反谐振的情况
图11 电容器的并联谐振
图12 并联谐振频率范围
2.2反谐振的抑制
如图 13 (a)所示,在电容器间嵌入谐振抑制元件例如铁氧体磁珠。如图13(b)所示,匹配电容器的电容以调整自谐振频率。如图 13(c )所示,缩小电容器之间的间距和使用不同电容的电容器相结合,电容值的差值低于 10:1 。
图 13(a)所示方法对改善插入损耗相当有效。然而,降低电源阻抗的效果就变小。采用图13(b)和图 10(c)的方法,可以减弱反谐振,但要完全抑制反谐振是很难的。如图 13(d)所示,可以采用低 ESL和 ESR 的高性能电容器来消除反谐振问题。
3滤波电容、去耦电容和旁路电容
3.1三个概念
➢滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。
➢去耦电容的主要功能是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地,加入去耦电容后电压的纹波干
扰会明显减小。
➢旁路电容起的主要作用是给交流信号提供低阻抗的通路。用在有电阻连接时,接在电阻两端使交流信号顺利通过。
3.2滤波电容
3.2.1滤波电容的作用
电路的电源线与回流线(地线)之间总要连接很多的电容器通常称为滤波电容。
一般情况下,滤波电容(多为电解电容)的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
n-35g的主滤波电容
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
3.2.2电源滤波电容
3.2.3滤波电容的选择
滤波电容在开关电源中起著非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员十分关心的问题。
50赫兹工频电路中使用的普通电解电容器,其脉动电压频率仅为100赫兹,充放电时间是毫秒数量级。为获得更小的脉动系数,所需的电容量高达数十万微法,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。而开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数万赫兹,甚至是数十兆赫兹。这时电容量并不是其主要指标,衡量高频铝电解电容优劣的标准是“阻抗- 频率”特性。要求在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号具有良好的滤波作用。
普通的低频电解电容器在万赫兹左右便开始呈现感性,无法满足开关电源的使用要求。而开关电源专用的高频铝电解电容器有四个端子,正极铝片的两端分别引出作为电容器的正极,负极铝片的两端也分别引出作为负极。电流从四端电容的一个正端流入,经过电容内部,再从另一个正端流向负载;从负载返回的电流也从电容的一个负端流入,再从另一个负端流向电源负端。