高等数学下册 第十一章 综合练习题答案
高等数学:第11章无穷级数自测题答案
《高等数学》单元自测题答案第十一章 无穷级数一.选择题:1.B ;2. D ;3.A ;4.B ;5.B ;6.B ;7. C ;8.C .二.填空题:1. ()∑∞=-021n n n x ,()1,1-∈x ;2. ()x +1ln ; 3. [)6,0; 4. 2k . 三.判断题:1. 解 因为02121lim ≠=+∞→n n n ,故级数发散. 2. 解 因为n n n n n n n 1)3(3)3(32=++>++,而∑∞=11n n发散,故原级数发散. 3. 解 设n n n n u )13(+=,因为13113lim lim <=+=∞→∞→n n u n n n n ,故级数收敛. 4. 解 因为()∑∞=-+1212n n n ∑∑∞=∞=--+=111)21()21(n n n n ,并且级数∑∑∞=∞=--111)21()21(n n n n 和均收敛,故级数()∑∞=-+1212n n n收敛. 四.判断题:1. 解()∑∑∞=-∞=--=-11111221n n n n n nn ,因为12121lim 221lim lim 11<=+=⋅+=∞→-∞→+∞→n n n n u u n n n n n n n 故∑∞=-112n n n 收敛,从而()∑∞=---11121n n n n 绝对收敛.2. 解 ∑∞=-+-=++-+++-1212221)1(14413312221n n n n , ∑∑∞=∞=-+=+-1212111)1(n n n n n n n ,因为11lim 11lim 222=+=+∞→∞→n n nn nn n ,而级数∑∞=11n n发散,故绝对值级数∑∞=-+-1211)1(n n n n 发散,因此所给级数不是绝对收敛的.由于所给级数是交错级数,且满足1)1(11,01lim222+++>+=+∞→n n n n n n n ,据莱布尼兹判别法知,所给级数收敛,且为条件收敛.五.求幂级数的收敛半径和收敛域1. 解 3313lim lim 11=⋅+=+∞→+∞→n n n nn n n n a a ,故收敛半径为31R =, 当31=x 时,幂级数化为∑∞=11n n ,该级数发散.当31-=x 时,幂级数化为∑∞=-11)1(n nn,其为交错级数,据莱布尼兹判别法知,该级数收敛.故所给幂级数的收敛域为⎪⎭⎫⎢⎣⎡-3131,. 2. 解 n n n n n n n n n n a a n n n n n n n n nn n nn n 1)1(lim 1)1(lim )1(lim 1)1(1lim lim 111111⋅+=⋅+=+=+=+∞→++∞→+∞→+∞→+∞→ 001lim )111(lim 11=⋅=⋅+-=-∞→+∞→e n n n n n , 故收敛半径为∞=R ,收敛域为()∞+∞-,. 3. 解 ∞=+=+=∞→∞→+∞→)1(lim !)!1(lim lim 1n n n a a n n nn n ,故收敛半径为0R =,收敛域为0=x . 六. 解:由于()x x f 2-=是奇函数,故0=n a , ,2,1,0=n ()⎰--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---==ππππππx n nx x n ntdt t b n sin 1cos 12sin 21 ()nn 41-= ∴()()nx nx f n n sin 141∑∞=-=。
高等数学第十一章习题
1. 填空题
∞
∑ (1)
lim
n→∞
un
= 0 是级数 un 收敛的
n=1
必要
条件,
而不是
充分
条件;
∞
∞
∞
(2) 若级数 ∑un 绝对收敛, 则级数 ∑un 必定 收敛 ; 若级数 ∑un 条件收敛,
n=1
n=1
n=1
∞
则级数 ∑ un 必定 发散 ; n=1
∞
∞
(3) 级数 ∑un 按某一方式经添加括号后所得的级数收敛是级数 ∑un 收敛的
.
n=1 (n − 1)! 3
n=1 (n − 1)!
n=1 (n − 1)!
93
所以
S ( x)
=
x2 (
+
x
x
+ 1)e3
,
x ∈ (−∞, +∞) .
93
∑ ∑ (4) 令 t = x + 1, 则 ∞ (x + 1)n = ∞ tn . n=0 (n + 2)! n=0 (n + 2)!
设 an
−1)
,
而 lim un+1 n→∞ un
=
lim
n→∞
2(n + 1) 2n+1
−1 2n x2 2n −1
=
x2 2
,
当
x=±
2
时级数
∞
∑
2n
−
1
发散,
所 以 级 数 的 收 敛 区 间 为 (−
2,
2) .
设
n=1 2
∑ S ( x)
=
∞ n=1
高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案
4 f (x, y)dy
x2
0
0
0
C、
4
y
∫0 dy∫0
f
(x,
y )dx
D、
4
∫0 dy∫0
y
f
(x,
y)dx
2、设 Ω 是由 x = 0, x = 1, y = 0, y = 1, z = 0, z = 1所围成的区域,则 ∫∫∫ xyzdxdydz =
Ω
3、旋转抛物面 z = x 2 + y 2 在 0 ≤ z ≤ 2 那部分的曲面面积 S=( ) 2
−a
a2 −x2
0
−a
28、设 D 由 x 轴和 y = sin x, x ∈ [0,π ]所围成,则积分 ∫∫ dσ = D
29、设 Ω :
0
≤
x
≤
1,0
≤
y
≤ 1,0
≤
z
≤
K
,且
∫∫∫
xdxdydz =
1 4
,则
K
=
Ω
二、解答题
( ) ( ) 1、计算三重积分 ∫∫∫ x2 + y 2 dv ,其中Ω是由曲面 2 x2 + y 2 = z 与平面 z = 4所围成的区域。
Ω
∫ ∫ ∫ ∫ ∫ ∫ ( ) 正确的(
)A、
2π
dθ
a
1
dr
r 3dz
B、
2π
dθ
a
dr
1
r
r2
+
z2
dz
0
0
0
0
0
0
∫ ∫ ∫ ∫ ∫ ∫ ( ) C、
2π
《高数》下册第十一章练习题
第十一章 曲线积分与曲面积分习题 11-11.设在xOy 面内有一分布着质量的曲线弧L ,在点(x,y )处它的线密度为μ(x,y )。
用对弧长的曲线积分分别表达:(1)这曲线弧对x 轴,对y 轴的转动惯量x I ,y I(2)这曲线弧的质心坐标x ,y2.利用对弧长的曲线积分的定义证明性质33.计算下列对弧长的曲线积分: (1)22(x y )nLds +⎰,其中L 为圆周x cos t,y sin (0t 2)a a t π==≤≤(2)(x y)ds L+⎰,其中L 为连接(1,0)及(0,1)两点的直线段(3)x Lds ⎰,其中L 为由直线y=x 及抛物线2y x =所围成的区域的整个边界 (4)22x y Leds +⎰,其中L 为圆周222x y a +=,直线y=x 及x 轴在第一象限内所围成的扇形的整个边界(5)2221ds x y z Γ++⎰,其中Γ为曲线cos ,sin ,t t tx e t y e t z e ===上相应于t 从0变到2的这段弧 (6)2x yzds Γ⎰,其中Γ为折线ABCD ,这里A,B,C,D 依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2) (7)2Ly ds ⎰,,其中L 为摆线的一拱(t sin ),y (1cos )(0t 2)x a t a t π=-=-≤≤(8)22(x )ds Ly +⎰,其中L 为曲线(cos sin ),y (sin cos )(0t 2)x a t t t a t t t π=+=-≤≤4.求半径为a,中心角为2ϕ的均匀圆弧(线密度1μ=)的质心5.设螺旋形弹簧一圈的方程为cos ,sin ,x a t y a t z kt ===,其中02t π≤≤,它的线密度222(x,y,z)x y z ρ=++.求: (1)它关于z轴的转动惯量z I(2)它的质心。
习题 11-21.设L 为xOy 面内直线x a =上的一段,证明:(x,y)dx 0LP =⎰2.设L 为xOy 面内x 轴上从点(a,0)到点(b,0)的一段直线,证明:(x,y)dx (x,0)dxbLaP P =⎰⎰3.计算下列对坐标的积分: (1)22(xy )Ldx-⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧(2)Lxydx⎰,其中L 为圆周222(x )a a y a -+=(>0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行) (3)Lydx xdy+⎰,其中L 为圆周cos ,sin x R t y R t ==上对应t 从0到2π的一段弧(4)22(x y)dx (x y)dy L x y +--+⎰,其中L 为圆周222+y x a =(按逆时针方向绕行) (5)2x dx zdy ydzΓ+-⎰,其中Γ为曲线cos ,sin x k y a z a θ,θθ===上对应θ从0到π的一段弧 (6)(x y 1)dz xdx ydy Γ+++-⎰,其中Γ是从点(1,1,1)到点(2,3,4)的一段直线(7)+y dx dy dzΓ-⎰,其中Γ为有向闭折线ABCD ,这里的A,B,C 依次为点(1,0,0),(0,1,0),(0,0,1) (8)22(x2xy)dx (y 2xy)dyL-+-⎰,其中L 是抛物线2y x =上从点(-1,1)到点(1,1)的一段弧 4.计算(x y)dx (y x)dy L++-⎰,其中L 是:(1)抛物线2y x =上从点(1,1)到点(4,2)的一段弧(2)从点(1,1)到点(4,2)的直线段(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线(4)曲线2221,1x t t y t =++=+上从点(1,1)到点(4,2)的一段弧 5.一力场由沿横轴正方向的恒力F 所构成,试求当一质量为m 的质点沿圆周222x y R +=按逆时针方向移过位于第一象限的那一段弧时场力所做的功6.设z 轴与动力的方向一致,求质量为m 的质点从位置(x,y,z )沿直线移到(x,y,z )时重力所做的功7.把对坐标的曲线积分(x,y)dx Q(x,y)dyLP +⎰化成对弧长的积分曲线,其中L 为:(1)在xOy 面内沿直线从点(0,0)到点(1,1)(2)沿抛物线2y x =从点(0,0)到点(1,1)(3)沿上半圆周222x y x +=从点(0,0)到点(1,1) 8.设Γ为曲线23,,x t y t z t ===上相应于t 从0变到1的曲线弧,把对坐标的曲线积分Pdx Qdy RdzΓ++⎰化成对弧长的曲线积分习题 11-31.计算下列曲线积分,并验证格林公式的正确性: (1)22(2xy x )dx (x y )dyL-++⎰,其中L 是由抛物线2y x =和2y x =所围成的区域的正向边界曲线 (2)222(x xy )dx (y 2xy)dyL-+-⎰,其中L 是四个顶点分别为(0,0),(2,0),(2,2),(0,2)的正方形区域的正想边界2.利用曲线积分,求下列曲线所围成的图形的面积 (1)星形线33cos ,sin x a t y a t ==(2)椭圆229+16y 144x = (3)圆222x y ax +=3.计算曲线积分22ydx 2(x y )L xdy -+⎰,其中L 为圆周22(x 1)2y -+=,L 的方向为逆时针方向4.证明下列曲线积分在整个xOy 面内与路径无关,并计算积分值(1)(2,3)(1,1)(x y)dx (x y)dy++-⎰(2)(3,4)2322(1,2)(6xy y )dx (63)dy x y xy -+-⎰(3)(2,1)423(1,0)(2xy y 3)dx (x 4xy )dy-++-⎰5.利用格林公式,计算下列曲线积分: (1)(2x y 4)dx (5y 3x 6)dyL-+++-⎰,其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;(2)222(cos 2sin )(x sinx 2ye )dyx x Lx y x xy x y e dx +-+-⎰,其中L 为正向星形线222333(a 0)x y a +=>(3)3222(2xy y cosx)(12ysinx 3x y )dyLdx -+-+⎰,其中L 为在抛物线22x y π=上由点(0,0)到(2π,1)的一段弧(4)22(xy)dx (x sin y)dyL--+⎰,其中L 是在圆周22y x x =-上由点(0,0)到点(1,1)的一段弧6.验证下列(x,y)dx (x,y)dy P Q +在整个xOy 平面内是某一函数u(x,y)的全微分,并求这样的一个u(x,y):(1)(2)(2)x y dx x y dy +++(2)22xydx x dy + (3)4sin sin3cos 3cos3cos 2x y xdx y xdy -(4)2232(38)(812)y x y xy dx x x y ye dy ++++ (5)22(2cos cos )(2sin sin )x y y x dx y x x y dy ++- 7.设有一变力在坐标轴上的投影为2,28X x y Y xy =+=-,这变力确定了一个力场。
高等数学下册第十一章习题答案详解
高等数学下册第十一章习题答案详解1.设L 为xOy 面内直线x a =上的一段,证明:(,)d 0LP x y x =⎰,其中(),P x y 在L 上连续.证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故 ()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(,0)a 到点(,0)b 的一段直线,证明:(,)d (,0)d bLaP x y x P x x =⎰⎰,其中(),P x y 在L 上连续.证:L :0x xa xb y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b . 故()(),d ,0d bLaP x y x P x x =⎰⎰3.计算下列对坐标的曲线积分: (1)22()d Lxy x -⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧;(2)d Lxy x ⎰,其中L 为圆周()222x a y a -+=(0)a >及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d Ly x x y +⎰,其中L 为圆周cos ,sin x R t y R t ==上对应t 从0到π2的一段弧; (4)22()d ()d Lx y x x y y x y+--+⎰,其中L 为圆周222x y a +=(按逆时针方向绕行); (5)2d d d x x z y y z +-⎰Γ,其中Γ为曲线,,x k y acos z asin θθθ===上对应θ从0到π的一段弧;(6) 322d 3d ()d x x zy y xy z ++-⎰Γ,其中Γ是从点3,2,1()到点0,0,0()的一段直线;(7)d d d x y y z -+⎰Γ,其中Γ为有向闭折线ABCA ,这里AB C 、、依次为点1,0,0()、010(,,)、(001),,;(8)22(2)d (2)d Lx xy x y xy y -+-⎰,其中L 是抛物线2y x =上从点(1,1)-到点(1,1)的一段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩L 2的方程为y =0(0≤x ≤2a ) 故()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t t Rt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π. 故()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t a a t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π220π3220π3320332d d d sin sin cos cos d d 131ππ3x xz y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()()322322103141d 3d d 27334292d 87d 1874874x x zy y x y z t t t t t tt tt Γ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()()()221224211235412d 2d 222d 224d 1415L x xy x y xy yx x x x x x x xxx x x x---+-⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰⎰4. 计算()d ()d Lx y x y x y ++-⎰,其中L 分别是:(1)抛物线2y x =上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线2221,1x t t y t =++=+上从点(1,1)到点(4,2)的一段弧. 解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰ (2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2 故()()()()()2121221d d 32332d 104d 5411L x y x y x yy y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰ (3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且 L 1:1x y y=⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰从而()()()()()12d d d d 1271422LL L x y x y x yx y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰5. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比.若质点由(,0)a 沿椭圆移动到0,Bb (),求力所做的功. 解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t=⎧⎨=⎩,t :0→π2()()()()π2022π20π222022d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t t k b a t tk b a t k b a =+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6. 计算对坐标的曲线积分:(1)d xyz z ⎰Γ,Γ为2221x y z ++=与z y =相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅶ、Ⅷ卦限;(2)222222(-)d ()d ()d y z x z x y x y z +-+-⎰Γ,Γ为2221x y z ++=在第Ⅰ卦限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos x ty tz t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π 故:2π2π2202π202π0222d cos sin sin cos d 2sin cos d 2sin 2d 21cos 4d 22πxyz z t t t t t t t t t t ttΓ=⋅⋅⋅==-==⎰⎰⎰⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x ty t z =⎧⎪=⎨⎪=⎩t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233yz x z x y x y zt t t t tt t tt t Γ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y z y z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰ 习题11-31. 应用格林公式计算下列积分:(1)(24)d (356)d Lx y x x y y -+++-⎰,其中L 为三顶点分别为()()0,0,3,0和(32),的三角形正向边界;(2)222(cos 2sin e )d (sin 2e )d x x Lx y x xy x y x x x y y +-+-⎰,其中L 为正向星形线222333x y a +=0a >();(3)3222(2cos )d (12sin 3)d Lxy y x x y x x y y -+-+⎰,其中L 为抛物线22πx y =上由点0,0()到点π,12⎛⎫⎪⎝⎭的一段弧; (4)22()d (sin )d Lxy x x y y --+⎰,其中L 是圆周22y x x =-上由点0,0()到()1,1的一段弧;(5)(e sin )d (e cos )d x x Ly my x y m y -+-⎰,其中m 为常数,L 为由点(),0a 到0,0()经过圆22x y ax +=上半部分的路线(a 为正数).图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Qx∂=∂,1P y ∂=-∂,由格林公式得 ()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y+-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x , 则2cos 2sin 2e x P x x x x y y∂=+-∂,2cos 2sin 2e x Qx x x x y x∂=+-∂.从而P Qy x∂∂=∂∂,由格林公式得.()()222d dcos2sin e sin2ed d++--∂∂⎛⎫-= ⎪∂∂⎝⎭=⎰⎰⎰x xLDx yx y x xy x y x x yQ Px yx y(3)如图11-5所示,记OA,AB,BO围成的区域为D.(其中BO=-L)图11-5P=2xy3-y2cos x,Q=1-2y sin x+3x2y2262cosPxy y xy∂=-∂,262cosQxy y xx∂=-∂由格林公式有:d d d d0L OA AB DQ PP x Q y x yx y-++∂∂⎛⎫-+==⎪∂∂⎝⎭⎰⎰⎰故π2122001222d d d dd d d dππd d12sin3243d12π4π4++=+=+++⎛⎫=+-+⋅⋅⎪⎝⎭⎛⎫=-+⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰L OA ABOA ABP x Q y P x Q yP x Q y P x Q yO x yy yyy y(4)L、AB、BO及D如图11-6所示.图11-6由格林公式有d d d d++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BO DQ PP x Q y x yx y而P=x2-y,Q=-(x+sin2y).1∂=-∂Py ,1∂=-∂Q x,即,0∂∂-=∂∂Q P x y 于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()22222211220011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264LLBA OB P x Q y x yx y x y x y x yx y x y x y x y y x x y x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7P =e x sin y -my , Q =e x cos y -m , e cos x P y m y ∂=-∂,e cos x Q y x ∂=∂ 由格林公式得:22d d d d d d d d 1π22π8L OA D DDQ P P x Q y x y x y m x ym x ya m m a +∂∂⎛⎫-+= ⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰ 于是:()()[]220202πd d d d 8πd 0e sin 00e cos08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰L OA a x x a m a P x Q y P x Q y m a xm m m a xm a2. 设a 为正常数,利用曲线积分,求下列曲线所围成的图形的面积:(1) 星形线 33cos ,sin ;x a t y a t == (2) 双纽线 22cos2;r a θ= (3) 圆 22x y ax ++=解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得 cos cos 2x a θ=sin cos 2y a θ=从而x d y -y d x =a 2cos2θd θ. 于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y x a a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y xa a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰ 3. 证明下列曲线积分与路径无关,并计算积分值: (1)(1,1)(0,0)()(d d )x y x y --⎰;(2)(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰;(3)(1,2)2(1,1)d d y x x yx +⎰沿在右半平面的路径; (4)(6,8)(1,0)⎰.证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q y x∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d x x y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123Pxy y y∂=-∂,2123Qxy y x∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x y xyy x y xy y x y y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰(3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x ∂=∂,在右半平面内恒有P Qy x∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰(4) P =,Q ,且P Qy x∂∂==∂∂分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,811,0801529x y =+⎡=+⎣=⎰⎰⎰4.验证下列()(),d ,d P x y x Q x y y +在整个xOy 平面内是某一函数(),u x y 的全微分,并求这样的一个函数(),u x y :(1)()()2d 2d x y x x y y +++;(2)22d d xy x x y +;(3)223238d 812e d yx y xy x x x y y y ++++()(); (4)222cos cos d 2sin sin d x y y x x y x x y y ++-()(). 解:证:(1)P =x +2y ,Q =2x +y .2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x y x y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Qx y x∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()(),20,02022d d ,0d d x y xy u xy x x y x y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Qx xy y x,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y 是某个定义在整个xOy 面内函数u (x ,y )的全微分, ()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyyy y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos P x y y x y ∂=-+∂,2cos 2sin Qy x x y x∂=-∂, 有P Qy x∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分,()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰5.证明:22xdx ydyx y ++在整个xOy 平面内除y 轴的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数。
高等数学2第十一章答案
习题11-1 对弧长的曲线积分1.计算下列对弧长的曲线积分: (1)22()n Lx y ds +⎰Ñ,其中L 为圆周cos x a t =,sin y a t = (02)t π≤≤;(2)Lxds ⎰Ñ,其中L 为由直线y x =及抛物线2y x=所围成的区域的整个边界;(3)22x y Leds +⎰Ñ,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围成的扇形的整个边界;(4)2x yzds Γ⎰,其中Γ为折线ABCD ,这里A 、B 、C 、D 依次为点(0,0,0)、(0,0,2)、(1,0,2)、(1,3,2);(5)2Ly ds ⎰,其中L 为摆线的一拱(sin )x a t t =-,(1cos )y a t =-(02)t π≤≤.2.有一段铁丝成半圆形22y a x -其上任一点处的线密度的大小等于该点的纵坐标,求其质量。
解 曲线L 的参数方程为()cos ,sin 0x a y a ϕϕϕπ==≤≤ ()()22sin cos ds a a d ad ϕϕϕϕ=-+=依题意(),x y y ρ=,所求质量220sin 2LM yds a d a πϕϕ===⎰⎰习题11-2 对坐标的曲线积分1.计算下列对坐标的曲线积分: (1)22()Lx y dx -⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧;(2)22()()Lx y dx x y dy x y+--+⎰Ñ,其中L 为圆周222x y a +=(按逆时针方向绕行);(3)(1)xdx ydy x y dz Γ+++-⎰,其中Γ是从点(1,1,1)到点(2,3,4)的一段直线;(4)dx dy ydz Γ-+⎰Ñ,其中Γ为有向闭折线ABCA ,这里A 、B 、C 依次为点(1,0,0)、(0,1,0)、(0,0,1);2.计算()()Lx y dx y x dy ++-⎰,其中L 是:(1)抛物线2y x =上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到(4,2)的折线;(4)曲线221x t t =++,21y t =+上从点(1,1)到点(4,2)的一段弧。
高数下册第11章复习题与答案
高数下册第11章复习题与答案第十一章-无穷级数练习题(一). 基本概念1.设∑∞=1n n U 为正项级数,下列四个命题(1)若,0lim =∞→n n U 则∑∞=1n n U 收敛;(2)若∑∞=1n n U 收敛,则∑∞=+1100n n U 收敛;(3)若,1lim 1>+∞→nn n U U 则∑∞=1n n U 发散;(4)若∑∞=1n n U 收敛,则1lim 1<+∞→nn n U U .中, 正确的是( ) A .(1)与(2); B .(2)与(3);C .(3)与(4);D .(4)与(1).2.下列级数中,收敛的是(). A .∑∞=11n n ; B .∑∞=+112n n n ; C . +++3001.0001.0001.0; D . + +??? ??+??? ??+43243434343. 3.在下列级数中,发散的是(). A .∑∞=-11)1(n n n ;B .∑∞=+11n n n; C .∑∞=131n nn;D . +-+-44332243434343.4.条件()满足时,任意项级数1nn u∞=∑一定收敛.A. 级数1||n n u ∞=∑收敛;B. 极限lim 0n n u →∞=;C .极限1lim1n n nu r u +→∞=<;D. 部分和数列1n n k k S u ==∑有界.5.下列级数中条件收敛的是().A . ∑∞=11cos n n ; B. ∑∞=11n n ;C. ∑∞=-11)1(n n n ; D. ∑∞=-11)1(n n n n .6.下列级数中绝对收敛的是().A . ∑∞=-11)1(n n n ; B. ∑∞=-121)1(n n n ; C. ∑∞=+-11)1(n n n n ; D. ∑∞=11sin n n .(二). 求等比级数的和或和函数。
提示:注意首项 7.幂级数 1021+∞=∑n n n x 在)2,2(-上的和函数=)(x s . 8.幂级数∑∞=-04)1(n n nnx 在)4,4(-上的和函数=)(x s .9.无穷级数1n n ∞=∑的和S = .(三). 判定正项级数的敛散性。
高等数学(本科)第十一章课后习题解答
习题11.11.回答下列问题.(1)何谓级数∑∞=1n n u 的前n 项部分和?何谓级数∑∞=1n n u 的收敛和发散?何谓收敛级数的和?【答】(1)∑∞=1n n u 的前n 项部分和是指(),...2,11==∑=n u S nk k n ;(2)∑∞=1n n u 收敛是指s S n n =∞→lim 存在,这时并称s 为∑∞=1n n u 的和;∑∞=1n nu发散是指n n S ∞→lim 不存在.(2)当公比q 取何值时,等比级数∑∞=-11n n aq 收敛?当公比q 取何值时,等比级数∑∞=-11n n aq发散?写出收敛时的和数.【答】(1)当1<q 时,∑∞=-11n n aq 收敛,且其和数为qas -=1; (2)当1≥q 时,∑∞=-11n n aq 发散.(3) 级数∑∞=1n n u 收敛的必要条件是什么?它是否也是充分条件.请举例说明.【答】(1)∑∞=1n n u 收敛的必要条件是0lim =∞→n n u ;(2)0lim =∞→n n u 不是∑∞=1n n u 收敛的充分条件.比如,01lim =∞→n n ,但∑∞=11n n发散.2.若级数()()()......2211+++++++n n b a b a b a 收敛,去掉括号之后的级数级数......2211+++++++n n b a b a b a 是否还收敛?它说明了什么? 【答】未必,比如()()() (1111111)+-++-+=-∑∞=-n n .3.把下列级数写成级数”“∑的形式.(1) ...5ln 5ln 5ln 32+++ ;【解】∑∞==+++1325ln ...5ln 5ln 5ln n n ;(2) (8)141211-+-+- ; 【解】()11211...8141211-∞=∑-=-+-+-n n n ;(3) ...001.0001.0001.03+++ ;【解】()nn 113001.0...001.0001.0001.0∑∞==+++;(4)...751531311+⨯+⨯+⨯. 【解】()()∑∞=+-=+⨯+⨯+⨯112121...751531311n n n . 4.根据级数收敛与发散的定义,判别下列级数的敛、散性.(1) (8)1614121++++;【解】nn 1.21...816141211∑∞==++++发散.(2)∑∞=⎪⎭⎫⎝⎛-2211ln n n; 【解】记()()n n n n n n n n u n 1ln 1ln 11ln11ln 22++-=+-=⎪⎭⎫ ⎝⎛-=,...)2(=n 则 1432...+++++=n n u u u u S⎪⎭⎫ ⎝⎛++-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=n n n n 1ln 1ln ...45ln 43ln 34ln 32ln 23ln 21lnn n n n n n 1ln1ln 1ln ...43ln 34ln 32ln 23ln 21ln ++⎪⎭⎫ ⎝⎛-+-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++= ,...)2,1(11ln 21ln =⎪⎭⎫⎝⎛++=n n因为 21ln lim =∞→n n S ,所以∑∞=⎪⎭⎫⎝⎛-2211ln n n 收敛. (3) ∑∞=⎪⎪⎭⎫ ⎝⎛+14122ln n nn n ; 【解】因∑∞=122ln n n n ∑∞=⎪⎭⎫⎝⎛=122ln n n及∑∞=141n n nn ⎪⎭⎫ ⎝⎛=∑∞=141均收敛,故∑∞=⎪⎪⎭⎫ ⎝⎛+14122ln n n n n 收敛. (4) (1)31...2191131+++++++n n ;【解】因为 (3)1...9131++++n 收敛,但 (1)...211++++n 发散,故原级数发散.(5) (4)33221+++ ;【解】 级数的通项为 ,...)2,1(1=+=n n nu n ,因为01lim ≠=∞→n n u ,故...433221+++发散.(6) ...cos ...3cos 2cos cos +++++nππππ ;【解】级数的通项为 ,...)2,1(cos ==n nu n π,因为010cos lim ≠==∞→n n u ,故...cos ...3cos 2cos cos +++++nππππ发散.(7) nn n n ∑∞=⎪⎭⎫⎝⎛-12ln ;【解】级数的通项为 ,...)2,1(2ln =⎪⎭⎫⎝⎛-=n n n u nn ,因为02ln 21ln lim lim 222≠-==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=---∞→∞→en u n n n n ,故nn n n ∑∞=⎪⎭⎫⎝⎛-12ln 发散.(8) (9)898983322+-+-.【解】...9898983322+-+-nn ∑∞=⎪⎭⎫⎝⎛-=198是等比级数,且公比98-的绝对值小于1,故...9898983322+-+-收敛.5.已知级数∑∞=1n n u 的部分和3n S n =,当2≥n 时,求n u .【解】(),...)2(13312331=+-=--=-=-n n n n n S S u n n n .6.若级数∑∞=1n n u 收敛,记∑==ni i n u S 1,则(B )A. 0lim =∞→n n S ; B. n n S ∞→lim 存在;C. n n S ∞→lim 可能不存在; D. {}n S 是单调数列.7.若级数∑∞=1n n u 收敛,则下列级数中收敛的是(A )A. ∑∞=110n n u; B.()∑∞=+110n nu;C. ∑∞=110n nu ; D.()∑∞=-110n nu.8.设501=∑∞=n n u ,1001=∑∞=n n v ,则()∑∞=+132n n n v u (D )A. 发散;B. 收敛,和为100;C. 收敛,和为50;D. 收敛,和为400. . 9.下列条件中,使级数()∑∞=+1n n n v u 一定发散的是(A )A.∑∞=1n nu发散且∑∞=1n n v 收敛; B.∑∞=1n nu发散;C.∑∞=1n nv发散; D.∑∞=1n nu和∑∞=1n n v 都发散.10.设级数()∑∞=-11n n u 收敛,求n n u ∞→lim .【解】因为()∑∞=-11n n u 收敛,故根据级数收敛的必要条件知()01lim =-∞→n n u ,所以 =∞→n n u lim ()[]=--∞→n n u 11lim ()1011l i m1=-=--∞→n n u .11.将下列循环小数表示为分数 (1) ∙3.0 ;【解】...003.003.03.03.0+++=∙是公比为1.0=q 的等比级数,故311.013.03.0=-=∙. (2) ∙∙370.0.【解】...0000073.000073.0073.0370.0+++=∙∙是公比为01.0=q 的等比级数,故.9907301.01073.0370.0=-=∙∙12.设级数∑∞=1n n u 满足条件:(1)0lim =∞→n n u ;(2)()∑∞=-+1212n n n u u 收敛,证明级数∑∞=1n n u 收敛.【解】记∑∞=1n n u 的前n 次部分和数列为{}n S .又记()∑∞=-+1212n n n u u 的前n 次部分和数列为{}n σ.则有(),...2,12==n S n n σ.因为已知()∑∞=-+1212n n n u u ,故根据级数收敛的定义知 =∞→n n σl i ms S n n =∞→2lim ①存在;又已知0lim =∞→n n u ,故0lim 12=+∞→n n u ,从而=+∞→12lim n n S ()s s S u n n n =+=++∞→0lim 212②也存在.综合①、②式知s S n n =∞→lim 存在,所以级数∑∞=1n n u 收敛.13.小球从1米高处自由落下,每次弹起的高度均为前一次高度的一半,问小球会在自由下落约多少秒后停止运动? 【解】小球为自由落体运动,即212s gt =。
最新华东理工大学高等数学(下册)第11章作业答案
第 11 章(之1)(总第59次)教材内容:§11.1多元函数 1.解下列各题:**(1). 函数f x y x y (,)ln()=+-221连续区域是 ⎽⎽⎽⎽⎽⎽⎽ . 答:x y 221+>**(2). 函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000, 则( )(A) 处处连续 (B) 处处有极限,但不连续(C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 答:(A )**2. 画出下列二元函数的定义域: (1)=u y x -;解:定义域为:{}x y y x ≤),(,见图示阴影部分:(2))1ln(),(xy y x f +=;解:{}1),(->xy y x ,第二象限双曲线1-=xy 的上方,第四象限双曲线1-=xy 的下方(不包括边界,双曲线1-=xy 用虚线表示).(3)yx yx z +-=. 解:()()⎩⎨⎧-≠≥⇔⎩⎨⎧≠+≥+-⇔≥+-y x y x y x y x y x y x y x 000.***3. 求出满足22,y x x y y x f -=⎪⎭⎫ ⎝⎛+的函数()y x f ,. 解:令⎪⎩⎪⎨⎧=+=x yt y x s , ∴⎪⎩⎪⎨⎧+=+=t st y t s x 11∴()()()t t s t t s s t s f +-=+-=111,22222, 即 ()()y y x y x f +-=11,2. ***4. 求极限:()()220,0,11limyx xy y x +-+→.解:()()()()()22222222112111110yx xy y x yx xy xyyx xy ++++≤+++=+-+≤()011222→+++=xy y x (()()0,0,→y x ) ∴()()011lim220,0,=+-+→yx xy y x .**5. 说明极限()()22220,0, lim y x y x y x +-→不存在.解:我们证明()y x ,沿不同的路径趋于()0,0时,极限不同.首先,0=x 时,极限为()()1lim 2222220,0,0-=-=+-→=y y y x y x y x x ,其次,0=y 时,极限为()()1lim 2222220,0,0==+-→=x x y x y x y x y ,故极限()()22220,0,y y lim +-→x x y x 不存在.**6. 设112sin ),(-+=xy x y y x f ,试问极限),(lim )0,0(),(y x f y x →是否存在?为什么?解:不存在,因为不符合极限存在的前提,在)0,0(点的任一去心邻域内函数112sin ),(-+=xy x y y x f 并不总有定义的,x 轴与y 轴上的点处函数),(y x f 就没有定义.***7. 试讨论函数z x yxy=+-arctan1的连续性. 解:由于arctan x yxy+-1是初等函数,所以除xy =1以外的点都连续,但在xy =1上的点处不连续.**8. 试求函数f x y xyx y(,)sin sin =+22ππ的间断点.解:显然当(,)(,),x y m n m n Z =∈时,f x y (,)没定义,故不连续. 又f x y xyx y(,)sin sin =+22ππ是初等函数. 所以除点(,)m n (其中m n Z ,∈)以外处处连续.第 11 章(之2) (总第60次)教材内容:§11.2 偏导数 [§11.2.1]**1.解下列各题: (1)函数32),(y x y x f +=在)0,0(点处 ( )(A ))0,0(x f '和)0,0(y f '都存在; (B ))0,0(x f '和)0,0(y f '都不存在; (C ))0,0(x f '存在,但)0,0(y f '不存在; (D ))0,0(x f '不存在,但)0,0(y f '存在. 答:(D ).(2) 设z x y xy =+-()arcsin2,那么∂∂z y (!,)2= ( )(A) 0 ; (B) 1; (C)π2; (D)π4. 答:(D).(3)设()xy y x f =,,则=)0,0('x f ______,=)0,0('y f __________.解:由于0)0,(=x f ,0)0,0('=∴x f ,同理 0)0,0('=y f .**2. 设z x y x y e xy =-+++2322ln , 求 z z x y ,. 解:z x x y ye x xy=+++1322, z y x yxe y xy =-+++2322.**3. 求函数xyz arctan =对各自变量的偏导数. 解:2222,y x xz y x y z yx +=+-=.**4. 设f x y x x y x y x y (,)ln()=++≠+=⎧⎨⎩222222200,求f f x y (,),(,)0000.解:f x x x x x (,)limln 000022==→, f yy y (,)lim 000000=-=→.***5. 求曲线⎩⎨⎧=+-=122x y xy x z 在()1,1,1点处切线与y 轴的夹角.解:由于曲线在平面1=x 内,故由 ()()()121,11,1=+-=y x z y ,得切线与y 轴的夹角为 41arctan π=.[也可求出切向量为{}1,1,0]∴夹角={}{}422arccos12110,1,01,1,0arccos 22π==+.***6. 设函数ϕ(,)x y 在点)0,0(连续,已知函数f x y x y x y (,)(,)=-ϕ在点)0,0(偏导数)0,0(x f '存在,(1)证明ϕ(,)000=; (2)证明)0,0(y f '也一定存在.解:(1)lim(,)(,)lim (,)∆∆∆∆∆∆∆x x f x f x x x x→→-=000000ϕ, 因为)0,0(x f '存在,所以 lim (,)lim(,)∆∆∆∆∆∆∆∆x x x x x x x x→+→-⋅=-⋅0000ϕϕ 即 ϕϕ(,)(,)0000=-, 故 ϕ(,)000=.(2)由于ϕ(,)x y 在点)0,0(连续,且ϕ(,)000=,所以0→∆y 时,),0(y ∆ϕ是无穷小量,而yy ∆∆是有界量,所以0),0(lim )0,0(),0(lim00=∆∆∆=∆-∆→∆→∆yy y y f y f x y ϕ,即0)0,0(='y f .第 11 章(之3) (总第61次)教材内容:§11.2 偏导数 [§11.2.2 ~ 11.2.4]**1. 求函数()x y z x z y x f sh ch ,,-=的全微分,并求出其在点()2ln ,1,0=P 处的梯度向量.解:()()()x y d z x d z y x df sh ch ,,-=()zdzx xdy dx x y z xdxy xdy zdz x zdx sh sh ch ch ch sh sh ch +--=--+=∴()()dx z y x df 41,,2ln ,1,0=, ()()⎭⎬⎫⎩⎨⎧=∇0,0,41,,2ln ,1,0z y x f . **2.求函数xyyx z -+=1arctan的全微分: 解:xyyx d dz -+=1arctan)arctan (arctan y x d +=2211)(arctan )(arctan y dy x dx y d x d +++=+=**3. 设z xy xy =-sec ()ln()21,求d z .解:222)]1[ln()]1d[ln()(sec )](d[sec )]1[ln(d ----=xy xy xy xy xy z)]d d (1)(sec )d d )(tan()(sec 2)1[ln()]1[ln(1222y x x y xy xy y x x y xy xy xy xy +--+--= )1(ln )(cos )1()d d ](1)1)(tan()1ln(2[22--+---=xy xy xy y x x y xy xy xy .**4. 利用df f ≈∆,可推出近似公式:()()()y x df y x f y y x x f ,,,+≈∆+∆+, 并利用上式计算()()2203.498.2+的近似值.解:由于()()()y x df y x f y y x x f ,,,+≈∆+∆+, 设()22,y x y x f +=,03.0,02.0,4,3=∆-=∆==y x y x ,于是 ()2222,yx y y x x yx ydy xdx y x df +∆+∆=++=,()()22,,yx y y x x y x f y y x x f +∆+∆+≈∆+∆+,∴()()()()012.54303.0402.034303.498.2222222=++-++≈+.***5.已知圆扇形的中心角为60=α,半径为cm r 20=,如果α增加了 1,r 减少了1cm ,试用全微分计算面积改变量的近似值. 解:180212παrS =, ))(2(3602ααπd r dr dS +=,∴ )(4533.17)3601)20(360)1(60202(22cm dS S -=⨯+-⨯⨯⨯=≈∆π.***6. 计算函数()()z y x z y x f 32ln ,,++=在点()0,2,1=P 处沿给定方向k j i l-+=2 的方向导数Plf∂∂.解:zy x f zy x f zy x f z y x 323,322,321++=++=++=,⎭⎬⎫⎩⎨⎧-=61,61,62l e ,∴ 65161,61,6253,52,51=⎭⎬⎫⎩⎨⎧-⋅⎭⎬⎫⎩⎨⎧=⋅∇=∂∂l Pe f lf.***7. 函数z xy=++arctan 11在(0,0)点处沿哪个方向的方向导数最大,并求此方向导数的值. 解:∂∂z xx y y(,)(,)0020011111112=+++⎛⎝ ⎫⎭⎪⋅+=, ∂∂z yx y x y (,)(,)()00220011111112=+++⎛⎝ ⎫⎭⎪⋅-++⎡⎣⎢⎤⎦⎥=-,{}{}∂∂ααααϕz l =+-=-⋅=1212121122cos ()sin ,cos ,sin cos , 其中ϕ为{} l =cos ,sin αα与 g =-⎧⎨⎩⎫⎬⎭1212,的夹角,所以ϕ=0时,即l 与g 同向时,方向导数取最大值∂∂z l =22.**8. 对函数 xyze z y xf =),,( 求出 ),,(z y x f ∇ 以及 )3,2,1(f ∇.解: {}xyz xyz xyzxye xze yze f ,,=∇,{}2,3,6)3,2,1(6e f =∇.**9. 求函数z y x z y x f 1)(),,(+=在点)21,21,21(-+=e e P 处的梯度. 解:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-++=∇--)ln()(,)(1,)(1211111y x z y x y x z y x z f z z z , {}24,2,2)21,21,21(e e e e ef -=-+∇.***10. 讨论函数⎪⎩⎪⎨⎧=+≠+++=0,00,1sin ),(22222222y x y x y x y x y x f 在点(0,0)处的连续性,可导性和可微性.解:因为 lim (,)lim sin(,)x y x y f x y x y x y f →→→→=++==022221000,所以f x y (,)在点(0,0)连续.因为 lim(,)(,)lim sin ()∆∆∆∆∆∆∆x x f x f x x x x →→+-=00200001, 极限不存在,f x y (,)在(0,0)处不可导,从而在(0,0)处不可微.第 11 章(之4)(总第62次)教材内容:§11.3 复合函数微分法;§11.4 隐函数微分法**1.解下列各题:(1) 若函数),(v u f 可微,且有x x x x x f ++=3422),(及122),(22 +-='x x x x f u ,则),(2 x x f v '= ( )(A) 1222++x x(B) xx x 21322++ (C) 1222+-x x(D) 1322++x x答:(A)(2)设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy=_________. 答: 2112xyz xy-- .(3)方程yzx z ∂∂=∂∂3,在变量代换y x u 3+=,y x v +=3下,可得新方程为_______. 答:0=∂∂uz.**2. 设u x y z x r y r z r =++===222,cos sin ,sin sin ,cos θϕθϕϕ求∂∂∂∂θ∂∂ϕu r u u ,,.解:()∂∂θϕθϕϕurx y z r =++=2222cos sin sin sin cos ,0)sin cos (2]sin )sin ([2=+-=ϕθθϕ∂θ∂r y r x u,0sin 2)cos sin (2)cos cos (2=-+=ϕϕθϕθ∂ϕ∂r z r y r x u.**3. 一直圆锥的底半径以3s cm /的速率增加,高h 以5s cm /的速率增加,试求r=15cm ,h=25cm 时其体积的增加速率. 解:h r V 231π=, s cm h r dtdVdtdhr dt dr rh dt dh h V dt dr r V dt dV /11252515313232πππ===+=⋅∂∂+⋅∂∂=*4. 设,3y e z x -=而4,sin t y t x ==,求dtdz. 解:32334cos y t t e dtdy z dt dx z dt dz xy x -=+=.**5. 若)(22y x f xy z -=,证明:z y z x y z y x x z xy 2222+=∂∂+∂∂. 解:22222,2ff xy xf z f f y x yf z y x '+='-=, 则 z y z x fy x xy yz x z xy y x 222222)(+=+=+. **6. 设 )cos ,,(2x xy ye xe f u x y =,求du yux u ,,∂∂∂∂. 解:3221)2sin cos (f x xy x y f ye f e xux y -++=∂∂ , 3221cos xf x f e f xe yux y ++=∂∂, [][]dy xf x f e f xe dx f x xy x y f ye f e du x y x y 32213221cos )2sin cos (+++-++=.**7. 求由方程y z z x ln =所确定的函数),(y x z z =的偏导数yz x z ∂∂∂∂,. 解:zx zyz y zx zFz Fx z x +=---=-=21,yz xy z z z x y Fz Fy z y +=---=-=2211.**8. 设,0),,(=+xz z y xy F 试求dz yzx z ,,∂∂∂∂. 解:,0),,(=+xz z y xy F 两边对x 求导,得 0)(321=+++x x xz z F F z yF , 解得 3231xF F zF yF z x ++-=,两边对y 求导,得 0)1(321=+++y y xz F z F xF . 解得3221xF F F xF z y ++-= ,所以dy xF F F xF dx xF F zF yF dz 32213231++-++-=.***9. 函数z z x y =(,)由方程F x x y z z xy (,,)+++=1所确定,其中F 具有连续一阶偏导数,F F 230+≠,求∂∂z x 和∂∂z y. 解:F x x y z F z y x x y F 1230d (d d d )(d d d )++++++=,d ()d ()d z F F yF x F xF yF F =-+++++1232323,∂∂z x F F yF F F =-+++12323, ∂∂z y F xF F F =-++2323. ***10. 求由方程z xyz aa 3330-=≠()所确定的隐函数z z x y =(,)在坐标原点处沿由向量{}a =--12,所确定的方向的方向导数. 解:当x y ==00,时,z a 00=≠.0,0)0,0(2)0.0()0,0(2)0.0(=-==-=xyz xz yz xyz yz xz ∂∂∂∂,0=∂∂∴az.***11. 设)0(,1,022≠+=+=-y x xv yu yv xu 求yv y u x v x u ∂∂∂∂∂∂∂∂,,,. 解: ⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+=∂∂-∂∂+00x v x x u y v xv y x u x u ⎪⎪⎩⎪⎪⎨⎧+--=∂∂++-=∂∂⇒2222y x yu xv x v y x yv xu x u类似地 ⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+=∂∂--∂∂00y v x y u y u y v y v y ux ⎪⎪⎩⎪⎪⎨⎧++-=∂∂+--=∂∂⇒2222y x yv xu yv y x xv yu y u第 11 章 (之5)(总第63次)教材内容:§11.5 多元函数微分法在几何上的应用**1. 曲面x y z xyz x z 2222426-+--+=在点)2,1,0(=A 处的切平面方程为 ( ) (A )31223110()()x y z -+--+= (B )3234x y z +-= (C )032213=--+-+z y x (D )x y z 31223=-=-- 答:(A).**2.设函数F x y z (,,)可微,曲面F x y z (,,)=0过点)0,1,2(-=M ,且F F F x y z (,,),(,,),(,,)210521022103-=-=--=-.过点M 作曲面的一个法向量,已知n 与x 轴正向的夹角为钝角,则n 与z 轴正向的夹角γ=______ . 答:π3.***3. 设曲线x t y t z t =+=-=+2131223,,在t =-1对应点处的法平面为S ,则点)1,4,2(-=P 到S 的距离d =______ .答:2.**4. 求曲线ct z t b y t a x L ===,sin ,cos :在点)2,0,(0c a M π=处的切线和法平面方程. 解:,0sin 00=-===t t t a dt dx,cos 00b t b dt dy t t =-=== cdtdzt ==0.∴切线方程为:⎪⎩⎪⎨⎧-==⇔-=-=-c c z by ax c c z b y a x ππ2200,法平面方程为:0)2(=-+c z c by π.***5. 求曲线6,11:==++xyz zx yz xy L 在点)3,2,1(0=M 处的切线和法平面方程.解:设 11),,(-++=zx yz xy z y x F ,6),,(-=xyz z y x G ,)()()(),(),(2x y z z x yz z y xz xz yz z x zy y x G F +-=+-+=++=∂∂,)()()(),(),(2z y x y x xz z x xy xy zx x y z x z y G F -=+-+=++=∂∂,)()()(),(),(2x z y z y xy y x zy zyxy z y y x x z G F -=+-+=++=∂∂.∴8),(),(,1),(),(,9),(),(0=∂∂-=∂∂-=∂∂M M M x z G F z y G F y x G F ,∴切线方程为938211--=-=--z y x , 法平面方程为 ()()()()()0948211=--+-+--z y x ,即 01298=-+-z y x .***6. 求曲面4416222x y z ++=在点1,22,1(-=P )处的法线在yOz 平面上投影方程.解:曲面在点1,22,1(-=P )处的法线方向向量{}{}2,2,248,24,8-=-=→n ,法线方程为:x y z -=-=+-1222212.法线在yOz 平面上投影方程为212220-+=-=z y x .***7.求曲线x t y t z t ===3223,,上的点,使曲线在该点处的切线平行于平面x y z +-=21.解:设所求的点对应于t t =0,则对应的切线方向向量为: {}3,4,3020t t s =→.因为→s 垂直于平面法向量{}1,2,1-=→n ,所以0383020=-+=⋅→→t t n s , 解得:t 013=和t 03=-.所求点为:127291,,⎛⎝ ⎫⎭⎪和(,,)--27189.**8.求曲面xyz 6=上平行于平面.06236=+--z y x 的切平面方程. 解:26,6xyy z xyx z -=∂∂-=∂∂, ∴由条件,得:⎪⎩⎪⎨⎧-=-==⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫-=--=-=-32121366622z y x k k x y k yx∴切平面方程为:,0)3(2)2(3)1(6=+-+--z y x 即 018236=---z y x .***9.求函数22y x ez +=在点),(000y x M =沿过该点的等值线的外法线方向的方向导数.解:等值线方程为x y x y 220202+=+, 在),(000y x M =处的法线斜率为 00x y k =,即法线方向向量为 },1{00x y n =或},{00y x ,方向余弦为:cos cos αβ=+=+x x yy x y0020200202,∂∂zn e x x x y e y y x y x y x y =⋅⋅++⋅⋅+++0202020222000202000202=⋅++202020202e x y x y .***10. 求函数z y x =+sin 在⎪⎭⎫⎝⎛=1,2πP 点沿 a 方向的方向导数,其中 a 为曲线x t y t ==22sin ,cos π在t =π6处的切向量(指向t 增大的方向). 解:tan d d sin cos αππππ==-=-==y xt tt t 66222,1sin 11cos 22+-=+=ππαπα,,221sin 210sin 2cos 1,21,21,21,2=+==+=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛ππππ∂∂∂∂xy yz xy x xz ,,所以 ∂∂πππz a =⨯++⨯-+011122122()()1222+-=ππ.***11. 设f y z g z (,),()都是可微函数,求曲线x f y z y g z ==⎧⎨⎩(,)()在对应于z z =0点处的切线方程和法平面方程.解:z z =0对应点()f g z z g z z [(),],(),0000, 对应的切线方向向量:{}S f g z z g z f g z z g z y z ='+'[(),]()[(),],(),0000001.切线方程:x f g z z f g z z g z f g z z y g z g z z z y z -'+=-'=-[(),][(),]()[(),]()()0000000000,法平面方程: {}{}f g z z g z f g z z x f g z z y z [(),]()[(),][(),]0000000'+-+'-+-=g z y g z z z ()[()]()0000.****12. 在函数yx u 11+=的等值线中哪些曲线与椭圆16822=+y x 相切?解:对等值线 y x u 110+= 两边微分得 022=--ydy x dx , 即 22x y dx dy -=, 同样对16822=+y x 两边微分,有yx dx dy 8-=, 令y xxy 822-=-,得 y x 2=,代入16822=+y x ,得 32,34±=±=y x ,∴ 433110±=+=y x u .***13. 试证明曲面3a xyz =上任一点处的切平面在三个坐标轴上截距之积为定值.解:由3a xyz =, 得 xya z 3=,∴在点),,(000z y x 处法向量为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-1,,02030203x y a y x a, ∴切平面为:0)()(0020300203=-+-+-z z y y y x a x x y x a ,又 ∵3000a z y x =, ∴ 切平面方程化为:1333000=++z zy y x x , ∴ 截距之积为: 30002727a z y x =(定值).***14. 证明曲面0,=⎪⎭⎫⎝⎛----c z b y c z a x F 的所有切平面都通过一个定点,这里F u v (,)具有一阶连续偏导数.解:曲面上点(,,)x y z 000处的切平面法向量:[]F z c F z c z c x a F y b F =-----+-⎧⎨⎩⎫⎬⎭10200201021,,()()()[]{}=-----+-10201020102()(),(),()()z c z c F z c F x a F y b F . 切平面方程为: ()()()()z c F x x z c F y y 010020--+--[]0)()()(02010=--+--z z F b y F a x .易知x a y b z c ===,,满足上述方程,即曲面的所有切平面都通过定点(,,)a b c .第 11 章 (之6)(总第64次)教学内容:§11.6泰勒展开1.填空:*(1)设u xy yx=+,则∂∂22u x =________ .答:32xy. *(2)设u x xy =ln ,则∂∂∂2ux y= _________.答:y1. *(3)设u x y y x =+22sin cos ,则∂∂∂2ux y= _________ .答: x y y x sin 2cos 2-.*(4)设u x yxy=+-arctan 1,则∂∂∂2u x y =_______ .答:0 .**(5)设z e y e y xx=+-sin cos ,则∂∂∂∂2222z x zy+= _________.答:0.**2.设z f x u =(,)具有连续的二阶偏导数,而u xy =,求∂∂22zx.解:z f yf x x u =+, z f yf y f xx xx xu uu =++22.**3.设z x xy =ln(),求∂∂∂32zx y.解一: z x yy =, z yyx =1, z yx 20=.解二: z xy x =+ln()1, z xx 21=, z yx 20=.**4.设)2,21(),()(4322xy z y x xf xy f y z 求+=. 解:)(3)()('43434324y x f y x y x f xy f y z x ++=,,4)("3)('124)('2)(")('4334343433333432423yx y x f y x y x f y x x y y x f yx xy f y xy f y z xy ⋅++⋅+⋅+=∴)2("24)2('12)2('4)2("32)2('32)2,21(f f f f f z xy ++++= )2("56)2('48f f +=.**5.函数y y x =()由方程x xy y 2221+-=所确定,求22d d xy. 解:xy yx y x y x x y -+=-+-=2222d d ,222)())(1())(1(d d x y y x y x y y x y -+-'--'+= 322)()2(2x y y xy x --+-=3)(2y x -=. ***6.求方程 zy ez x +=+ 所确定的函数),(y x z z =z=z(x,y)的所有的二阶偏导数.解:xz e x z z y ∂∂⋅=∂∂++1, ∴ 11-=∂∂+zy e x z .3222)1()1(--=-∂∂⋅-=∂∂++++z y zy zy z y e e e x ze x z, 因为 )1(y z e y z zy ∂∂+=∂∂+, ∴zy z y z y e e e y z +++-+-=-=∂∂1111. 则 3222)1()1()1(z y z y z y z y e e e yze y z ++++-=-+∂∂=∂∂, 322)1()1()1(z y z y z y z y e e e yze yx z ++++--=-+∂∂-=∂∂∂, 322)1()1(-=-∂∂=∂∂∂++++z y z y z y zy e e e x ze x y z .***7.对于由方程0),,(=z y x F 确定的隐函数),(y x z =,试求 22xz ∂∂.解:由公式zx F F x z-=∂∂两边对x 求偏导数,得。
《高等数学 II》第11章 综合测试解答
华东政法大学2009-2010学年第二学期 刑事司法学院09年级计算机科学与技术专业 《高等数学 II 》第十一章综合测试解答学院:________ 班级:_____学号:_________姓名:________任课教师:_____一、填空题(本大题共4小题,每小题4分,共16分)请在每小题的空格中填上正确答案。
错填、不填均不得分。
1、设L 是圆周122=+y x 的顺时针方向, 则ds x I L61⎰=与ds y I L82⎰=的大小关系是 . 解: 由对称性ds y ds x I LL 661⎰⎰==而在L 上86y y > 故有21I I >2、设L 是从A(1, 0)沿1222=+y x 至点B(0, 2)的曲线段,则=+⎰dy ye dx xe y x y x L222 .解:0)2(222222=+=+⎰⎰y x d edy yedx xeyx Lyx yx L3、设L 是由y = x 2及 y = 1所围成的区域D 的正方向边界,则dy y x x dx y x xy L)()(24233+++⎰= .解: 由格林公式,0)]3()42[(2323=+-+-=⎰⎰⎰dxdy y x x y x x DL(因为被积函数为x 的奇函数, D 关于y 轴对称) 4、设∑为,2222a z yx =++ 则曲面积分=++⎰⎰∑dS z y x )(222.二、单项选择题(本大题共4小题,每小题5分,共20分)在每小题列出的四个备选项中只有一个是最符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均不得分。
1、设OM 是从O(0, 0)到点M(1 ,1)的直线段, 则曲线积分ds eI y x OM22+⎰=不相等的积分是. (A) dx ex2210⎰(B)dy ey2210⎰(C)dr e r ⎰2(D) dr e r 210⎰解: 由曲线积分计算法知(A), (B), (C)均与所给积分相等, 只有(D)与积分不相等. 2、设L 为下半圆周),0(,222≤=+y R y x 将曲线积分ds y x I L)2(+=⎰化为定积分的正确结果是 . (A) dt t t R )sin 2(cos 20+⎰-π (B) dt t t R )sin 2(cos 20+⎰π (C)dt t t R )cos 2(sin 2+⎰-π(D)dt t t R )cos 2(sin 22/32/+⎰ππ解: 令圆的参数方程为: ⎩⎨⎧==t R y tR x cos sin 则 dt t t R I )cos 2(sin 2232+=⎰ππ 选(D)3、设⋂AEB 是由A(-1, 0)沿上半圆21x y -=经点E(0, 1)到点B(1, 0), 则曲线积分==⎰⋂dy y x I AEB22 .(A) 0 (B) dy y x AE222⎰⋂(C) dy y x EB222⎰⋂(D) dy y x BE222⎰⋂解: 计算可知 I = 0 选(A)4、设L 是从点O(0, 0)沿折线|1|1--=x y 至点A(2, 0)的折线段, 则积分xdy ydx I L+-=⎰等于 .(A) 0 (B) -1 (C) 2 (D) -2 解: 补20)2(,-=--=-=⎰⎰⎰⎰⎰+dxdy AO DAOAOL L选(D)三、计算题(本大题共7小题,每小题7分,共49分)1、计算,)1(dxdy z ydzdx I S++-=⎰⎰其中 S 是圆柱422=+y x 被平面x + z =2 和z = 0所截出部分的外侧。
(整理)高等数学(1)-2习题册答案(第十一章1-4节)
第十一章 曲线积分与曲面积分第17次课 对弧长的曲线积分1.计算下列各题中的曲线积分: (1)cos d Ly s ⎰,其中L 为原点至点(2,1)的直线段;解:2200cos 2L x yds ⎤===⎥⎦⎰⎰ (2)d Lx s ⎰,其中L 为抛物线221y x =-介于1x =及0x =之间的一段弧;解:131222001121(116)(116)3232348Lxds x x ⎡⎤==+=+=⎢⎥⎣⎦⎰⎰⎰(3)()d Lx y s +⎰,其中L 是以(0,0),(1,0),(0,1)O A B 为顶点的三角形的边界;解:()()()()LOAABOBx y ds x y ds x y ds x y ds +=+++++⎰⎰⎰⎰111((0x y =++++⎰⎰⎰11221000122x y =++=+(4)222()d Lx y s +⎰,其中L 为圆周222x y a +=;解:2222245()()22LLx y ds a ds a a a ππ+==⋅=⎰⎰(5)||d Lxy s ⎰,其中L 为圆周222x y a +=;解:根据xy 在四个象限的对称性,有14LL xy ds xy ds =⎰⎰(其中1L 是在第一象限的四分之一圆周),则12044(cos )(sin LL xyds xyds a t a t π==⎰⎰⎰333220sin 2(2)(cos 2)2atd t a t a ππ==-=⎰(6)222d z s x y Γ+⎰,其中Γ为圆周cos ,sin ,,02x a t y a t z at t π===≤≤. 解:22220z dsx yπτ=+⎰⎰222330013t dt t a ππ===⎰2.计算曲线积分22d x y Les +⎰,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围成的扇形的整个边界.解:2240ax y Leds π+=++⎰⎰⎰ 4002(1)4aax a a ae t e ae e ππ=++=+-3.有一铁丝成半圆形cos ,sin (0)x a t y a t t π==≤≤,其上每一点的密度等于该点的纵坐标,求铁丝的质量.解:220sin (cos )2LM yds a a t a ππ===-=⎰⎰提高题:1.已知椭圆23:143x y L +=周长为a ,求22(234)d L xy x y s ++⎰. 解:原式(122)121212012LLLxy ds ds xyds a a =+=+=+=⎰⎰⎰2.计算曲线积分4433()d Lx y s +⎰,其中L 为星形线33cos ,sin (0)2x a y a πθθθ==≤≤在第一象限内的弧.解:4444433320()d (sin cos Lx y s a πθθθ+=+⎰⎰7772556633322000113(sin sin cos cos )3sin cos 66a d d a a πππθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰⎰第18次课 对坐标的曲线积分1.计算下列各题中的曲线积分: (1)(2)d Lx y x +⎰,其中L 为从点(2,0)-到点(0,2)的直线段.解:02(2)(22)2Lx y dx x x dx -+=++=-⎰⎰(2)22d d Lxy y x y x -⎰,其中L 为圆周221x y +=,逆时针方向.解:2222220cos sin cos cos sin sin Lxy dy x ydx t t tdt t t tdt ππ-=+⎰⎰⎰2222000sin 21cos 411sin 4244162t t dt dt t t ππππ-⎛⎫===-= ⎪⎝⎭⎰⎰(3)d Lxy x ⎰,其中L 为圆周222()(0)x a y a a -+=>及x 轴所围成的在第一象限内的区域的整个边界曲线弧(按逆时针方向). 解:LAOOAxydx xydx xydx =+⎰⎰⎰半圆周232320(cos )sin (sin )0sin sin cos aa a t a t a t dt dx a tdt a t tdt πππ=+⋅-+=--⎰⎰⎰⎰33233330001cos 2111sin sin sin 2sin 22432t a dt a td t a t t a ta πππππ-⎛⎫=--=---=-⎪⎝⎭⎰⎰(4)d d d Lx x y y z z ++⎰,其中Γ为从(1,1,1)到(2,3,4)的直线段.解:()1112[(1)(12)2(13)3](614)6713Lxdx ydy zdz t t t dt t dt t t++=+++⋅++⋅=+=+=⎰⎰⎰(5)d d L x yx y ++⎰,其中L 为从点(0,1)A -到点(1,0)B 再到点(0,1)C 的折线段.解:1001(11)(11)2L AB BC dx dy dx dy dx dydx dx x y x y x y +++=+=++-=+-+⎰⎰⎰⎰⎰2.计算()d ()d Lx y x y x y ++-⎰,其中L :(1)抛物线2y x =上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)曲线2221,1x t t y t =++=+上从点(1,1)到点(4,2)的一段弧. 解:(1)2222321134=[()2()](2)3y y y y y dy y y y dy ++-=++=⎰⎰原式 (2)441112121108=[()()]()113333399x x x x dx x dx ++++-⋅=+=⎰⎰原式 (3)122220{(211)(41)[1(21)]2}t t t t t t t t dt =+++++++-++⎰原式132032(10592)3t t t dt =+++=⎰3.计算曲线积分2(12)d d Lxy x x y ++⎰,其中L 为从点(1,0)到点(1,0)-的上半椭圆周2221(0)y x y +=≥.解::cos ,,:02L x t y t t π==→20=[(1cos )(sin )cos cos ]2t t t tt dt π+-+⎰原式220sin sin sin (1sin )sin 2tdt td t t d t πππ=-+-⎰⎰ 2=-提高题: 1.计算曲线积分2sin 2d 2(1)d Lx x x y y +-⎰,其中L 是曲线sin y x =上从点(0,0)到点(,0)π的一段.解:220=[sin 22(1)sin cos ]sin 2x x x x dx x xdx ππ+-=⎰⎰原式2200011cos 2cos 2cos 222x d x x x x xdx πππ⎡⎤=-=-+⎣⎦⎰⎰ []2200011111sin 2sin 2sin 222222xd x x x xdx πππππ=-+=-+-⎰⎰212π=-2.设在力场F y x z (,,)=-作用下,质点由(,0,0)A R 沿Γ移动到(,0,2)B R k π,其中Γ为 (1)cos ,sin ,x R t y R t z kt ===; (2)AB . 试求力场对质点所作的功. 解:(1)222220d d d ()d 2()W y x x y z z R k t t k R πππΓ==-+=-+=-⎰⎰(2)直线的参数方程为,0,2,:01x R y z kt t π===→12220d d d (2)d 2ABW y x x y z z k t t k ππ=-+==⎰⎰第19次课 格林公式及其应用1.应用格林公式计算下列各题中的积分: (1)22d d Lx y x xy y -⎰,其中L 为正向圆周222(0)x y a a +=>.解:22,Q Py x x y∂∂=-=∂∂,由格林公式 原式2222440011()()2()42a Dy x dxdy d r rdr a a πθππ=--=-=⋅-=-⎰⎰⎰⎰(2)()d (3)d Lx y y x y x -++⎰,其中L 为以(1,0),(2,0),(2,1),(1,1)A B C D 为顶点的正方形沿顺时针方向. 解:1,3Q Px y∂∂==∂∂,由格林公式 原式(13)222DDDdxdy dxdy S=--===⎰⎰⎰⎰(3)22222(32)d (223)d x x Ly e x xy y x ye x xy y y ++++++-⎰,其中L 是半圆周y =自点(1,0)A 至(0,1)B .解:222,222x x Q Pye x y ye x y x y∂∂=++=++∂∂,由格林公式 原式L BO OABO OA++=--⎰⎰⎰012210(23)3Ddxdy y y x dx =---⎰⎰⎰⎰1=-(4)22()d (sin )d Lx y x x y y --+⎰,其中L 是在圆周y =上由点(0,0)到(1,1)的一段弧. 解:1,1Q Px y∂∂=-=-∂∂ 设(1,1),(1,0)B A ,由格林公式 原式L BA AOBAAO++=--⎰⎰⎰0022110[(1sin )]Ddxdy y dy x dx =---+-⎰⎰⎰⎰311710(sin 2)sin 224364=--+=-+2.利用曲线积分计算星形线33cos ,sin (0,02)x a t y a t a t π==>≤≤所围成图形的面积.解:23232011[cos 3sin cos sin (3cos sin )]22L A xdy ydx a t a t t a t a t t dt π=-=⋅-⋅-⎰⎰ 2222222220003331c o s 4s i n c o s s i n 22882t a t t d t a t d t a d t πππ-===⎰⎰⎰ 238a π=3.证明曲线积分21d d L y x y x x -⎰在右半平面内与路径无关,并求(1,2)2(2,1)1d d y x y x x -⎰.解:21Q Px x y∂∂==∂∂(0)x > ∴曲线积分在区域{}(,)0x y x >与路径无关 设(2,1),(1,2),:3,:21A B AB y x x =-+→则(1,2)1222(2,1)21131d d d d [(1)]AB y y x x y x y dx x xx x x x -+-=-=-⋅-⎰⎰⎰ 12332x =-=-4.验证表达式:2222(2)d (2)d x xy y x x xy y y +-+--在整个平面内是某一函数(,)u x y 的全微分,并求这样的一个(,)u x y .解:22Q Px y x y∂∂=-=∂∂ ∴2222(2)d (2)d x x y y x x x y y y +-+--是某一函数(,)u x y 的全微分(,)2222(0,0)(,)(2)d (2)d x y u x y x xy y x x xy y y =+-+--⎰(,0)(,)222(0,0)(,0)(2)x x y xyx x d x x x y y d y=+=+--⎰⎰⎰⎰ 32231133x x y xy y =+--提高题:1.设曲线积分2d ()d L xy x y x y ϕ+⎰与路径无关,其中()x ϕ具有连续导数,且(0)0ϕ=,求()x ϕ,并求积分(1,1)2(0,0)d ()d xy x y x y ϕ+⎰的值. 解:曲线积分与路径无关可得2()Q P xy y x x yϕ∂∂'==∂∂即 从而2()2()x x x x C ϕϕ'=⇒=+,又(0)0ϕ=有2()x x ϕ= 故(1,1)123(0,0)01d ()d 22xy x y x y x dx ϕ+==⎰⎰2.[()]d [()]d x x L f y e my x f y e m y '-+-⎰,其中()f y 有连续的一阶导数,L 是连续点1(0,)A y ,2(0,)B y 的任何路径,且L 与直线AB 所围成区域的面积为定值S ,L 总是位于直线AB 的左方. 解:(),()x x Q P f y e f y e m x y∂∂''==-∂∂ 不妨设12y y <,由格林公式 原式12[()]y L BA BA y D mdxdy f y m dy +'=-=---⎰⎰⎰⎰⎰ 212121[()]()()()y D y mS f y my mS f y f y m y y =-+-=-+---第20 次课 对面积的曲面积分1.计算下列各题中的曲面积分:(1)d z S ∑⎰⎰,其中∑为上半球面z =解:222:xy D x y R +≤xy D zdS ∑=⎰⎰⎰⎰ 23xy D Rdxdy R R R ππ==⋅=⎰⎰(2)()d x y z S ∑++⎰⎰,其中∑为锥面z =被平面1z =所截下的有限部分. 解:22:1xy D x y +≤()d (xy D x y z S x y ∑++=+⎰⎰⎰⎰2100(cos 1)d r sin rdr πθθθ=++⋅⎰20(cos sin 1)3d πθθθ=++⎰=(3)d S ∑⎰⎰,其中∑是平面1=++z y x 在第一卦限被0,0,0===z y x 截下的部分.解:∑的等边三角形,其面积为2S ∑=d S S ∑∑==⎰⎰(4)S ∑,其中∑为抛物面22z x y =+被平面1z =所截下的有限部分.解:22:1xy D x y +≤xyD S ∑=⎰⎰ 2122200(144)(14)xy D x y dxdy d r rdr πθ=++=+⎰⎰⎰⎰ 3232ππ=⋅=(5)()xy yz zx dS ∑++⎰⎰,其中∑为锥面z =被柱面222(0)x y ax a +=> 所截得的部分.解:222:()xy D x a y a -+≤()d [(xy D xy yz zx S xy x y ∑++=++⎰⎰⎰⎰2cos 22202[sin cos (sin cos )]a d r r rdr πθπθθθθθ-=++⎰454522(sin cos sin cos cos )d ππθθθθθθ-=++⎰422420(1sin )sin d πθθ=-=⎰(6)d ,:xy S ∑∑⎰⎰曲面22(01)z x y z =+≤≤在第一卦限的部分. 解:22:1(0,0)xy D x y x y +≤≥≥d xy D xy S ∑=⎰⎰⎰⎰12200sin cos d r πθθ=⎰⎰12001sin cos 2d πθθθ=⋅⎰⎰2201111sin 22242t d t dt πθθ-=⋅⋅⎰25311111cos 232253240o t t πθ⎛⎫⎛=-⋅-= ⎪ ⎝⎭⎝2.计算曲面积分(,,)d f x y z S ∑⎰⎰,:∑抛物面222z x y =--在xOy 平面上方的部分,(,,)f x y z 分别如下:(1)(,,)1f x y z =; (2)22(,,)f x y z x y =+; (3)(,,)3f x y z z =.解:22:2xy D x y +≤(1)(,,)d xyD f x y z S S ∑∑==⎰⎰⎰⎰20d πθ=⎰1313263ππ=⋅=(2) 22(,,)d (xy D f x y z S x y ∑=+⎰⎰⎰⎰200d πθ=⎰ 14914926030ππ=⋅=(3) 22(,,)d 3(2xyD f x y z S xy ∑=--⎰⎰⎰⎰2200d r πθ=-⎰11111122010ππ=⋅=提高题: 1.设曲面:1x y z ∑++=,求()d x y S ∑+⎰⎰. 解:由曲面的对称性和函数x 的奇偶性可知0xdS ∑=⎰⎰又曲面∑对坐标,,x y z 具有轮换对称性()d d d x y S x S y S∑∑∑∴+=+⎰⎰⎰⎰⎰⎰ 10()3x y z dS ∑=+++⎰⎰11183332dS S ∑∑===⋅=⎰⎰第21次课 对坐标的曲面积分1.计算下列各题中的曲面积分:(1)d d z x y ∑⎰⎰,其中∑为平面1x y z ++=位于第一卦限部分的上侧.(2)22d d x y z x y ∑⎰⎰,:∑球面2222x y z R ++=的下半部分的下侧.(3)222d d d d d d x y z y z x z x y ∑++⎰⎰,其中∑为球面2221x y z ++=上半部分外侧.(4)d d d d d d z x y x y z y z x ∑++⎰⎰,:∑柱面221(03)x y z +=≤≤在第一卦限内的部分的前侧.(5)d d d d xy z x z x y ∑+⎰⎰,其中∑为抛物面22z x y =+在0,0,01x y z ≥≥≤≤内部分的上侧.2.求()d d ()d d ()d d y z y z z x z x x y x y ∑-+-+-⎰⎰,其中∑为曲面z =及平面(0)z h h =>所围成的空间区域的整个边界曲面的外侧.3.计算()d d ()d d ()d d f x y z g y z x h z x y ∑++⎰⎰,其中(),(),()f x g y h z 为连续函数,∑为直角平行六面体0,0,0x a y b z c ≤≤≤≤≤≤的表面外侧.提高题:1.把对坐标的曲面积分:(,,)d d (,,)d d (,,)d d P x y z y z Q x y z z x R x y z x y ∑++⎰⎰化成对面积的曲面积分,其中:∑是平面236x y z -+=在第二卦限部分的上侧.2.设曲面∑是z =的上侧,求2d d d d d d xy y z x z x x x y ∑++⎰⎰.第22次课 第十一章 总复习题1.计算下列曲线积分:(1)d L x S ⎰, 其中L 为星形线332cos 2sin x t,y t ==经过点(2,0)A ,(0,2)C ,(2,0)B -的ACB 弧段.(2)22d d L y x y x y x -⎰,其中L 是圆周222x y a +=,沿顺时针方向.(3)求zds Γ⎰,其中Γ为曲线0cos sin ,(0)x t t y t t t t z t =⎧⎪=≤≤⎨⎪=⎩.(4)求(sin 2)d (cos 2)d x x L e y y x e y y -+-⎰,其中L 为上半圆周222()(0)x a y a y -+=≥,沿逆时针方向.2.验证22(e cos 2)d (2e sin )d x xy xy x x y y y ++-是否是某一函数()u x,y 的全微分.若是,试求出()u x,y .3.设L 为平面曲线:222x y R +=,计算下列各积分:(1)22()d L x y s +⎰; (2)22()d L x y x +⎰,其中L 取正向; (3)22()d D x y σ+⎰⎰,其中D 为曲线L 所围成的平面区域.4.计算33d d L y x x y -⎰,其中L 是从(,0)A R -到(,0)B R 的上半圆周y =5.设曲面:∑2222x y z R ++=,计算下列各曲面积分:(1)222()d x y z S ∑++⎰⎰; (2)222()d d x y z z x ∑++⎰⎰,其中∑取其外侧; (3)222()d x y z V Ω++⎰⎰⎰,其中Ω为曲面∑所围成的空间区域.6.计算∑∑为介于0z =及(0)z H H =>之间的柱面222R x y =+.。
无穷级数 期末复习题 高等数学下册 (上海电机学院)
第十一章无穷级数一、选择题1.在下列级数当中,绝对收敛的级数是( C )(A)∑∞=+1121n n(B)()()2311nnn∑∞=-(C)()∑--nn3111(D)()nnnn111--∑∞=2.()∑∞=-2!1nnnnx在-∞<x<+∞的和函数()=xf(A )(A)e x2-(B) e x2(C) e x--2(D) e x2-3.下列级数中收敛的是( B )(A)∑+∞=11n nn(B)∑+∞=111n nn(C)()∑+∞=1121n n(D)()∑+∞=12111n n4.lim=∞→u nn是级数∑∞=1nnu收敛的( B )(A)充分条件(B) 必要条件(C) 充要条件(D) 无关条件5.级数∑∞=1nnu收敛的充分必要条件是( C )(A)lim=∞→u nn(B)1lim1<=+∞→ruunnn(C)s nn∞→lim存在(s n=u1+u2+…+u n)(D) nu n21≤6.下列级数中,发散的级数是( B )(A)∑∞=121n n(B)∑∞=11cosnn(C)()∑∞=131nn(D)()∑∞=-1132nn7.级数()()nx nnn51111-∑-∞=-的收敛区间是( B )(A)(0,2)(B)(]2,0 (C)[)2,0(D) [0,2]8.()+∞<<∞-∑∞=xnnnx1!的和函数是( B )(A)e x(B) 1-e x(C) 1+e x(D) x-119.下列级数中发散的是( A )(A)∑∞=12sinnnπ(B)()∑-∞=-1111nnn(C) ∑⎪⎭⎫⎝⎛∞=143nn(D)∑⎪⎭⎫⎝⎛∞=131n n10.幂级数()∑∞=-13nnx的收敛区间是( B )(A)()1,1-(B)()4,2(C) [)4,2(D)(]4,211.在下列级数中发散的是( D )(A)∑∞=123nn(B)()nnn1111∑∞=--(C) ∑∞=+1312n nn(D)∑∞=+13)1(1nnn12.幂级数()()xnnnn120!121+∞=∑+-的和函数是( D )(A)e x(B) xcos(C)()x+1ln(D) xsin13. 级数()()nx nn n 51111-∑-∞=-的收敛区间是(B )(A )(0,2) (B) (]2,0 (C) [)2,0 (D) [0,2]14. 在下列级数当中,绝对收敛的级数是( C )(A )∑∞=+1121n n (B)()()2311nn n∑∞=-(C)()∑--n n 3111 (D)()nn n n111--∑∞=15. 下列级数中不收敛的是( A ).A .∑∞=+-11)1(n nn n B .∑∞=-11)1(n nnC .∑∞=-1321)1(n n nD .∑∞=-121)1(n nn16.在下列级数中发散的是(C )(A )∑∞=131n n(B )+++++321161814121(C ) +++3001.0001.0001.0(D )()()()+-+-5353535343217.幂级数x n n nn ∑∞=++11)1ln(的收敛区间是(C )(A )[]1,1- (B)(-1,1)(C) [)1,1- (D) (]1,1-18.下列级数中条件收敛的是( B )A .∑∞=--11)32()1(n nnB .∑∞=--11)1(n n nC .∑∞=--11)31()1(n nn D .∑∞=-+-1212)1(n n nn19.幂级数∑∞=++11)21(n nnx 的收敛区间是( C )A .)2123(,- B .]2123[,- C .)2123[,-D .]2123(,-20.在下列级数中,条件收敛的是( B )(A )()111+∑-∞=n nn n(B)()n n n111∑-∞=(C)()∑-∞=1211n nn (D)∑∞=11n n21.级数∑⎪⎭⎫ ⎝⎛∞=+1152n n 的和S=( D )(A )23(B) 35(C) 52(D) 3222. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=x, 若f(x)的傅立叶级数 展开式为∑∞=++10)sin cos (2n n nnx b nx aa ,则=n a [D]A. 1)1(2+-n nB.nn)1(2- C.1)1(1+-n nD. 023. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=2x , 若f(x)的傅立叶级数 展开式为∑∞=++10)sin cos (2n n nnx b nx aa ,则=nb [A]A. 0B.nn)1(4- C.1)1(2+-n nD. 1)1(4+-n n二、填空题1.幂级数()∑∞=-02!1n nnn x 的和函数是 e x 2-2.幂级数∑∞=02n nnx的收敛半径为21=R 。
高等数学习题11答案(复旦大学出版社)
261 习题十一3.计算下列对坐标的曲线积分:(1)()22d -⎰L x y x ,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧; (2)d Lxy x ⎰ 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(6)()322d 3d d x x zy y x y z Γ++-⎰,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰(2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩L 2的方程为y =0(0≤x ≤2a )故 ()()()()()12π200π320ππ322003d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2L L L a xy x xy x xy x a a t a a t t xa t t ta t t t t a =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰ (6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x ty t z tt 从1→0.262故()()32203221031041d 3d d 27334292d 87d 1874874x x zy y x y zt t t tt tt t t Γ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰ 7.应用格林公式计算下列积分:(1)()()d d 24356+-++-⎰ x y x y x y Γ, 其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Q x∂=∂,1P y ∂=-∂,由格林公式得 ()()d d 24356d d 4d d 4d d 1432212LD D Dx y x y x y Q P x y x y x y x y +-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰8.利用曲线积分,求下列曲线所围成的图形的面积:(1)星形线x = a cos 3t ,y = a sin 3t ;解:(1)()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos61623π8L A y x a t a t t t a t t t a t t t a t t t a t t t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰ 9.证明下列曲线积分与路径无关,并计算积分值:(2)()()()()3,423221,2d d 663x y xy y x y xy +--⎰; (3)()()1,221,1d d x y x x y -⎰沿在右半平面的路径;263 证:(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123P xy y y∂=-∂,2123Q xy y x ∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x y xy y x y xy y x y y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰ (3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x∂=∂,在右半平面内恒有P Q y x ∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰ 10.验证下列P (x , y )d x +Q (x , y )d y 在整个xOy 面内是某一函数u (x , y )的全微分,并求这样的一个函数u (x , y ):(2)2xy d x +x 2d y ;(3)(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y ;(4)(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y .解:(2)P =2xy ,Q =x 2, 2P Q x y x∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()(),20,020022d d ,0d d x y x yu xy x x y x y x x y x y=+=+=⎰⎰⎰ (3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Q x xy y x,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y 是某个定义在整个xOy 面内函数u (x ,y )的全微分,()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y x y y y y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰。
高数同济第六版下高等数学2第十一章答案[1]
⾼数同济第六版下⾼等数学2第⼗⼀章答案[1]习题11-1 对弧长的曲线积分1.计算下列对弧长的曲线积分:(1)22x y Leds +?,其中L 为圆周222x y a +=,直线y x =及x 轴在第⼀象限内所围成的扇形的整个边界;(2)2x yzds Γ,其中Γ为折线ABCD ,这⾥A 、B 、C 、D 依次为点(0,0,0)、(0,0,2)、(1,0,2)、(1,3,2);(3)2Ly ds ?,其中L 为摆线的⼀拱(sin )x a t t =-,(1cos )y a t =-(02)t π≤≤.2.有⼀段铁丝成半圆形y =,其上任⼀点处的线密度的⼤⼩等于该点的纵坐标,求其质量。
解曲线L 的参数⽅程为()cos ,sin 0x a y a π==≤≤ds ad ??==依题意(),x y y ρ=,所求质量22sin 2LM yds a d a π===?? 习题11-2 对坐标的曲线积分1.计算下列对坐标的曲线积分:(1)22()Lxy dx -?,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的⼀段弧;(2)22()()Lx y dx x y dy x y+--+?,其中L 为圆周222x y a +=(按逆时针⽅向绕⾏);(3)(1)xdx ydy x y dz Γ+++-?,其中Γ是从点(1,1,1)到点(2,3,4)的⼀段直线;(4)dx dy ydz Γ-+?,其中Γ为有向闭折线ABCA ,这⾥A 、B 、C 依次为点(1,0,0)、(0,1,0)、(0,0,1);2.计算()()Lx y dx y x dy ++-?,其中L 是:(1)抛物线2y x =上从点(1,1)到点(4,2)的⼀段弧;(2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到(4,2)的折线;(4)曲线221x t t =++,21y t =+上从点(1,1)到点(4,2)的⼀段弧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章自测题参考答案
一、填空题: 1.()⎰Γ
++ds R Q P γβαcos cos cos 切向量
2.
()⎰⎰∑
++dS R Q P γβαcos cos cos 法向量
3.
⎰⎰⎪⎪⎭
⎫ ⎝⎛∂∂-∂∂D dxdy y P x Q 4. 0 5. π4 6. π2 7. 0 8.()⎰⎰
10
1
,dy y x f dx , ()⎰⎰-1
10,dy y x f dx , 0
9.
()
⎰-L
ds x x y x P 22,
二、选择题:
1.C
2.C
3.A
4.A
5.D 三、计算题:
1.解 由于曲线L 表达式中x ,y, z 是对称的,所以⎰
L
ds x 2
=
⎰
L
ds y 2=⎰L
ds z 2,
故⎰
L ds x 2
=
()
⎰++ds z y x 2
2231=3223
223131a a a ds a L ππ=⋅=⎰. 2.解 原式=
()[](){}⎰+---π
20sin cos 1cos 12dt t t t
()
⎰
+=π20
2
sin sin
dt t t =π
20
2sin 2121⎪⎭
⎫ ⎝⎛-t t =π 3.解 记222:y x a z S --=
,D :xoy 平面上圆域222a y x ≤+
原式=
()
dxdy y z x z y x a y x D
2
2
2
221⎪⎪⎭
⎫
⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+--+
+⎰⎰ =()
⎰⎰--⋅
--+
+D
dxdy y
x a y x a y x a
2
2
2
2221
注意到积分区域D 关于坐标轴的对称性及被积函数的奇偶性知
⎰⎰
--D
dxdy y
x a x 2
2
2
=⎰⎰
--D
dxdy y
x a y 2
22=0,所以
原式=⎰⎰D
dxdy a
=2
a
a π⋅=3
a π.
4.解 利用高斯公式
原式=()⎰⎰⎰Ω
++dxdydz z y x 2
其中Ω为S 所围成的空间区域。
由Ω关于坐标平面的对称性知
⎰⎰⎰Ω
xdxdydz =⎰⎰⎰Ω
ydxdydz =0,
所以,原式=⎰⎰⎰Ω
zdxdydz 2
=⎰
⎰⎰+12
22y x D zdz dxdy xy
=
()⎰⎰--xy
D dxdy y x 22
1=()
⎰⎰-1
220
1ρρρθπ
d d
=2
412ππ=⋅
5.解 原式=()
()[]()⎰
+--π
20
222
2sin cos 1cos 1dt t a t a t a
=()⎰-π
202
53
cos 12dt t a =⎰
π
20
253
sin 8dt a
t
=du u a
⎰
π
53
sin 16=
3
15
256a 6.解 ()()()
()()x f y x Q y x f e y x P x -=+=,,
,
要使曲线积分与路径无关,当且仅当
x
Q y P ∂∂=∂∂,即()()x f x f e x '-=+ 解此微分方程可得()x x
e Ce
x f 21-=-,又()210=f ,所以C =1,故()x x e e x f 2
1-=- 现在计算从()0,0A 到()1,1B 的曲线积分的值.
由于积分与路径无关,故选取有向折线____
____
CB AC +进行积分,其中()0,1C 。
在____
AC 上,0,10:,0=→=dy x y , 在____CB 上,0,10:,
1=→=dx y x ,
所以此时该积分的值为
()()
()()
()dy x f ydx x f e
x
-+⎰1,10
,0
=
()()⎰⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+--1,10,0212
1
dy e e ydx e e x x x x =
⎰⎪⎭
⎫ ⎝⎛--1
0121dy e e =121--e e . 四、证明题:
1.证明 应用高斯公式就有
()⎰⎰++-S dxdy xyz z dzdx z xy dydz yz x
12222
=()
⎰⎰⎰++-V
dxdydz xyz xyz xyz
212222
=
()⎰⎰⎰+V
dxdydz xyz 21
显然,
M dxdydz
V
=⎰⎰⎰,注意到空间区域V 关于yoz 平面是对称的,且函数xyz 是关于x
的奇函数,故0=⎰⎰⎰V
xyzdxdydz
,由此即得
()⎰⎰++-=S
dxdy xyz z dzdx z xy dydz yz x M 12222
2.证明 设()()y x y x ,,,11βα为在曲线C 上点()y x ,处的外法线n 的方向角,
()()y x y x ,,,22βα为该点处的切线正向的方向角,33,βα为射线l 的方向角,则n 方向的单
位向量为)cos ,(cos 11βα,射线l 的方向的单位向量为()33cos ,cos βα,故
()3131cos cos cos cos ,cos ββαα+=n l
注意到 ⎪⎪⎩
⎪⎪⎨⎧
-=+=121222
βπβπαα, 故有
⎩⎨
⎧-==2
12
1cos cos cos cos αββα,所以
()3232cos cos cos cos ,cos αββα+-=n l
根据两类曲线积分之间的关系有 ()()ds ds n l C
C
⎰⎰+-=3232
cos cos cos cos ,cos αββα
=⎰
+-C
dy dx 33cos cos αβ
注意到33cos ,cos αβ均为常数的事实,并应用格林公式即得
()0,cos =⎰C
ds n l .
3.证明 证法1 (1)左边=⎰⎰
--0
sin 0
sin π
π
ππdx e dy e x y
=()
⎰-+π
π0
sin sin dx e e
x x 右边=
⎰⎰
--0
sin 0
sin π
π
ππdx e dy e
x y
=()
⎰-+π
π
sin sin dx e e
x x
所以
⎰⎰-=---L
x y L
x y dx ye dy xe dx ye dy xe sin sin sin sin . (2)由于2sin sin ≥+-x x
e e
,
故由(1)得⎰
--L
x y dx ye dy xe sin sin =()
⎰-+π
π
sin sin dx e e
x x
22π≥
证法2 (1)根据格林公式,得
⎰--L
x y dx ye dy xe sin sin =()
⎰⎰-+D
x
y d e e σsin sin ⎰--L
x y
dx ye dy xe
sin sin =()
⎰⎰+-D
x y d e e σsin sin
因为D 关于y =x 对称,所以
()⎰⎰-+D
x y
d e e
σsin sin =()
⎰⎰+-D
x y d e e σsin sin
故
⎰⎰-=---L
x
y L
x y dx ye dy xe dx ye dy xe sin sin sin sin (2)由(1)知
⎰--L
x y
dx ye dy xe
sin sin =()
⎰⎰-+D
x y d e e σsin sin
=
()
⎰⎰-+D x x
d e e
σsin sin
.
222πσ=≥⎰⎰D
d。