ANSYS Workbench LS-DYNA流固耦合方法应用

合集下载

ls-dyna流固耦合命令

ls-dyna流固耦合命令

ls-dyna流固耦合命令LSDYNA流固耦合命令是指在使用LS-DYNA软件进行流体和固体物理现象的数值模拟中,通过特定的命令实现流体与固体之间的耦合。

在本文中,我们将一步一步回答关于LSDYNA流固耦合命令的问题,深入了解其原理和应用。

第一步:理解LSDYNA流固耦合命令的背景和概念流固耦合是指流体和固体之间相互作用的模拟方法,它模拟了流体对固体施加的压力和阻力以及固体对流体的运动造成的影响。

LSDYNA是一种先进的有限元分析软件,广泛应用于汽车碰撞、爆炸模拟、航空航天和材料科学等领域。

LSDYNA中的流固耦合命令允许工程师研究复杂问题,例如水对车辆的冲击造成的变形、海浪对海上平台的影响等。

第二步:介绍LSDYNA流固耦合命令的基本语法和用法在LSDYNA中,流固耦合问题既有流体(define_fluid)又有固体(define_solid),以及它们之间的边界条件(define_interface)。

流固耦合的基本语法如下:define_fluidflow、density、viscosity、elastic、cooling、surfactant等参数设置以及与流体网格相关的命令。

define_solidsolid、density、elastic等参数设置以及与固体网格相关的命令。

define_interface定义固液之间的接触模型、表面张力等参数。

以上是LSDYNA流固耦合命令的基本语法和用法,根据具体的应用需求,使用者可以根据自己的实际情况进行调整和设置。

第三步:详细阐述LSDYNA流固耦合命令的原理和模拟过程LSDYNA流固耦合命令的原理是根据流体动力学和固体力学的基本方程,将两种物理现象进行耦合计算。

具体的模拟过程包括以下几个主要步骤:1. 网格生成:首先,需要生成流体和固体的网格模型。

流体网格需要满足Navier-Stokes方程的离散形式,而固体网格则需要满足经典有限元的要求。

ANSYS流固耦合分析成功的条件

ANSYS流固耦合分析成功的条件

ANSYS流固耦合分析成功的条件1.首先在建模和条件设置方面要按照这样的设置顺序:(1)选取流体单元,(打开keyopt(4)选项),建立流体模型,注意此处挖去固体所占的空间,然后分区划分流体场网格(好像在ls_dyna里面不要挖去固体所占空间),注意靠近挖去空间的部分网格应该细小些,还有若要采用remesh在计算中重划网格,一定要使用三角形单元(所有流体场)(2)流体场模型建立完成后,首先要在流固耦合的边界上施加流体耦合标签FSI,然后在在流体场区域施加必要的边界条件,诸如位移约束,速度、压力等等。

然后设置求解流体场的时间步长、求解时间、流体属性,打开ALE选项(瞬态分析)网格重画属性等等(3)这样的工作完成后,进入/prep7,加入固体单元,设置固体材料属性,在挖去的部分建立固体模型,划分固体网格,在固体网格与流体场接触的固体边界上施加流体耦合标签FSI,注意要和前面的number相同。

(4)为固体实际必要的约束条件(看是固体推动流体还是流体推动固体)(5)设置固体求解的时间步长和求解结束时间(6)设置流固耦合属性,(看是固体推动流体还是流体推动固体),求解时间步长和求解时间,收敛准则,迭代次数等等。

(7)保存求解。

-----------------------------总之,在流固耦合分析中,你最好要按着先流体后固体再耦合的属性设置顺序,流固耦合标签FSI要分别加在流固耦合边界的流体边界上和固体边界上,加在的顺序要按照上面所述。

在实际的建模中,流固耦合的边界上由于建模的原因会出现节点的重合现象,注意一定不要使用捏合节点的命令来将重合的节点变成一个,这个很重要。

固体单元一定要设置求解的时间步长和求解中止时间,时间步长一般和求解流体场和流固耦合的时间步长相等。

ALE+remesh选项是解决瞬态流固耦合问题的一个很重要的方法,流固耦合一般要伴随着流体的形状改变和位置的移动,因此首先启动ALE选项使流体与固体的耦合边界保持一致并规则化流场内部由于挤压而畸变的网格,其次若网格畸变的过于严重,就要启动remesh选项重新划分网格单元。

dyna流固耦合方案

dyna流固耦合方案

dyna流固耦合方案
Dyna流固耦合方案是一种数值模拟方法,用于同时考虑流体和固体之间的相互作用。

这种方法可以模拟复杂的流体动力学和结构响应,适用于各种工程领域,如航空航天、船舶、汽车、能源等。

在Dyna流固耦合方案中,流体和固体被视为相互渗透的连续介质,通过求解流体动力学和结构动力学方程来模拟流体的运动和结构的变化。

这些方程通常包括流体动力学方程、结构动力学方程、热传导方程等。

为了实现流固耦合,需要将流体和固体之间的相互作用力传递到各自的边界上,并使用适当的算法将它们耦合在一起。

这通常需要开发特定的程序或软件来实现。

在实现Dyna流固耦合方案时,需要考虑以下关键因素:
1. 流体和固体之间的相互作用力,包括压力、剪切力和温度等。

2. 流体的流动特性和结构的变化,需要考虑流体的非牛顿行为和湍流模型以及结构的弹性和塑性行为等。

3. 流体和固体之间的界面条件,包括界面上的压力、剪切力和温度等。

4. 数值方法的稳定性和精度,需要选择合适的数值方法来求解流固耦合方程,并保证结果的准确性和可靠性。

总之,Dyna流固耦合方案是一种非常有用的数值模拟方法,可以用于模拟
复杂的流体动力学和结构响应,为工程设计提供重要的参考依据。

ANSYSWorkbench流-固耦合计算方法解析

ANSYSWorkbench流-固耦合计算方法解析

ANSYSWorkbench流-固耦合计算方法解析流-固耦合主要研究流体流动导致结构变形,而结构变形可能会影响流体流动。

基于ANSYS Workbench可以实现单向和双向流固耦合,而且可以处理结构发生大变形的双向流固耦合计算,流固耦合计算的典型应用包括,机翼颤振,管道振动,导线覆冰振动,含流体容器晃动,结构跌落入水冲击,柔性结构扰流振动等。

目前,ANSYS版本已经更新到了2023R1,各类流固耦合计算功能,更加完善,操作使用更加方便,对于流固耦合根据耦合方式可以分为:(1)单向耦合。

A场对B场有影响,而B场对A场没有影响,常见的问题就是热应力计算,一般的热应力计算中,只考虑温度对结构的影响,而忽律结构变形对温度场的影响;(2)双向耦合。

A场对B场有影响,而B场对A场也有影响,例如气动颤振问题,流场对结构的变形有影响,反过来结构变形也会影响流场。

ANSYS目前主要提供了四种流固耦合仿真策略:(1)Fluent+结构模块(稳态或瞬态)该方法可以完成各类稳态或瞬态的单向流固耦合计算,计算效率高,数据传递稳定,例如,各类流体载荷导致的结构变形和应力,结构在流体作用下的小变形振动等。

(2)Fluent+结构模块(稳态或瞬态)该方法在Fluent中完成流场求解,获得流场的压力;在结构模块(稳态或瞬态)完成固体场求解,获得变形,然后通过系统耦合器完成数据的交互传递,该方法,即可以完成单向流固耦合计算,也可以完成双向流固耦合计算,但是在同一时刻,只有一个场在求解,双向流固耦合的求解时间较长。

(3)基于LS-DYNA软件完成流固耦合计算LS-DYNA支持ICFD求解器与其自身的固体力学求解器之间的耦合。

ICFD求解器适用于五大行业多物理场应用:•汽车行业,LS-DYNA传统应用领域,ICFD可针对热-结构耦合的外部空气动力学分析提供解决方案;•制造行业,ICFD可应用于冷却相关分析,例如金属冲压,电池组的冷却等;•能源行业,尤其是风能行业。

ANSYS流固耦合

ANSYS流固耦合
ANSYS流固耦合分析示例 流固耦合分析示例
教程大纲
在这个教程中您将学到:
– – – – 移动网格 流体-固体相互作用模拟 运用ANSYS-MultiField模拟 同时处理两个结果文件
问题概述
在这个教程中,运用一个简单的摆动板例题来解释 怎样建立以及模拟流体-结构相互作用的问题。其 中流体模拟在ANSYS CFX求解器中运行,而用 ANSYS软件包中的FEA来模拟固体问题。模拟流固 相互作用的整个过程中需要两个求解器的耦合运 行,ANSYS-MultiField求解器提供了耦合求解的平 台。
4. 点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置
创建域:为了使ANSYS Solver能够把网格变形信息传递给 CFX Solver,在CFX中必须激活网格移动。 1. 重命名Default Domain为OscillatingPlate,并打开进行编 辑 2. 应用以下设置
8.
点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置
输出求解器文件(.def) 1. 点击Write Solver File 2. 如果 Physics Validation Summary 对话框出现,点击 Yes 以继续 3. 应用以下设置
3.
点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置
创建边界条件 • 流体外部边界
1. 2. 创建一个新边界条件,命名为Interface. 应用以下设置
3.
点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置

ANSYS Workbench LS-DYNA流固耦合方法应用

ANSYS Workbench LS-DYNA流固耦合方法应用

ANSYS Workbench LS-DYNA流固耦合方法应用贮液容器(含塑料瓶)广泛应用于化工、食品包装、储运等领域。

由于容器(含塑料瓶)在运输和使用过程中常常会因为跌落或碰撞冲击导致破损而造成损失和污染,因此,研究贮液容器(含塑料瓶)在跌落碰撞过程中的力学行为,对认识容器(含塑料瓶)跌落碰撞损伤机理,优化容器(含塑料瓶)结构,提高其安全性和使用价值意义重大。

.贮液容器的跌落是一个典型的流固耦合问题,可采用LS-DYNA的ALE算法(任意拉格朗日欧拉算法)进行模拟。

下面以一个封闭的装水水箱为例,介绍ANSYS Workbench LS-DYNA分析此类型跌落问题的方法和步骤:1.建立几何模型调用ANSYS Workbench中的LS-DYNA模块,如图1所示。

然后使用ANSYS的CAD工具DesignModeler建立几何模型,如图2所示。

图1 调用Workbench LS-DYNA 图2 DesignModeler中建立几何模型2.生成K文件双击进入“Model”后,对模型进行网格划分、边界条件设置、速度设置和分析设置,如图3所示。

设置完成后点击“solve”求解,生成K文件,如图4所示。

图3 调用Workbench LS-DYNA 图4 DesignModeler中建立几何模型3.编辑K文件通过Workbench LS-DYNA生成的K文件中关键字是不够完善的,并不能直接递交LS-DYNA求解器进行求解。

K文件中所欠缺的一些关键字,在流固耦合分析中是必不可少的,如空材料的定义、跟随坐标系的定义、空白域的定义以及状态方程的定义等。

3.1 重要关键字释义(1)LS-DYNA程序提供了运动的多物质ALE网格,可以方便地为多物质ALE算法定义跟随坐标系*ALE_REFERENCE_SYSTEM_NODE*ALE_REFERENCE_SYSTEM_GROUP(2)定义空材料和状态方程的关键字*MAT_NULL *EOS(3)初始化空白域的关键字*INITIAL_VOID_PART(4)结构和流体之间耦合的关键字*CONSTRAINED_LAGRANGE_IN_SOLID(5)单元算法定义(单点积分的单物质加空白材料)的关键字*SECTION_SOLID_ALE ELF0RM=12(6)在重力作用下产生下落的关键字*LOAD_BODY……3.2关键字编辑方法关键字的编辑或修改一般有两种方法,一种是直接在ls-prepost中对关键字进行编辑设置,如图5所示;另一种是在文本编辑器UltraEdit中对关键字进行编辑或修改,如图6所示。

ANSYS Workbench LS-DYNA流固耦合方法应用

ANSYS Workbench LS-DYNA流固耦合方法应用

ANSYS Workbench LS-DYNA流固耦合方法应用贮液容器(含塑料瓶)广泛应用于化工、食品包装、储运等领域。

由于容器(含塑料瓶)在运输和使用过程中常常会因为跌落或碰撞冲击导致破损而造成损失和污染,因此,研究贮液容器(含塑料瓶)在跌落碰撞过程中的力学行为,对认识容器(含塑料瓶)跌落碰撞损伤机理,优化容器(含塑料瓶)结构,提高其安全性和使用价值意义重大。

.贮液容器的跌落是一个典型的流固耦合问题,可采用LS-DYNA的ALE算法(任意拉格朗日欧拉算法)进行模拟。

下面以一个封闭的装水水箱为例,介绍ANSYS Workbench LS-DYNA分析此类型跌落问题的方法和步骤:1.建立几何模型调用ANSYS Workbench中的LS-DYNA模块,如图1所示。

然后使用ANSYS的CAD工具DesignModeler建立几何模型,如图2所示。

图1 调用Workbench LS-DYNA 图2 DesignModeler中建立几何模型2.生成K文件双击进入“Model”后,对模型进行网格划分、边界条件设置、速度设置和分析设置,如图3所示。

设置完成后点击“solve”求解,生成K文件,如图4所示。

图3 调用Workbench LS-DYNA 图4 DesignModeler中建立几何模型3.编辑K文件通过Workbench LS-DYNA生成的K文件中关键字是不够完善的,并不能直接递交LS-DYNA求解器进行求解。

K文件中所欠缺的一些关键字,在流固耦合分析中是必不可少的,如空材料的定义、跟随坐标系的定义、空白域的定义以及状态方程的定义等。

3.1 重要关键字释义(1)LS-DYNA程序提供了运动的多物质ALE网格,可以方便地为多物质ALE算法定义跟随坐标系*ALE_REFERENCE_SYSTEM_NODE*ALE_REFERENCE_SYSTEM_GROUP(2)定义空材料和状态方程的关键字*MAT_NULL *EOS(3)初始化空白域的关键字*INITIAL_VOID_PART(4)结构和流体之间耦合的关键字*CONSTRAINED_LAGRANGE_IN_SOLID(5)单元算法定义(单点积分的单物质加空白材料)的关键字*SECTION_SOLID_ALE ELF0RM=12(6)在重力作用下产生下落的关键字*LOAD_BODY……3.2关键字编辑方法关键字的编辑或修改一般有两种方法,一种是直接在ls-prepost中对关键字进行编辑设置,如图5所示;另一种是在文本编辑器UltraEdit中对关键字进行编辑或修改,如图6所示。

基于LS-DYNA的高速破片水中运动特性流固耦合数值模拟

基于LS-DYNA的高速破片水中运动特性流固耦合数值模拟

基于LS-DYNA的高速破片水中运动特性流固耦合数值模拟康德;严平【摘要】基于大型有限元分析软件ANSYS/LS-DYNA,建立三维长方体高速破片在水介质中运动的有限元动力分析模型,采用ALE方法对破片在水下运动过程进行流固耦合数值模拟,获得了破片的速度衰减曲线.研究了速度衰减规律、破片墩粗变形规律以及冲击波传播过程.得到高速破片的侵彻能力随速度的变化规律:当初速度大于910~1115 m/s时破片头部将产生显著变形,并大大影响其侵彻阻力;当破片速度较小时,水中侵彻距离随破片初速的增大而增大,当破片速度达到某临界值以后,侵彻距离将随初始速度的增大而逐渐减小.【期刊名称】《爆炸与冲击》【年(卷),期】2014(034)005【总页数】5页(P534-538)【关键词】流体力学;运动特性;ALE方法;高速破片;侵彻能力;水【作者】康德;严平【作者单位】海军工程大学兵器工程系,湖北武汉430033;海军工程大学兵器工程系,湖北武汉430033【正文语种】中文【中图分类】O351.2水下爆炸对目标的破坏除了冲击波作用,高速破片的作用也不可忽视。

爆炸产生的破片初始速度可以达到1 000m/s以上,具有很强的侵彻破坏能力[1]。

破片对典型水下目标结构的毁伤效果主要取决于破片在水中的运动特性和侵彻能力。

研究高速破片在水中的运动特性对于典型水下目标的抗破片侵彻能力设计具有重要意义。

水下物体的高速运动是一个复杂的多相流运动,涉及到大变形、高应变率。

由于理论分析的复杂性和实验研究的高成本,数值模拟以其经济性与高效性日益成为研究的重要手段。

本文中利用ANSYS/LS-DYNA有限元程序对速度在1 000~2 500m/s的立方体破片在水介质中的运动进行了数值模拟,得到了破片的速度衰减曲线,冲击波传播规律。

分析了破片墩粗变形规律及其对侵彻阻力的影响,得到了高速破片的侵彻能力随速度的变化规律。

其计算结果可为水中目标易损性分析提供有益的参考和依据。

dyna流固耦合体积分数法

dyna流固耦合体积分数法

dyna流固耦合体积分数法
动力学流固耦合体积分数法(Dyna流固耦合体积分数法)是一
种用于模拟流体与结构相互作用的数值计算方法。

该方法结合了流
体动力学和结构动力学的数值模拟技术,能够模拟在流体作用下结
构的变形以及结构对流体的影响。

在Dyna流固耦合体积分数法中,流体和结构的运动方程通过有
限元法和有限体积法进行离散化处理。

对于流体,Navier-Stokes
方程通常被用来描述流体的运动,而对于结构,通常采用弹性力学
方程描述结构的变形。

通过将流体和结构的运动方程进行耦合,可
以模拟出流固耦合系统的动态响应。

在实际工程中,Dyna流固耦合体积分数法被广泛应用于飞行器、汽车、船舶等工程领域,用于模拟飞行器在空气中飞行时的结构动
力学响应,汽车在空气中行驶时的空气动力学效应,船舶在水中航
行时的流体-结构相互作用等问题。

该方法的优点包括能够考虑流固耦合系统的动态响应、能够模
拟复杂的流固耦合现象、能够提供结构变形和流体压力的详细分布等。

然而,该方法也面临着计算量大、模拟精度受到网格划分和边
界条件等因素的影响等挑战。

总的来说,Dyna流固耦合体积分数法是一种重要的数值模拟方法,能够有效地模拟流体与结构的相互作用,为工程领域的流固耦合问题提供了重要的分析手段。

ANSYS流固耦合分析实例

ANSYS流固耦合分析实例
(Time) 4. 在整个视窗的右底边Tabular Data面板,在表中相对应于时间
为0 [s]设置压力为100 [pa] 5. 表中需要继续输入两排参数,100 [pa]对应于0.499 [s], 0 [pa]
对应于0.5 [s]
模拟中固体问题的描述—记录ANSYS输入文件
现在,模拟设置已经完成。在Simulation中ANSYS MultiField 并不运行,因此用求解器按钮并不能得到结果 1. 然 而 , 在 目 录 树 中 的 高 亮 Solution 中 , 选 择 Tools > Write ANSYS Input File,把结果写进文件OscillatingPlate.inp 2. 网格是自动生成的,如果想检查,可以在目录树中选择Mesh 3. 保存Simulation数据,返回Oscillating Plate [Project]面板, 存储Project
固定支撑:为确保薄板的底部固定于平板,需要设置固定支撑 条件。
1. 右击目录树中Transient Stress,在快捷菜单中选择Insert > Fixed Support
2. 用旋转键 旋转几何模型,以便可以看见模型底面(low-y), 然后选择 并点击底面(low-y)
3. 在Details窗口,选择Geometry,然后点击No Selection使Apply 按钮出现(如果需要)。点击Apply以设置固支。
设置仿真类型: 1. 选择 Insert > Simulation Type. 2. 应用以下设置: 3. 点击OK
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
建立流体物质 1. 选择 Insert > Material. 2. 把新物质名定义为 Fluid. 3. 应用以下设置

ansys流固耦合案例

ansys流固耦合案例

ansys流固耦合案例
ANSYS流固耦合是一种模拟分析技术,用于研究流体和固体之间的相互作用。

它可以在一个模拟中同时考虑流体和固体的运动和变形,从而更准确地预测系统的行为。

以下是一些ANSYS流固耦合的应用案例:
1. 水下爆炸冲击分析:在这种情况下,流固耦合分析可以用于研究水中的爆炸冲击对周围结构的影响。

通过考虑水的流动和固体结构的变形,可以更准确地预测爆炸冲击的传播路径和结构的破坏程度。

2. 风力发电机叶片设计:在风力发电机中,叶片的设计对其性能至关重要。

流固耦合分析可以用于优化叶片的形状和材料,以最大限度地提高能量转换效率。

通过考虑风的流动和叶片的变形,可以预测叶片的受力情况和振动特性。

3. 水力润滑轴承分析:在水力润滑轴承中,流体的流动对轴承的性能和寿命有重要影响。

流固耦合分析可以用于优化轴承的设计,以减少摩擦和磨损,并提高轴承的承载能力。

通过考虑流体的流动和轴承的变形,可以预测轴承的润滑性能和寿命。

4. 波浪对海洋结构物的影响分析:在海洋工程中,波浪对海洋结构物的影响是一个重要的研究领域。

流固耦合分析可以用于研究波浪对海洋平台、堤岸和海底管道等结构物的冲击和振动情况。

通过考虑波浪的流动和结构物的变形,可以预测结构物的破坏程度和安全
性能。

这些案例只是流固耦合分析的一小部分应用领域,实际上在工程和科学研究中有很多其他的应用。

ANSYS作为一种强大的模拟软件,可以帮助工程师和科学家更好地理解和优化流体和固体系统的相互作用。

基于ANSYSWorkbench的流固耦合计算研究及工程应用

基于ANSYSWorkbench的流固耦合计算研究及工程应用

基于ANSYSWorkbench的流固耦合计算研究及工程应用基于ANSYS Workbench的流固耦合计算研究及工程应用引言:随着工程技术的不断发展,流固耦合计算在众多领域得到了广泛的应用。

流固耦合计算是指流体力学和固体力学的耦合分析,用于研究流体与固体之间的相互作用和影响。

ANSYS Workbench是一款广泛使用的工程仿真软件,它提供了强大的流固耦合计算功能,被广泛应用于多个领域,如汽车工程、航空航天工程、能源领域等。

流固耦合计算的基本原理:流固耦合计算是根据连续介质力学原理进行的,可以将流体和固体看作连续介质,通过数值模拟方法求解它们之间的相互作用。

在ANSYS Workbench中,流固耦合计算通常包括以下三个步骤:网格划分、物理模型设定和求解。

第一步是网格划分,即将流体和固体分别划分成离散的网格,其中流体部分的网格通常采用流体网格生成软件生成,固体部分则使用固体网格生成软件生成。

网格划分的质量对计算结果的准确性和稳定性起着至关重要的作用。

第二步是物理模型设定,根据具体的工程问题,设定相应的流体和固体模型。

在ANSYS Workbench中,流体模型通常包括流体的黏性、密度、速度分布等参数,固体模型则包括材料的弹性模量、泊松比等参数。

在设定模型时,还需要考虑流体和固体之间的边界条件,如流体入口和出口的速度、固体边界的约束条件等。

第三步是求解,通过建立数学模型和设置计算参数,利用数值方法求解流体和固体的相互作用。

用户可以根据需要选择求解器和求解方法,ANSYS Workbench提供了多个求解器选项,例如基于有限元的求解器和基于有限体积的求解器。

求解过程中,可以监控计算结果的收敛情况,将其与实际情况进行比较,以验证模拟结果的准确性和可靠性。

工程应用实例:基于ANSYS Workbench的流固耦合计算在许多工程领域都有广泛的应用。

以下以汽车空气动力学为例进行说明。

在汽车设计中,空气动力学是一个非常重要的研究方向。

ansys流固耦合分析与工程实例

ansys流固耦合分析与工程实例

第 1 章 流固耦合分析基础近年来,流固耦合分析研究和应用取得了飞速的发展,尤其是 ANSYS Workbench 推广以 来,流固耦合分析变得容易起来,也因此很快在相关工程领域得到广泛应用。

本章是学习 ANSYS 流固耦合分析的入门篇,旨在介绍 ANSYS 流固耦合分析的基本知识,引导初学者由 浅入深地了解流固耦合分析的基本操作和应用。

本章内容包括:ü 流固耦合基础ü ANSYS 流固耦合分析ü ANSYS 流固耦合分析的基本步骤1.1 流固耦合基础下面简单介绍什么是流固耦合作用、流固耦合分析,流固耦合的重要性,以及流固耦合分 析用到的控制方程。

1.1.1 认识流固耦合分析的重要性随着计算科学以及数值分析方法的不断发展, 流固耦合或交互作用 (fluid structure coupling 或 fluid structure interaction )研究从 20 世纪 80年代以来,受到了世界学术界和工业界的广泛 关注。

流固耦合问题是流体力学(Computational Fluid Dynamics ,CFD )与固体力学 (Computational Solid Mechanics ,CSM )交叉而生成的一门力学分支,同时也是多学科或多 物理场研究的一个重要分支, 它是研究可变形固体在流场作用下的各种行为以及固体变形对流 场影响这二者相互作用的一门科学。

流固耦合问题可以理解为既涉及固体求解又涉及流体求解, 而两者又都不能被忽略的模拟 问题。

因为同时考虑流体和结构特性,流固耦合可以有效节约分析时间和成本,同时保证结果 更接近于物理现象本身的规律。

所以, 近年来流固耦合分析在工程设计特别是虚拟设计和仿真 中的应用越来越广泛和深入。

1流固耦合分析基础ANSYS 流固耦合分析与工程实例2 图 1­1 显示了流固耦合分析在产品虚拟设计中的层次以及与各学科之间的相互联系。

16基于ANSYSWorkbench的风力机流固耦合分析

16基于ANSYSWorkbench的风力机流固耦合分析

域: 一个是旋转域 , 另一个是静止域 。 旋转域表示与 风机一起旋转的有旋空气 , 其转速与风轮转速相同 。 静止域表示风机 周 围 的 空 气 , 其 速 度 即 为 风 速。 旋 转域用内部挖去风 机 形 状 的 圆 柱 来 表 示 , 圆柱内部 挖去的型腔为 风 机 的 外 形 。 静 止 域 用 长 方 体 表 示 , 内部挖去旋转域 , 见图 1。 ) 从风场的流速图 ( 图3 可以直 观 地 看 出 风 场 的 在叶尖处最大 , 叶根处 流速从叶根到叶尖逐渐增加 , 最小 。
限元分析能为叶片 的 优 化 设 计 、 改型及研发提供直 观准确的数据信息 。 随着 C 叶片的流固耦合可 A E 软件技术的发展 , 以在 A N S Y S W o r k b e n c h 中实现 。 最新的 W o r k b e n c h 利用该功能可 1 2 在工程页 引 入 了 工 程 图 解 的 概 念 , 以将一个复杂的包含多场分析的物理问题 , 通过系统 间的连接实现其相关性 。 这种全新的界面使得用户 与软件的交互更加方便 , 操作更 加 简 单 。 同 时 , A N -
对固体风机叶片进行模态分析进入模态分析数据传递对固体风机进行结构静力分析抑制风场对固体风机进行网格划分进入staticstructure压力传递对风场进行cfd分析抑制风机部分对风场网格划分风机模型包括风场图2流固耦合分析流程fig2processoffluidsolidcouplinganalysis从风场的流速图图3可以直观地看出风场的流速从叶根到叶尖逐渐增加在叶尖处最大叶根处最小
: ; ; ;m K e w o r d s w i n d t u r b i n e b l a d e f i n i t e e l e m e n t f l u i d s o l i d c o u l i n a n a l s i s o d a l a n a l s i s - p g y y y 它的设 叶片是风力发 电 机 组 的 关 键 部 件 之 一 , 计直接影响到风 能 的 利 用 效 率 。 因 此 , 对于叶片的 气动外形设计显得尤为重要 。 对叶片及流场进行有

基于LS-DYNA及FLUENT的板壳结构流固耦合分析【精选】

基于LS-DYNA及FLUENT的板壳结构流固耦合分析【精选】

基于LS-DYNA及FLUENT的板壳结构流固耦合分析本文采用ANSYS显示动力分析模块LS-DYNA及流场分析模块FLUENT,对水下的板壳结构运动及其界面的流固耦合现象进行了仿真分析。

流场计算得到的界面压强数据以外载荷的形式施加于结构表面,使其产生位移及变形;同时,结构的变化又进一步影响了流场的分布。

通过往复的双向耦合迭代,得到了板壳结构的动力学响应以及流场的分布情况。

仿真结果与试验结果的对比表明,此方法适用于解决兼有大位移及较大变形特征的流- 固耦合问题。

1 前言在自然界中,流-固耦合现象广泛存在于航空、航天、汽车、水利、石油、化工、海洋以及生物等领域。

很多实际问题中流体载荷对于结构的影响不可忽略;同时,结构的位移和变形也会对流场的分布产生重要影响。

例如各种水下运动机构都需要考虑这种现象。

板壳是基本的结构单元,研究其与流体相互作用的过程的仿真方法对水下结构的设计具有一定的指导意义。

文献利用ANSYS/LS-DYNA对板壳结构在水下爆炸冲击载荷作用下的动力学响应进行了仿真分析和试验研究,文献对窄流道中柔性单板流致振动引起的流-固耦合问题进行了数值模拟,但以上文献所进行的分析均为板壳结构处于约束状态下的平衡位置附近的振动耦合分析。

利用ANSYS静力学分析模块以及CFX或FLUENT等流体分析模块对有固定约束条件的板壳结构进行流-固耦合分析的实例已经很多,ANSYS Workbench中也有这方面的耦合实例。

但是对于流体冲击引起结构的大位移以及较大变形的动力学分析目前还不完善,有待进一步的研究。

因此本文应用大型通用有限元分析软件ANSYS13.0中的显示动力分析模块LS-DYNA以及流体分析模块FLUENT,对受流体冲击作用下兼有大位移及较大变形的板壳结构的流-固耦合作用进行了仿真分析。

2 有限元分析2.1 问题描述本文针对板壳结构受流体冲击载荷作用下的动力学响应进行分析,主要研究板壳结构的运动时间历程、应力分布规律以及对流场分布的影响。

ansys应用-流固耦合

ansys应用-流固耦合
具体步骤:
1. 打开 AWB,由于要做 FSI 双向流固耦合,所以先在框架中建立瞬态结构场, 如图 3 所示:(如果是单向流固耦合,可以直接使用 FSI 模块,丌过里面的结 构场是稳态结构场)
图3 2. 在 setup 处单击鼠标右键,弹出如图 4 的对话框,本例中按照图 2 选择,添
加流体计算的 CFX 部分:
1、Design Simulation 中定义好结构分析中的材料、网格、约束及流体边界。 2、写出 INP 格式的 ANSYS 结构文件。 3、CFX 中在 Simulation Type 中设置好 External Solver Coupling 为 ANSYS MultiField,并将第 2 步中写出的 INP 格式的 ANSYS 结构文件选中设为 ANSYS 文件。
图1 b.利用 ANSYS 中的 Read input from 命令读入结果载荷。
二 、 实 现 双 向 流 固 耦 合 的 方 法 主 要 有 三 种 : CFX+Design Simulation(AWB) 、 CFX+ANSYS Classic 和 MFX+ANSYS Classic+CFX。 (1)、CFX+Design Simulation(AWB)方法流程:
(2)、CFX+ANSYS Classic 方法流程:
1、ANSYS Classic 中定义好结构分析中的材料、网格、约束及流体边界。 2、设置好 MFX 中的不 CFX 相联的系列条件,如载荷时间步及求解类型和步数 等等。 3、在 MFX 下的利用 write input 写出 ANSYS 的流固耦合文件(dat 格式)。 4、同方式一中的第 3 步,丌同就是将 CFX 中联结的 ANSYS 文件转为第 3 步写 出的 DAT 文件。 5、同方式一中的 4 至 6 步。注意的是 CFX 中的单位要不 ANSYS Classic 默认 的单位保持一致,ANSYS 不 CFX 中默认的耦合条件基本一样,只是在 CFX 中 默认为先求解 CFX,而 ANSYS 中默认为先求解 ANSYS,所以此处要注意保持 一致。

ansys流固耦合案例

ansys流固耦合案例

ansys流固耦合案例
1. Ansys流固耦合是一种将流体和固体结构相互耦合的分析方法,可以用于模拟和研究各种流体和固体结构的相互作用。

2. 在汽车工程中,Ansys流固耦合可以用于模拟汽车车身在行驶过程中的空气动力学特性,以及车身和悬挂系统之间的相互作用。

3. 在航空航天工程中,Ansys流固耦合可以用于模拟飞机机翼在高速飞行过程中的气动力特性,以及机翼和飞机结构之间的相互作用。

4. 在建筑工程中,Ansys流固耦合可以用于模拟建筑物在强风或地震等自然灾害下的响应,以及结构和周围环境之间的相互作用。

5. 在能源工程中,Ansys流固耦合可以用于模拟并优化风力发电机的风叶设计,以及风叶和发电机结构之间的相互作用。

6. 在生物医学工程中,Ansys流固耦合可以用于模拟人体血液在血管中的流动,以及血液和血管壁之间的相互作用。

7. 在石油工程中,Ansys流固耦合可以用于模拟油井中的油气流动,以及油井壁和地层之间的相互作用。

8. 在电子器件设计中,Ansys流固耦合可以用于模拟电路板上的散热问题,以及电路板和散热器之间的相互作用。

9. 在船舶工程中,Ansys流固耦合可以用于模拟船舶在水中的运动,以及船体和水流之间的相互作用。

10. 在化工工程中,Ansys流固耦合可以用于模拟化工设备中的流体流动,以及设备结构和流体之间的相互作用。

Ansys流固耦合在各个工程领域都有广泛的应用,可以用于模拟和
研究不同系统中流体和固体结构的相互作用。

这种分析方法可以帮助工程师更好地理解和优化系统的性能,提高工程设计的效率和可靠性。

ansysls-dyna流固耦合分析总结

ansysls-dyna流固耦合分析总结

ANSYS LS-DYNA流固耦合分析总结涉及的关键字有:1)单元算法的选择*SECTION_SOLID2)多物质单元定义*ALE_MULTI-MATERIAL_GROUP*ALE_REFERENCE_SYSTEM_GROUP*ALE_REFERENCE_SYSTEM_NODE*ALE_REFERENCE_SYSTEM_CURVE*ALE_REFERENCE_SYSTEM_SWITCH*SET_MULTI-MATERIAL_GROUP_LIST3)流固耦合定义*CONSTRAINED_LAGRANGE_IN_SOLID4)ALE算法选项控制*CONTROL_ALE5)流体材料定义*EOS_IDEAL_GAS*MAT_NULL(1)流固耦合的定义:(2)ALE算法选项控制(3)流体材料的定义材料的变形一般可分为2中类型:一种是变形中体积不变,一种是变形过程中体积发生变化。

因此应力张量可以分为两个部分:应力偏量和压力:对于任何材料,都可以用应力偏量与压力来描述它的应力张量。

在对流体材料处理的过程中,就需要同时使用两种方式来描述材料,用本构模型和状态方程来描述一种材料的特性:用本构模型来描述材料的偏应力,用状态方程EOS描述体积变形与压力间的关系。

3.1)在LS-DYNA中提供空材料模式*MAT_NULL用来描述具有流体行为的材料(如空气、水等)。

在材料模式本身提供本构模型来描述材料的偏应力(粘性应力),然后使用状态方程EOS来提供压力行为应力特性,这样就可同时提供材料整个的应力张量。

MU表示动力黏性系数,单位是Pa*s(压强*时间)3.2)对于每种状态方程,压力都可以表示为比体积与温度的函数方程:对于第一种状态方程:多线性状态方程,表示为:对于理想气体:对于理想气体,一般有初始压力,但在状态方程的参数中没有初始压力的输入项,需要将它转化为初始内能的输入,或者用P0=C0来输入。

初始内能的输入:水的多线性状态方程C1=2.2E6KPaC2=9.54E6KPaC3=1.457E7KPaC4=0.28C5=0.28水的GRUNEISEN状态方程单位: m kg s KMU——表示Dynamic viscosity coefficient u,单位是(Pa*s)C——单位是m/s,S1/S2与GAMAO表示比率,无单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS Workbench LS-DYNA流固耦合方法应用贮液容器(含塑料瓶)广泛应用于化工、食品包装、储运等领域。

由于容器(含塑料瓶)在运输和使用过程中常常会因为跌落或碰撞冲击导致破损而造成损失和污染,因此,研究贮液容器(含塑料瓶)在跌落碰撞过程中的力学行为,对认识容器(含塑料瓶)跌落碰撞损伤机理,优化容器(含塑料瓶)结构,提高其安全性和使用价值意义重大。


贮液容器的跌落是一个典型的流固耦合问题,可采用LS-DYNA的ALE算法(任意拉格朗日欧拉算法)进行模拟。

下面以一个封闭的装水水箱为例,介绍ANSYS Workbench LS-DYNA 分析此类型跌落问题的方法和步骤:
1.建立几何模型
调用ANSYS Workbench中的LS-DYNA模块,如图1所示。

然后使用ANSYS的CAD工具DesignModeler建立几何模型,如图2所示。

图1 调用Workbench LS-DYNA图2 DesignModeler中建立几何模型
2.生成K文件
双击进入“Model”后,对模型进行网格划分、边界条件设置、速度设置和分析设置,如图3所示。

设置完成后点击“solve”求解,生成K文件,如图4所示。

图3调用Workbench LS-DYNA图4DesignModeler中建立几何模型
3.编辑K文件
通过Workbench LS-DYNA生成的K文件中关键字是不够完善的,并不能直接递交LS-DYNA求解器进行求解。

K文件中所欠缺的一些关键字,在流固耦合分析中是必不可少的,如空材料的定义、跟随坐标系的定义、空白域的定义以及状态方程的定义等。

3.1重要关键字释义
(1)LS-DYNA程序提供了运动的多物质ALE网格,可以方便地为多物质ALE算法定义跟随坐标系
*ALE_REFERENCE_SYSTEM_NODE
*ALE_REFERENCE_SYSTEM_GROUP
(2)定义空材料和状态方程的关键字
*MAT_NULL*EOS
(3)初始化空白域的关键字
*INITIAL_VOID_PART
(4)结构和流体之间耦合的关键字
*CONSTRAINED_LAGRANGE_IN_SOLID
(5)单元算法定义(单点积分的单物质加空白材料)的关键字
*SECTION_SOLID_ALE ELF0RM=12
(6)在重力作用下产生下落的关键字
*LOAD_BODY
……
3.2关键字编辑方法
关键字的编辑或修改一般有两种方法,一种是直接在ls-prepost中对关键字进行编辑设置,如图5所示;另一种是在文本编辑器UltraEdit中对关键字进行编辑或修改,如图6所示。

当然也可以使用TEXT文本编辑器来编辑K文件,不过TEXT在此方面的专业性不及UltraEdit,尤其对于较大的K文件,使用TEXT打开将会很慢。

图5 ls-prepost中编辑关键字图6UltraEdit中编辑关键字
3.3关键字检查
关键字编辑完成后,很难确保所有关键字编写无误,若直接递交LS-DYNA求解器求解,计算一段时间后可能会报错。

这样往往会浪费我们的时间,可以在求解之前先对关键字进行检查,有针对性的将错误提前排除掉,具体检查方法如图7所示。

图中提示关键字LOAD存在错误,对LOAD进行重点查看,错误排查后如图8所示,然后再提交至LS-DYNA求解器计
算。

图7关键字错误检查图8 关键错误排查
4.后处理查看结果
在ls-prepost中查看计算结果,可将计算得到的d3plot文件直接拖入至ls-prepost,勾选“Assembly and Select Part”中的“Fluid(Ale)”,便可查看装水水箱整个跌落过程中液体水的流动情况,如图9所示。

图9 后处理结果查看。

相关文档
最新文档