浅谈新型干法熟料生产线的烧成系统

合集下载

熟料在烧成系统中的形成过程

熟料在烧成系统中的形成过程

1、干燥带温度范围:生料温度~450℃。

主要任务:①物料升温至450℃②物理水蒸发(生料进入窑系统后,大约在超过烟气的露点后75~150℃其间水分蒸发)。

该反应在C2-C1上升烟道及C1筒和C3-C2上升烟道完成。

2、预热带温度范围450℃~700℃。

主要任务:①物料升温至700℃②化合水脱水(粘土质原料)。

脱水反应在C3-C2、C2、C4-C3内进行,温度继续上升至700℃。

3、碳酸盐分解带主要承担MgCO3和CaCO3的分解任务,是吸热反应。

碳酸盐在C4已有少量分解,主要分解反应发生在分解炉中,在C5也有少量分解反应发生,出C5筒的物料碳酸盐表观分解率达90%以上,其余部分的分解反应在回转窑内进行,入窑物料温度升至850℃左右。

4、放热反应带(亦称过渡带)主要承担固相反应,生成C2S、C3A、C4AF,以上三种反应生成的热量可使物料温度上升200℃,放热反应在分解炉内、C5筒就有少量发生,大量反应是在进入回转窑内进行的。

5、烧成带主要承担熟料中最主要的矿物C3S的形成和f-CaO的吸收,完成熟料的最后烧成任务。

该带在回转窑内温度最高的部位,在正常的配料范围内,物料在1280℃时就开始出现液相,在1350~1450℃时液相量可达20%多(与配料有关)C2S和CaO先是溶于液相中,在液相中反应结合为C3S结晶析出,倒出地方使其他的C2S和CaO溶于液相,再结晶析出,这样使C3S大量形成,使f-CaO逐渐被C2S吸收。

窑内温度越高,液相粘度越低,C3S形成越快,f-CaO被吸收的越彻底,直至f-CaO逐渐被C2S吸收。

由此可见,影响f-CaO的因素:⑴窑内煅烧温度越高,f-CaO吸收越快,f-CaO被吸收的越彻底,直至f-CaO最后被基本吸收(﹤1.5%)⑵配料中液相量越高(L)液相粘度越低,石灰石吸收越快;饱和比越低,石灰石吸收越快,但对熟料质量有影响,因此要兼顾熟料质量和煅烧能力达到最佳平衡点。

新型干法水泥回转窑系统

新型干法水泥回转窑系统

新型干法水泥回转窑系统1. 引言干法水泥生产是指在生产过程中不添加水分的一种水泥生产方法。

回转窑系统是干法水泥生产过程中的关键设备之一。

随着科技的不断进步,新型的干法水泥回转窑系统得到了广泛应用,带来了许多优势和创新。

本文将介绍新型干法水泥回转窑系统的构成、工作原理、优势以及应用范围,以帮助读者更好地了解和应用该系统。

2. 新型干法水泥回转窑系统的构成新型干法水泥回转窑系统由以下几个主要部分构成:2.1 窑体新型干法水泥回转窑系统的窑体采用高温耐火材料制作,能够耐受高温和化学腐蚀等恶劣条件。

窑体通常为圆筒形,具有一定的倾斜角度,倾斜角度的选择对于干法水泥生产的效果具有重要影响。

2.2 进料装置新型干法水泥回转窑系统的进料装置主要包括料斗和给料机构。

料斗用于储存原料,并通过给料机构将原料均匀地输送到回转窑系统中。

2.3 燃料装置新型干法水泥回转窑系统采用了先进的燃烧技术,能够利用多种不同的燃料,如煤炭、天然气或者油气。

燃料装置确保了系统的高效运行和能源利用率。

2.4 排出装置新型干法水泥回转窑系统的排出装置用于排出已经被煅烧和烧结的水泥熟料。

排出装置通常由滚筒、冷却器和排气系统组成。

2.5 辅助设备新型干法水泥回转窑系统还配备了一些辅助设备,如预热器、除尘设备等。

这些设备可以提高系统的热能利用率和环境保护效果。

3. 新型干法水泥回转窑系统的工作原理新型干法水泥回转窑系统的工作原理是将原料从进料口导入窑体中,通过窑体的旋转和倾斜,使原料逐渐移动向出料口的方向。

在这个过程中,燃料通过燃烧装置进行燃烧,释放热能,使窑体内部的温度升高。

原料在窑体中被加热和煅烧,逐渐形成水泥熟料。

随着窑体的旋转,熟料在窑体内部不断地翻动和混合,使得熟料能够充分烧结。

熟料最终通过排出装置排出,并经过冷却器进行冷却,然后进一步处理和细磨,最终得到水泥产品。

4. 新型干法水泥回转窑系统的优势新型干法水泥回转窑系统相比传统干法水泥回转窑系统具有以下几个优势:4.1 高效能新型干法水泥回转窑系统采用先进的燃烧技术和热交换设备,能够提供更高的热能利用效率,达到更高的生产能力。

新型节能环保水泥熟料烧成技术的研发及应用(上)

新型节能环保水泥熟料烧成技术的研发及应用(上)
施。
解 系 统 的旋 风 筒 、 接 管 道 、 连 分解 炉 、 回转 窑 、 冷却 机 和 燃 烧 装 置 的合 理 匹 配 与 生 产 操 作 , 的 来 说 , 成 能 力 总 烧
应 与 预 烧 能 力 相 适 应 。预 分 解 技 术 的 发 展 进 步 为 回转 窑 中物 料 的 煅 烧 提 供 了 很 好 的 预烧 条 件 , 型 高 效 篦 冷 新 机 及 大 推 力燃 烧 器 的 应用 保 证 了 回转 窑 中熟 料 的烧 成 。 长 径 比 LD< 25的 两 档 支 撑 回 转 窑 , 度 大 幅 减 / 1. 长 小 , 应 其 表 面 积 大 幅 降低 , 同样 表 明温 度 的情 况 下 , 相 在
程 全 部 在 窑 内进 行 , 预 分 解 窑 生料 的预 热 和 大 部 分 物 而
系 , 代 的 预 分 解 系统 基 本 可 以保 证 人 窑 物 料 分 解率 达 现 9 % 以上 , 此 分 解带 的 长度 1 2 5 因 ~ D足 够 , 于 冷 却带 在 至
现 代 预 分 解 窑 中 几 乎 可 以忽 略 , 因此 预 分 解 窑 的 长 径 比
带 是将 物 料继 续 升温 至 1 0 ℃及 发 生 一 系 列 同相 反 应 , 30
文 献 等 也 进 行 了论 述 , 为 预 分 解 窑过 渡 带 应 为 1 ~ 认 . 8
25 分 解 带 的 长 度 与 人 窑 物 料 的 分 解 率 有 很 大 的 关 .D;
众 所 周 知 , 法 窑 、 法 中空 窑 等 水 泥 熟 料 煅 烧 过 湿 干

料 I 【 = 上
nd
(I)
l 概 述

挥 , 的规 格 得 以缩 小 。 随 着 预 分 解 技 术 的 发 展 , 的 窑 窑

第二节新型干法窑系统中预烧过程和设备

第二节新型干法窑系统中预烧过程和设备

设置撒料装置是有利的。

预热器

回转窑 窑气
生料
Ⅱ Ⅳ
上长管道中的分散装置
下 料溜子
下料管管道分散装置源自闪动阀NC单板阀结构
锁风阀的作用及要求
主要作用是保持下料均匀畅通,又起密封作用,动作 必须灵活自如。要求:
⑴、阀体必须坚固、耐热,避免过热引起变形损坏; ⑵、阀板摆动轻巧灵活,重锤易于调整,既要避免阀
根据理论分析与计算还表明:
预热器废气温度随级数n的增加而降低,即回收 热效率有所提高。但它们之间不是线性关系,而是随 着n值增大、废气温度的降低趋势不断减小。也可以 说,级数愈多,平均每级所能回收的热量趋于减少。 反过来说物料预热升温曲线趋于平缓。
从理论上来讲,级数愈多,愈趋于可逆过程,能 量品位熵的损失愈小,愈合理。
影响旋风预热器预热效率的因素
因素之一:粉料在管道中的悬浮
保证悬浮效果的几项措施: (1)选择合理的喂料位置:
一般情况下,喂料点距出风管起始端应 有大于1m多的距离,此距离还与来料落差、 来料均匀程度、内筒插入深度以及管内气体 的流速有关。
(2)选择适当的管道风速
一般要求粉料悬浮区内的风 速在10—25m/s之间,通常要求大 于15m/s以上
C.气固分离
旋风预热器中气流所承载的粉体粒径很细,因此气 体流动状态对尘粒的运动起着决定性作用,对所能分离 的粉粒数量和大小有很大影响。
研究旋风预热器中气固分离问题,应着眼于气体流 动的流型、速度和压力分布等特征,给分析认识分离作 用提供依据。
其他因素如尘粒间的碰撞、凝聚、粘附和静电效应 均会对分离作用产生影响。
板开闭动作过大,又要防止物流发生脉冲,做到下料 均匀; ⑶、阀体具有良好的气密性,杜绝漏风; ⑷、支撑阀板的轴承要密封完好,防止灰尘掺入; ⑸、阀体各部件易于检修更换。

日产6000吨新型干法水泥熟料生产线水泥粉磨车间工艺设计

日产6000吨新型干法水泥熟料生产线水泥粉磨车间工艺设计

日产6000吨新型干法水泥熟料生产线水泥粉磨车间工艺设计一、前置工序1. 原材料处理2. 破碎、混合及研磨3. 烧成及制粉二、水泥生产工艺1. 干法水泥熟料生产线工艺流程1.1 原材料预处理1.2 破碎、混合及研磨1.3 熟料生产2. 水泥粉磨车间工艺流程2.1 水泥粉磨系统概述2.2 储存与输送系统概述2.3 粉磨系统概述三、干法水泥熟料生产线工艺流程1. 原材料预处理原材料预处理主要包括:原材料的贮存、输送和称量。

原材料主要有:石灰岩、黏土、铁粉等。

这些原材料需经过称量后,按比例混合,形成均匀的混合物。

2. 破碎、混合及研磨经过预处理的原材料进入制备系统,进行初步的粉碎和混合。

然后将初步制备好的物料送入球磨机中进行细磨,形成粉末状的原料。

3. 熟料生产将细磨后的原料送入旋转窑中进行烧成,形成熟料。

在旋转窑中,原料经过高温下的化学反应,形成新的化合物。

经过冷却后,得到烧成好的熟料。

四、水泥粉磨车间工艺流程1. 水泥粉磨系统概述水泥粉磨系统主要由一台立式辊压机、一台球磨机、一台高效分级器和相关输送设备组成。

立式辊压机用于初步粉碎和干式分类,球磨机用于细碎和混合。

2. 储存与输送系统概述水泥生产完成后,需要进行储存和输送。

储存设备包括水泥仓、自动配料仓等。

输送设备包括皮带输送机、斗式提升机等。

3. 粉磨系统概述经过储存和输送后的水泥进入球磨机中进行细碎和混合。

然后通过高效分级器进行分类,并将符合要求的产品送入储存设备中。

五、工艺优点1. 干法水泥熟料生产线采用先进的工艺,能够提高生产效率和产品质量。

2. 水泥粉磨车间采用立式辊压机和球磨机相结合的工艺,能够提高水泥的细度和均匀度。

3. 储存与输送系统采用自动化控制,能够提高生产效率和产品质量。

六、总结以上是日产6000吨新型干法水泥熟料生产线水泥粉磨车间的工艺设计。

该工艺采用先进的设备和自动化控制技术,能够提高生产效率和产品质量,满足市场需求。

日产5000吨水泥熟料新型干法生产线烧成系统窑头工艺设计

日产5000吨水泥熟料新型干法生产线烧成系统窑头工艺设计
第三代篦冷机由于采用“阻力篦板”,相对减小了因熟料料层阻力变化而对熟料冷却的影响;采用“空气梁”,热端篦床实现了每块或每个小区篦板,根据篦上阻力变化调整冷却风量;同时,采用高压风机鼓风,减少冷却空气量,增大气固相对速率及接触面积,从而使换热效率大为提高。此外,由于阻力篦板在结构、材质上的优化设计,提高了使用寿命和运转率。鉴于“阻力篦板”虽然解决了由于熟料料层分布不匀造成的诸多问题,但是由于其阻力大,动力消耗高,因此新一代篦冷机又向“控制流”方向发展。在取消“阻力篦板”后,采用空气梁分块或分小区鼓风,根据篦上料层阻力自动调节冷却风压和风量,实现气固之间的高效、快速换热。
关键词:物料平衡、新型干法生产、篦冷机、电收尘、
ABSTRACT
This designisone 5000tons of cementclinkerproductionlines burningdrykilnsystem ofsome ofthe design.In order todesign morereasonable and perfect,I revieweda lot of information, andcombined with the currentdaily output of5,000 tons ofcement clinkerproduction line ofnew drykilnsystempractical examplesto makehis owndesign results.But has very many Shortcoming existence, therefore looks forgiveness. Under I introduce my design mentality. 1.Kiln choice:in the selection process of Kiln, Icalculate thetheoretical formulausedkiln, and I alsofindthe actualmanufacturerof thesituation, finally, Isetmycombination;2.Mass balance computation:According to the empirical formula(limestone saturation coefficient, silicic acid rate, alumina rate)calculates, obtains the appropriate rate value.Determinethe finalratio of raw materials;3.Material balancecalculationsbased on previousresults, combined withtheoretical formulaand the application ofselectedmodelsderivedinstance;4.Appurtenance shaping: The appurtenance includes,Clinkercrusher,clinkerzippermachines,centrifugal fans,pulverized coal burner.The equipment although is small, but in the production process also is essential.

日产5000吨水泥熟料新型干法生产线烧成系统窑头工艺设计

日产5000吨水泥熟料新型干法生产线烧成系统窑头工艺设计

日产5000吨水泥熟料新型干法生产线烧成系统窑头工艺设计随着水泥工业的迅速发展,对于熟料烧成系统的要求也越来越高。

本文将对一条日产5000吨水泥熟料新型干法生产线的烧成系统窑头工艺进行设计和论述。

一、烧成系统窑头工艺设计的目标1.提高熟料的质量,降低生产成本。

2.提高能源利用率,降低生产过程中的排放。

3.确保炉内稳定的温度和氧气含量,保证燃烧效果。

4.保证炉内较低的CO浓度,防止炉内积炭。

5.确保炉内无积存物,使得生产线连续稳定运行。

二、烧成系统窑头工艺设计的主要控制参数1.窑头布置:合理布置窑头,使得煤气流线畅通,有利于煤气的燃烧和炉内温度的均匀分布。

2.煤粉喷淋:采用喷淋煤粉的方式,将煤粉均匀喷入窑头区域,确保燃烧稳定,控制煤粉的喷射量和角度,以达到最佳燃烧效果。

3.进料量控制:通过控制进料量,保持炉内熟料层的稳定,并控制窑头区域的温度分布。

4.喷注位置和方式:合理设置喷注位置,使得燃料和空气能够充分混合,燃烧更充分。

确保炉内氧气浓度达到规定要求,提高熟料的烧结质量。

三、烧成系统窑头工艺设计的具体内容1.窑头布置合理设置窑头区域的布置,使得煤气在该区域内流线畅通,有利于煤气的燃烧和炉内温度的均匀分布。

窑头区域应尽量避免死角和室外风向相对应的通风口。

2.煤粉喷淋采用喷淋煤粉的方式,将煤粉均匀喷入窑头区域,使得燃烧更加均匀稳定。

喷淋方式可以采用多角度喷淋或者环形喷淋,根据窑头区域的具体设计来决定。

3.进料量控制通过控制进料量,保持炉内熟料层的稳定,并控制窑头区域的温度分布。

进料量可以通过控制进料设备的运行速度和进料口的开启程度来实现。

4.喷注位置和方式根据窑头区域的特点和煤粉的喷射角度,合理设置喷注位置,使得燃料和空气能够充分混合,燃烧更加充分。

喷射方式可以采用立喷、横喷或者斜喷等方式。

5.空气供给浓度达到规定要求。

炉内的氧气浓度可以通过调节空气进口阀门的开启程度来实现。

四、总结通过对日产5000吨水泥熟料新型干法生产线的烧成系统窑头工艺设计的详细论述,我们可以看到,合理布置窑头、控制煤粉喷淋、控制进料量、合理设置喷注位置和方式,以及调节空气供给量等因素,对于烧成系统的燃烧效果、熟料质量和生产成本具有重要影响。

硫铝酸盐水泥熟料生产技术

硫铝酸盐水泥熟料生产技术

新型干法硫铝酸盐水泥熟料生产技术一、概述硫铝酸盐水泥是我国自主研发的一种特种水泥,是我国四大特种水泥品种之一。

广泛应用在GRC制品、自应力水泥压力管、普通排水管,以及冬季施工、抗渗堵漏、抢修抢建等特殊工程等方面。

目前硫铝酸盐水泥主要采用小型干法中空窑、立筒预热器窑、悬浮预热器窑等比较落后的工艺进行生产,日产量不超过600吨,虽然能够获得较高质量的熟料,但热耗普遍较高,熟料的标准煤耗高达160-200kg/吨熟料。

近年来国内一些企业开始尝试利用新型干法预分解窑技术煅烧硫铝酸盐水泥熟料,并取得了进展,但是生产规模仍然很小,最大设计能力只有日产1000吨,由于在技术细节方面存在许多缺陷,实际运行时最大的能力只有日产800吨。

而且这些利用预分解窑生产的企业目前普遍存在分解炉塌料、熟料游离钙高、熟料质量不稳定等问题。

我公司长期从事新型干法预分解窑熟料煅烧技术的研究和设计,经过广泛的实际生产调研,发现硫铝酸盐水泥熟料和普通硅酸盐水泥熟料在烧成机理上并没有太大的差别,利用我们已经掌握的普通硅酸盐水泥新型干法生产技术,经过适当的工艺参数调整和特殊设计,完全能够生产高质量的硫铝酸盐水泥熟料。

二、技术特点1、生料制备采用立磨粉磨系统制备生料。

硫铝酸盐水泥原料主要是石灰石、铝矾土和石膏三种材料,和普通硅酸盐水泥生料的易磨性能基本相当,立磨系统烘干能力强的特点,对于铝矾土、脱硫石膏等含有一定水分的硫铝酸盐水泥原料的烘干具有良好的适应性。

2、熟料烧成系统烧成窑尾采用单系列五级旋风预热器和TTF分解炉。

针对硫铝酸盐水泥熟料形成时产生的废气量明显小于普通硅酸水泥的特点,分解炉容积和截面面积有针对性的调整,确保分解炉内气体流速在适宜的范围,防止分解炉塌料的产生。

新型干法预分解窑尾其它一些先进的技术也可以采用到硫铝酸盐水泥熟料的生产技术中,比如C4料管分料、采用流态化风机等。

烧成窑头燃烧器采用新型双旋流煤粉燃烧器,送煤风内外均设置旋流风,强化了煤粉和高温二次风的混合,具有灵便快捷的火焰调节手段,可使火焰形状以及煅烧温度,满足硫铝酸盐熟料形成时液相量少、主要以固相反应为主的特殊要求。

新型干法回转窑烧成系统中控操作规程

新型干法回转窑烧成系统中控操作规程

新型干法回转窑烧成系统中控操作规程一、操作规范1.操作人员必须具备相关专业知识和操作技能,且经过系统培训并持证上岗。

2.操作人员必须严格按照操作规程操作,不得随意更改参数和操作流程。

3.操作人员必须定期进行操作技能培训和安全知识培训,保持相关知识的更新和学习。

二、启动与停止1.启动:(1)检查设备的各项安全防护装置是否齐全并有效,并进行测试。

(2)检查电气控制箱及配电柜的电源开关是否在断开状态,确认无问题后加电。

(3)按照启动流程步骤依次启动各设备,包括切换电源、设备控制开关等,确保设备正常运行。

2.停止:(1)按照停止流程进行停机操作,依次关闭各设备的电源开关,包括控制开关、电源开关等。

(2)确认设备停止运行后,关闭电气控制箱及配电柜的电源开关。

三、监控与调整(1)操作人员必须随时关注设备的运行状态和参数变化,及时发现问题并予以处理。

(2)通过中控系统监测设备的各项参数,包括温度、压力、流量等,确保设备运行正常。

2.调整:(1)如发现设备运行参数偏离预设范围,操作人员应及时进行调整,保持设备的稳定运行。

(2)对于需要调整的参数,操作人员应按照操作规程进行调整,并记录调整过程和结果。

四、维护与保养1.清洁:(1)定期对设备和控制系统进行清洁,包括清理灰尘、污物等,保持设备的良好状态。

(2)定期对设备进行润滑和检查,确保设备的动作灵活和无故障。

2.维护:(1)定期对设备进行维护和检修,包括更换耐磨件、检修电气设备等,保障设备的正常运行。

(2)如发现设备有故障或异常,操作人员应及时报告并进行处理,确保设备的安全运行。

五、安全与应急处理(1)操作人员必须穿戴符合要求的个人防护用品,严禁穿着宽松的衣物、长发等。

(2)操作人员必须按照相关安全规定进行操作,切勿违章操作或忽视安全。

2.应急处理:(1)如发生设备故障或其他安全事故,操作人员应立即采取应急措施,并及时报告上级领导。

(2)在应急情况下,必要时可以中止设备运行,并进行紧急维修,保障人员和设备的安全。

新型干法水泥第四节熟料烧成系统的调试

新型干法水泥第四节熟料烧成系统的调试

新型干法水泥第四节熟料烧成系统的调试1.工艺流程及介绍1.1熟料烧成范围按现在计算机控制水平和集中控制操作习惯,熟料烧成系统范围包括:生料入窑喂料系统、喂煤系统、废气处理系统、熟料烧成窑尾、熟料烧成窑中和熟料冷却及熟料输送等部分。

1.1.1生料入窑喂料系统生料计量仓设有两套卸料装置,各配一套固态流量计,计量出仓生料量,其中一套备用。

生料计量仓由罗茨风机充气卸料,操作员给定生料喂料量,固态流量计按给定值控制仓下卸料阀的开度,使卸出量与给定值一致。

经生料计量仓卸出的生料,通过斜槽、提升机、预热器顶部的空气斜槽、回转下料器喂入预热器的C2级~C1级风管中。

1.1.2喂煤系统窑头、窑尾共用一个煤粉仓布置在煤粉制备车间内,仓下各有计量、输送设备。

煤粉仓卸煤粉入窑头煤粉计量转子秤,转子秤按给定值输出煤粉,煤粉气体输送至窑头喷煤管,输送空气由输送窑头煤粉的罗茨风机提供。

煤粉仓卸煤粉入窑尾煤粉计量转子秤,转子秤按给定值输出煤粉,煤粉气体输送至窑尾,经两路分配阀分两路入分解炉喷煤管,输送空气由输送窑尾煤粉的罗茨风机提供。

1.13熟料烧成窑尾、窑中、熟料冷却及熟料输送系统预热器有单系列五级旋风预热器和喷腾型分解炉构成,生料在C2级~C1级的风管处进入预热器。

生料自上而下与热气体悬浮换热升温,。

入分解炉后,由C5级收集,经窑尾烟室喂入回转窑。

入窑物料经回转窑高温煅烧,发生固液相反应,形成高温熟料,高温熟料出窑入篦式冷却机冷却。

回转窑内煤粉燃烧后,生成高温废气经烟室从分解炉底部入炉。

在分解炉内,煤粉、三次风、预热后的生料及回转窑的高温废气,通过喷腾,实现气料成分混合,完成燃烧、分解。

分解炉排出的气料,在C5级内气料分离,物料入窑,废气经各级旋风筒,自下而上与生料悬浮换热降温,最后从C1级排出,窑尾高温风机将废气送入废气处理系统。

熟料在篦冷机内与鼓入的冷空气进行热交换,排出的高温热空气一部分作为二次风入窑供煤粉燃烧,另一部分作为三次风经三次风管入分解炉。

水泥熟料生产线熟料煅烧的基本知识

水泥熟料生产线熟料煅烧的基本知识

熟料生产线热工基础知识新型干法水泥回转窑系统概述水泥是一种细磨材料,它加入适量水后,成为塑性浆体,这种浆体是既能在空气中硬化,又能在水中硬化(硬化后要达到一定的强度),并能把砂、石等材料牢固地胶结在一起的而且具有其他一些性能的水硬性胶凝材料。

水泥生产要经过“二磨一烧”(即生料磨、水泥窑和水泥磨),其中,水泥窑系统是将水泥生料在高温下烧成为水泥熟料的热工设备,是水泥生产中一个极为重要的关键环节。

新型干法水泥回转窑系统是以悬浮预热技术和窑外分解技术为核心,以窑(或称:窑)为主导的水泥熟料烧成系统。

没有分解炉的新型干法水泥回转窑系统叫做窑,有分解炉的新型干法水泥回转窑系统叫做窑,在一些欧美国家也将窑称为窑,即预分解窑。

窑外分解窑的工作原理为:(分别从料、煤、风的角度论述)第一,生料粉从第级旋风筒和第级旋风筒之间的联接管道加入,加入的生料进入联接管道内后马上被分散在上升气流中,从而被携带到第级旋风筒(简称)内,在旋风筒内利用离心力的作用进行气固分离后,废气被排走,而生料粉被再一次加到和之间的联接管道内,然后再一次被携带到内进行气固分离。

这样依次类推,生料粉依次通过各级旋风筒及其联接管道。

生料粉每与上升的气流接触一次,就经过一次剧烈的热交换,从而生料粉被一次一次地预热升温,废气则被一次一次地冷却降温,从而达到回收废气余热来预热生料。

当生料达到一定温度,会发生一定程度的碳酸盐分解(小部分分解,因为废气的热焓不足以使其发生大量分解)。

出的预热生料进入分解炉,在分解炉内完成大部分碳酸钙的分解,分解反应所需热量来自于分解炉内的燃料燃烧。

分解后的生料与废气再一起进入内,经完成气固分离后,生料入回转窑内煅烧,再经过一系列物理化学反应后,最终烧成为水泥熟料。

出窑后熟料再经过冷却机冷却后被送到熟料库内。

熟料、石膏、混合材按一定比例在水泥磨内混合粉磨后就成为水泥。

第二,来自煤磨的煤粉被分成二部分,小部分煤粉(大约)被送到窑头喷入回转窑内燃烧,燃烧后产生的高温烟气供给回转窑内煅烧水泥熟料所用;大部分煤粉(大约)被气力输送到分解炉内燃烧,以供给预热生料中碳酸钙分解所需的大量热量。

对新型干法水泥窑合理操作的浅谈(周李镇毕业论文第二次)

对新型干法水泥窑合理操作的浅谈(周李镇毕业论文第二次)
若窑尾温度高,分解炉出口温度、鹅颈管温度高,三次风温C5进口温度高,窑尾O2含量低而混合室出口O2含量高,窑电流不起,窑尾喂煤量不易增加,造成窑炉煤比例失调,系统CO浓度上升等。严重时窑内火焰反火说明窑内用风量小,分解炉用风量大,此时应关小三次风阀开度,使分解炉风量减少,防止煤粉后燃,使混合室出口O2含量在2~3%。
a料变窑速变。 入窑生料波动大,当料于耐火窑内煅烧困难时,应适当减料,放慢窑速,以防止熟料欠烧甚至窜生料,当料易烧,窑内熟料结粒粗大,窑前发亮,窑电流升高时,应及时加料将窑速提起,特别应注意加料时要首先提窑速,才能保证系统热工稳定,保持窑内适当的物料填充率。
b薄料快转。在正常的生产情况下,应保持薄料快转,以增加物料的翻动频率,有利于热交换;同时降低窑内物料填充率,减少窑内通风阻力,有利于煤粉完全燃烧,减少窑尾烟室缩口结皮。
毕业论文
对新型干法水泥窑合理操作的浅谈
摘要:新型干法水泥生产中,窑外预分解窑系统的生产正常与优化烧成系统的操作、强化系统的工艺管理有关,影响热工制度的可变因素较多,系统操作要有预见性,前后兼顾,熟悉并了解设计中所设置的操作控制手段的目的和意义,针对生产中出现的问题及时、正确地去调节,从而使整个系统尽快恢复正常,达到优质、高产、低耗的目的。中材萍乡水泥有限公司现拥有Ф4*60m带五级预分解系统日产2500吨熟料及Ф4.8*72m带五级双系列预分解系统日产4500吨熟料的新型干法生产线二条,本文针对中材萍乡水泥有限公司预分解窑生产过程中出现的典型异常情况进行了合理操作处理,并提出一些体会。
关键词:预分解窑、工艺管理、喷煤管、操作处理
绪论ﻩ
1.系统用风ﻩ3
2.煤的比例ﻩ4
5、风、煤、料和窑速的兼顾调整ﻩ5
二、优化烧成系统操作5

烧成系统的组成环节

烧成系统的组成环节

烧成系统的组成环节回转窑对生料连续加热,使其经过一系列物理化学反应变成熟料。

整个熟料生产过程可以分为以下四个阶段:①干燥、预热。

生料经卸料、计量系统,再经气力输送和高效斗提机喂入五级旋风筒预热器,由热风进行干燥、加热到一定温度。

②分解。

经干燥预热后的物料进入分解炉,从冷却机抽来的热风送入分解炉旋涡室,使物料进一步升温,完成分解。

③煅烧。

经预热器、分解炉后大体完成了碳酸盐分解的物料进入水泥回转窑进行煅烧。

④冷却。

煅烧后的熟料进入窑头蓖冷机系统进行熟料冷却,再经盘式输送机输送到熟料储库。

来自窑尾提升机的生料经双道电动锁风阀后喂入预分解系统的2#旋风筒上升管道,依次经1#—5#旋风筒、分解炉换热、升温及分解等过程使生料入窑表观分解率达到90%以上。

经预热分解的物料进入φ4.0×60m回转窑煅烧。

出1#旋风筒的废气(~3200C),大部分进入生料立式磨系统作为烘干介质,另一部分经多管冷却器冷却后进入袋收尘器前汇风室与出生料磨废气汇合后进袋收尘器净化排放。

出窑熟料落入控制流篦冷机冷却,熟料通过篦板的往复运动进入冷却机尾部破碎机,经破碎同拉链输送机来的物料一起由链斗输送机送入φ50m的熟料储存库,储存库储量25000吨,储期12.5d。

篦冷机冷却熟料后的热空气部分作为二次风入窑和作为三次风送入分解炉,部分供煤磨烘干原煤用,多余的废气经窑头袋收尘器净化处理后排放大气。

在回转窑生产工艺中,生料从窑尾进料,进窑的生料在回转窑不停旋转的运动状态下,随着窑体的旋转不断地翻转滚动。

由于窑尾高于窑头,生料同时也不停地向窑头移动,最后从窑头出料。

生料在窑内的温度也逐渐升高,发生了复杂的物理化学变化。

由于窑的转动,窑内在各个断面上的温度基本是一致的,所以在回转窑内,可以按物料的温度和物理化学变化划分为干燥预热带、碳酸盐分解带、放热反应带、烧成带和冷却带。

燃料除供给热量外几乎与熟料煅烧反应无关。

①生料的烘干与脱水:硅酸盐水泥主要原料是石灰石和粘土,而粘土等的主要矿物是各种水化硅酸铝,通常为高岭土(AI2O3·SiO2·2H2O)或蒙脱石(AI2O3·4SiO2·9H2O)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈新型干法熟料生产线的烧成系统最佳操作水平及实现途径石云生(唐山耀东水泥公司河北滦南063500)一、工艺原则众所周知,水泥生料在较低温度下进入预热器系统,经过预热升温后,大约在800℃左右进行碳酸盐的分解,然后逐步开始熟料矿物的形成,直至1450℃左右完成熟料的烧成后,开始冷却。

由于这些物理、化学反应要求的温度、环境不同,需要的热量不同,因此要求水泥窑系统要有一定的热力分布制度。

这就是我们通常提到的窑系统的热工制度。

不同类型的窑系统热工制度不同,这是由于设计条件不同所造成的。

对于一个设计条件和生产条件已经定型的窑系统来说,其最佳的热工制度是大体固定的。

因此,对于一台窑来说,遵循窑系统的热力平衡分布规律,经常保持最佳的热工制度,就是窑系统技术人员的主要任务。

为了保证窑系统良好的燃烧条件和热传递条件,必须遵循一个水泥生产最基本的工艺原则,那就是“五稳保一稳”。

其中“五稳”指的是入窑生料的化学成分稳定、生料的喂料量稳定、燃料的成分稳定、燃料的喂料量稳定及设备的运转稳定,“一稳”即指窑系统最佳的稳定的热工制度。

水泥窑系统只有做到五稳保一稳,才能保证各技术参数、产质量指标经常处于最佳值,生产处于最佳状态,从而获得最佳的经济效益。

如果不尊重客观规律,忽视均衡稳定生产,盲目追求产量,就会人为地造成热工制度的紊乱,结果只能事与愿违、得不偿失。

尤其对于预分解窑,在分解炉内生料与高温气体的传热迅速。

由于窑速的大幅提高,物料在窑系统内的停留时间短,化学反应快,对热工制度的波动更加敏感。

当热工制度不稳时,轻者造成温度、压力的大幅波动,重者直接导致预热器系统的粘结堵塞。

因此,重点强调“均衡稳定”是新型干法工艺最基本、最重要的操作原则,生产过程中需要操作人员运用各种调节手段及时适当的调整,恢复保持或达到新条件下的新的“均衡稳定”。

我们采用的众多新技术,如原料预均化、生料均化、X荧光分析仪、自动控制回路等都是为了达到“均衡稳定”的目的。

二、“五稳保一稳”的实现途径1、生料成分的稳定原料预均化的“平铺直取法”要保证足够的堆料层数,堆料层数越多,取料时同时切取的层数越多,混合均匀性越好,出料成分越均匀。

对于矿石开采时一定要注意各品位矿石的合理搭配,尤其是对于夹层及低品位原料时,一定要均匀搭配,避免出现进料成分波动远离正态分布曲线的情况,否则原料沿纵向布料时也产生周期性波动,从而增大出料的标准偏差。

一定要保证足够的库存,杜绝定点布料,使预均化堆场发挥最佳的使用效果。

目前使用的连续式均化库,通常库底采用六通道出料的方式,按时间或压力模式循环出料,不少企业由于空气斜槽管道安装问题、试生产阶段生料及增湿塔回灰水分控制不当等原因,导致出料口堵塞,使真正的出料通道仅剩两组甚至一组,均化库均化效果无法保证。

如果此问题不受重视或处理难度大,认为有生料出库就可以,均化库就失去了均化的意义,只能作为缓冲库使用。

2、生料喂料量的稳定目前预分解窑生产线生料入窑系统通常采用库底出料至生料小仓由斜槽经计量秤送至提升机入窑。

生料小仓的稳定仓位对生料喂料量的波动影响很大,生料小仓上下两道出料阀门必须选用调节灵活、性能可靠的气动或电动阀门,用自动控制回路控制,达到仓重控制K±1t,从而稳定入窑生料量。

有些企业此处控制不甚理想或干脆用人工手动控制,由此造成的热工制度波动对产质量造成的损失、对热耗的增加细算一笔账会发现远远超过对自动化仪表阀门的投资。

3、煤质的稳定煤质的稳定包括煤的细度、煤的热值的稳定。

目前煤价节节攀升,燃料成本在熟料成本中所占比例越来越高。

如何选择性价比最高、最适合本厂窑使用的燃煤尤为关键。

通过多年的实践,我们认为在入窑煤粉干基热值在5600大卡左右(挥发份高于20%的烟煤)时,窑系统产质量及能耗达到最佳状态。

俗语:“好煤烧好料”。

如果热值低于此数值,窑系统产质量达不到较高水平,熟料强度也受影响,窑况不易控制。

由此折算的标准煤耗高于上述值。

反之,如果热值过高,产质量提高幅度不大,但煤耗不能降低,由煤价较高引起的燃料成本大幅攀升,熟料成本也只能水涨船高。

另外,煤质的稳定与生料成分的稳定同样重要。

煤的充分燃烧、稳定放热,才有条件优化工艺参数,延长烧成带窑衬的使用寿命。

达到生产的最佳状态。

4、喂煤量的稳定目前国产秤普遍存在下煤不稳定的情况,我公司使用的国产仿菲斯特转子秤主要从以下几个方面的改善途径:A煤粉水分不得高于4%,否则煤粉流动性差,下煤困难;B转子上间隙最大不超过0.4mm;C随着仓重的变化,煤粉的密实度不同,因此仓顶负压应稳定(可以设单独收尘器),来保证秤体的负压操作。

;D煤粉仓下料管与负压管连接处距秤顶应小于0.5m,来保证气流与料流各行其道,不互相干扰。

E罗茨风机的风量匹配很关键,必须保证进口空气滤清器的洁净情况。

通过调试,目前使用状况大有改观。

5、设备的安全稳定运行设备的安全运行主要考核指标就是设备的完好运转率,这里不再赘述。

三、对窑系统重点控制参数的理解1、对窑速的控制随着新型干法生产线的普及,我们已经达成共识,“薄料快转”使传热效率提高,热耗降低,有利于熟料煅烧均匀,质量提高。

但目前不少操作员仍然将窑速的调整作为改变窑内热工制度的主要手段,认为降低窑速可以延长物料在烧成带的停留时间,提高熟料质量,特别是窑温较低时,经常采取预打小慢车的方法来解决,实际上这正是传统回转窑与预分解窑的区别之处。

在预分解窑中,入窑分解率已经达到90%-95%,窑内承担的热负荷已经减轻,已经具备恒定高窑速的条件。

在预分解窑操作中对入窑生料量的调节效果要比调节窑速明显的多。

也只有使熟料快速烧成并快速通过高温带,才能得到晶体细小、发育不完全、晶体缺陷浓度大,但fCaO不高的熟料。

2、C1出口温度企业衡量热耗高低的宏观标准中有一项重要指标即为C1出口温度。

温度越低说明预热器带出热量降低,系统热交换效率高。

影响此参数的因素较多,如果存在以下几种情况造成C1出口温度偏低就不是真正意义上的热耗低的表现了。

A系统散热较多,C1筒在砌筑阶段做内保温时由于浇注料厚度较薄,锚固件尺寸小数量多,造成浇注料不易施工均匀,也难以提高施工速度,施工单位往往取消硅酸钙板(保温层)的粘贴,直接用浇注料代替,从而在投产后造成C1筒散热较多,造成C1出口温度低。

B系统内部结皮多,阻力大。

当系统运行一段时间后,旋风筒各水平连接管道及蜗壳处结皮较多,造成系统阻力加大,在实际用风量不变的情况下,中控操作参数显示C1出口负压高,温度较低,此时温度低是由于风量不足引起的,而非热耗低。

C系统漏风系统漏风不仅使热耗升高,而且严重浪费电能,须引起足够重视。

3、游离钙的控制熟料中游离钙含量只是水泥生产中的过程指标,而非最终指标。

少量存在的游离钙在熟料变成水泥过程中有一个消解过程。

因此,不必追求较低的游离钙含量及过高的合格率而采取提高热耗的方法实现,此时的熟料结粒粗大、缺乏活性,强度并不高且易磨性差。

另外对烧成带窑衬使用寿命形成威胁,因为耐火砖承受了较高的热负荷。

4、头尾煤的喂煤比例头尾煤的喂煤比例应遵循以下基本原则:A在通风合理的情况下,窑尾及出分解炉气体温度不宜高于正常控制值B窑尾及分解炉出口尽量避免CO的出现。

随着窑径的加大,系统生产能力的提高,窑头煤粉不完全燃烧情况通过各部位温度指示变得不易判断,建议在窑尾烟室配置气体分析仪。

通过氧含量、CO含量及NOx含量的测定为操作员及时提供准确数据,便于调整头尾煤比例。

一般来说窑头用煤量的增加的基本原则是在窑尾废气中有CO存在,在调整系统热工制度使其消失之前,不应增加窑头用煤量。

四、精细化管理1、努力降低系统漏风漏风问题相对于故障停车来讲要轻微一些,从技术角度考虑也容易做到,因此不容易引起技术人员的重视,它对烧成系统的危害主要有以下两点:A严重浪费能量(包括电能、热能)。

窑系统的运行属于高负压操作,漏入冷风后处理风量增加不但浪费电能而且需要将常温气体加热至与漏入部位同样的温度,从而使热耗大为增加。

B为系统内部频繁结皮创造了条件,造成漏风部位气流运动状态发生紊乱,成为影响热工制度的不稳定因素。

实际上如果把漏风问题当作重点来抓,从细节做起,努力将系统漏风将至最低,由此达到的节能降耗的效果远比对设备进行技改节能来的容易且成本低廉。

2、自动控制回路的正常运行自动控制回路正常运行的前提条件是A窑系统热工制度的基本稳定B现场的检测仪表足够先进、齐全、准确。

因此要重视自控回路的维护,还要根据具体状况确定自控回路的各项参数,不能不加分析照搬其它企业数据,否则会因为使用效果不好达不到节能降耗的目的,而放弃使用。

综上所述,通过技术人员与操作人员的密切配合及管理人员的重视必然能够挖掘设备潜能,达到优质高产节能降耗的目的。

参考文献:1、水泥新型干法生产精细操作与管理谢克平2006.122、新型干法技术总论陈全德。

相关文档
最新文档