高能束

合集下载

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用高能束焊接技术是一种在高强度能束的照射下,将材料进行加工和熔化的过程。

该技术已经得到广泛应用,特别是在航空航天、汽车制造等高端制造领域,成为了关键的加工和制造技术之一。

高能束焊接技术起源于20世纪60年代,经过多年的发展和改进,现已成为了一种成熟的先进焊接技术。

其中,激光束焊接和电子束焊接是两种最具代表性的高能束焊接技术。

激光束焊接是利用激光束对工件进行加热,并在加热后的工件表面上产生高温区域,从而使工件熔化并进行焊接的一种现代焊接技术。

激光束的热源集中性强,加热速度快、能量密度高,适用于对材料进行精密加工和高质量焊接的场合。

电子束焊接则是利用电子束的高速动能将工件加热并融化的过程。

由于电子束具有极高的焦耳效应和热效应,可以快速完成材料加工。

此外,电子束焊接的高度集中性可以实现高精度和高效率的焊接。

高能束焊接技术已经广泛应用于航空航天、汽车制造、电子元器件、冶金、机械制造等诸多领域,成为了现代工业的关键制造技术之一。

航空航天制造领域是高能束焊接技术的重要应用领域之一。

在航空航天领域,除了传统的金属材料之外,还涉及到大量的复合材料和高温合金材料的加工和焊接工艺。

激光束和电子束因其高精度、高效率的特性,在航空航天制造中得到了广泛的应用,大大提高了产品质量和生产效率。

汽车制造领域也是高能束焊接技术的典型应用领域之一。

在汽车制造中,传统的熔化焊接技术容易使焊点出现热裂纹、变形等缺陷,会直接影响汽车的安全性和质量。

而高能束焊接技术可以克服这些问题,提高焊接质量和生产效率。

电子元器件的制造和维修也是高能束焊接技术的应用领域之一。

利用激光束进行精密焊接,可以大幅提高电子产品的精度和可靠性。

同时,电子束焊接技术还可以实现电子产品的可靠修补和维护。

冶金和机械制造领域中的金属材料焊接也是高能束焊接技术的应用领域之一。

电子束焊接技术在冶金领域应用广泛,可以实现对大型件的高精度加工和焊接。

机械制造领域中,高能束焊接技术可以提高机械零部件的质量和使用寿命,为制造业的发展做出了重要贡献。

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用随着工业自动化和信息化的进一步发展,高能束焊接技术显现出越来越重要的作用。

高能束焊接技术是一种利用能量浓度极高的能流对工件进行加热和熔化,进而实现焊接的技术,它的出现不仅改变了传统焊接方式的过程和结果,也为航空、国防、汽车、电子、冶金等各个领域带来革命性变革。

高能束焊接技术的发展历程可以追溯到20世纪初。

最早的高能束焊接技术应用于X射线管的制造中,然而,由于这种技术受制于物理和材料的限制,所以应用有限。

后来,随着激光技术的引入,高能束焊接技术得以迎来新的发展机遇。

激光是一种能量密度非常高的光束,它具有能量集中、方向性好、调节精度高等优点,成为高能束焊接技术的主要载体。

在激光技术的发展驱动下,高能束焊接技术得以不断优化和完善。

至今,高能束焊接技术已经成为现代工业中最重要的焊接技术之一,包括了激光焊接、电子束焊接、离子束焊接等多种焊接方式。

其中,激光焊接是应用最广泛的高能束焊接技术。

激光高能束能够产生高密度的光束能量,使工件受热的区域快速升温并达到熔化状态。

在这个过程中,激光束对工件的热影响区域非常小,实现了材料局部加热和快速冷却,从而提高了工件的焊接质量和生产效率。

高能束焊接技术的应用范围非常广泛。

在航空航天、汽车制造、电子、国防等一些高端领域,高能束焊接技术得到广泛应用。

在航空领域中,高能束焊接技术被广泛用于飞机、发动机、导弹等各种部件的制造。

在汽车制造中,高能束焊接技术被广泛应用于车身、底盘等工件的制造。

在电子领域中,高能束焊接技术则被广泛应用于集成电路芯片等微小部件的制造。

需要指出的是,尽管高能束焊接技术带来了无限商机,但它仍有一些局限性。

首先,高能束焊接技术对材料的选择较为严格,只能应用于一些特定材料的焊接,对于易氧化材料或高反射性材料等难焊接材料的加工难度相对较大;其次,高能束焊接设备的成本较高,需要对设备进行高起点的投资;最后,高能束焊接技术的专业知识对于工人的要求非常高,需要具备一定的技术水平。

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用高能束焊接技术(EBW)是一种先进的焊接方法,它利用高速电子束来熔化和连接金属材料。

这种焊接技术具有高能量密度、高焊接速度、优质的焊接效果和适用于各种金属材料等优点,因此在航空航天、汽车制造、核工业和电子行业等领域得到了广泛的应用。

本文将从高能束焊接技术的发展历程和原理、应用领域、优势和挑战等方面进行介绍。

一、高能束焊接技术的发展历程和原理高能束焊接技术最早是在20世纪50年代发展起来的,最初是用于核工业和航天航空领域。

1958年,美国杜邦公司开发出了第一台商用的电子束焊接机,这标志着电子束焊接技术开始走向工业化生产。

高能束焊接技术通过电子枪产生高速电子束,电子束击中工件表面时,产生的能量将工件表面瞬间加热到熔化温度,然后通过电子束辐照区域产生高温熔池,从而实现熔化和连接金属材料的目的。

高能束焊接技术的原理是利用高速电子束的能量瞬间加热金属材料,使其熔化并形成熔池,然后利用合适的焊接工艺来实现金属材料的连接。

与传统的焊接方法相比,高能束焊接技术具有能量密度高、焊接速度快、热影响区小、热输入低等优点,因此可以实现高质量的焊接效果。

二、高能束焊接技术的应用领域高能束焊接技术在航空航天、汽车制造、核工业和电子行业等领域得到了广泛的应用。

在航空航天领域,高能束焊接技术被广泛应用于飞机结构件、发动机零部件、航天器壳体等关键部件的焊接,以提高焊接质量和生产效率。

在汽车制造领域,高能束焊接技术通常应用于汽车车身焊接、汽车零部件焊接等工艺环节,以提高焊接强度和减少成本。

在核工业领域,高能束焊接技术被用于核反应堆压力容器、核燃料元件等核设备的焊接,以保证核设备的安全可靠性。

在电子行业领域,高能束焊接技术通常应用于电子器件的微细焊接和包装,以提高器件的性能和可靠性。

高能束焊接技术相对传统焊接方法有很多优势,主要包括以下几点:1. 高能量密度:高能束焊接技术的能量密度很高,可以实现瞬间加热和快速熔化金属材料,从而提高焊接速度和效率。

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用高能束焊接技术是一种现代焊接技术,它采用高能束作为焊接热源,利用高能束的集中能量和高能流密度,将焊接接头迅速加热至熔化温度并实现焊接。

高能束焊接技术包括激光焊接、电子束焊接和等离子焊接等多种形式。

这些焊接技术具有高能量浓度、热输入集中、加热速度快、熔深大、焊接变形小等优点,被广泛应用于航空航天、汽车制造、电子设备等领域。

高能束焊接技术的发展可追溯到20世纪40年代。

当时,电子束焊接技术首次应用于军事工业领域。

随着激光技术和等离子技术的发展,高能束焊接技术的应用范围逐渐扩大。

高能束焊接技术在航空航天领域中的应用十分广泛。

航空航天器的结构件往往需要具备高强度和高精度的特点,而高能束焊接技术能够满足这些要求。

激光焊接技术被应用于喷气发动机涡轮叶片的制造,能够提高制品的性能并保证焊接接头的质量。

电子束焊接技术被广泛应用于轻型航空航天器的生产,能够实现高效率、高质量的焊接,提高产品的可靠性。

在汽车制造领域,高能束焊接技术也发挥了重要作用。

汽车的表面涂层和涂漆往往会影响到其外观和耐腐蚀性能,而高能束焊接技术能够在不破坏基材的情况下,有效地去除涂层。

高能束焊接技术还可以用于汽车零部件的焊接,提高产品的质量和可靠性。

电子设备制造领域也是高能束焊接技术的主要应用领域之一。

电子器件往往需要高精度和高可靠性的连接,而高能束焊接技术能够实现精确的焊接和微小尺寸的焊接接头。

激光焊接技术被广泛应用于集成电路的封装和电子组装的焊接。

高能束焊接技术的发展和应用为现代工业生产带来了许多优势。

它能够实现高效率、高质量的焊接,提高产品的性能和可靠性。

随着科技的不断进步和创新,高能束焊接技术还将继续发展,并在更多领域得到应用。

第9章 高能束焊接

第9章 高能束焊接

2.2 真空电子束焊设备
由电子枪、工作真空室、高压电源、控制及调整系统、真空系 统、工作台以及辅助装置等几大部分组成,如图9-4所示。
Tianjin Univ.
图9-4 真空电子束焊设备的组成示意图 1-阴极 2-聚束极 3-阳极 4-光学观察系统 5-聚焦线圈 6-偏转线圈 7-聚焦电源 8-偏转电源 9-真空工作室 10-工作台及传动系统 11-工作室真空系统 12-真空控制及监测系统 13-电子枪真空系统 14-高压电源 15-束流控制器 16-阴极加热控制器 17-电气控制系统
Tianjin Univ.
真空系统一般分为两部分:电子枪抽真空系统和工作室抽真空 系统。 低真空泵 该系统中大多使用三种类型的真空泵 油扩散泵 涡轮分子泵 真空系统还需要真空阀门及密封措施,以保证真空室的气压稳 定;真空程度的测量则利用适用于不同压力范围的真空计。 4.工作台和辅助装置 工作台、夹具、转台对于在焊接过程中保持电子束与接缝的位 置准确、焊接速度稳定、焊缝位置的重复精度都是非常重要的。
Tianjin Univ.
应用
电子束焊接可应用于下述材料和场合: 1)除含锌高的材料(如黄铜)、低级铸铁和未脱氧处理的普通低 碳钢外,绝大多数金属及合金都可用电子束焊接,按焊接性 由易到难的顺序排列为鉭、铌、钛、铂族、镍基合金、钛基 合金、铜、钼、钨、铍、铝及镁。 2)可以焊接熔点、热导率、溶解度相差很大的异种金属。 3)对不开坡口焊厚大工件,焊接变形很小;能焊接可达性差的 焊缝。 4)可用于焊接质量要求高,在真空中使用的器件,或用于焊接 内部要求真空的密封器件;焊接精密仪器、仪表或电子工业 中的微型器件。 5)散焦电子束可用于焊前预热或焊后冷却,还可用作钎焊热源。 6)在外太空等极端条件下的焊接,可能是其潜在的应用领域。

特种加工技术高能束加工

特种加工技术高能束加工

空气

钴基合金
2.5

石英
3

陶瓷
1

4.6

玻璃钢
1.5 2.7
有机玻璃
20
25
0.35 0.43 0.392 0.075 0.491 0.392 0.171 15
500 500 250 250 250 250 250 8000
O2 N2 N2 N2 N2 N2 N2 空气
木材(软)
25
木材(硬)
固体激光器的基本结构如图 1)激光工作物质 2)谐振腔 3)光泵浦灯 4)聚光腔
图5-4 固体激光器的基本结构
固体激光器
1)工作物质: 是由发光中心的激活离子和基质材料两部分组成的。工作物质的物理性能主要
取决于基质材料,光谱特性由激活离子内的能级结构来决定。 2)谐振腔:
是激光器的重要组成部件,作用是使工作物质受激辐射形成振荡与放大,它由 两块平面或球面发射镜按一定方式组合而成的。其中一端面是全反膜片,即反射 率接近100%;另一端面是具有一定透过率的部分反射膜片。谐振腔是决定激光输 出功率、振荡模式、发散角等激光输出参数的重要光学器件。 3)泵浦灯:
和液态物质喷射。
孔。
器和半导体泵浦激光器等。
激光切割
原理:与激 光打孔原理 基本相同, 不同之处在 于激光切割 时激光束与 工件材料需 相对移动, 最终使材料 形成宽度很 窄的切缝, 切缝处的熔 渣被一定的 辅助气体吹 除。
特点:
应用:激光切割占激光应用的60%左右,广泛应
1)无工具磨损。 用于许多工业部门。例如,电气机壳、木刀模
25
2
2000
N2
1
2000

《高能束加工》课件

《高能束加工》课件
高能束表面改性
通过高能束对材料表面进行辐照,改变材料表面的化学成分和结 构,提高材料表面的耐腐蚀性和抗氧化性。
高能束表面涂层技术
通过高能束将涂层材料熔融并沉积在材料表面,形成具有特殊性 能的涂层,提高材料表面的防护和装饰性能。
05
高能束加工发展现状 与趋势
高能束加工技术发展现状
高能束加工技术是指利用高能量密度的束流对材料进行加工 的方法,包括激光束、电子束、离子束等。目前,高能束加 工技术在航空航天、能源、电子信息等领域得到了广泛应用 。
纯度的特点。
高能束加工控制系统
加工过程控制系统
对高能束加工过程进行实时监测 和控制,确保加工过程的稳定性
和可靠性。
加工结果检测系统
对加工后的工件进行检测和评估, 确保加工质量符合要求。
加工数据管理系统
对加工过程中的数据进行收集、整 理和分析,为加工过程的优化提供 支持。
04
高能束加工材料与工 艺
新型高能束源的研发和应用将进一步提高加工效率和精度 ,同时降低能耗和成本。高能束加工技术的智能化和数字 化也将成为未来的发展趋势,实现加工过程的自动化和智 能化控制。
高能束加工技术面临的挑战与机遇
高能束加工技术虽然具有很多优点,但也面临着一些挑战,如设备成本高、加工效率低、材料适应性差等问题。同时,随着 环保意识的提高,高能束加工技术的环保性能也需要得到进一步提高。
激光加工材料与工艺
激光加工材料
激光加工适用于各种材料,如金属、非金属、复 合材料等。
激光加工工艺
激光切割、激光打标、激光焊接、激光熔覆等。
激光加工特点
高精度、高效率、非接触式加工。

电子束加工材料与工艺
电子束加工材料

高能束焊接

高能束焊接

两种高能束焊接各自特点和应用及其发展前景对于现代社会,效率对于工业生产是很重要的。

因此对于其应用的科学技术也要求很高。

为此,在焊接领域提出了利用高能密度束流作为热源的焊接方法,这就是高能束焊接。

目前狗啊能输焊接主要有两种:电子束焊接(EBW)和激光焊接(LBW)。

其能量密度必TIG或MIG等弧焊方法高一个数量级以上,通常高于5*105W/cm2。

一、电子束焊接(EBW)EBW焊接是以汇聚的高能电子束流轰击工件接缝处而产生的热能是材料融合的一种焊接方法。

这种焊接方法具有以下优点:⒈电子束功率密度高,其功率密度可达105-107W/cm2。

⒉焊缝深宽比大。

焊缝熔区很深很窄,其深宽比最高可达50:1,焊件变形可以忽略,不少零件可在精加工后焊接,不必进行后续精加工。

即使精度要求特别高的零件,焊后精加工留量可以很少,比用常规焊接方法可节省大量精加工工时。

可将原整体结构件分解成二件或二件以上工件焊接起来,可以变革原加工工艺,省时、省料、甚至可变革原零、部件的结构的设计使其更合理。

⒊电子束不仅能量密度高而且精确可调、被焊零件的厚度可以薄至0.05mm,厚至300mm(钢)或550mm(铝),不开破口,一次焊透。

⒋焊接在真空中进行,排除了大气中有害气体(如氢和氧等)的影响。

可高质量地焊一些活动性材料如钼、铍、铀、铌、钛等及其合金。

⒌可焊接物理常数差别大的材料,如非常薄的与非常厚的零件焊接或二者性质差别大的异种金属焊接,如钢与铜的焊接。

⒍由于电子束能量密度高,焊接速度可以很高,如焊O.8ram 薄钢板,焊接速度可迭200mm/s,焊接2'0 0mm 熔深锰钢,焊速可达300mmlmin。

在多工位电子束焊机上焊接汽车配电器(犒一平板焊列配电器凸轮上)其生产率可迭1440件/小时。

⒎由于焊接熔区小,焊接速度高,输入能量比常规焊接方法小得多,因此其热影响区小,有利提高焊接性能。

焊接区域邻近温度低,对封装热敏器件如集成电路组件,各类传感器探头的封装极为有利。

高能束流加工技术的现状及发展

高能束流加工技术的现状及发展

高能束流加工技术的现状及发展一、引言高能束流加工技术是一种先进的制造加工技术,其利用高能束流对材料进行加工处理,可以实现高精度、高效率、低损伤的加工效果。

随着科技的不断进步和应用领域的不断扩展,高能束流加工技术已经成为了当前最具前景和潜力的制造加工技术之一。

二、高能束流加工技术的基本原理1. 高能束流的产生高能束流包括电子束、离子束和激光束等。

其中,电子束和离子束是通过电子枪或离子源产生,并通过磁场聚焦形成细小且密集的束流;激光束则是通过激光器产生,并通过透镜系统聚焦形成极小直径的光斑。

2. 高能束流与材料相互作用当高能束流与材料相互作用时,会发生以下几种物理过程:撞击效应、热效应、化学效应和辐射效应。

其中,撞击效应主要指由于高速粒子与固体表面发生碰撞而导致表面变形或破裂;热效应主要指由于高能束流的能量被转化为材料内部的热能而导致材料熔化或蒸发;化学效应主要指由于高能束流与材料发生化学反应而导致表面化学性质的改变;辐射效应主要指由于高能束流所产生的辐射而导致材料受到辐射损伤。

3. 高能束流加工技术的基本过程高能束流加工技术包括预处理、加工和后处理三个基本过程。

其中,预处理主要是对待加工材料进行表面清洗和处理,以确保其表面光洁度和化学性质符合加工要求;加工过程则是将高能束流对材料进行精细加工,包括切割、打孔、雕刻等多种形式;后处理则是对已经完成的产品进行表面处理和质量检测,以确保其符合产品标准。

三、高能束流加工技术在各领域中的应用1. 航空航天领域在航空航天领域中,高能束流加工技术被广泛应用于制造发动机喷口、涡轮叶片等关键部件。

这些部件需要高精度、高强度和高温性能,而高能束流加工技术可以实现对这些部件的精细加工和表面处理,提高其性能和寿命。

2. 电子信息领域在电子信息领域中,高能束流加工技术被广泛应用于制造微电子器件、光学器件等高精度产品。

这些产品需要极高的精度和表面光洁度,而高能束流加工技术可以实现对这些产品的微米级别加工和表面处理。

微细加工技术-高能束加工

微细加工技术-高能束加工

可用于加工空气轴承的沟槽、打孔、加工极薄材料及超 高精度非球面透镜,还可用于刻蚀集成电路等的高精度图形。
聚焦离子束加工
将被加速的离子聚焦成细 束(束斑直径为几个纳米到几 十纳米),射到被加工表面上。 被加工表面受“轰击”后, 打出原子或分子,实现原子、 分子级去除加工。也可用于 离子束曝光:曝光灵敏度高、 没有邻近效应。 加工装置见图。三坐标工 作台可实现三坐标直线运动, 摆动装置可实现绕水平轴的 摆动和绕垂直轴的转动。
集成电子器件、集成光学器件、表面声波器以及微机械 元器件的图形制作技术中,通常将电子束曝光处理作为刻蚀 前置工序。 电子束曝光(electron beam lithography)指利用某 些高分子聚合物对电子敏感而形成曝光图形的,是光刻技术 的延伸。 紫外光 电子束
普通光刻
电子束曝光
电子束曝光分为直写曝光和投影曝光两大类: (1)投影曝光为电子束图形复印,它将电子束通过掩膜 图形平行地缩小投影到表面涂有光刻胶的衬底上,从而 将掩模图形缩小复印到衬底表面。 (2)直写曝光是电子束在工件面上扫描直接产生图形。 具有超高分辨率,无需昂贵的投影光学系统和费时的掩 膜制备过程。由于曝光过程中电子束斑在表面逐点扫描 ,每一个图形的像素点上需要停留一定的时间,因此限 制了图形曝光的速度。它在微电子工业中主要应用于掩 膜制备、原型化、小批量器件的制备和研发。
离子束加工特点
⑴离子束加工是所有特种加工方法中最精密、最微细的 加工方法,是纳米加工技术的基础。 ⑵污染少,特别适用于对易氧化的金属、合金材料和高 纯度半导体材料的加工。 ⑶加工应力、热变形等极小,加工质量高,适合于对各 种材料和低刚度零件的加工。 ⑷离子束加工设备费用贵、成本高,加工效率低,应用 范围受到一定限制。

高能束加工图文详解

高能束加工图文详解

(4) 加工精度高,质量好。
(5)
加工效率高,经济效益好。
(6)
能源消耗少,无加工污染,在节能、环保等方面有较大 优势。
四、激光加工设备
1. 激光器
4. 机械系统
拓展提高
1.数控化和综合化
把激光与数控技术,光 学技术或高精度、自动化的 工件装卸、定位系统结合, 研制和生产各种加工中心, 已成为激光加工设备发展的 一个重要趋势。
拓展提高
2.典型的离子束加工机床
ME-3A 型多功能磁增强反应离子束刻蚀机
拓展提高
ME-3A 型多功能磁增强反应离子束刻蚀机的主要参数
(2)污染少。
二、离子束加工
考 夫 曼 型 离 子 源 示 意 图
3.离子束加工装置
1—真空抽气孔; 2—灯丝; 3—注入孔; 4—电磁线圈; 5—离子束流; 6—工件; 7—阴极; 8— 9—阳极; 10—电离室
拓展提高
1.典型的电子束加工机床
EB300 型电子束加工机床
拓展提高
EB300 型电子束加工机床的主要参数
4
2
束斑极小。
5
1
无污染。
6
加工的局限性。
7
一、电子束加工
电 子 束 加 工 装 置 的 基 本 结 构
3.电子束加工装置
一、电子束加工
电子枪
真空系统 真空系统
1)
2)
控制系统
3)
电源装置
4)
二、离子束加工
1.离子束加工原理
二、离子束加工
(3)加工应力小、变形小。
2.离子束加工特点
(1)易于精确控制,加 工精度高。
二、激光的产生及特性
光的受激辐射

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用随着制造业的不断发展,高能束焊接技术逐渐成为一种越来越重要的工艺。

高能束焊接技术是一种利用高能量的电子、光子或离子束来完成焊接、切割和表面改性等工艺的技术。

它具有焊接速度快、能量密度高、变形小等优点,被广泛应用于航空航天、汽车制造、电子工业、医疗器械等领域。

高能束焊接技术的发展可以追溯到上世纪五十年代,当时主要应用于核工业领域。

随着国际间高能束技术的研究交流,高能束技术也逐渐得到了广泛的应用和发展。

在航空航天领域,高能束焊接技术可以用来制造航天器发动机、飞行器发动机喷气喉等重要部件。

在船舶制造领域,高能束焊接技术可以大幅缩短船体建造周期,提高船体质量和疲劳寿命。

在汽车制造领域,高能束焊接技术可以用来制造汽车车身和发动机等部件。

在电子工业领域,高能束焊接技术可以用来制造电子元器件、太阳能电池板等产品。

在医疗器械领域,高能束技术可以用来制造医疗器械的金属部件。

高能束技术的原理是利用高能量的电子、光子或离子束来加热和熔化工件表面,在保持焊接部位几乎不变形的同时完成焊接。

高能束焊接技术的能量密度极高,可以达到几千万到几亿焦/毫米,因此可以在很短的时间内完成焊接过程。

高能束焊接技术通常包括电子束焊、激光焊和离子束焊三种。

在这三种方法中,激光焊是应用最广泛的一种方法。

激光焊接可以完成多种材料的焊接,包括金属、塑料、玻璃等。

高能束焊接技术的应用带来了许多好处:首先,高能束焊接技术可以大大缩短制造周期和提高生产效率。

其次,在高能束焊接技术中,焊接区域的热影响区较小,因此可以减少材料的变形。

此外,高能束焊接技术还可以提高焊缝的质量,减少焊接缺陷和气孔等缺陷的产生。

然而,高能束焊接技术也存在一些局限性,例如高能束焊接设备的成本较高,操作难度较大,需要高技能人才进行操作等。

此外,大多数高能束焊接技术对材料的要求较高,材料的种类、大小等要求比较严格。

综上所述,高能束焊接技术是一种极具发展潜力的技术。

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用高能束焊接技术是一种高效、高精度的焊接方法,它利用高能束作为热源,将工件上的两个或多个金属材料焊接在一起。

随着工业技术的不断发展,高能束焊接技术在航空航天、汽车制造、电子器件制造等领域得到了广泛应用。

本文将就高能束焊接技术的发展历程、工作原理和应用前景进行介绍。

一、高能束焊接技术的发展历程高能束焊接技术的发展可以追溯到20世纪40年代,当时人们开始尝试利用电子束、激光束和等离子束等高能源来进行焊接。

20世纪60年代,随着激光技术的进步,激光束焊接技术逐渐成熟,取得了一系列重要进展。

1970年代,电子束焊接技术也得到了快速发展,成为了航空航天领域、核能工程领域最主要的焊接方法之一。

随着科学技术的不断进步,高能束焊接技术变得更加精确、高效,应用领域也不断扩大。

二、高能束焊接技术的工作原理高能束焊接技术是利用高能束的热源对工件进行加热,使其达到熔化状态,然后将两个或多个工件进行熔汇从而实现焊接。

根据高能束的种类不同,高能束焊接技术又可分为激光束焊接、电子束焊接和等离子束焊接。

激光束焊接是指利用激光器产生的激光束对工件进行加热,通过激光束的高能量密度,将工件表面局部加热至熔化状态,然后使两个或多个工件在熔融态时迅速相互融合,从而完成焊接。

激光束焊接技术由于其高能量密度、热输入小、热影响区小等特点,逐渐成为了航空航天、汽车制造、电子器件制造等领域的主要焊接方法。

电子束焊接则是利用电子发射器产生的电子束对工件进行加热,在高能电子束的作用下,工件表面的金属被迅速加热至熔点,然后实现焊接。

电子束焊接技术由于其高能量密度、焊接速度快等特点,被广泛应用于核能工程、宇航工程、航空制造等高端领域。

等离子束焊接是一种利用等离子束对材料进行加热的焊接方法,通常利用等离子束切割机产生的等离子束对工件进行加热,然后实现焊接。

等离子束焊接技术由于其对材料的热输入小、热影响区小等特点,被广泛应用于微电子器件制造、微细连接技术等领域。

第四节高能束加工

第四节高能束加工
❖ 4)激光可聚焦形成微米级光斑,输出功率大小可调节, 常用于精密细微加工,最高加工精度可达0.001mm,表面 粗糙度Ra值可达0.4~0.1。
❖ 5)能源消耗少,无加工污染,在节能、环保等方面有较 大优势。
3.激光加工的应用
(1)激光打孔
❖ 激光打孔主要用于特殊材料或特殊工件上的孔加工, 如仪表中的宝石轴承、陶瓷、玻璃、金刚石拉丝模 等非金属材料和硬质合金、不锈钢等金属材料的细 微孔的加工。
❖ 常用的高能密度束流加工方法主要是: ❖ 激光加工、电子束加工、离子束加工等。
高能密度束流加工的共同特点:
❖ 1.加工速度快,热流输入少,对工件热影响极少, 工件变形小。
❖ 2.束流能够聚焦且有极高的能量密度,激光加工、 电子束加工可使任何坚硬、难熔的材料在瞬间熔融 汽化,而离子束加工是以极大能量撞击零件表面, 使材料变形、分离破坏。
2.离子束加工特点
❖ 1)加工精度高。因离子束流密度和能量可得 到精确控制。
❖ 2)在较高真空度下进行加工,环境污染少。 特别适合加工高纯度的半导体材料及易氧化 的金属材料。
❖ 3)加工应力小,变形极微小,加工表面质量 高,适合于各种材料和低刚度零件的加工。
3.离子束加工的应用范围
❖ 离子束加工方式包括离子蚀刻、离子镀膜及 离子溅射沉积和离子注入等。
❖ 3.工具与工件不接触,无工具变形及损耗问题。 ❖ 4.束流控制方便,易实现加工过程自动化,
一、激光加工
1.激光加工原理
❖ 激光加工(laser beam machining,LBM)是
在光热效应下产生的高温熔融和冲击波的综合作用 过程。
❖ 通过光学系统将激光束聚焦成尺寸与光波波长相近 的极小光斑,其功率密度可达107~1011w/cm2,温度 可达一万摄氏度,将材料在瞬间(10-3s)熔化和蒸 发,工件表面不断吸收激光能量,凹坑处的金属蒸 汽迅速膨胀,压力猛然增大,熔融物被产生的强烈 冲击波喷溅出去。

高能束流加工技术

高能束流加工技术

高能束流加工技术高能束流(High Energy Density Beam)加工技术是利用激光束、电子束、离子束和高压水射流等高能量密度的束流(其中高压水射流是冷切割加工技术),对材料或构件进行特种加工的技术。

它的主要技术领域有激光束加工技术、电子束加工技术、离子束及等离子体加工技术以及高能束流复合加工技术等。

它包括焊接、切割、制孔、喷涂、表面改性、刻蚀和精细加工等,用于加工制造具有先进技术指标的构件或制备新型材料。

高能束流加工技术是当今制造技术发展的前沿领域,是当今世界高科技与制造技术相结合的产物,是制造工艺发展的前沿。

它具有常规加工方法无可比拟的优点。

①能量密度极高,可以实现厚板的深穿透加工、焊接和切割,一次可焊透300mm厚的钢板。

②可聚焦成极细的束流,达到微米级的焦点,用于制造微孔结构和精密刻蚀。

③可超高速扫描(速度达900m/s),实现超高速加热和超高速冷却(冷却速度达104℃/S),可以进行材料表面改性和非晶态化,实现新型超细、超薄、超纯材料的合成和金属基复合材料的制备。

④能量密度可在很大范围内进行调节,束流受控偏转柔性好,可进行全方位加工。

⑤适合于金属、非金属材料加工,可实现高质量、高精度、高效率和高经济性加工。

随着航空航天、微电子、汽车、轻工、医疗以及核工业等的迅猛发展,对产品零件的材料性能、结构形状、加工精度和表面完整性要求越来越高,传统的机械加工方法在高技术制造领域所占比重日益减少,高能束加工方法得到了广泛的应用。

例如,把高能束加工技术的深穿透特点用于重型装备厚壁结构、压力容器、运载工具、飞行器的焊接;把精密控制的微焦点高能量密度的热源用于微电子和精密器件的制造,高质量、高效率地实现超大规模集成元件、航空航天航海仪表、陀螺、膜盒的制造和核动力装置燃料棒的封装;利用高能束加工技术的可控高速扫描,实现航宇动力装置上气膜冷却小孔层板结构的高效率、高质量制造;利用高能束加工技术可在真空、高压条件下全方位加工的特点,实现在太空条件下的加工作业;利用高能束加工技术高速加热和高速冷却的特点,对金属材料表面改性和非晶态化,制备特殊功能的涂层和新型材料。

高能束表面改性技术.pptx

高能束表面改性技术.pptx
第21页/共47页
20
激光熔覆工艺示意图
第22页/共47页
21
激光熔覆的应用
激光熔覆在现代工业中已显示出明显的经济效益,应用范 围涉及许多工业领域,主要有以下几个方面。 航空航天工业首先吸取激光熔覆的优点,并将其用于生 产的部门。它不仅用于加工零部件,亦用于修理方面。 1981年美国首先将激光熔覆技术用于强化RB-21侦察轰 炸机的喷气发动机涡轮叶片,在铸造的Ni基合金涡轮叶 片上用2kW C02激光,配合同步送粉技术熔覆一层三元 合金获得成功。由于激光技术先进,热影响区小,产品 质量好、成品率高,而且可省略熔覆后磨削加工,并大 量节约昂贵的硬化材料、经济效益十分显著。
扫描速度太慢,会导致金属表面温度超过熔点,或者加 热深度过深,不能自冷淬火。扫描速度太快,则可能使 表面达不到相变温度。功率密度则受激光器功率和和光 斑尺寸的影响,功率密度太小,表面得不到足够的热量, 不能达到所需的相变温度。
第10页/共47页
9
此外激光加热是依靠光幅射加热,只有一部分激光被 材料表面吸收而转变成热能,另一部分激光则从材料 表面反射。激光波长越短,金属的反射越小;电导率 越高的金属对激光的反射越大;表面粗糙度小反射率 也高。因此在激光表面淬火处理前,为提高金属表面 对激光束的吸收率,一般在工件表面须预置吸收层, 对工件进行预处理,通常叫做“黑化处理”,可使吸 收率大幅提高。
美国AVCO公司采用激光合金化工艺处理了汽车排气阀, 使其耐磨性和抗冲击能力得到提高。在45钢上进行的 TiC-Al203-B4C-Al复合激光合金化,其耐磨性与CrWMn 钢相比,是后者的10倍,用此工艺处理的磨床托板比原 用的CrWMn钢制的托板寿命提高了3~4倍。
第18页/共47页
17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、分别简述离子束、电子束、激光束的定义及产生原理,并作示意图。

离子束定义:离子束以近似一致的速度沿几乎同一方向运动的一群离子
产生原理:
在离子源中,通过气体放电产生等离子体。

从宏观上看,等离子体是电中性的,即离子总电荷数与电子总电荷数基本相当。

等离子体中的离子由引出电极引出,进入质量分析器。

不同质量数或不同电荷数的离子经质量分析,分离出同一种类带有同样电荷的离子进入加速段。

加速系统将离子加速到所要求的能量,注入处于靶室中样品上。

电子束定义:电子束在真空汇集成束。

可采用静电场聚焦,磁场聚焦等方法
产生原理:
电子经过汇集成束。

具有高能量密度。

它是利用电子枪中阴极所产生的电子在阴阳极间的高压(25-300kV)加速电场作用下被加速至很高的速度(0.3-0.7倍光速),经透镜会聚作用后,形成密集的高速电子流。

激光定义:激光束是利用原子受激辐射的原理,使工作物质受激发而产生的一种单色性高、方向性强、光亮度的光束。

产生原理:
a受激吸收、:处于较低能级的粒子在受到外界的激发,吸收了能量,跃迁到较高能级。

b.自发辐射:粒子自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子。

c受激辐射(激光): 当频率为=ν(E2-E1)/h的光子入射时,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子。

二、论述激光与材料的相互作用、金属材料对激光的吸收、光致等离子体。

金属材料的激光加工主要是基于光热效应的热加工,激光辐照材料表面时,在不同的功率密度下,材料表面区域将发生各种不同的变化,包括表面温度升高、熔化、汽化、形成匙孔以及产生光致等离子体等。

而且材料表面区域物理状态的变化极大地影响材料对激光的吸收。

随功率密度与作用时间的增加,金属材料将会发生固态加热、表层熔化、形成稀薄等离子体、形成匙孔及致密等离子体等物态变化。

就材料对激光的吸收而言,材料的汽化是一个分界限。

当材料没有发生汽化时,不论出于固相还是液相,其对激光的吸收仅随表面温度的升高而有较慢的变化;而一旦材料出现汽化并形成等离子体和匙孔,材料对激光的吸收则会突然发生变化。

当功率密度大于汽化阈值,反射率突然降至很低值,材料对激光的吸收剧增。

焊接过程中由于激光辐照金属材料汽化而产生的等离子体,称为光致等离子体。

三、分别阐述激光焊接的种类及影响因素。

激光热传导焊接和激光深熔焊接
确保焊接的质量,一方面须采用光束质量和功率输出稳定性好的激光器和采用高质量、高稳定性的光学元件组成其导光聚焦系统,并经常维护,防止污染,保持清洁,并适当对工件进行预处理;另一方面要针对不同的加工材料分别设定不同的激光加工参数,选择合适的激光功率密度和光束模式、焊接速度、脉冲波形和宽带、离焦量和保护气体等,发展激光焊接过程实时监测与控制方法,以优化参数,监视到达工件的激光功率和离焦量等的变化,实现闭环控制,提高激光焊接质量的可靠件和稳定性。

四、电子束表面改性适用于那些基体材料,并举例说明
电子束表面硬化:利用电子束轰击金属工件表面,使表面被加热到相变温度以上,高速冷却产生马氏体相变强化。

比较适合于碳钢、中碳低合金钢、铸铁等材料的表面强化。

电子束表面熔凝:用高能量密度的电子束轰击工件表面,使表面产生局部的重新熔化,并在冷基体的作用下快速凝固,从而使组织细化,实现硬度和韧性的最佳结合。

最适用于铸铁、高碳合金钢。

电子束表面合金化:预先将具有特殊性能的合金粉末涂敷在基体金属表面上,再用电子束轰击加热,使特殊的合金粉末熔融在基体材料的表面上,从而在工件表面形成一层具有耐磨耐蚀耐热等性能的新合金表面层。

电子束熔覆:按需要在基体材料表面预先涂敷一层特殊性能的合金粉,并用电子束加热将其熔化,在基体表面形成具有某些特性的覆层。

电子束表面改性技术在真空条件下进行,污染小,材料不易氧化,因此特别适用于易氧化的金属、贵金属以及半导体材料的处理。

高碳高合金钢碳钢、中碳低合金钢、铸铁等材料的表面强化
五、钛合金及铝合金的高能束表面改性方法有哪些?举例说明
激光束电子束离子束
激光束1激光相变硬化2激光表面合金化与激光熔覆3激光熔凝4激光冲击硬化与激光磁畴控制
电子束主要包括电子束表面硬化、电子束表面合金化、电子束表面熔覆、电子束表面熔凝、电子束表面非晶化
离子束1离子注入表面改性技术2离子束辅助沉积3离子束混合及离子束反冲注入
六、激光钎焊特点?适合哪些材料的焊接?
1)热影响区小,可在热敏元件附近进行软钎焊
2)非接触式加热,熔化带宽,可在电路板双面进行焊接
3)重复操作稳定性好,焊剂对焊接工具污染小,激光照射时间和输出功率易于控制,成品率高
4)激光易于实现分光,能实现多点同时钎焊
5)可在常规方式不易焊接的部位进行加工,灵活性好
6)聚焦性好,易于实现的自动化
激光软钎焊主要用于印刷电路板电子元器件的连接;激光硬钎焊主要用于结构钢和镀锌钢板的连接等,对有色金属银、铜、镍、金、铝等有良好的焊接效果。

七、阐述激光加工过程监测有哪些手段,各自的特点,举例说明。

1、对等离子体信号监测,可通过PCS传感器用来测量等离子体的温度,采用光电二极管检测连续激光焊接等离子体在控制和未控制情况下的动态行为;
2、对熔池和小孔的监测,采用CCD摄像机来监测焊接过程中的熔池和小孔,采用主动视觉传感技术研究熔池和小孔的动态行为,采用同轴成像信号采集光路,利用CCD摄像机所采集的小孔同轴视觉图像实现了熔透判断、焊缝质量分析和对接间隙的监测;
3、对熔深的监测,通过分析激光焊接过程中的PCS、AS和可见光等信号,用线性分类器对三种信号的频谱特征进行处理,实现了完全熔透和未完全熔透两种焊接状态的自动识别。

相关文档
最新文档