第三章 应变测量技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章电测法

电测法的应用特别广泛,涉及到许多领域。在实验应力分析、断裂力学、静、动态试验、宇航工程中都有广泛的用途。在桥梁结构试验中最常用的是电阻应变测试技术。

1938年,由E.Similton和A.Ruge等人首次制造出了丝绕式电阻应变片,57年出现了半导体应变片,至今各种规格的应变片已有二万多种。

1856年,W.Thomson在铺设海底电缆时发现了电缆随海水深度不同而变化,通过近一步对铁丝和铜丝近行拉伸试验,得到了三个结论:

1.铜丝和铁丝的应变与其电阻的变化成涵数关系;

2.铜丝和铁丝的应变对其电阻的变化有不同的灵敏度;

3.铜丝和铁丝由于应变而产生的电阻变化可用惠斯通电桥测量。

这些结论是现代电测法的理论基础,他指出了应变可以转换成电阻的变化,从而使用电学方法测量应变成为可能。

电测法的优点:

1.精度高,1%;

2.分辨率高,可测出10-6,即1με,对钢只有0.2MPa的应力;(分辨率:可检测出的被测量的最小值。灵敏度:输出量的变化值与相应被测量的变化值之比)。

3.测量范围广,可达23%;

4.尺寸小(最小的0.2mm),可满足应力梯度较大的应变测量;尺寸小另一个重要意义在于当前某些工程结构(如船体、桥梁、飞机、桁架等)进行全面的应力分析时,往往要测量数十点甚至数百点的应力,电阻片很容易大量粘贴使用。对于结构十分紧凑以至其他测量仪表(如杠杆引伸仪)根本无法安装的情况下,电测法就能发挥很大的作用,可以用来测量局部应力。

5. 质量小,便于安装,不会干绕构件的应力状态;这是一个突出的优点。它使得电测不仅可以作静态应力的测量,而且可以在动态应力分析方面发挥独特作用。对一系列重要的动力学参数(如加速度、振幅、频率等)能够比较精确地进行实验研究。

6.频率响应好,响应时间约为10-7s;在高频动应变(冲击力及爆炸压力等)测量中具有很好的动态响应。

7.可以在高温(800~1000℃)、低温(-100~-70℃)、高压(上万个大气压)、高速旋转(几千转/min~几万转/min)、核幅射等特殊条件下成功的使用;

8.输出电信号,易于实现测量数字化和自动化,即适合于现场测量,也可以进行遥测,还可以制成各种传感器,可以作力,液压,位移,转角,速度及加速度等参量的测量,是一种使用方便、适用性强、比较完备的测试手段。

缺点是:

1.只能测结构物表面应变;

2.现场测量受环境温度和湿度影响大;

3.对应力集中的测量不够精确。

主要缺点是:粘贴工作量大;粘贴好的应变片较为脆弱,野外防潮、防损伤难度大;由于每次使用前需平衡、归零,无法长期观测,一般仅用于短期测试,无法应用于施工监控中;重复使用困难。

第一节电阻应变片

1. 构造(图 3.1)

绕线式应变片主要由敏感元件、基底、覆盖层和引出线等几部分组成。

(1)敏感丝栅是应变片的主要元件,一般由康酮、镍铬合金制成;

对材料性能要求:电阻率高、灵敏系数大、线性范围大、电阻温度系数小、易于加工成丝。

-2

△R /R 10 )

ε (%)

C u-N i

Pt

F e

N i-C u-M n

N i(20%)-C u(80%)N i

C u 3.0

2.52.01.51.00.55.0

3.0

4.0

2.0

1.0

(2)基底和覆盖层一般有纸质和胶质;

对材料性能要求:基底和覆盖层起定位和保护应变片几何形状的作用,也起到与被测试试件之间电绝缘作用,因此要求厚度小而机械强度高、绝缘性能好、热稳定性能好、耐腐蚀、抗潮湿、无滞后和儒变现象、稍透明等。

2. 工作原理

金属应变片的工作原理在于导体的“电阻应变效应”。所谓电阻应变效应是指导体或半导体在机械变形(伸长或缩短)时,其电阻随其变形而发生变化的物理现象。 A

L R ρ

= A

dA L

dL d R

dR -+=

ρ

ρ

L

dL D

dD A

dA μ22

-==

(dD/D:横向应变;DL/L:纵向应变;μ:泊桑比)

ρ

ρ

μμ

ρ

ρ

d L

dL L

dL L

dL d R

dR +

+=++

=

)

21(2

L

dL K L

dL L

dL

d R

dR 0

)

)21((=+

+=ρρ

μ

此式表明,导体(如金属丝)的电阻应变效应由两方面原因造成,一是由(1±2μ)表达的几何尺寸的改变;一是电阻率也随应变发生变化。这就从机理上对电阻应变效应作了一定的

说明。可惜,电阻率ρ到底依什么规律随应变变化,至今尚无圆满的解释。不过,实践表明,

0K 值与合金的成分、含杂质情况、加工成丝的工艺以及热处理过程等有很大关系,故各种

材料的灵敏系数均由实验测定。 3.灵敏系数的标定

用应变片进行应变测量时,对应变片中金属丝需加一定的电压,为了防止电流过大,产生发热及熔断等现象,要求金属丝有一定的长度,以获得较大的初始电阻值;但测量构件应变时,又要求尽可能缩短应变片的长度,以接近一点的真实应变;因此,在应变片中的金属丝一般做成图3.1所示的栅状(称为敏感栅)。 固定在构件上的应变片,其敏感栅的电阻变化不仅与敏感栅轴线方向的构件应变有关,而且与敏感栅弯头圆弧方向的构件应变有关,因此应变片的灵敏系数与上节由一段直的金属丝在拉伸(或缩短)状态下所得灵敏系数不相同,他与被测构件的应变状态有关。

为了有一个统一标准,应变片的灵敏系数定义为;当将应变片安装在处于单向应力状态的试件表面,使其轴线与应力方向平行时,应变片电阻值的相对变化与沿轴线的应变之比值,即

x

R

R K ε∆=

应变片的灵敏系数一般由制造厂实验测定,称为应变片的标定。灵敏系数的测定必需在符合上述定义的实验装置上进行,通常采用等弯矩梁与等强度梁两种测定方法,这两种测定方法的基本原理相同,图3.2为一个等弯矩梁实验装置,将被测定正值的应变片安装在梁的等弯矩区域内,并使其轴线与梁的轴线方向重合,当梁受载后,在等弯矩区域内,梁的上下表面是一个单向等应力场(但应变是双向的)。可采用杠杆仪或挠度计以及理论计算方法确定梁的轴向应变,同时设法测定在该载荷下,此应变片的电阻值的相对变化,按照式3.8计算,即可求得应变片的灵敏系数。

在图3.2中,沿梁轴线方向安装了一个三点挠度计,当梁受载变形后,挠度计上千分表的读数与梁的轴向应变有如下关系: 2

l

fh =

ε

相关文档
最新文档