传感器的标定方法

合集下载

传感器的标定

传感器的标定

武汉理工大学机电工程学院
第12章 传感器的标定
2. 静态特性标定系统 对传感器进行静态特性标定,首先要建立标定系统。一般组成: (1) 被测物理量标准发生器。如测力机、活塞式压力计、恒温 源等。 (2) 被测物理量标准测试系统。如标准力传感器、压力传感器、 标准长度——量规等。 (3) 被标定传感器所配接的信号调节器和显示、记录器等配接 仪器精度应是己知的,也作为标准测试设备。
武汉理工大学机电工程学院
第12章 传感器的标定 比较法的原理简单、操作方便,对设备精度要求较低, 所以应用很广。
上图为一个用比较法标定振动传感器的示意图,将相同的运动 加在两个传感器上,比较它们的输出。在比较法中,标准传感 器是关键部件,因此它必须满足如下要求:灵敏度精度优于 0.5%,并具有长期稳定性,线性好;横向灵敏度比小于2.5%; 对环境的响应小,自振频率尽量高。
武汉理工大学机电工程学院
第12章 传感器的标定
一阶传感器只有时间常数 一个参数, 二阶传感器则有固有频率 n 和阻尼比 两个参数。 传感器动态特性标定方法: 1. 阶跃响应法 对于一阶传感器,简单的方法就是测得阶跃响应之后,传感器 输出值达到最终稳定值的63.2%所经历的时间,即时间常数。 备注:为获得较可靠的结果,应记录下整个响应期间传感器的 输出值,然后利用下述方法来确定时间常数。
武汉理工大学机电工程学院
第12章 传感器的标定
复现表 12-1 中这些基准点的方法是用一个内装有参考材料的 密封容器,将待标定的温度传感器的敏感元件放在伸入容器中 心位置的套管中。然后加热,使温度超过参考物质的熔点,待 物质全部熔化。随后冷却,达到三相点 ( 或凝固点 ) 后,只要同 时存在固、液、气三态或 ( 固、液态 ) 约几分钟,温度就稳定下 来,并能保持规定值不变。 对于定义固定点之间的温度,ITS-1990国际温标把温度分为4 个温区,各个温区的范围、 (1) 0.65~5.0 K间为3He或4He (2) 3.0~24.5561 K间为3He或4He (3) 13.8033 K~961.78℃ (4) 961.78℃以上为光学或光电高温计。 以上有关标准测温仪器的分度方法以及固定点之间的内插公式, ITS-1990国际温标都有明确的规定,可参考ITS-1990标准文本。

压电式压力传感器标定方法

压电式压力传感器标定方法

压电式压力传感器标定方法压电式压力传感器是一种常用的传感器,用于测量各种介质的压力。

为了保证传感器的准确性和可靠性,需要对其进行标定。

本文将介绍压电式压力传感器的标定方法。

一、什么是压电式压力传感器压电式压力传感器是一种利用压电效应来测量压力的传感器。

它由一个压电陶瓷片和一个金属薄膜组成。

当外界施加压力时,压电陶瓷片会产生电荷,通过金属薄膜导出,从而实现对压力的测量。

二、为什么需要标定压电式压力传感器压电式压力传感器的灵敏度和线性度会随着时间的推移而发生变化,因此需要定期进行标定,以确保其测量结果的准确性。

同时,不同的传感器在制造过程中存在一定的误差,通过标定可以消除这些误差,提高传感器的性能。

三、压电式压力传感器的标定方法1. 静态标定方法静态标定方法是最常用的标定方法之一。

该方法通过施加不同的压力,测量传感器的输出信号,从而建立压力与输出信号之间的关系。

具体步骤如下:(1)选择一个已知压力的标准压力表,并将其连接到待标定的传感器上。

(2)将待标定传感器与标准压力表一起放置在一个封闭的容器中,通过控制容器内的压力来改变压力传感器的输入。

(3)记录传感器的输出信号和标准压力表的读数,建立压力与输出信号之间的线性关系。

(4)重复以上步骤,使用不同的压力值进行标定,以获得更准确的标定曲线。

2. 动态标定方法动态标定方法是另一种常用的标定方法。

该方法通过施加不同频率和幅值的正弦波信号,测量传感器的输出信号,从而建立压力与输出信号之间的关系。

具体步骤如下:(1)选择一个信号发生器,并将其连接到待标定的传感器上。

(2)通过信号发生器输出不同频率和幅值的正弦波信号,施加到传感器上。

(3)测量传感器的输出信号,并记录其与输入信号的幅值和相位差。

(4)根据输入信号和输出信号的幅值和相位差,建立压力与输出信号之间的关系。

(5)重复以上步骤,使用不同频率和幅值的正弦波信号进行标定,以获得更准确的标定曲线。

四、标定结果的评估与调整在完成标定后,需要对标定结果进行评估,并进行必要的调整。

传感器单点标定方法

传感器单点标定方法

遥控器标定传感器的方法如果传感器通电后,显示“4%”,无法标效请 先按以下步骤操作:连续按遥控器的"类+”当传 感器显示“PAD3”时停止,再连续按遥控器“页+” 当传感器显示“AD21”时停止,这里对传感器显 示的数值进行修改,例如传感器显示“31FF”,修 改为“51FF”,最后保存,重新通电起动,再按下 面传感器标效方法重新进行标效,(此时通气时传感器显示值可能不会变,只需通气30S 后,按标 气“10”步操作即可)如果传感顺没有此现象,无 须此操作。

1. 严格按以下1T1条逐条进行,不管显示 页面显示什么,都逐条执行!2. 严禁在不通气的情况下按“较准A”键!3. 每次都按如下顺序执行1、标气A 2、 浓度显示2、清零3、较准标效步骤1、 给航空插头的1焊接电源的正,2焊接电源的 负极,电源电压范囤9-24VDC,其它不用。

2、 给传感器通电预热约20分钟(房间温度15度 以上)。

3、 取传感器专用遥控器一只,把遥控器电池盖的 塑料绝缘片去掉,遥控器即可正常使用(注:遥控 器第一次使用时) 4、 取传感器专用的标校头(一根约60mm 长的细管) 和气体管路连接。

5、调整气体流量,使流量稳定在200ml 每分钟(注:流量计必须经过校验)。

6、 査看气瓶的气体浓度值,(一氧化碳250或甲烷2. 00)气体。

7、 按遥控器的“标气A 键”后,传感器显示“AD90”,约1秒后显示标气A 浓度。

用数加数减 和位加位减键修改数据等于标气的值(一氧化碳250或甲烷2. 00),然后按“确认”在下次校 准的任何时候,只要气瓶浓度…样时,不用重复本条,8、 再按“浓度显示”键,显P —1后再显示当前气体浓度。

9、 零点校准:通淸洁空气至少3分钟,按遥控器“功能校准B 键”放开后紧接着按“清零" 键后,传感器数码管亮闪一次,零点校准完成。

10、气体校准:通标准气体1分20秒左右,传感器的值稳定后,按遥控器“功能校准B '曲”放 开后紧接着按“校准A “后,传感器数码管亮闪一次,显示校准的标气浓度,气体校准完成(如 果传感器数值继续变化,可重复此步骤,直到稳定不变)。

噪声传感器标定方法

噪声传感器标定方法

噪声传感器标定方法一、确定标定标准在进行噪声传感器标定之前,需要确定标定的标准。

通常情况下,标定的标准是根据实际应用场景和测量要求来确定的。

标定标准应该包括标定的环境条件、测量范围、测量不确定度、参考标准器等方面的要求。

二、准备标定工具标定工具包括:声源发生器、信号放大器、数据采集器、计算机等。

其中,声源发生器用于产生不同频率和声压级的噪声信号;信号放大器用于放大噪声信号,以满足传感器输入的要求;数据采集器用于采集传感器的输出信号;计算机用于存储和处理数据。

三、安装传感器将噪声传感器安装在声源发生器前方,确保传感器与声源发生器之间的距离适宜,避免距离过远或过近影响测量结果。

四、设置标定参数根据标定标准和实际应用需求,设置标定参数。

标定参数应该包括测量范围、测量不确定度、参考标准器等参数。

五、进行标定实验在设置好标定参数后,开启声源发生器,根据标定实验计划进行不同频率和声压级的噪声信号测量。

在每个测量点上,记录传感器的输出信号,并将数据存储到计算机中。

六、分析标定结果通过对标定实验数据的分析,可以得到传感器的频率响应曲线、灵敏度等性能指标。

对比标定结果与标准值的差异,确定传感器性能是否符合要求。

七、调整传感器如果标定结果不符合要求,需要对传感器进行调整。

调整方法包括改变传感器内部元件的物理位置、更换元件等。

调整后,重新进行标定实验,直到传感器性能符合要求为止。

八、重复标定实验为了确保标定结果的准确性和可靠性,通常需要进行多次重复实验。

每次实验的测量条件和环境应该保持一致,以确保实验结果的稳定性。

传感器标定

传感器标定

4. 动态标定
传感器的动态标定就是通过实验得到传感器动态性 能指标,确定方法常常因传感器的形式(如电的、机械 的、气动的等)不同而不完全一样,但从原理上一般可 分为阶跃信号响应法、正弦信号响应法、随机信号响应 法和脉冲信号响应法等。 (1)阶跃信号响应法 1)一阶传感器时间常数τ的确定 输入x是幅值为A的阶跃函数时,由一阶传感器的微 分方程可得: t − e y(t) = kA[1- τ ]
2.压电式压力传感器的静态标定
压电式压力传感器的静态标定可在活塞式压力计上进行。 传感器安装在静重式标准活塞压力计的接头上,传感器配接由静 态标准电荷放大器和显示记录设备(可选用数字式峰值电压表、 光线示波器、笔录仪、磁带记录仪等)组成的标准测量系统。
3.热电阻的静态标定
标定步骤:用标准温度计测出恒温箱温度,将被测热电阻置 于恒温箱中,被测热电阻串联标准电阻Rs、可调电位器电压表和 毫安表,调节可调电位器使被测系统回路电流控制在4mA。先将 切换开关置标准电阻Rs一侧,读取电位差计示值Us,再转置被测 电阻端读出电位
(1)振动标定设备 1)电动式中、低频激振器
中频激振器工作的频率范围 为5~7.5kHz,一般采用电动式 激振器作为中频标定用振动台。 图1.18所示为电动式激振器 结构示意图,驱动线圈7固装在 顶杆4上,并由支承弹簧1支承 在壳体2中,线圈7正好位于磁 极5与铁心6的气隙中。磁钢3、磁极5、铁心6和气隙构成磁回路, 当线圈7通以经功率放大的交变电流时,它在气隙的磁场中受力, 该力通过顶杆4传到试件8上便是激振力。
3. 静态标定
确定传感器静态指标,主要是线性度、灵敏度、 迟滞和重复性。传感器的静态特性是在静态标准条 件下进行标定的,主要用于检验、测试其静态特性 指标。静态标准条件主要包括没有加速度、振动、 冲击(除参数本身是被测量)及环境温度(一般为 室温20℃±5℃)、相对湿度不大于85%、气压为 (101±7)kPa等条件。 一般的静态标定包括如下步骤: (1)将传感器全量程(测量范围)分成若干等间 距点。

传感器的标定

传感器的标定
激波管标定装置工作原理 激波管阶跃压力波的性质 误差分析
返回
上页
下页
11.4.2 激波管标定法
一、激波管标定装置工作原理:
激波管标定装置系统组成:
➢ 激波管:产生激波的核心部分
➢ 入射激波测速系统
➢ 标定测量系统:由被标定传感器4,5,电荷放大器10及记忆
示波器11等组成。被标定传感器既可以放在侧面位置上,也可以放 在底端面位置上。从被标定传感器来的信号通过电荷放大器加到记 忆示波器上记录下来,以备分析计算,或通过计算机进行数据处理, 直接求得幅频特性及动态灵敏度等。
返回
上页
下页
11.4.2 激波管标定法
三、误差分析
➢ 测速系统的误差 ➢ 激波速度在传播过程中的衰减误差 ➢ 破膜和激波在端部的反射引起振动造成的
误差
返回
上页
下页
第11章 本章要点
传感器的静态特性标定
➢ 静态标准条件
所谓静态标准是指没有加速度、振动、冲击(除非这些参数 本身就是被测物理量)及环境温度一般为室温(20±5℃), 相对温度不大于85%,大气压力为7kPa的情况。
返回
上页
下页
11.1 传感器的静态特性标定
静态特性标定的方法
➢ 将传感器全量程(测量范围)分成若干等间距点;
➢ 根据传感器量程分点情况,由小到大逐渐一点一点的 输入标准量值,并记录下与各输入值相对的输出值;
➢ 将输入值由大到小一点一点的减少下来,同时记录下 与各输入值相对应的输出值;
➢ 按前两步所述过程,对传感器进行正、反行程往复循 环多次测试,将得到的输出--输入测试数据用表格列 出或画成曲线;
11.1 传感器的静态特性标定
静态标准条件

传感器的标定与校准

传感器的标定与校准

标定与校准的概念新研制或生产的传感器需要对其技术性能进行全面的检定,以确定其基本的静、动态特性,包括灵敏度、重复性、非线性、迟滞、精度及固有频率等。

例如,对于一个压电式压力传感器,在受力后将输出电荷信号,即压力信号经传感器转换为电荷信号。

但是,究竟多大压力能使传感器产生多少电荷呢?换句话说,我们测出了一定大小的电荷信号,但它所表示的加在传感器上的压力是多大呢?这个问题只靠传感器本身是无法确定的,必须依靠专用的标准设备来确定传感器的输入――输出转换关系,这个过程就称为标定。

简单地说,利用标准器具对传感器进行标度的过程称为标定.具体到压电式压力传感器来说,我们用专用的标定设备,如活塞式压力计,产生一个大小已知的标准力,作用在传感器上,传感器将输出一个相应的电荷信号,这时,再用精度已知的标准检测设备测量这个电荷信号,得到电荷信号的大小,由此得到一组输入――输出关系,这样的一系列过程就是对压电式压力传感器的标定过程,如图1-19所示。

图1—19 压电式压力传感器输入――输出关系校准在某种程度上说也是一种标定,它是指传感器在经过一段时间储存或使用后,需要对其进行复测,以检测传感器的基本性能是否发生变化,判断它是否可以继续使用。

因此,校准是指传感器在使用中或存储后进行的性能复测。

在校准过程中,传感器的某些指标发生了变化,应对其进行修正.标定与校准在本质上是相同的,校准实际上就是再次的标定,因此,下面都以标定为例作介绍。

1.7.2 标定的基本方法标定的基本方法是,利用标准设备产生已知的非电量(如标准力、位移、压力等),作为输入量输入到待标定的传感器,然后将得到的传感器的输出量与输入的标准量作比较,从而得到一系列的标定数据或曲线.例如,上述的压电式压力传感器,利用标准设备产生已知大小的标准压力,输入传感器后,得到相应的输出信号,这样就可以得到其标定曲线,根据标定曲线确定拟合直线,可作为测量的依据,如图1-20所示.有时,输入的标准量是由标准传感器检测而得到的,这时的标定实质上是待标定传感器与标准传感器之间的比较,如图1-21所示。

传感器标定技术

传感器标定技术

传感器标定技术
对于车辆上⾯安装的各个传感器,需要统⼀到车体坐标系,为了测量⽅便,我们先以车头为原点,建⽴笛卡尔坐标系。

标定步骤如下:
1,以其中⼀个传感器为基础,最好选择⼀条有车道线的地⽅,车辆以车道线平齐。

2,以车道线为基础,在车辆正前⽅放置标定物,在单个传感器的可视化图中,此标定物体应该为中⼼位置。

如果不在中⼼,可以调整⼀下,保证在中⼼位置。

3,以此传感器为基础,将其他传感器的数据也合并到该传感器的可视化图中。

4,最后⼀步,将gps和传感器坐标标定到统⼀坐标。

⼀般,我们会选取⼀条长直道,然后在此直道上,采集轨迹,然后将标定物放置在车道正中间,调整障碍物的标定参数,使得物体在轨迹的正中间。

前向传感器:
对于⼀般的传感器,⽐如四线激光雷达:
最后的⼀条线,根据⾼度,⼀般保证 20-30m左右即可,或者⽔平安装。

0.45m : tan89.2 * 0.45 = 32m.
雷神16线:
⼤概是 5m左右。

视觉传感器的标定流程

视觉传感器的标定流程

视觉传感器的标定流程
视觉传感器的标定流程可以分为以下几个步骤:
1. 准备标定板:选择一个具备特定特征的标定板,例如黑白相间的棋盘格或者圆点模式的标定板。

确保标定板平整,并且清晰可见。

2. 安装标定板:将标定板安装到视觉传感器的可视范围内,保持标定板表面与传感器平行。

3. 采集图像:利用视觉传感器采集多组包含标定板的图像,覆盖不同视角和距离的情况。

4. 提取特征点:对每组图像进行特征点的提取,例如识别棋盘格的角点或者圆点的中心。

5. 计算内参:利用提取的特征点,通过相机几何模型计算相机的内参(例如焦距、主点、畸变系数等)。

6. 计算外参:利用已知的物体空间坐标和对应的图像特征点,通过相机与物体之间的变换关系计算相机的外参(例如旋转矩阵、平移向量)。

7. 优化:对计算得到的内外参数进行优化,以提高标定精度。

8. 验证标定结果:采用一些评价指标(如重投影误差)来验证标定结果的精度和稳定性。

9. 应用标定参数:将标定得到的内外参数应用到实际的视觉任务中,如目标检测、位姿估计等。

需要注意的是,标定流程中的具体方法和步骤可能根据不同的视觉传感器和标定场景而有所差异。

第11章 传感器的标定讲解

第11章 传感器的标定讲解

第11章 传感器的标定
传感器的静态特性标定
1.静态标定条件
(205)℃;≤85%RH;(76060)mm汞柱
2.标定仪器设备(标准量具)精度等级的确定
●标准量具的精度等级比被标定传感器至少高一个等级; ●附加设备又必须比标准量具至少高一个等级。
3.静态特性标定方法——比较法
●创造一个静态标准条件; ●选择标准量具; ●标定步骤: 全量程等间隔分点标定; 正、反行程往复循环一定次数逐点标定(输入标准量,测试 传感器相应的输出量); 列出传感器输出-输入数据表格或绘制输出-输入特性曲线; 数据处理获取相应的静态特指标。
F P S

§11-2 压力传感器的动态标定
传感器的动态特性取决于什么?
传感器的动态模型,即阶数以及τ,ξ,ω等
幅频特性、相频特性
阶跃响应
各种已知频率的正 弦信号激励试验
阶跃信号激励试验
19
这种方法的缺点是标定频率低(低于500 Hz), 标定装置制作困难,应用受到限制。
气压表 泄气门 膜片 侧面被标定的传感器 底面被标定的传感器 高压室 低压室 测速压力传感器 测速 前置级 数字 频率计 测压 前置级 记录 装置
§11-2 压力传感器的动态标定
气源
25
第11章 传感器的标定
激波管法
原理:标定时根据要求对高、低 压室充以不同的压缩空气,低压 室一般为一个大气压力,对高压 室则充以高压气体。当高、低压 室的压力差达到一定值时膜片破 裂,高压气体迅速膨胀冲入低压 室,从而形成激波。 这个激波的波阵面压力保持恒定, 接近理想的阶跃波,并以超音速 冲向被标定的传感器。
第11章 传感器的标定
1. 实验确定一阶传感器时间常数的方法

传感器的标定.PPT课件

传感器的标定.PPT课件

(2)二阶传感器时间常数的确定
在欠阻尼情况下,从曲线上可以测得三个特征 量,即零频增益A(0)、谐振频率增益A(wr)和谐 振频率wr。根据
A(w) 1/ [1 (w/wn )2]2 (2xw/wn )2

dA(w) 0
dw

wr wn 1 2x 2
12.3传感器的动态标定
将wr代入A(w)的表达式得
确定这些参数的方法很多,一般是通过实 验确定,如测量传感器的阶跃响应、正弦响 应、线性输入响应、白噪声,及用机械振动法 等。其中最常用的是测量传感器的阶跃响应。
12.3 传感器的动态标定
1 实验确定一阶传感器时间常数的方法 2 实验确定二阶传感器自然振荡频率与阻
尼比的方法 3 确定传感器动态参数的其他方法
12.3传感器的动态标定
对自然振荡频率来说,可测出第i个极大值与第i+n 个极大值之间的时间间隔tn,如图所示,则
wn 2nπ/(tn 1 x 2 ) (2.11)
也可取不同的i和n,求出多个自然振荡频率后 取平均值。
若传感器是精确的二阶传感器,n取任意 正整数求得的x或wn都不会有多大差别。若有 明显差别,超出测量误差较多,则说明传感器 不是严格的二阶传感器。
④按②、③所述过程,对传感器进行正、 反行程往复循环多次测试(一般为3~10次), 将得到的输出输入测试数据用表格列出或绘成 曲线。
⑤对测试数据进行必要的处理,根据处理 结果确定传感器的线性度、灵敏度、迟滞和重 复性等静态特性指标。
12.3传感器的动态标定
传感器的动态标定主要用于确定传感器的 动态技术指标。动态技术指标主要是研究传感 器的动态响应,而与动态响应有关的参数,一 阶传感器只有一个时间常数τ,二阶传感器则 有自然振荡频率wn和阻尼比ζ两个参数。

传感器单点标定方法

传感器单点标定方法

遥控器标定传感器的方法1、给航空插头的1焊接电源的正,2焊接电源的负极,电源电压范围9-24VDC,其它不用。

2、给传感器通电预热约20分钟(房间温度15度以上)。

3、取传感器专用遥控器一只,把遥控器电池盖的塑料绝缘片去掉,遥控器即可正常使用(注:遥控器第一次使用时)改号:遥控器对准传感器接收装置,按类+,当传感器显示P2-1,再按页+,当传感器显示P2-2时,传感器会自动再次显示H001,这时再用位+,位——,数+,数—更改传感器号,最后保存。

4、取传感器专用的标校头(一根约60mm长的细管)和气体管路连接。

5、调整气体流量,使流量稳定在200ml每分钟(注:流量计必须经过校验)。

6、查看气瓶的气体浓度值。

7、按遥控器的“标气A”键后,传感器显示“AD90”,约1秒后显示标气A浓度。

用数加数减键修改数据等于标气的值(一般为一氧化碳250,硫化氢100,氧气15或甲烷2.00),然后按“确认”在下次校准的任何时候,只要气瓶浓度一样时,不用重复本条。

8、再按浓度显示键,显P--1后再显示当前气体浓度。

9、零点校准:通清洁空气至少3分钟,按遥控器按遥控器“功能键”+ “清0”键后,传感器数码管亮闪一次,零点校准完成。

10、气体校准:通标准气体1分20秒左右,传感器的值稳定后,按遥控器“功能键”+“校准A”后,传感器数码管亮闪一次,显示校准的标气浓度,气体校准完成。

11、如果只校准1次后检验的值不准确,可以重新标定后再次检验。

按标准要求,一般需要重复第9-10条3次。

每次的顺序位先清零再通气较准,再通空气再通检验气体。

备注:严格按1-11条逐条进行,不管显示页面显示什么,都逐条执行!严禁在不通气的情况下按“较准A”键!每次都按如下顺序执行1、标气A 2、浓度显示2、清零3、较准遥控器标定传感器的方法1、给航空插头的1焊接电源的正,2焊接电源的负极,电源电压范围9-24VDC,其它不用。

2、给传感器通电预热约20分钟(房间温度15度以上)。

传感器的标定与校准讲义

传感器的标定与校准讲义
测量误差有绝对误差和相对误差之分。 (1)绝对误差
绝对误差在理论上是指测量值x与被测量的真值xi之间的 差值,即
=xxi=xx0 (真值xi一般用相对真值x0代替) 绝对误差是可正可负的,而不是误差的绝对值;绝对误 差还有量纲,它的单位与被测量的单位相同。
12.1 测量误差基本概念
测量误差的分类:
●标准活塞压力计标定装置,如图14-7所示;压力标定 曲线如图14-8所示。
图14-7 活塞压力计标定压力示意图
图4-8 压力标定曲线
12.4 压力传感器的标定和校准
●杠杆式测力计标定装置,如图14-9所示,砝码重量与 压力的关系
W=pSb/a p=Wa/Sb
图14-9 杠杆式压力标定机示意图
12.4 压力传感器的标定和校准
静态标定—标定静态特性:灵敏度,线性度,
传感器的标定
精度…;
动态标定—动态特性参数(;n,)测试; 动态标定信号:阶跃信号或正弦信号。
传感器的标定与校准的目的:保正测量的准确、统一和法
制性。
12.1 测量误差基本概念
12.1.1 测量与测量误差
1.测量 “测量是以确定量值为目的的一种操作”。这种“操作” 就是测量中的比较过程——将被测参数与其相应的测量单 位进行比较的过程。实现比较的工具就是测量仪器仪表 (简称仪表)。 检测是意义更为广泛的测量,它包含测量和检验的双 重含义。工程参数检测就是用专门的技术工具(仪表), 依靠能量的变换、实验和计算找到被测量的值。一个完整 检测过程应包括:
12.3 传感器的动态特性标定
二、二阶传感器的动态标定
确定传感器的阻尼比和固有频率 n 。 欠阻尼二阶传感器的阶跃响应(如图14-3)
y(t) k 1

传感器的补偿与标定

传感器的补偿与标定
外界影响因素:降低对传感器的实际作用功率
1、屏蔽
传感器与检测技术
方法
噪声源 原理及方法
举例
电场屏蔽 电场间的相互影响 屏蔽层接地
低噪声同轴电缆
电磁屏蔽 高频外磁场
楞次定律
屏蔽层接地,电场屏蔽 和电磁屏蔽功能
磁屏蔽
磁力线
高导磁材料作 接地后,具有磁屏蔽和
屏蔽层
电屏蔽功能
2、隔离
传感器与检测技术
隔热、隔振、密封
温度
传感器输入 传感器输出
T0 T1 T2 …… Tn
X0 X0 X0 …… X0
Y0 Y1 Y2 …… Yn
y0 yif (Ti)
补偿与校正方法
硬件:电子线路 软件:单片机
八、集成化与智能化
传感器与检测技术
1、集成化
(1)将传感器和信号处理电路制作在同一芯片上
(2)将多个相同或不同的敏感元件集成在同一芯 片上,实现多参数测量。
bl d
输出灵敏度提高一倍,消除了零位输出项 l。
例1-11 超声波流速计。
传感器与检测技术
超声波传感器:声-电转换 超声波换能器:压电式
可逆性 发射超声波: 电能 接收超声波: 机械能
介质性质 传播速度c 温度
机械能 超声波发生器 电能 超声波接收器
t1
D
sin (c v cos)
f 1 n nsin (c v cos )
H (s) A(s)
1 A(s)
传感器与检测技术
A
A
H
(s)
1
1
s
A
1
1
A s
A
1 s
1 s 1 A
A A

传感器的标定步骤

传感器的标定步骤

蚌埠启力传感系统工程有限公司
传感器的标定步骤
传感器的静态特性就是在静态标准条件下进行标定的。

之所以说是静态标准是指没有加速度、振动、冲击(除非这些参数本身就是被测物理量)和环境温度一般为室温(20±5℃),相对温度不大于大85%,大气压力为7kPa的情况。

标定仪器设备精度等级的确定:对于传感器进行标定,即时根据试验数据确定传感器的各项性能指标,实际上也是确定了传感器的测量精度,因此在标定传感器时、所用到的测量仪器的精度至少要比被标定传感器的精度高一个等级。

这样,通过标定传感器的静态性能指标才是可靠的,可以确定的精度才是可信的。

静态特性标定的方法:对传感器进行静态特性标定,第一步是创造一个静态标准条件,第二部是选择与被标定传感器的精度要求相适应的一定等级的标定用仪器设备。

最后才能开始对传感器进行静您特性标定。

标定过程步骤如下:第一步:将传感器全量程(测量范围)分成若干等间距点。

第二步,根据传感器量程分点情况,由小到大逐渐一点一点的输入标准量值,兵器记录与个输入值相对的输出值。

第三步:将输入值由大到小一点一点的减少下来,同时记录下与各输入值相对应的输出值;按第二步与第三步所述过程,对传感器进行正、反行程往复循环多次测试,将会得到的输出——输入测试数据用表格列出或画成曲线;最后就是对测试数据进行必要的处理,根据处理结果就可以确定传感器的线性度、灵敏度、滞后与重复性等静态特性指标。

传感器的标定与校准讲义课件

传感器的标定与校准讲义课件

要点二
位移传感器的校准
校准的目的是确保位移传感器在长时间内保持其准确性。 这包括检查传感器的线性度、重复性和可靠性等性能指标 。如果传感器读数与标准位移存在偏差,需要进行调整或 更换。
其他类型传感器的标定与校准
• 其他类型的传感器,如加速度传感器、陀螺仪和磁力计等,也 需要进行类似的标定和校准过程。这些传感器通常用于测量运 动和方向,并在许多应用中发挥着关键作用,如导航、运动检 测和游戏开发等。在进行标定和校准时,需要使用已知的标准 源来检查传感器的性能,并确保其在各种工作条件下都能提供 准确和可靠的数据。
读数,可以确定传感器的误差和精度。
温度传感器的校准
校准温度传感器是为了确保其在各种环境和工作条件下都能提供准确的温度读数。这包 括检查传感器的线性度、重复性和迟滞性等性能指标。如果传感器读数与标准温度源存
在偏差,需要进行调整或更换。
位移传感器的标定与校准
要点一
位移传感器的标定
位移传感器的标定涉及到使用已知位移的参考物来检查传 感器的输出。这个过程通常在多个位移点上进行,以覆盖 传感器的工作范围。通过比较标准位移和传感器的实际读 数,可以确定传感器的误差和精度。
延长传感器寿命
通过定期的标定与校准, 可以及时发现并解决传感 器潜伏的问题,从而延长 其使用寿命。
标定与校准的流程
性能测试
对传感器的各项性能指标进行 测试,如线性度、重复性、灵 敏度等。
结果评估
根据测试结果评估传感器的性 能,判断是否符合要求。
准备工作
选择合适的标准设备、搭建标 定与校准环境、准备相关资料 等。
其他误差来源包括电源噪声、电磁干扰等。
详细描述
除了上述常见的误差来源外,电源噪声和电 磁干扰也可能对传感器输出造成影响。为了 减小这些误差,可以采取相应的措施来抑制 电源噪声和电磁干扰,例如使用滤波器、屏 蔽电缆等。同时,在传感器设计和制造过程 中也应充分考虑这些因素的影响,以提高传 感器的性能和稳定性。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传感器的标定方法
传感器标定是指通过一系列实验和技术手段,对传感器进行参数的测量和调整,以确保传感器输出与被测量的物理量之间的准确关系。

传感器标定方法多种多样,根据不同的传感器类型和应用领域有所差异。

下面将介绍一些常见的传感器标定方法。

1. 建模法标定:
建模法是一种常用的传感器标定方法,它通过将传感器的输入和输出建立数学模型,通过实验测量和数据拟合得到模型的参数,从而实现传感器的标定。

常用的建模方法有线性回归、多项式拟合、神经网络等。

例如,在温度传感器中,可以通过将温度传感器输入的电压信号与温度之间建立线性或非线性关系的模型进
行标定。

2. 标准物质法标定:
标准物质法是一种传感器标定的重要方法,它通过使用已知浓度的标准物质来对传感器进行标定。

例如,气体传感器可以使用标准气体品,电导传感器可以使用标准电解液,光学传感器可以使用标准光源等。

通过将传感器输出与标准物质的浓度进行比较,可以计算传感器的灵敏度、零点漂移等参数。

3. 对比法标定:
对比法是一种通过将待标定传感器与已标定的传感器进行比较来进行标定的方法。

例如,压力传感器可以使用静水压力来进行对比标定,通过将待标定传感器
与已标定传感器同时暴露在相同的静水压力下,比较两者的输出信号差异,可以得到待标定传感器的准确度。

4. 自标定法标定:
自标定法是一种能够实时对传感器进行标定的方法,它利用传感器本身的特性和内部结构来实现标定。

例如,加速度传感器可以通过自标定法来校准,它通过检测传感器在不同加速度条件下的输出信号,得到传感器的灵敏度和零点偏移,并进行自动校正。

5. 外部参考法标定:
外部参考法是一种使用外部参考量对传感器进行标定的方法。

例如,使用GPS 定位系统对地磁传感器进行标定,通过将传感器所在位置的真实地磁场与传感器输出信号进行比较,可以得到传感器的准确度和校准系数。

总之,传感器标定是确保传感器输出与被测量物理量之间准确关系的重要步骤。

在进行传感器标定时,需要选择合适的标定方法,并根据具体需求和应用场景进行操作。

标定的准确度和可靠性对于传感器的性能和应用具有重要意义,因此在标定过程中需要严格控制实验条件和数据处理方法,确保标定结果的精度和可靠性。

相关文档
最新文档