框架结构风荷载作用下弯矩计算培训资料

合集下载

3.5结构设计——风荷载

3.5结构设计——风荷载

3.5风荷载以及其内力分析3.5.1各层风荷载值基本风压值为:ω0=0.5kN/m,建筑位于城市郊区属B类。

由于建筑总高度不超过30m,所以βz=1.0查规范得:迎风面μs=0.8,背风面μs=−0.5,所以取μs=1.3各层μz查表得,P w=βzμzμsω0A,计算数据及结果见表3-5-1表3-5-1层次βz μs z(m)μz ω0(kN/m2)A(m2)P w(kN)天面 1 1.3 21.30 1.250 0.50 19.25 15.645 1 1.3 17.80 1.195 0.50 24.50 19.034 1 1.3 14.30 1.140 0.50 24.50 18.153 1 1.3 10.80 1.020 0.50 24.50 16.242 1 1.3 7.30 0.880 0.50 24.50 14.011 1 1.3 3.80 0.608 0.50 25.55 10.10 风荷载作用下的计算简图见下:3.5.2风荷载作用下的内力计算风荷载作用下需要考虑框架节点的侧移,采用D 值法计算 【1】各柱D 值及前力分配系数η计算结果见表3-5-2(1),表3-5-2(1)注:i c =1.66×10^4【2】各柱的反弯点位置、分配剪力、柱端弯矩及层间位移计算结果见表3-5-2(2)注:y 0123查《混凝土结构 中册》附录10得到M (t )=V i ×(1−y)×ℎi ; M (b )=V i ×y ×ℎi ; △μ=V j∑D【3】各层层间位移与层高比值表3-5-2(3)表3-5-2(3)则移验算:由表6可知,对于框架结构,楼层层间最大位移与层高比的限值为1/550 =0.00182。

本框架最大位移在底层,其最大位移与层高比值为0.000784,满足要求,所以框架抗侧刚度足够。

【4】梁的弯矩计算:悬挑梁部分是作走廊用,所以不考虑风荷载影响,计算结果见表3-5-2(4)表3-5-2(4)层号节点M(l)kN.m M(r)6 G 16.70 F 16.705 G 44.65 F 44.654 G 77.54 F 77.543 G 107.60 F 107.602 G 115.94 F 115.941 G 160.46 F 160.46【4】风荷载作用下弯矩图见右图【4】风荷载作用剪力、轴力图梁端剪力计算用以下公式:V b l=V b r=(︳M b l+M b r︳)/L 计算结果见下图:。

框架与排架复习题及部分答案

框架与排架复习题及部分答案

《混凝土结构设计复习题及部分答案》一、单项选择题1.在设计框架时,可对梁进行弯矩调幅,其原则是( A )A.在内力组合之前,对竖向荷载作用的梁端弯矩适当调小B.在内力组合之前,对竖向荷载作用的梁端弯矩适当调大C.在内力组合之后,对梁端弯矩适当调小D。

在内力组合之后,对梁端弯矩适当调大2.伸缩缝的设置主要取决于(D )A。

结构承受荷载大小 B.结构高度C.建筑平面形状D。

结构长度3.水平荷载作用下的多层框架结构,当某层其他条件不变,仅上层层高变小时,该层柱的反弯点位置( B )A.向上移动B。

向下移动C.不变D.向上移动至23层高处4。

单层厂房下柱柱间支撑一般布置于伸缩缝区段的(A )A。

中央 B.两端C。

距两端的第二个柱距内D。

任意一端5.钢筋混凝土柱下扩展基础的高度主要是由(C )A.地基抗压承载力确定B.地基抗剪承载力确定C.基础抗冲切承载力确定D。

基础底板抗弯承载力确定6.在用分层法计算框架内力时( A )A.除底层外,其他各层柱的线刚度应折减B.除底层外,其他各层柱的线刚度应增加C。

底层柱线刚度应折减,其他各层柱不变D.各层柱的线刚度均不变7.设计现浇钢筋混凝土框架结构时,为简化计算,对现浇楼盖,取中框架梁的截面惯性矩为( D )A。

I0B。

1。

2IC.1。

5ID。

2。

0I(。

I—为矩形截面梁的截面惯性矩)8。

荷载分项系数的取值(D )A.总是大于1B.总是小于1C。

总是等于1 D.可能大于1,可能等于1 9。

单层厂房计算中,对屋面活荷载、雪荷载的取值是按( D )A.两者之和B。

两者的平均值C.两者的较小值D.两者中的较大值10.高层剪力墙结构的水平位移曲线为( )A。

弯曲型B。

剪切型C.弯剪型D。

剪弯型11。

多层框架结构,在水平荷载作用下的侧移主要是由(C )A。

梁剪切变形引起的侧移B。

柱剪切变形引起的侧移C.梁、柱弯曲变形引起的侧移D.柱轴向变形引起的侧移12.单层厂房排架在柱顶集中水平力作用下按剪力分配法计算时,总剪力是按( C )A.柱的数量平均分配给各柱B.柱的高度分配给各柱C。

横向水平荷载作用下框架结构的内力和侧移计算

横向水平荷载作用下框架结构的内力和侧移计算

结构等效总重力荷载
F
G
G
G
G3
质点i的水平地震作用Fi 若: 不考虑顶部附加地震作用 若: 考虑顶部附加地震作用 查表1.19
(3)判别
楼层位移
01
弹性角位移
02
层间位移 查表1.21 钢筋混凝土框架1/550
节点平衡
左地震M图
方向:
01
剪力:使物体顺时针转为正 轴力:压力为正
02
左地震剪力、轴力图
03
梁端剪力、柱轴力
(二)横向风荷载作用下框架结构内力和侧移计算 1、风荷载标准值 :风振系数 :体型系数 :高度变化系数,表1.11 :基本风压 0.65 压 吸 ……
03
3、水平地震作用下的位移验算
4、水平地震作用下框架内力计算
D值法(改进反弯点法)
柱端弯矩:
--标准反弯点高度比(表2.4) --上、下层梁线刚度比修正系数(表2.6) --上层层高变化的修正值(表2.7)底层 --下层层高变化的修正值(表2.7)二层 --本层层高
梁端弯矩:
柱左侧受拉为正
以梁线刚度分配
六、横向水平荷载作用下框架结构的内力和侧移计算
单击添加副标题
单击此处添加文本具体内容,简明扼要地阐述你的观点
(一)横向水平地震作用下框架结构的内力和侧移计算 1、横向自震周期(基本自震周期)T1 Gi 为计算单元范围内各层楼面上的重力荷载代表值及上下各半层的墙柱等重量 注:突出屋面部分面<30%屋面面积,则按附属结构计算;>30%按一层计算 计算时,先将突出屋面部分重力荷载折算到顶层: Ge=Gn×(1+3h/2H)
自振周期计算公式:
考虑非承重墙影响的折减系数,框架0.6~0.7; 计算结构基本自振周期用的结构顶点假想位移 对于带屋面局部突出间的房屋,应取主体结构顶点的位移。

【精品文档类】风荷载计算规律及公式

【精品文档类】风荷载计算规律及公式

第二部分 风荷载计算一:风荷载作用下框架的弯矩计算(1)风荷载标准值计算公式:0k z s z W w βμμ=⋅⋅⋅ 其中k W 为垂直于建筑物单位面积上的风荷载标准值z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w =该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。

(2)确定各系数数值因结构高度19.830H m m =<,高宽比19.81.375 1.514.4HB==<,应采用风振系数z β来考虑风压脉动的影响。

该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载规范》第3.7查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。

层数()i H m z μ z β1()/q z KN m 2()/q z KN m7女儿墙底部 17.50.79 1.00 2.370 1.480 6 16.5 0.77 1.00 2.306 1.441 5 13.2 0.74 1.00 2.216 1.385 4 9.9 0.74 1.00 2.216 1.385 3 6.6 0.74 1.00 2.216 1.385 2 3.3 0.74 1.00 2.216 1.385 1 -3.3 0.00 0.00 0.000 0.000(3)计算各楼层标高处的风荷载z 。

攀枝花基本风压取00.40/w KN mm =,取②轴横向框架梁,其负荷宽度为7.2m,由0k z s z W w βμμ=⋅⋅⋅得沿房屋高度分布风荷载标准值。

7.20.4 2.88z z s z z s z q βμμβμμ=⨯=,根据各楼层标高处的高度i H ,查得z μ代入上式,可得各楼层标高处的()q z 见表。

框架结构计算

框架结构计算

1.恒荷载作用下内力计算1.1梯形(三角形)、均布恒荷载作用下简支梁支座剪力和跨中弯矩(kN)(kN-m)式中g 1—梁上均布荷载值(kN/m);g 2—梁上梯形(三角形)分布荷载值(kN/m)。

各梁内力计算结果如表1.1表1.1 恒荷载作用下框架梁按简支计算的梁端剪力和跨中弯矩g 1g 2V A0V B0l M AB0g 1g 2V B0r M BC06 3.4015.5241.6341.6375.30 2.709.959.597.291~517.5512.6478.2578.25127.842.708.108.446.33AB 梁 l =6m a =0.325层次BC 梁 l =2.5m a =0.51.2恒荷载作用下框架弯矩计算梯形(三角形)恒荷载化作等效均布荷载g =g 1+(1-2a 2+a 3)g 2 (kN/m ) 梁端固端弯矩(kN-m )梁固端弯矩计算结果如表1.2表1.2 框架梁恒荷载作用下固端弯矩计算表g 1g 2gM g 1g 2g M M m 6 3.4015.5216.1748.52 2.709.958.92 4.65-2.641~517.5512.6427.9583.86 2.708.107.764.04-2.29AB 梁 l =6m a =0.325BC 梁 l =2.5m a =0.5层次框架结构利用弯矩二次分配法的计算过程和结果见图1.1。

1.3恒荷载作用下框架剪力计算 梁: (AB 梁);柱:式中:V —计算截面剪力(kN ); V 0—梁计算截面在简支条件下剪力(kN ); M l 、M r —分别为AB 梁左右两端弯矩值(kN-m )。

M t 、M b —分别为计算截面所在柱的上下两端弯矩值(kN-m )。

图 1.1 恒荷载作用下弯矩二次分配法计算过程框架各杆件剪力计算结果见表1.3。

表1.3 框架梁柱在恒荷载作用下的杆端剪力值1.4 恒荷载作用下柱轴力值计算柱轴力根据上层柱传来轴力、节点两(一)侧梁端剪力、节点集中荷载的和求得。

【6层】6000平米框架结构办公楼毕业设计风荷载计算

【6层】6000平米框架结构办公楼毕业设计风荷载计算

第二部分 风荷载计算一:风荷载作用下框架的弯矩计算(1)风荷载标准值计算公式:0k z s z W w βμμ=⋅⋅⋅ 其中k W 为垂直于建筑物单位面积上的风荷载标准值z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w =该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。

(2)确定各系数数值因结构高度19.830H m m =<,高宽比19.81.375 1.514.4HB==<,应采用风振系数z β来考虑风压脉动的影响。

该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载规范》第3.7查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。

(3)计算各楼层标高处的风荷载z 。

攀枝花基本风压取00.40/w KN mm =,取②轴横向框架梁,其负荷宽度为7.2m,由0k z s z W w βμμ=⋅⋅⋅得沿房屋高度分布风荷载标准值。

7.20.4 2.88z z s z z s z q βμμβμμ=⨯=,根据各楼层标高处的高度i H ,查得z μ代入上式,可得各楼层标高处的()q z 见表。

其中1()q z 为迎风面,2()q z 背风面。

风正压力计算:7. 1() 2.88 2.88 1.00 1.300.790.8 2.370/z s z q z KN m βμμ==⨯⨯⨯⨯= 6. 1() 2.88 2.88 1.00 1.300.770.8 2.306/z s z q z KN m βμμ==⨯⨯⨯⨯= 5. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==⨯⨯⨯⨯= 4. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==⨯⨯⨯⨯= 3. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==⨯⨯⨯⨯= 2. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==⨯⨯⨯⨯= 1. 1() 2.88 2.880.00 1.300.740.80.000/z s z q z KN m βμμ==⨯⨯⨯⨯= 风负压力计算:7. 2() 2.88 2.88 1.00 1.300.790.5 1.480/z s z q z KN m βμμ==⨯⨯⨯⨯= 6. 2() 2.88 2.88 1.00 1.300.770.5 1.441/z s z q z KN m βμμ==⨯⨯⨯⨯= 5. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==⨯⨯⨯⨯= 4. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==⨯⨯⨯⨯= 3. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==⨯⨯⨯⨯=2. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==⨯⨯⨯⨯= 1. 2() 2.88 2.880.00 1.300.740.50.000/z s z q z KN m βμμ==⨯⨯⨯⨯= (4)将分布风荷载转化为节点荷载第六层:即屋面处的集中荷载6F 要考虑女儿墙的影响6 2.306 2.216 3.3 2.370 2.306 1.441 1.385 3.3 1.441 1.4800.5[() 2.306]10.5[() 1.441]19.92222222F KN ++++=+⨯+⨯++⨯+⨯= 第五层的集中荷载5F 的计算过程5 2.216 2.216 2.306 2.216 1.441 1.385 1.385 1.3850.5[] 3.30.5[(] 3.312.002222F KN ++++=+⨯+++⨯=4 2.216 2.216 2.16 2.216 1.385 1.385 1.385 1.3850.5[] 3.30.5[(] 3.311.882222F KN ++++=+⨯+++⨯=3 2.216 2.216 2.16 2.216 1.385 1.385 1.385 1.3850.5[] 3.30.5[(] 3.311.882222F KN ++++=+⨯+++⨯=第二层,要考虑层高的不同: 2 3.3 4.252.216 1.385()13.5922F KN =+⨯+= 10.00F KN =等效节点集中等荷载(单位:KN )二.柱侧移刚度及剪力的计算(212hi D c=)见下表 三:各层柱反弯点和弯矩的确定(见下表)根据该多层办公楼总层数m ,该柱所在层n ,梁柱线刚度比K ,查表得到标准反弯点系数0y ;根据上下横梁线刚度比值i 查表得到修正值1y ,根据上下层高度变化查表得到修正值2y 3y ;各层反弯点高度0123()yh y y y y h =+++。

风荷载计算

风荷载计算

第二部分 风荷载计算一:风荷载作用下框架的弯矩计算(1)风荷载标准值计算公式:0k z s z W w βμμ=⋅⋅⋅ 其中k W 为垂直于建筑物单位面积上的风荷载标准值z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w =该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。

(2)确定各系数数值因结构高度19.830H m m =<,高宽比19.81.375 1.514.4HB==<,应采用风振系数z β来考虑风压脉动的影响。

该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载规范》第3.7查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。

(3)计算各楼层标高处的风荷载z 。

攀枝花基本风压取00.40/w KN mm =,取②轴横向框架梁,其负荷宽度为7.2m,由0k z s z W w βμμ=⋅⋅⋅得沿房屋高度分布风荷载标准值。

7.20.4 2.88z z s z z s z q βμμβμμ=⨯=,根据各楼层标高处的高度i H ,查得z μ代入上式,可得各楼层标高处的()q z 见表。

其中1()q z 为迎风面,2()q z 背风面。

风正压力计算:7. 1() 2.88 2.88 1.00 1.300.790.8 2.370/z s z q z KN m βμμ==⨯⨯⨯⨯= 6. 1() 2.88 2.88 1.00 1.300.770.8 2.306/z s z q z KN m βμμ==⨯⨯⨯⨯= 5. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==⨯⨯⨯⨯= 4. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==⨯⨯⨯⨯= 3. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==⨯⨯⨯⨯= 2. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==⨯⨯⨯⨯= 1. 1() 2.88 2.880.00 1.300.740.80.000/z s z q z KN m βμμ==⨯⨯⨯⨯= 风负压力计算:7. 2() 2.88 2.88 1.00 1.300.790.5 1.480/z s z q z KN m βμμ==⨯⨯⨯⨯= 6. 2() 2.88 2.88 1.00 1.300.770.5 1.441/z s z q z KN m βμμ==⨯⨯⨯⨯= 5. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==⨯⨯⨯⨯= 4. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==⨯⨯⨯⨯= 3. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==⨯⨯⨯⨯=2. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==⨯⨯⨯⨯= 1. 2() 2.88 2.880.00 1.300.740.50.000/z s z q z KN m βμμ==⨯⨯⨯⨯= (4)将分布风荷载转化为节点荷载第六层:即屋面处的集中荷载6F 要考虑女儿墙的影响6 2.306 2.216 3.3 2.370 2.306 1.441 1.385 3.3 1.441 1.4800.5[() 2.306]10.5[() 1.441]19.92222222F KN ++++=+⨯+⨯++⨯+⨯= 第五层的集中荷载5F 的计算过程5 2.216 2.216 2.306 2.216 1.441 1.385 1.385 1.3850.5[] 3.30.5[(] 3.312.002222F KN ++++=+⨯+++⨯=4 2.216 2.216 2.16 2.216 1.385 1.385 1.385 1.3850.5[] 3.30.5[(] 3.311.882222F KN ++++=+⨯+++⨯=3 2.216 2.216 2.16 2.216 1.385 1.385 1.385 1.3850.5[] 3.30.5[(] 3.311.882222F KN ++++=+⨯+++⨯=第二层,要考虑层高的不同: 2 3.3 4.252.216 1.385()13.5922F KN =+⨯+= 10.00F KN =等效节点集中等荷载(单位:KN )二.柱侧移刚度及剪力的计算(212hi D c=)见下表 三:各层柱反弯点和弯矩的确定(见下表)根据该多层办公楼总层数m ,该柱所在层n ,梁柱线刚度比K ,查表得到标准反弯点系数0y ;根据上下横梁线刚度比值i 查表得到修正值1y ,根据上下层高度变化查表得到修正值2y 3y ;各层反弯点高度0123()yh y y y y h =+++。

框架结构内力计算-竖向弯矩二次分配,水平D值法

框架结构内力计算-竖向弯矩二次分配,水平D值法

0.351 0.351 0.298
D
114.04
40.03 40.03 33.98
架横梁相应的位置上。
第一次分配: 放松节点,把各节点 不平衡弯矩“同时” 进行分配。
0.351 0.351 0.298
C
114.04
40.03 40.03 33.98
0.379 0.300 0.321
B
114.04
0.274 0.274 0.220
H
33.72
22.08 22.01 17.67
0.246
114.04 19.76
0.290 0.230 0.234
G
33.72
23.39 18.47 18.80
A
F
(4)弯矩分配与传递 上柱 第一次分配
下柱 右梁
0.541 E
66.03 20.02
弯矩二次分配法
对六层以下无侧移的框架,此法较为方便。具体步骤: (1)首先计算框架各杆件的线刚度及分配系数; (2)计算框架各层梁端在竖向荷载作用下的固定端弯矩; (3)计算框架各节点处的不平衡弯矩,并将每一节点处的
不平衡弯矩同时进行分配并向远端传递,传递系数为1/2; (4)进行两次分配后结束(仅传递一次,但分配两次)。
Mb
M
u c
ibl ibr
M
r b
M
d c
6、梁端剪力、柱轴力
0.459
122.05 56.02 14.12 2.17 82.86
第二次分配: 放松节点,把各节 点不平衡弯矩“同 时”进行分配。
0.351 0.351 0.298
D
114.04
40.03 40.03 33.98

混凝土结构复习题

混凝土结构复习题

混凝土结构设计复习题一、单项选择题1.在设计框架时,可对梁进行弯矩调幅,其原则是( A )A.在内力组合之前,对竖向荷载作用的梁端弯矩适当调小B.在内力组合之前,对竖向荷载作用的梁端弯矩适当调大C.在内力组合之后,对梁端弯矩适当调小D.在内力组合之后,对梁端弯矩适当调大2.伸缩缝的设置主要取决于(D )A.结构承受荷载大小B.结构高度C.建筑平面形状D.结构长度3.水平荷载作用下的多层框架结构,当某层其他条件不变,仅上层层高变小时,该层柱的反弯点位置( B )A.向上移动B.向下移动C.不变D.向上移动至23层高处4.单层厂房下柱柱间支撑一般布置于伸缩缝区段的(A )A.中央B.两端C.距两端的第二个柱距内D.任意一端5.钢筋混凝土柱下扩展基础的高度主要是由(C )A.地基抗压承载力确定B.地基抗剪承载力确定C.基础抗冲切承载力确定D.基础底板抗弯承载力确定6.在用分层法计算框架内力时( A )A.除底层外,其他各层柱的线刚度应折减B.除底层外,其他各层柱的线刚度应增加C.底层柱线刚度应折减,其他各层柱不变D.各层柱的线刚度均不变7.设计现浇钢筋混凝土框架结构时,为简化计算,对现浇楼盖,取中框架梁的截面惯性矩为( D )A.I0B.1.2IC.1.5ID.2.0I(.I—为矩形截面梁的截面惯性矩)8.荷载分项系数的取值( D )A.总是大于1B.总是小于1C.总是等于1D.可能大于1,可能等于19.单层厂房计算中,对屋面活荷载、雪荷载的取值是按( D )A.两者之和B.两者的平均值C.两者的较小值D.两者中的较大值10.高层剪力墙结构的水平位移曲线为( )A.弯曲型B.剪切型C.弯剪型D.剪弯型11.多层框架结构,在水平荷载作用下的侧移主要是由(C )A.梁剪切变形引起的侧移B.柱剪切变形引起的侧移C.梁、柱弯曲变形引起的侧移D.柱轴向变形引起的侧移12.单层厂房排架在柱顶集中水平力作用下按剪力分配法计算时,总剪力是按( C )A.柱的数量平均分配给各柱B.柱的高度分配给各柱C.柱的侧移刚度分配给各柱D.柱的截面面积分配给各柱13.在D值法中,D值的计算公式为D=α2j ch i12其中α数值(<1 )A.<1B.>1C.=1D.可能>1,也可能<114.在用分层计算多层框架内力时,中间层某柱的柱端弯矩,( B )A.只与该柱所属的一个开口框架计算单元有关B.只与该柱所属的两个开口框架计算单元有关C.与所有开口框架计算单元有关D.与所有开口框架计算单元无关15.层数不多,荷载不大而地基承载力较高时,框架柱较经济的天然浅基础型式是( C )A.条形基础B.筏式基础C.独立基础D.箱形基础16.框架结构在风荷载作用下,通常最大层间位移位于(C )A.框架顶部B.框架中部C.框架底部D.框架2/3高度处17.地面粗糙度类别为B类的地区指的是(C)A.有密集建筑群的大城市市区B.有密集建筑群且房屋较高的城市市区C.中小城镇和大城市郊区D.海岸、湖岸、海岛地区18.在进行单层厂房柱控制截面内力组合时,每次组合都必须包括(B)A.屋面活荷载B.恒荷载C.风荷载D.吊车荷载19.水平荷载作用下的多层框架结构,当某层其他条件不变,仅其柱上端梁刚度降低,该层柱的反弯点位置(A)A.向上移动B.向下移动至52层高处C.不变D.向下移动至31层高处20.在进行框架梁端截面配筋计算时,下列说法正确的是(A)A.弯矩和剪力均采用柱边的值B.弯矩和剪力均采用柱轴线处的值C.弯矩采用柱轴线处的值,剪力采用柱边值D.弯矩采用柱边值,剪力采用柱轴线处的值21.在其他条件相同的情况下,有侧移多层多跨框架柱的计算长度l0最小的是(B)A .采用现浇楼盖的边柱B .采用现浇楼盖的中柱C .采用装配式楼盖的边柱D .采用装配式楼盖的中柱22.反弯点法可用在(D )A .竖向荷载作用下,梁柱线刚度比小的框架B .竖向荷载作用下,梁柱线刚度比大的框架C .水平荷载作用下,梁柱线刚度比小的框架D .水平荷载作用下,梁柱线刚度比大的框架23.下述单层单跨厂房中,整体空间作用较大的是(D )A .无檩屋盖,两端无山墙B .有檩屋盖,两端有山墙C .有檩屋盖,两端无山墙D .无檩屋盖,两端有山墙24.框架柱的侧移刚度212h i D cα=,其中α是考虑(A )A .梁柱线刚度比值对柱侧移刚度的影响系数B .上下层梁刚度比值对柱侧移刚度的影响系数C .上层层高变化对本层柱侧移刚度的影响系数D .下层层高变化对本层柱侧移刚度的影响系数25.单层厂房抗风柱与屋架上弦之间采用弹簧板连接,弹簧板(A )A .只传递水平力B .只传递竖向力C .只传递弯矩D .不传递力26.对于多层多跨规则框架,下列说法中不正确...的是(D ) A .在风荷载作用下,边柱的轴力较大,中柱的轴力较小B .在风荷载作用下,迎风面的柱子受拉,背风面柱子受压C .在楼面均布恒载作用下,边柱的弯矩较大,中柱的弯矩较小D .在楼面均布恒载作用下,边柱的轴力较大,中柱的轴力较小27.一般情况,在风荷载作用下,规则框架结构的侧移特征是(B )A .各层侧移越往上越大,层间侧移越往上越大B .各层侧移越往上越大,层间侧移越往上越小C .各层侧移越往上越小,层间侧移越往上越大D .各层侧移越往上越小,层间侧移越往上越小28.一般情况下,在选择框架梁的截面高度时,主要考虑的因素是(A )A .梁的跨度B .层高C .结构的总高度D .梁的混凝土强度等级29.确定框架结构内力分析的计算简图时,框架梁的计算跨度应取(D )A .梁的净跨度B . 梁的净跨度+21梁高C .梁的净跨度+21柱截面高度D .梁两端柱轴线之间的距离 30.在设计厂房结构吊车荷载时,根据吊车达到其额定起吊值的( C ),将吊车工作制度分为轻级、中级、重级和超重级四种工作制。

框架结构计算时应重视的几个问题

框架结构计算时应重视的几个问题

框架结构计算时应重视的几个问题提要:框架结构计算时,框架梁梁端弯矩的调幅,对有震组合与无震组合的比较及风荷载作用下柱的剪力和梁的最大弯矩等容易出错的问题进行讨论,供应试及设计人员参考。

关键词:框架结构,弯矩,剪力随着我国近些年经济的快速发展,框架结构房屋普遍采用,但框架结构计算的工具书及相关资料,对框架结构设计中部分问题的做法和要求存在差异,因此在框架计算时,应引起设计者的高度重视,本文重点讨论这类问题。

通过几个例题进行说明,有助于设计人员对规范条文的理解,供应试及设计人员参考。

一、关于梁端弯矩的调幅框架结构为超静定结构,在作结构方案时本着“强剪弱弯,强柱弱梁”的原则,对于框架梁来说,是通过弯矩的调幅的作法实现上述目标。

在一般的情况下,作结构方案时按塑性设计考虑塑性内力重分布,在竖向荷载作用下对梁端负弯矩进行调幅。

规范规定(JGJ3-2010、5.2.3条),现浇框架的调幅系数为0.8~0.9,装配式框架的调幅系数为0.7~0.8,但同时规定,只有在竖向荷载作用下梁端弯矩才允许调幅,而水平荷载作用下梁端弯矩不作调幅。

而有的资料做法是,在内力组合前对梁端弯矩不作调幅,而配筋计算时将内力组合设计值调幅,这样一来在水平荷载作用下的弯矩也进行了调幅,不符合规范要求。

正确的做法应该先将竖向荷载产生的弯矩进行调幅(同时剪力也应该作相应变化),然后与水平荷载产生的弯矩组合。

梁端弯矩作调幅计算时可采用两种方法,一是先将梁端的固端弯矩作调幅后,再进行力矩分配,另一种方法是将力矩分配法得到的梁端负弯矩直接乘以调幅系数。

二、梁的柱边处弯矩计算梁端的实际最大弯矩(包括正、负弯矩)在柱边进行柱边处梁的弯矩计算时,应考虑梁端弯矩及剪力设计值的实际状态,计算公式应为:M=M‘ V’ (a)式中:M为柱边处梁的弯矩设计值:M‘为梁端弯矩设计值:V’为与M ‘对应的剪力设计值;b为柱宽。

有的资料介绍,梁端弯矩按(a)式计算取正号,计算结果M有时比M’值小,有时比M‘值大,这就要明确研究对象;判断对整个构件是有利状态;不利状态。

立杆段由风荷载标准值产生的弯矩

立杆段由风荷载标准值产生的弯矩

立杆段由风荷载标准值产生的弯矩在中国建筑工程设计规范中,风荷载是设计中必须考虑的一个重要因素。

风荷载不仅对建筑的结构稳定性有影响,还对建筑材料的选择、构造方法的确定等方面产生了重大影响。

其中,立杆段由风荷载标准值产生的弯矩是一个需要特别关注和深入探讨的话题。

1. 风荷载的概念和影响风荷载是指风对建筑物产生的压力和力矩,是一种动态荷载。

在设计建筑结构时,需要考虑到不同气候条件下的风荷载,以保证建筑结构的安全性和稳定性。

风荷载对建筑的影响主要体现在以下几个方面:风荷载会对建筑物立杆段产生弯矩,导致结构受力不均匀;风荷载还会对建筑物的整体稳定性和抗风能力产生影响;对于高层建筑和特殊结构,风荷载更是需要重点考虑的因素。

2. 立杆段由风荷载标准值产生的弯矩的计算方法在建筑结构设计中,立杆段由风荷载标准值产生的弯矩是一个重要的计算参数。

它直接影响到结构的受力情况和稳定性。

根据《建筑结构荷载代理规范》和《建筑结构设计规范》,立杆段由风荷载标准值产生的弯矩的计算方法主要包括以下几个步骤:确定设计基本风压和风荷载体型系数;计算风压高度变化系数和风压动压系数;根据结构形式和计算方法确定立杆段的受力情况和形状系数;进行弯矩的计算和结构稳定性的评估。

3. 优化设计和实践经验针对立杆段由风荷载标准值产生的弯矩,优化设计和实践经验是非常重要的。

根据实际工程经验,可以通过合理的结构构造和受力形式,减小风荷载对立杆段产生的弯矩;在建筑结构设计中,也可以采用一些新颖的结构形式和材料,以提高结构的抗风能力和稳定性。

在实践中,工程师们还需要结合具体的工程情况和气候条件,进行综合考虑和优化设计,以保证建筑结构的安全可靠。

4. 个人观点和理解就立杆段由风荷载标准值产生的弯矩而言,我认为在建筑结构设计中,我们不能简单地把计算作为一个机械的过程,而应该更加注重对结构的整体性和稳定性的考虑。

对于风荷载的影响和立杆段弯矩的计算,我们也需要不断总结和积累实践经验,以便更好地指导和规范结构设计的实际工作。

框架结构风荷载作用下弯矩计算

框架结构风荷载作用下弯矩计算

框架结构风荷载作用下弯矩计算在结构设计中,考虑风荷载作用是十分重要的,尤其是在高层建筑或大跨度结构中。

风荷载会引起结构产生弯矩,因此需要对风荷载作用下的弯矩进行计算。

弯矩计算是结构设计中的基本问题之一,其目的是确定结构中各个截面上的弯矩分布,以便工程师能够设计出合适的梁、柱等构件尺寸和钢筋布置。

而风荷载作用下的弯矩计算更加复杂,涉及到风压分布、风荷载系数、结构形状等多个因素。

首先,需要确定风荷载的作用方向和大小。

风荷载作用方向通常为水平向,即垂直于结构体表面的方向。

其大小一般通过国家规范或相关标准给出,根据不同地区、不同结构类型的要求,风荷载大小也会有所不同。

接下来,需要确定结构的截面形状和尺寸。

结构截面形状的选择应该符合结构的力学性能和设计要求。

在风荷载作用下,结构截面会受到不均匀的风压分布,从而引起弯矩的产生。

因此,在进行弯矩计算时,需要详细了解结构的截面形状和尺寸,以便进行准确的力学分析。

然后,需要确定结构的弯矩分布。

在实际工程中,由于结构的复杂性和非线性特性,很难通过解析方法得到准确的弯矩分布。

因此,一般采用数值模拟或实验方法来确定弯矩分布。

数值模拟可以通过使用结构分析软件进行,根据结构的几何形状、材料性能和边界条件,计算得到结构中的各点弯矩值。

实验方法可以通过搭建仿真模型,进行物理测试得到弯矩分布。

这些方法可以提供有关结构截面上应力和变形的更多信息,为结构设计提供依据。

最后,需要进行弯矩设计。

在进行弯矩设计时,需要根据结构的承载能力和安全要求,选择适当的结构截面尺寸和钢筋布置。

弯矩设计的目标是使结构的弯矩在安全的范围内,并满足结构的使用要求和美观要求。

综上所述,风荷载作用下的弯矩计算是结构设计中一个重要且复杂的问题。

通过准确确定风荷载的大小和方向、结构截面的形状和尺寸、弯矩的分布等因素,可以进行有效的弯矩计算和设计。

在实际工程中,建议结合数值模拟和实验方法,以得到更准确的结果,并保证结构的安全可靠性和经济性。

一榀框架水平风载讲解

一榀框架水平风载讲解

一榀框架水平风载1.1水平风荷载计算本工程为五层框架(局部六层),结构不高,且该结构为比较规整的矩形结构,则刚度均匀,风荷载对结构产生的影响较小,因此可以不考虑空间整体作用。

1.1.1原始设计资料本设计基本风压为:w 0=0.65kN/m 2,根据任务书知结构离地面高度27.70.4528.15h m =+=。

建筑所在地为城市,查规范得地面粗糙度类别应为C 类。

1.1.2荷载计算根据《建筑结构荷载规范》的有关要求,风荷载标准值,计算公式如下:0w w z s z k μμβ=为了方便计算,作用在该框架范围内的风荷载可以看成作用在框架节点处的集中荷载。

其计算如下:A w q z s z k 0μμβ= BH A =o w -基本风压,200.65w kN m =z β表示风振系数s μ表示风荷载体形系数 z μ表示风压高度变化系数A 表示迎风面计算面积B 表示迎风面宽度 H 表示迎风面计算高度,根据荷载规范表8.2.1要求,取z μ=0.85。

h=28.15m ﹤30m 风振系数z β=1.0。

风荷载体形系数s μ取值根据规范确定:高宽比H/B 不大于4的矩形、方形、十字行平面建筑取1.3。

该榀框架迎风面宽度B=(6+6)/2=6m 。

简化计算迎风面计算高度H 为楼层梁上层的一半与下层的一半,计算底层时应计算至室外地平层。

1.1.3风载计算计算公式 : BH w A w q z s z z s z k 00μμβμμβ==,计算过程如表6.3。

表6.3: 层号 层高 离地高度5 4.2 21.45 1 1.3 0.78 0.656 2.4 9.49 4 4.2 17.25 1 1.3 0.69 0.65 6 4.2 14.69 3 4.2 13.05 1 1.3 0.65 0.65 6 4.2 13.84 2 4.2 8.85 1 1.3 0.65 0.65 6 4.2 13.84 14.24.651 1.30.650.656 6.7522.24左风风荷载作用简图如图6.1:图6.11.1.4风荷载作用下框架侧移计算在风荷载作用下计算框架的层间侧移时按下式进行计算:ijj j D V ∑=∆μ式中:j V —第j 层在风荷载作用下的总剪力标准值;ij D ∑—第j 层在风荷载作用下该层所有柱的抗侧移刚度的总和; j μ∆—框架第j 层的层间侧移量。

多层框架结构设计计算书(全手算附图)

多层框架结构设计计算书(全手算附图)

结构计算书某六层框架结构,建筑平面图、剖面图如图1所示,采用钢筋混凝土全现浇框架结构设计。

1.设计资料(1)设计标高:室内设计标高±0.000 m,室内外高差450mm。

(2)墙身做法:墙身为普通机制砖填充墙,M5水泥砂浆砌筑。

内粉刷为混合砂浆底,纸筋灰面,厚20mm,“803”内墙涂料两度。

外粉刷为1:3水泥砂浆底,厚20mm,马赛克贴面。

(3)楼面做法:顶层为20mm厚水泥砂浆找平,5mm厚1:2水泥砂浆加“107”胶水着色粉面层;底层为15mm厚纸筋面石灰抹底,涂料两度。

(4)屋面做法:现浇楼板上铺膨胀珍珠岩保温层(檐口处厚100mm,2%自两侧檐口向中间找坡),1:2水泥砂浆找平层厚20mm,二毡三油防水层。

(5)门窗做法:门厅处为铝合金门窗,其它均为木门,钢窗。

(6)地质资料:属Ⅲ类建筑场地。

(7)基本风压:ωo=0.55 KN/m2(地面粗糙度属B类)。

(8)活荷载:屋面活荷载2.0 KN/m2,办公楼楼面活荷载2.0KN/m2,走廊楼面活荷载2.0KN/m2。

建筑剖面图建筑平面图结构平面布置图2.结构布置及结构计算简图的确定边跨(AB、CD跨)梁:取h=1/12L=1/12X6000=500mm,取b=250mm. 中跨(BC跨)梁:取h=400mm,b=250mm边柱(A轴、D轴)连系梁:取b×h =250mm×500mm中柱(B轴、C轴)连系梁:取b×h=250mm×400mm柱截面均为b×h=300mm×450mm现浇楼板厚100mm。

结构计算简图如图3所示。

根据地质资料,确定基础顶面离室外地面为450mm,由此求得底层层高为4.5m。

各梁柱构件的线刚度经计算后列于图3。

其中在求梁截面惯性矩时考虑到现浇楼板的作用,取I=2I o(I o为不考虑楼板翼缘作用的梁截面惯性矩)。

边跨(AB、CD)梁:i=2E c×1/12×0.25×0.503/6.0=8.68×10-4E c (m3)边跨(BC)梁:i=2E c×1/12×0.25×0.43/2.5=10.67×10-4E c (m3)上部各层柱:i=E c×1/12×0.30×0.453/3.6=6.33×10-4E c (m3)底层柱:i=E c×1/12×0.30×0.453/4.5=5.06×10-4E c (m3)注:图中数字为线刚度,单位:x10-4E c m33.恒荷载计算(1)屋面框架梁线荷载标准值:20mm厚水泥砂浆找平0.02×20=0.4KN/m2 100厚~140厚(2%找坡)膨胀珍珠岩(0.10+0.14)/2×7=0.84KN/m2100厚现浇钢筋混凝土楼板0.10×25=2.5KN/m2 5mm厚纸筋面石灰抹底0.015×16=0.24KN/m2 _________________________________________________________________________________________ 屋面恒荷载 3.98 KN/m2边跨(AB、CD)框架梁自重0.25×0.50×25=3.13KN/m 梁侧粉刷2×(0.5-0.1) ×0.02×17=0.27KN/m 中跨(BC)框架梁自重0.25×0.40×25=2.5KN/m 梁侧粉刷2×(0.4-0.1) ×0.02×17=0.2KN/m 因此,作用在屋顶框架梁上的线荷载为:G6AB1=g6CD1=3.13+0.27=3.4KN/mG6BC1=2.5+0.2=2.7KN/mG6AB2=g6CD2=3.98×3.6=14.33KN/mG6BC2=3.98×2.5=9.95KN/m(2)楼面框架梁线荷载标准值荷载计算同上(略),作用在中间层框架上的线荷载为:25mm厚水泥砂浆面层0.025×20=0.50KN/m2 100mm厚现浇钢筋混凝土楼板0.10×25=2.5 KN/m2 15mm厚纸筋石灰抹底0.015×16=0.24 KN/m2 —————————————————————————————楼面恒荷载 3.24 KN/m2 边跨框架梁及梁侧粉刷 3.4KN/m 边跨填充墙自重0.24×(3.6-0.5)×19=14.14 KN/m 墙面粉刷(3.6-0.5)×0.02×2×17=2.11 KN/m 中跨框架梁及梁侧粉刷 2.7 KN/m 因此,作用在屋顶框架梁上的线荷载为:g AB1=g CD1=3.4+14.14+2.11=19.65 KN/mg BC1=2.7 KN/mg AB2=g CD2=3.24×3.6=11.66 KN/mg BC2=3.24×2.5=8.1 KN/m(3)屋面框架节点集中荷载标准值边柱连系梁自重0.25×0.50×3.6×25=11.25KN 梁侧粉刷0.02×(0.50-0.10)×3.6×2×19=1.09KN 1m高女儿墙自重1×3.6×0.24×19=16.42KN 粉刷1×0.02×2×3.6×17=2.45(KN) 连系梁传来屋面自重1/2×3.6×1/2×3.6×3.98=12.90(KN) __________________________________________________________ 顶层边节点集中荷载G6A=G6D=44.11KN中柱连系梁自重0.25×0.40×3.6×25=9.0KN 粉刷0.02×(0.40-0.10) ×2×3.6×17=0.73KN 连系梁传来屋面自1/2×(3.6+3.6-2.5) ×1.25×3.98=11.69KN1/2×3.6×1.80×3.98=12.90KN 顶层中节点集中荷载34.32KN ④楼面框架节点集中荷载标准值边柱连系梁自重11.25KN 粉刷 1.09KN窗下墙体自重 0.24×1.3×3.3×19=19.56KN 粉刷2×0.02×1.3×3.3×17=2.20KN 窗边墙体自重 0.60×1.8× 0.24×19=4.92KN 粉刷0.60×1.8×2×0.02×17=0.73KN 框架梁自重0.30×0.45×3.6×25=12.15KN 粉刷0.75×0.02×3.6×17=0.918KN 连系梁传来楼面自重 1 /2×3.6×1/2×3.6×3.24=10.50KN 中间层边节点集中荷载G A=G D =65.02KN中柱连系梁自重 9.0KN 粉刷 0.73KN 内纵墙自重 3.3×(3.6-0.4)×0.24×19=48.15KN 粉刷 3.3×(3.6-0.4)×2×0.02×17=7.18KN 连系梁传来楼面自重1/2×(3.6+3.6-2.5)×1.25×3.24=9.14KN—————————————————————————————间层中节点集中荷载:G B=G C=84.70KN (5)恒荷载作用下的结构计算简图4.楼面活荷载计算活荷载作用下的结构计算简图如图5所示。

第七章风荷载作用下的内力和位移计算

第七章风荷载作用下的内力和位移计算

第七章风荷载作⽤下的内⼒和位移计算第7章风荷载作⽤下的内⼒和位移计算由设计任务资料知,该建筑为五层钢筋混凝⼟框架结构体系,室内外⾼差为0.45m 基本风压20m /4.0KN =ω,地⾯粗糙度为C 类,结构总⾼度19.8+0.45=20.25m (基础顶⾯⾄室内地⾯1m )。

计算主要承重结构时,垂直于建筑物表⾯上的风荷载标准值,应按下式计算,即oz s z k w w µµβ=1、因结构⾼度H=20.25m<30m,⾼宽⽐20.25÷18.2=1.11<1.5,故可取0.1z =β;2、s µ为风荷载体型系数,本设计按《建筑结构荷载规范》(GB50009--2012)中规定,迎风⾯取0.8,背风⾯取0.5,合计sµ=1.3。

3、z µ为风压⾼度变化系数,本设计的地⾯粗糙度类别为C 类,按下表选取风压⾼度变化系数。

7.1 横向框架在风荷载作⽤下的计算简图6轴线框架的负荷宽度B=(6.6+6.6)/2=6.6m。

各层楼⾯处集中风荷载标准值计算如表7.1:表7.1根据表7.1,画出6轴框架在风荷载作⽤下的计算简图,如图7.2所⽰:图7.2框架在风荷载作⽤下的计算简图7.2 位移计算7.2.1框架梁柱线刚度计算考虑现浇楼板对梁刚度的加强作⽤,故对6轴线框架(中框架梁)的惯性矩乘以2.0,框架梁的线刚度计算:跨度为7.3m 的梁(b ×h=250mm ×600mm ):)(109126.0250.0212bh 24333m I -?=??=?=m KN L I E c b /105.33.7109108.2i 437b ?===-跨度为3.3m 的梁 (b ×h=200mm ×400mm ):)(43-33m 101.2124.02.0212bh 2?=??=?=Im KN L I E c b /109.13.31013.2108.2i 437b ?===-7.2.1.1 框架柱的线刚度 1、底层柱: A 、D 轴柱:)(1021.512500500433c m I -?=?=m KN h I E c c c /100.32.51021.5100.3i 437?===-B 、C 轴柱:)(1021.512500500433c m I -?=?=m KN h I E c c c /100.32.51021.5100.3i 437?===-2、上层柱: A 、D 轴柱:)(1021.512500500433c m I -?=?=m KN h I E c c c /100.49.31021.5100.3i 437?===-B 、C 轴柱:)(1021.512500500433c m I -?=?=m KN h I E c c c /100.49.31021.5100.3i 437?===-7.2.1.2 侧移刚度D 计算框架柱刚度修正系数a 计算公式见表7.3: 表7.3表7.4 各层柱侧向刚度计算风荷载作⽤下框架的层间侧移可按下式计算,即有:∑= ijjj DV u式中jV ------第j 层的总剪⼒标准;D--------第j 层所有柱的抗侧刚度之和;ju ?--------第j 层的层间侧移。

风荷载弯矩计算公式

风荷载弯矩计算公式

风荷载弯矩计算公式
垂直于建筑物表面上的风荷载标准值,应按下述公式计算:
当计算主要承重结构时,按式:wk=βzμμzWo
当计算围护结构时,按式:wk=βgzμlμzWo
风荷载也称风的动压力,是空气流动对工程结构所产生的压力。

风荷载与基本风压、地形、地面粗糙度、距离地面高度,及建筑体型等诸因素有关。

中国的地理位置和气候条件造成的大风为:夏季东南沿海多台风,内陆多雷暴及雹线大风;冬季北部地区多寒潮大风,其中沿海地区的台风往往是设计工程结构的主要控制荷载。

台风造成的风灾事故较多,影响范围也较大。

雷暴大风可能引起小范围内的风灾事故。

中国规定的基本风压
0以一般空旷平坦地面、离地面10米高、风速时距为10分钟平均的最大风速为标准,按结构类别考虑重现期(一般结构重现期为30年,高层建筑和高耸结构为50年,特别重要的结构为100年),统计得最大风速(即年最大风速分布的96。

67%分位值,并按0=2、2确定。

式中ρ为空气质量密度;v为风速)。

根据统计,认为离地面10米高、时距为10分钟平均的年最大风压,统计分布可按极值I型考虑。

为了对变化的风速确定其代表值作为基本风压,一般用规定时距内风速的稳定部分作为取值标准。

框架结构在水平荷载下的计算反弯点法和D值法

框架结构在水平荷载下的计算反弯点法和D值法

M DC 19.42kN
M GH 16.67kN
DH (1.5)
G
M GC ? M GC 52.04kN
M GK ?
C
M GK 30.56kN
B
M GF 65.93KN
A
1.0
M GK (M GH M GF ) 1.7 1.0 30.56kN
G (1.7)
F (2.4)
E
M GC
h上、h下——上层、下层层高
51
(三)拟定柱反弯点高度系数y
4.反弯点高度
1.各杆件旳弯矩图 均为直线,一般情 况下每根杆件都有 一种弯矩为零旳点, 称为反弯点; 2.全部杆件旳最 大弯矩均在杆件两 端。
水平荷载作用下框架旳弯矩图 3
假如在反弯点处将柱 子切开,切断点处旳内力 将只有剪力和轴力。
假如懂得反弯点旳位置 和柱子旳抗侧移刚度,即 可求得各柱旳剪力,从而 求得框架各杆件旳内力, 反弯点法即由此而来。
9
4.同层各柱剪力旳拟定
V jk
d jk
m
Vj
d jk
k 1
Vjk ——第j层第k柱所承受旳层间剪力;
d jk ——第j层第k柱子旳抗侧刚度;
Vj ——水平力在第j层产生旳层间剪力;
m ——第j层旳柱子数。
10
4.同层各柱剪力旳拟定
一般,当同层各柱旳高度相等时,

d
12ic h2

V jk
1、计算柱子旳抗侧刚度; 2、将层间剪力在柱子中进行分配,求得 各柱剪力值; 3、按反弯点高度计算柱子端部弯矩; 4、利用节点平衡计算梁端弯矩,进而求 得梁端剪力; 5、计算柱子旳轴力。
17
例题:用反弯点 法计算右图所示 框架旳弯矩,并 绘出弯矩图。图 中圆括号内旳数 字为杆件旳相对 线刚度。

框架结构

框架结构

框架结构1关于框架结构的弯矩调幅,下列说法中正确的是()。

∙A、调幅是对水平荷载作用下的内力进行的∙B、先与水平荷载产生的内力进行组合,再进行弯矩调幅∙C、现浇框架梁端的调幅系数大于装配整体式框架梁端的调幅系数∙D、调幅是对柱端弯矩进行的我的答案:C得分:4.0分2在下列地点建造相同高度的高层建筑,()地点所受的风力最大?∙A、建在海岸∙B、建在大城市郊区∙C、建在小城镇∙D、建在有密集建筑群的大城市市区我的答案:A得分:4.0分3( )结构在水平荷载作用下表现出整体性好,刚度大,抗侧力性能好的特点。

∙A、框架结构∙B、框架一剪力墙结构∙C、剪力墙结构∙D、筒中筒结构我的答案:A得分:0.0分4在框架设计内力组合前应对梁进行弯矩调幅,()作用下的内力应调幅。

∙A、风荷载∙B、地震作用∙C、恒荷载和屋(楼)面活荷载∙D、以上全部我的答案:C得分:4.0分5( )结构在水平荷载作用下表现出侧向刚度小,水平位移较大的特点。

∙A、框架∙B、框架一剪力墙∙C、剪力墙∙D、筒体结构我的答案:A得分:4.0分6在水平荷载作用下,当用D 值法计算框架柱的反弯点时,以下哪项不需要考虑( ) 。

∙A、荷载的作用形式∙B、荷载的作用大小∙C、框架的层数∙D、上下层梁的线刚度比值我的答案:B得分:4.0分7框架一剪力墙结构的分析如下,( ) 是正确的。

I .竖向荷载主要由剪力墙承受;Ⅱ.竖向荷载主要由框架承受;Ⅲ.水平荷载主要由框架承受;Ⅳ.水平荷载主要由剪力墙承受。

∙A、I、Ⅲ∙B、Ⅱ、Ⅲ∙C、I、IV∙D、Ⅱ、Ⅳ我的答案:D得分:4.0分8以下何种方法()不属于地震作用计算方法。

∙A、底部剪力法∙B、振型分解反应谱法∙C、时程分析法∙D、迭代法我的答案:D得分:4.0分9关于框架柱的反弯点,哪个结论是正确的?∙A、上层梁的线刚度增加将导致本层柱的反弯点下移∙B、下层层高增大将导致本层柱的反弯点上移∙C、柱的反弯点高度与该柱的楼层位置有关,与结构的总层数无关∙D、柱的反弯点高度与荷载分布形式无关我的答案:A得分:4.0分10以下()是框架结构在竖向荷载下的计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

框架结构风荷载作用下弯矩计算
4.风荷载作用下的弯矩计算
4. 1 风荷载标准值的计算 0k z s z ϖβμμϖ=
其中k ϖ——垂直与建筑物单位面积上的风荷载标准值
z β——Z 高度上的风振系数,因结构高度H=18m<30m ,B=14.4m ,H/B=1.25<1.5,可取1.0
s μ——风荷载体型系数 根据建筑物体型查得s μ=1.3
z μ——Z 高度处的风压高度变化系数,可根据地面粗糙程度C 类和各层离地面高度查规范求得
0ϖ——基本风压 取 0.45kN/m 2
B ——迎风面的宽度 B=6m
表4.6.1 集中 风荷载标准值计算
等效节点集中风荷载如图:
图4.6.1 风荷载作用下结构计算简图
4. 2 风荷载作用下抗侧移计算
侧移刚度D 计算:
底层侧移刚度:(底层柱高=4.55m )
A 轴柱
B 轴柱
C 轴柱
D 轴柱
c
i K i =
∑ 445.4100.767.110⨯=⨯ 44(5.4 4.7)10 1.427.110+⨯=⨯ 44(5.4 4.7)10 1.427.110+⨯=⨯ 4
4
5.4100.767.110⨯=⨯
0.52c K K α+=
+ 0.46 0.56 0.56 0.46 212c jk c i
D h α=
18931
23046
23046
18931
j D ∑
83954
表4.6.2底层侧移刚度D
2-5层侧移刚度:(标准层高度=3.6m )
表4.6.3 2-5层侧移刚度D
表4.6.4 各层间相对转角
侧移验算:层间侧移最大值1/7609<1/550,满足要求。

4.3风荷载作用下内力计算
求得框架柱侧向刚度后,根据下式可将层间总剪力分配给该层各柱: 1
jk
jk j m
jk
k D V V D
==

式中 jk V ———第j 层第k 柱所分配到的剪力
jk D ———第j 层第k 柱的侧向刚度D 值 m ———第j 层框架柱数
j V ———第j 层框架柱所承受的层间总剪力
求得各柱所承受的剪力后,假定除底层柱以外,其余各柱的上下端节点 转角均相同,即除底层柱以外,其余各层框架柱的反弯点位于高层的中点,对于底层柱则假定其反弯点位于距支座2/3层高处。

则由下式可求得各柱的杆端弯矩。

()1jk c M V y h =-⋅上
c jk M V yh =下
其中柱底至反弯点的高度: ()0123yh y y y y h =+++ 0y ——均布水平荷载下各层柱标准反弯点高度比 1y ——上下层梁刚度变化修正系数 2y 、3y ——上下层高度变化修正系数 0y 修正后的结果见下表
风荷载作用下A 、D 轴框架柱剪力和柱端弯矩计算: 层
号 ()i V KN j D ∑ jk D
jk j D D ∑ ()jk V KN y ()c M K
N m ⋅上
()c M K
N m ⋅下
5 10.368 98334 19167 0.195 2.021 0.30 5.093 2.183 4 19.872 98334 19167 0.195 3.873 0.35 9.064 4.880 3 29.160 98334 19167 0.195 5.684 0.45 11.254 9.208 2 38.448 98334 19167 0.195 7.494 0.50 13.490 13.490 1 50.187 83954 18931 0.225 11.317
0.67
16.992
34.499
风荷载作用下B 、C 轴框架柱剪力和柱端弯矩计算: 层
号 ()i V KN j D ∑ jk D
jk j D D ∑ ()jk V KN y
()c M K
N m ⋅上
()c M K
N m ⋅下
5 10.368 98334 30000 0.305 3.163 0.35
6 7.333 4.054 4 19.872 98334 30000 0.305 6.063 0.406 12.964 8.861 3 29.160 98334 30000 0.305 8.896 0.456 17.422 14.604 2 38.448 98334 30000 0.305 11.730 0.500 21.114 21.114 1 50.18
7 83954 23046 0.275 13.777
0.629
23.256
39.428
表4.6.6 B 、C 轴框架柱柱端剪力、弯矩。

相关文档
最新文档