氦-氖激光器简介
氦氖激光治疗仪操作指南

氦氖激光治疗仪操作指南氦氖激光治疗仪(He-Ne)是一种常用的医疗设备,被广泛应用于物理治疗、美容护肤和疾病治疗中。
本文将为您提供一份详细的氦氖激光治疗仪操作指南,以帮助您正确使用和操作该设备。
1. 氦氖激光治疗仪简介氦氖激光治疗仪是一种采用氦氖激光器发出的红色光束进行治疗的设备。
红色光束具有良好的穿透力和生物刺激性,可用于促进血液循环、促进组织修复、疼痛缓解等治疗目的。
2. 操作前的准备在使用氦氖激光治疗仪之前,务必确保设备工作正常并且消毒清洁。
检查设备表面是否有明显损坏,确保开关、电源线等部件完好无损。
在治疗区域周围铺设好防护垫,以防止射线伤害。
3. 开机和设定参数将氦氖激光治疗仪连接至电源插座,并将电源开关打开。
根据治疗需求,在设备面板上设定合适的参数,如治疗时间、功率强度等,以确保治疗的有效性和安全性。
4. 治疗仪的持握和操作握住氦氖激光治疗仪的手柄,将治疗头对准治疗区域。
确保治疗头与皮肤保持适当的距离,一般建议约为1-2厘米。
按下治疗仪上的触发按钮,开始释放激光光束。
在移动时保持匀速,并保持治疗头与皮肤的距离一致,以免产生光斑或烫伤。
5. 治疗时间和频率治疗时间和频率应根据具体情况进行调整。
一般而言,在美容护肤中每个治疗区域的治疗时间约为5-10分钟,每周1-3次;而在物理治疗和疾病治疗中,根据病情严重程度和治疗目的,治疗时间和频率会有所不同。
建议在医生或专业人士的指导下使用。
6. 治疗后的注意事项治疗结束后,及时关闭氦氖激光治疗仪的电源开关,并将设备清洁干净。
治疗后的皮肤可能会有红肿或发热的感觉,这是正常的生理反应,一般会在几小时内自行缓解。
避免暴露在阳光下或进食刺激性食物等刺激性物质,以促进皮肤的恢复。
7. 安全注意事项在使用氦氖激光治疗仪时,请务必遵循以下安全注意事项:- 不要直接对眼睛照射激光光束,以免造成眼部损伤;- 在治疗过程中,避免让激光光束经过突出物,以免产生烫伤;- 在治疗过程中,避免触碰到激光治疗仪的工作部件,以免产生电击或其他意外伤害;- 请将氦氖激光治疗仪放置在儿童无法触及的地方,以防止误操作。
可变色氦氖激光器安全操作及保养规程

可变色氦氖激光器安全操作及保养规程1. 前言氦氖激光器是一种常见的激光器类型,它通过将氦气和氖气混合后进行激发而产生激光。
不同混合比的氦氖激光器可以发出不同颜色的激光,因此被称为可变色氦氖激光器。
本文档旨在指导用户正确地进行可变色氦氖激光器的安全操作和保养。
2. 安全操作2.1. 基本安全操作1.在使用可变色氦氖激光器时,必须佩戴特制的防护眼镜。
2.保持氦氖激光器周围环境干净清洁,以防止灰尘等杂物进入激光器内部。
3.避免使激光直接照射到皮肤,特别是眼睛。
一旦激光误打到人体上,应立即用冷水冲洗,并就医。
2.2. 操作前准备1.在操作前,必须确认可变色氦氖激光器的电源已经关闭,并且没有电压。
2.检查激光器内部是否存在异物或者故障。
3.确认清洁氦氖激光器的方法是否正确,准备好必要的清洁器具。
4.检查防护眼镜是否合适并且没有损坏。
2.3. 操作流程1.打开氦氖激光器的电源,并调整激光的输出强度和颜色。
2.确认激光的路径不能直接照射到人体,防止意外事故的发生。
3.不要长时间开启可变色氦氖激光器,以免影响其寿命。
根据使用情况,适当地调整其使用时间。
4.使用完毕后,必须关闭激光器的电源,并断开电源线。
3. 保养规程3.1. 日常保养1.氦氖激光器的镜头必须定期进行清洁,以保证光线的透明度。
2.定期清洁氦氖激光器的排热系统,以保证激光器在使用时的稳定性。
3.定期检查氦氖激光器的电源线路是否损坏或者老化,并及时进行更换。
3.2. 定期维护1.定期对可变色氦氖激光器进行内部清洁,包括清洗激光管和其他零部件。
2.定期更换激光管等易损部件,以保证激光器的正常使用寿命。
3.定期进行氦氖激光器的日常维护和保养,包括检查各个部件的连接情况和灰尘清理。
4. 结论以上内容为可变色氦氖激光器的安全操作及保养规程,希望用户能够认真阅读,并按照要求进行操作和保养。
只有正确使用和保养可变色氦氖激光器,才能保证其长期的工作性能和寿命。
氦氖激光器的相干长度

氦氖激光器的相干长度氦氖激光器是一种常见的激光器,广泛应用于科学研究、医学、工业等领域。
在激光应用中,相干性是一个重要的概念,而相干长度是衡量相干性的一个重要参数。
本文将介绍氦氖激光器的相干长度及其应用。
一、什么是相干长度?相干性是指两个波之间的关系,即它们的相位差和振幅差是否随时间变化而变化。
相干长度是指在一定时间内,两个波之间的相位差和振幅差保持不变的长度。
相干长度越长,两个波之间的相位差和振幅差就越稳定,相干性就越强。
二、氦氖激光器的相干长度氦氖激光器是一种气体激光器,由氦气和氖气混合而成。
氦氖激光器的波长为632.8纳米,是可见光的一种。
氦氖激光器的相干长度与波长有关,按照公式Lc=λ^2/Δλ计算,其中Lc为相干长度,λ为波长,Δλ为光谱线宽度。
氦氖激光器的光谱线宽度为0.002纳米,因此其相干长度为63280纳米,即63.28微米。
三、氦氖激光器的应用氦氖激光器的相干长度较长,因此在一些应用中具有优势。
例如,在干涉仪中,利用激光的相干性可以测量物体的形状和表面粗糙度。
氦氖激光器的相干长度较长,可以提高干涉仪的精度和灵敏度。
此外,在光学通信中,激光的相干性也是一个关键因素。
氦氖激光器的相干长度较长,可以减少光信号的衰减和失真,提高光通信的传输距离和质量。
四、结论氦氖激光器的相干长度是衡量其相干性的一个重要参数,其相干长度较长,在一些应用中具有优势。
相干长度的大小与波长和光谱线宽度有关,可以通过公式Lc=λ^2/Δλ计算。
在干涉仪和光学通信等领域中,激光的相干性是一个关键因素,氦氖激光器的相干长度可以提高系统的精度和灵敏度,具有广泛的应用前景。
氦氖激光器光束直径

氦氖激光器光束直径
氦氖激光器是一种常见的气体激光器,其光束直径是指在一定距离内光束的横截面直径。
光束直径的大小对于激光器的应用具有重要的影响。
一般来说,光束直径越小,激光器的能量密度就越高,能够产生更强的激光效果。
氦氖激光器的光束直径主要取决于两个因素:激光器输出功率和激光器束腰直径。
束腰直径是指激光光束在传输过程中的最小直径。
当光束传输到一定距离时,光束直径会逐渐扩散,直到达到其束腰直径。
因此,精确控制激光器束腰直径是保持光束直径稳定的关键。
在实际应用中,氦氖激光器的光束直径可以通过使用透镜来调节。
透镜的作用是对光线进行聚焦或发散,从而改变光束直径。
通过选择合适的透镜,可以使光束直径达到最小值,从而实现更高的激光功率和更强的激光效果。
总之,氦氖激光器的光束直径对于其应用具有重要的影响。
通过精确控制束腰直径和选择合适的透镜,可以实现更高的激光功率和更强的激光效果。
- 1 -。
氦氖激光器

He-Ne激光器实例
普通氦氖激光器
电源和激光管封装在一起
2.3 He-Ne激光器的工作能级 典型的四能级系统 图:
共振转移: He原子的21S0和23S1态分别与Ne原子的3S﹑2S态靠得很近 He + e He(21S0)+ e He + e He(23S1)+ e He(21S0)+ Ne He + Ne(3S2)+0.048ev He(23S1)+ Ne He + Ne(2S2)+0.039ev 电子碰撞激发:(与共振转移相比,此过程的激发速 率要小得多) e + Ne e + Ne(2S) e + Ne e + Ne(3S) 串级跃迁:Ne与电子碰撞被激发到更高能态,然后再跃 迁到2S和3S态,此过程贡献最小 复合激发: 先形成分子离子,再与电子碰撞获得激发态Ne分子
氦-氖气体激光器
基本内容 回顾:激光器的基本结构 一 激光器的基本知识 二 氦氖激光器的工作原理介绍
回顾:激光器的基本结构
所有激光器的基本组成都包括三大部分: 工作物质: 激光器的核心 氦氖激光器的He- Ne气 Nd+3:YAG激光器中的Nd+3 谐振腔: 形成激光振荡的必要条件,还对光 束质量起着约束作用 平平腔 平凹腔 稳定 腔 非稳腔 泵浦系统:为实现粒子数反转提供外界能量 电激励 光激励 热激励 化学能激励 核能激励
2.5 He-Ne激光器的输出功率
1.1 He-Ne激光器的增益系数 He-Ne激光器属于以非均匀加宽为主但又不能忽略均匀加宽 影响的综合加宽线型,按照综合加宽的情况计算其输出功 率。 Ne原子在 到 +d 范围内的小信号反转粒子密度按多普 勒非均匀展宽公式为
氦氖激光器工作原理

氦氖激光器工作原理氦氖激光器是一种常见的气体激光器,其工作原理基于氦氖气体在激发态和基态之间的能级跃迁而产生的激光。
在氦氖激光器中,氦气和氖气混合充填在一个管道中,通过电子激发和碰撞跃迁来产生激光。
下面我们将详细介绍氦氖激光器的工作原理。
首先,氦氖激光器中的氦气和氖气混合物被放置在一个长而窄的管道中。
当电流通过管道时,气体被激发到高能级,这些激发态的气体分子会发生碰撞跃迁,从而产生激光。
其次,激发态的氦原子会与氖原子发生碰撞跃迁,使得氖原子从高能级跃迁到低能级,释放出光子。
这些光子的频率和波长取决于氦氖激光器的设计和工作条件。
而后,这些光子在激光腔中来回反射,逐渐增强形成激光束。
激光束的特性取决于激光腔的设计和镜面的反射特性。
最后,当激光束达到一定的强度和稳定性时,就可以从输出镜中输出激光。
氦氖激光器产生的激光通常呈现出单色性和相对较高的方向性,适用于许多应用领域,如医学、通信、测量等。
总的来说,氦氖激光器的工作原理是基于氦氖气体的激发态和基态之间的能级跃迁,通过电子激发和碰撞跃迁产生激光。
通过精心设计激光腔和控制工作条件,可以获得稳定、高质量的激光输出,满足各种应用需求。
在实际应用中,氦氖激光器具有许多优点,如波长稳定、光束质量好、寿命长等,因此在医疗、科研、工业等领域得到了广泛应用。
同时,也需要注意氦氖激光器的工作环境和安全问题,以确保其稳定可靠地工作。
综上所述,氦氖激光器是一种常见的气体激光器,其工作原理基于氦氖气体的能级跃迁产生激光。
通过精心设计和控制,可以获得稳定、高质量的激光输出,满足各种应用需求。
在实际应用中,氦氖激光器具有广泛的应用前景和发展空间。
第二章 氦氖激光器

He(23S1、21S0)与Ne(2S、3S)能量非常接近, 很容易发生碰撞能量转移,且都是亚稳态,原子辐 射寿命较长,电子碰撞截面大,有利于选择激发Ne 到(2S、3S)能级。 He对Ne的选择性激发比电子直接碰撞激发的概大, Ne(3S2)对He共振能量转移激发依赖最大。可以认
为Ne(3S2)上的粒子是由He(21S0)能量转移激发。
2013-7-5
激光器件原理与设计
14
第二章 氦氖激光器
在电流逐渐增大、电子密度增 强的过程中,激光上能级的粒 子最初呈线性增长。随着电子 碰撞消激发加剧,粒子增长速
度减缓,最后达到饱和状态。
而激光下能级的粒子在此过程 中始终保持着线性增长的关系,
故而使粒子数反转值在某一放
电电流条件下,出现最大值。 从图中可看到,随放电电流变 化,增益 存在一个最佳值
2013-7-5
激光器件原理与设计
17
第二章 氦氖激光器
2.增益分布:增益沿放电管轴向分布均匀,径向分布不均匀
影响因素:放电电流、总气压和气体混合 比。 随电流增大,管轴中心出现增益饱和并下 降;电流继续增大,管壁附近出现增益下 降。 在一定电流下,气压增大,管轴中心出现 增益饱和并下降。这是因中心处Ne(1s)粒 子在气压较大时不易扩散到管壁碰撞弛豫, 导致Δ N减小,增益下降。 Ne增多,增益下降且径向分布加宽。
2013-7-5 激光器件原理与设计 1
第二章 氦氖激光器
(3) 输出稳定:功率稳定性达到30秒内的误差为0.005%, 十分钟内的误差为0.015%。 (4) 可见光输出。 适用于:精密测量、检测、准直、导向、水中照明、信息 处理、医疗等 。 1.2.1 He-Ne激光器工作原理 一、He-Ne激光器工作物质能级特点 He-Ne激光器是混合气体器件,Ne为产生激光的物质, He是辅助气体,用来提高Ne泵浦效率 。
氦-氖激光器简介

氦-氖(He-Ne)激光器摘要:本文介绍了He-Ne激光器的工作原理,结构及谐振腔,He和Ne原子的能级图,He-Ne激光器的速率方程,激发过程和输出特性,影响其寿命的因素,并简单介绍了其应用和优点。
关键词:He-Ne激光器;激发原理;结构及谐振腔;速率方程;激发过程;输出特性;寿命一.氦-氖(He-Ne)激光器简介气体激光器是以气体或蒸气为工作物质的激光器。
由于气态工作物质的光学均匀性远比固体好,所以气体激光器易于获得衍射极限的高斯光束,方向性好。
气体工作物质的谱线宽度远比固体小,因而激光的单色性好。
但由于气体的激活粒子密度远较固体为小,需要较大体积的工作物质才能获得足够的功率输出,因此气体激光器的体积一般比较庞大。
由于气体工作物质吸收谱线宽度小,不宜采用光源泵浦,通常采用气体放电泵浦方式。
在放电过程中,受电场加速而获得了足够动能的电子与粒子碰撞时,将粒子激发到高能态,因而在某一对能级间形成了集居数反转分布。
除了气体放电泵浦外,气体激光器还可采用化学泵浦,热泵浦及核泵浦等方式。
He-Ne激光器是最早研制成功的气体激光器。
在可见及红外波段可产生多条激光谱线,其中最强的是632.8nm,1.15μm和3.39μm三条谱线。
放电管长数十厘米的He-Ne激光器输出功率为毫瓦量级,放电管长(1~2)m的激光器输出功率可达数十毫瓦。
由于它能输出优质的连续运转可见光,而且具有结构简单、体积较小、价格低廉等优点,在准直、定位、全息照相、测量、精密计量等方面得到广泛应用。
二.氦-氖(He-Ne)激光器的工作原理氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。
在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。
这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。
1.8He-Ne激光器

2.
3.
利用气体放电泵浦方法向CO2气体分子注入能量, 使放电管中CO2分子达到反转分布状态。 将直流电压的两输出端分别接到放电管的两电极 上,当不加电压或电压很低时,两电极间的气体完 全绝缘,内阻为无穷大,没有电流流过;随着电压 的升高,气体中开始有带电粒子移动,气体的内阻 开始减小,当达到某一电压值时,内阻急剧减小, 电流迅速增加、气体被击穿、放电开始,这一电压 值叫做着火电压; 放电管中的气体被击穿放电后,电流增长、气体 中载流子增加、激光放电管的内阻下降、又进一步 引起电流的增加,这一过程反复进行,放电管呈现 负阻效应,为了使放电能够稳定地工作在放电管电 流—电压特性曲线的某一点上,在放电管的供电电 路中采取了限流措施。
气体激光器
光束质量好,线宽窄,相干性好,谱线 丰富。 效率低,能耗高,寿命较短,体积大。 原子(氦-氖)激光器, 离子(氩,氪,金属蒸汽)激光器, 分子(CO2,CO,准分子)激光器。
氦-氖(He-Ne)激光器 He-Ne)激光器
图(5-9) He-Ne激光器的基本结构形式
氦—氖激光器(He-Ne 激光器)是原子气体激光 器,工作物质是氦原子和氖原子气体,氖原子能级 间的跃迁产生激光谱线,氦原子起能量转移作用, 这是最早研究成功的气体激光器。医学中常将此种 激光器用做“光针”和照射治疗的工具,对溃疡的 治疗有较好的疗效。
图(5-10 )是与产生激光有关的Ne原子的部分能级图,Ne原子的激光上能级 是3S和2S能级,激光下能级是3P和2P能级。 1. He-Ne激光器的结构和激发机理
He-Ne激光器是典 型的四能级系统, 其激光谱线主要有 三条 : 3S→2P 0.6328µ 2S→2P 1.15µ 3S→3P 3.39µ
图(5-12) 封离式CO2激光器结构示意图
氦氖激光

氦氖激光治疗仪是根据大脑视皮层、视神经传导路、视网膜感应等不同部位对信息的感觉、传导、加工等环节的治疗需求研制的。
该治疗仪具有改善局部微循环、增加新陈代谢的作用,治疗弱视无痛苦、无副作用。
1、氦氖激光的特性:氦氖激光为6328埃的红色光波,具有以下特性:A、小剂量可起到刺激作用,受照部位组织蛋白合成加速,糖源含量增加,核糖核酸活力加强;大剂量则有抑制作用。
B、有累积效应,多次小剂量照射之和等于一次大剂量照射所产生的生物效应。
C、有抛物线的特点,在照射剂量不变的情况下机体反应在第三、四天开始逐渐加强,一般在10-15天达到高峰,而后作用逐渐降低,若连续不断地照射则可出现抑制作用。
D、有扩散效应,光斑虽小效果成片,作用绝不仅局限于光斑部位。
E、有光化学效应,可导致酶、氨基酸、蛋白及核酸改变活性。
F、热效应作用,不同种类的激光有不同的热效应。
2、氦氖激光的生理作用:A、神经系统:氦氖激光刺激神经系统产生冲动,可能是蛋白质分子中某些成分的渗透透性改变导致钠、钙等游离,诱发一种活动电位引起神经冲动。
B、血管和血液系统:有扩张血管的作用,可导致全身血液动力学改变增加血流量;加速凝血酶、纤维蛋白的形成;白细胞增加有抗炎作用。
C、调节增强代谢、醣源和三磷腺苷含量增加,低功率氮氖激光可增强吞唾细胞、B淋巴细胞的功能,从而提高免疫功能。
3、氦氖激光治疗弱视的机理:此种红色光波对锥体细胞十分敏感,有很高的吸收率,因对活组织有刺激兴奋作用,可激活并加强锥体细胞的感光功能,对视网膜的热效应和生物化学效应,使视网膜和脉络膜血管扩张血液循环改善。
由于能调节神经传导和神经反射作用,可以疏通视网膜至大脑皮层的视觉通路,激活视路提高光像冲动的传入功能。
临床观察证明氦氖激光在一定剂量下,对眼球的屈光介质:角膜、晶体、玻璃体以及虹膜、脉略膜无任何损害。
仅有个别患儿在照射时出现眩目、流泪、轻微刺痛反应,但数分钟消失,无碍治疗。
He-Ne激光器

He-Ne激光器谐振腔调整走进He-Ne激光器气体激光器的优点:1. 工作物质均匀性好,输出激光光束质量好2. 谱线宽,从远红外到紫外3. 输出功率大,转换效率高(电光转换)4. 结构简单,成本低氦氖激光器的结构:工作物质:He-Ne气体(He为辅助气体),气压比为5:1-7:1谐振腔:一般用平凹腔,平面镜为输出镜,透过率约1%-2%,凹面镜为全反射镜泵浦系统:一般采用放电激励激光管结构:按谐振腔与放电管的放置方式分为内腔式﹑外腔式﹑半内腔式按阴极及贮气室的位置不同分为同轴式﹑旁轴式﹑单细管式He-Ne激光器的特点:典型谱线: 632.8nm 1.15μm 3.39μm其他谱线: 612nm 594nm 543nm优点:1. 光束质量好Θ<1mrad2.单色质量好,带宽<22Hz3.稳定性高功率稳定(<2%)频率稳定(<5×10-15)4.在可见光区He-Ne激光器的输出功率:He-Ne激光器属于以非均匀加宽为主但又不能忽略均匀加宽影响的综合加宽线型,按照综合加宽的情况计算其输出功率。
输出功率的稳定性:He-He激光器在工作过程中,输出功率会随时间做周期性的或随即的波动。
造成漂移的原因有:1 放电电流波动造成输出功率的波动;2谐振腔光轴与毛细管轴线相对位置发生变化引起功率波动;3纵模的变化引起输出功率的波动。
在只有少数几个纵模振荡的短腔激光器中,温度的变化或其他原因导致腔长发生了变化,谐振腔的纵模也要发生改变,将造成增益曲线的烧孔面积变化,从而引起输出功率的波动。
解决方法:1.外部控制的办法减小功率漂移;2.根据产生漂移的原因,在器件结构和工艺上采取改进措施;He-He激光器的频率特性:在适当的放电条件下,He-He激光器已经获得了100多条谱线。
其中最主要的是0.6328μm 和3.39μm两条。
He-Ne的实验调整相对一般光源,激光具有单色性好的特点,也就是说,它具有非常窄的谱线宽度。
氦氖激光器参数-概述说明以及解释

氦氖激光器参数-概述说明以及解释1.引言1.1 概述概述部分是引言的一部分,用于简要介绍氦氖激光器参数的主题和背景。
下面是关于氦氖激光器参数概述的内容:概述氦氖激光器是一种常见且重要的激光器类型,具有广泛的应用领域。
该类型的激光器在科学研究、医疗、工业和通信等领域都扮演着关键的角色。
为了更好地理解和控制氦氖激光器的工作状态,人们需要对其参数进行全面研究和分析。
本篇长文将详细探讨氦氖激光器的参数,包括其基本原理和工作参数。
我们将全面介绍氦氖激光器的工作原理,以及与其相关的参数,如激光波长、频率、功率以及激光束质量等。
通过对这些参数的研究,我们可以更好地了解氦氖激光器的性能特点和限制条件。
除了介绍氦氖激光器参数的原理和定义,本文还将关注这些参数对氦氖激光器性能的影响以及其在各个应用领域中的实际应用。
通过对不同参数的调节和优化,我们可以进一步提高氦氖激光器的工作效率和品质,从而满足各种应用的需求。
最后,本文将总结对氦氖激光器参数的研究成果,并展望其在未来的应用前景。
通过深入研究和探索,我们相信将可以进一步拓展氦氖激光器的应用范围,并为相关领域的科学研究和技术发展做出更大的贡献。
在接下来的正文中,我们将详细介绍氦氖激光器的基本原理和工作参数,并探讨其在不同领域中的应用案例。
通过阅读本文,读者将能够对氦氖激光器参数有一个全面的了解,并且能够应用这些知识进行相关研究和实践工作。
1.2 文章结构文章结构部分的内容可以包括以下几个方面的描述:本文分为引言、正文和结论三个部分。
在引言部分,首先对氦氖激光器的概述进行介绍,包括它是一种什么样的激光器以及其特点和应用领域等内容。
然后介绍文章的结构,即本文将从氦氖激光器的基本原理和工作参数两个方面进行讨论,并给出了本文的目的。
引言部分的目的是为读者提供一个对文章整体内容有基本了解的导引。
在正文部分,将详细阐述氦氖激光器的基本原理和工作参数。
在2.1节中,将介绍氦氖激光器的基本原理,包括工作原理、激光产生的过程以及相关的光学元器件等。
氦氖激光器频率

氦氖激光器频率一、激光器频率的定义和作用激光器频率是指激光器在一定时间内完成一个完整的振动周期的次数。
它是激光器工作的一个重要参数,决定了激光器的输出特性。
激光器频率的选择和调节对于实现特定的应用有着重要的意义。
二、氦氖激光器的工作原理氦氖激光器是一种常见的气体激光器,由充有氦气和氖气的放电管组成。
在氦氖激光器中,通过电击使氦气和氖气发生放电,产生光子的放大和反射,最终形成激光束。
三、氦氖激光器频率的调节方法1.电流调节法: 通过调节激光器的电流来改变激光器的频率。
增加电流可以增大激光器的频率,减小电流可以减小激光器的频率。
2.压强调节法: 通过改变氦气和氖气的压强来调节激光器的频率。
增加氦气的压强可以增大激光器的频率,减小氦气的压强可以减小激光器的频率。
3.材料选择: 使用不同的材料制造激光管,可以得到不同的激光器频率。
例如,改变氖气含量可以改变氦氖激光器的频率。
四、氦氖激光器频率的应用1.科学研究: 氦氖激光器的频率可以用于光谱分析、物质结构研究等科学领域的研究。
不同频率的激光器可以提供不同的光学特性,使得科学家们可以观察和研究物质的不同属性。
2.医疗美容: 氦氖激光器的频率可以用于医疗美容领域,例如激光去红血丝。
不同频率的激光器可以用于不同类型的皮肤问题,通过选择适当的频率来达到去除红血丝的效果。
3.激光切割: 氦氖激光器的频率也可以用于激光切割。
通过调节激光器的频率和功率,可以实现对不同材料的高精度切割。
五、总结氦氖激光器频率是激光器工作的重要参数,通过调节电流、压强和材料选择等方法可以灵活地调节氦氖激光器的频率。
氦氖激光器频率的调节对于实现特定的应用具有重要意义,广泛应用于科学研究、医疗美容和激光切割等领域。
在未来的发展中,对于氦氖激光器频率的进一步研究和调节方法的改进将为激光技术的应用带来更多的可能性。
氦氖激光器波长测定

氦氖激光器波长测定
氦氖激光器是一种气体激光器,它利用氦气和氖气混合产生激光。
氦氖激光器的波长测定是指测量氦氖激光的波长。
氦氖激光器通常产生两个主要的波长:632.8纳米(红光)和543.5纳米(绿光)。
这些波长非常稳定,并且可以通过使用干涉仪、折射仪或光栅进行精确测量。
干涉仪是一种常用的测量氦氖激光器波长的设备。
它利用激光光束的干涉现象来测量波长。
干涉仪由两个光学平台组成,其中一个被称为固定平台,另一个被称为移动平台。
通过调整移动平台的位置,可以观察到干涉条纹的移动。
通过测量干涉条纹的移动距离,可以计算出激光的波长。
折射仪也可以用于测量氦氖激光器的波长。
折射仪通过将激光光束通过一个棱镜或光栅来测量光的折射角。
根据光的折射角和折射率的关系,可以计算出波长。
光栅也是一种测量氦氖激光器波长的常用设备。
光栅是有规律的一排平行线,通过将激光光束通过光栅,可以产生一系列的衍射光束。
根据衍射的角度和光栅常数的关系,可以计算出波长。
通过使用这些仪器和方法,可以准确测量氦氖激光器的波长。
这对于许多应用,如激光测距仪、激光显示和激光切割等,非常重要。
各种激光器的介绍

各种激光器的介绍激光器是一种将能量源转化为高强度、高单色性、高定向性的激光光束的装置。
激光器被广泛应用于医疗、通信、材料加工、测量检测等各个领域。
下面将介绍几种常见的激光器。
1.氦氖激光器(He-Ne激光器)氦氖激光器是一种气体激光器,它利用氦和氖的混合气体在波长为632.8纳米的红光范围内产生激光。
氦氖激光器具有单一稳定频率、高空间定向性和较小的光腔长度,适用于光学实验、干涉测量等领域。
2.二极管激光器(LD激光器)二极管激光器是一种半导体激光器,它是由多层不同材料的半导体材料组成的结构。
二极管激光器广泛应用于通信领域,如光纤通信、光存储等。
它具有体积小、效率高的特点。
3.CO2激光器CO2激光器是一种分子激光器,其工作介质是CO2分子。
CO2激光器具有中红外波段的辐射,波长在9.6-10.6微米之间。
CO2激光器在材料加工、医疗等领域有广泛应用,如切割、焊接、组织切割等。
4.Nd:YAG激光器Nd:YAG激光器是一种固体激光器,其工作介质是掺有镓和铽离子的YAG晶体。
它具有较长的荧光寿命和较高的能量转换效率,常用于材料加工、医疗、科学研究等领域。
5.氮化镓激光器(GaN激光器)氮化镓激光器是一种宽禁带半导体激光器,它利用氮化镓材料发射紫外激光。
GaN激光器具有较高的工作温度、较长的寿命和较高的光电子转换效率,可用于蓝光显示、白光LED照明等领域。
6.染料激光器染料激光器是一种利用染料溶液作为工作介质的激光器。
它具有波长调谐范围广、转换效率高的特点。
染料激光器在科学研究、生物医学等领域有广泛应用。
7.纳秒脉冲激光器纳秒脉冲激光器是一种能够在纳秒时间尺度内产生激光脉冲的激光器。
它广泛应用于材料加工、精密测量、医疗等领域,如激光打标、激光切割、激光测距等。
总之,激光器具有波长可调、能量可控、光束质量高等优点,能满足不同应用领域的需求。
随着材料科学、光学技术的不断发展,激光器的种类也在不断增多,并得到了广泛的研究和应用。
氦-氖激光器简介

氦-氖(He-Ne)激光器摘要:本文介绍了He-Ne激光器的工作原理,结构及谐振腔,He和Ne原子的能级图,He-Ne激光器的速率方程,激发过程和输出特性,影响其寿命的因素,并简单介绍了其应用和优点。
关键词:He-Ne激光器;激发原理;结构及谐振腔;速率方程;激发过程;输出特性;寿命一.氦-氖(He-Ne)激光器简介气体激光器是以气体或蒸气为工作物质的激光器。
由于气态工作物质的光学均匀性远比固体好,所以气体激光器易于获得衍射极限的高斯光束,方向性好。
气体工作物质的谱线宽度远比固体小,因而激光的单色性好。
但由于气体的激活粒子密度远较固体为小,需要较大体积的工作物质才能获得足够的功率输出,因此气体激光器的体积一般比较庞大。
由于气体工作物质吸收谱线宽度小,不宜采用光源泵浦,通常采用气体放电泵浦方式。
在放电过程中,受电场加速而获得了足够动能的电子与粒子碰撞时,将粒子激发到高能态,因而在某一对能级间形成了集居数反转分布。
除了气体放电泵浦外,气体激光器还可采用化学泵浦,热泵浦及核泵浦等方式。
He-Ne激光器是最早研制成功的气体激光器。
在可见及红外波段可产生多条激光谱线,其中最强的是632.8nm,1.15μm和3.39μm三条谱线。
放电管长数十厘米的He-Ne激光器输出功率为毫瓦量级,放电管长(1~2)m的激光器输出功率可达数十毫瓦。
由于它能输出优质的连续运转可见光,而且具有结构简单、体积较小、价格低廉等优点,在准直、定位、全息照相、测量、精密计量等方面得到广泛应用。
二.氦-氖(He-Ne)激光器的工作原理氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。
在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。
这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。
氦氖激光器工作原理

氦氖激光器工作原理
摘要:氦氖激光器是一种激光器,它通过激发氦氖气体上的电子,将电子能量转换成光能输出。
在激发氦氖气体的过程中,电子会通过不同的跃迁进入不同的能级,并且在不同的能级之间不断地释放能量,增大温度,再通过自发辐射的程序,同步发出具有定量和定调的可见光,达到一定的光功率。
1、氦氖激光器的工作原理
氦氖激光器的工作原理是在一定的真空气体中,激发氦氖气体内部的电子,使其迅速地穿越不同能级,在不同能级之间不断地释放能量,增大温度,然后再通过自发辐射的程序,最后发出具有定量和定调的可见光,达到一定的光功率。
2、氦氖激光器的主要结构
氦氖激光器的主要结构包括激光头、真空室、调谐器以及其它支持元件。
激光头由氦氖气体和加入的护层元素组成;真空室则主要是对激光头提供真空环境以及放大激光输出功率的容器;调谐器用于控制激光输出强度和波长;其它支持元件则可能包括激光头冷却装置、激光头加热装置、激光头分贝装置等,它们统称为激光头支持系统。
3、氦氖激光器的应用
氦氖激光器被广泛应用于精密加工、光学测量、走样测量、空间监测、图像测量、医疗技术、激光雕刻、机器视觉检测、光谱分析等多个领域。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氦-氖(He-Ne)激光器摘要:本文介绍了He-Ne激光器的工作原理,结构及谐振腔,He和Ne原子的能级图,He-Ne激光器的速率方程,激发过程和输出特性,影响其寿命的因素,并简单介绍了其应用和优点。
关键词:He-Ne激光器;激发原理;结构及谐振腔;速率方程;激发过程;输出特性;寿命一.氦-氖(He-Ne)激光器简介气体激光器是以气体或蒸气为工作物质的激光器。
由于气态工作物质的光学均匀性远比固体好,所以气体激光器易于获得衍射极限的高斯光束,方向性好。
气体工作物质的谱线宽度远比固体小,因而激光的单色性好。
但由于气体的激活粒子密度远较固体为小,需要较大体积的工作物质才能获得足够的功率输出,因此气体激光器的体积一般比较庞大。
由于气体工作物质吸收谱线宽度小,不宜采用光源泵浦,通常采用气体放电泵浦方式。
在放电过程中,受电场加速而获得了足够动能的电子与粒子碰撞时,将粒子激发到高能态,因而在某一对能级间形成了集居数反转分布。
除了气体放电泵浦外,气体激光器还可采用化学泵浦,热泵浦及核泵浦等方式。
He-Ne激光器是最早研制成功的气体激光器。
在可见及红外波段可产生多条激光谱线,其中最强的是632.8nm,1.15μm和3.39μm三条谱线。
放电管长数十厘米的He-Ne激光器输出功率为毫瓦量级,放电管长(1~2)m的激光器输出功率可达数十毫瓦。
由于它能输出优质的连续运转可见光,而且具有结构简单、体积较小、价格低廉等优点,在准直、定位、全息照相、测量、精密计量等方面得到广泛应用。
二.氦-氖(He-Ne)激光器的工作原理氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。
在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。
这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。
因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。
这就产生了激光必须具备的基本条件。
在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。
因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。
三.He-Ne激光器结构及谐振腔He-Ne激光器的结构形式很多,但都是由激光管和激光电源组成。
激光管由放电管、电极和光学谐振腔组成。
放电管是氦一氖激光器的心脏,它是产生激光的地方。
放电管通常由毛细管和贮气室构成。
放电管中充入一定比例的氦(He)、氖(Ne)气体,当电极加上高电压后,毛细管中的气体开始放电使氖原子受激,产生粒子数反转。
贮气室与毛细管相连,这里不发生气体放电,它的作用是补偿因慢漏气及管内元件放气或吸附气体造成He,Ne气体比例及总气压发生的变化,延长器件的寿命。
放电管一般是用GG17玻璃制成。
输出功率和波长要求稳定性好的器件可用热胀系数小的石英玻璃制作。
He-Ne激光管的阳极一般用钨棒制成,阴极多用电子发射率高和溅射率小的铝及其合金制成。
为了增加电子发射面积和减小阴极溅射,一般都把阴极做成圆筒状,然后用钨棒引到管外。
He-Ne激光器由于增益低,谐振腔一般用平凹腔,平面镜为输出端,透过率约1%~2%,凹面镜为全反射镜。
He-Ne激光管的结构形式是多种多样的,按谐振腔与放电管的放置方式不同可分内腔式、外腔式和半内腔式。
内腔式如图中(a)所示,将谐振腔的两反射镜调整好后,用胶固定在放电管的两端,其优点是使用时不必进行调整,非常方便,阴极与毛细管同轴放置,其结构紧凑、不易碎裂,安装方便。
缺点是在工作过程中放电管受热变形时,谐振腔反射镜会偏离相互平行位置,造成器件损耗增加,输出下降。
激光管越长,其热稳定性越差,所以内腔式激光管的长度一般不超过一米。
而且当谐振腔反射镜损坏后,不易更换,反射镜内表面污染后也无法清除。
并且由于阴极放在放电管内,阴极溅射物质易污染窗片,使用寿命低,同时由于阴极大量发射电子,阴极区易发热,使同轴式激光管功率的稳定性不如旁轴式。
外腔式如图中(b )所示,优点:这种激光器的谐振腔反射镜与放电管是分离,可增加储气量。
同时溅射物质不易污染窗片,所以寿命比同轴式长,放电管的热变形对谐振腔影响较小,加之谐振腔可以调整,所以长期使用中能保持稳定输出。
放电管的两端贴有布儒斯特窗片,还可使激光得到线偏振的激光输出。
缺点:由于反射镜与放电管相分离,相对位置易改变,需要经常调整,使用不方便,体积大,安装使用不方便,易破碎。
四.氦和氖原子的能级图激光器的工作气体是He 和Ne ,其中产生激光跃迁的是Ne 气。
He 是辅助气体,用以提高Ne 原子的泵浦速率。
图(1)为He 和Ne 的能级图。
He 原子有两个电子,没激发时这两个原子都分布在01S 壳层上,He 原子处于基态。
当He 原子受激时,使其中一个电子从1S 激发到2S ,He 原子成为激发态。
He 原子有两个亚稳态能级,分别记为312S 、102S 。
Ne 原子有10个电子,基态01S (电子分布为226122S S P )。
激发态为1S 、2S 、3S 、2P 、3P等,它们对应的外层电子组态分别为523P S 、524P S 、525P S 、523P P 、524P P 。
图1 与激光跃迁有关的He 原子和Ne 原子的部分能级图五.氦-氖(He-Ne)激光器的速率方程 如图所示是氦氖激光器的四能级结构示意图,E 1E 2E 3E 0hv图2 氦-氖(He-Ne)激光器四能级结构示意图如图所示,在这四种能级系统中,E2并不是激光上能级,最高工作能级E3是激光上能级。
泵浦源将工作原子从E0基态能级抽运到E3激光上能级,E3的寿命长,为亚稳态。
同样,在亚稳态E3于激发态E2激光下能级之间较易实现粒子数反转。
通过激光辐射跃迁到达E2激光下能级的粒子数需要经过E1下泻能级才能回到E0基态,才能完成产生激光过程的循环。
所以,在该种结构中,E1下泻能级向E0基态跃迁的速度要求在技术上加以保证,在He -Ne 激光器中使用毛细放电管加强E1下泻能级于管壁的碰撞加速下泻。
激光过程中发生在主要能级之间的主要跃迁有三种,常常采用跃迁图示的方式进行讨论。
一种是自发辐射跃迁,发生速率由自发辐射速率A 决定,以A 标示;二是受激跃迁,以受激跃迁速率W 标示;三是无辐射跃迁,又叫弛豫,用弛豫速率S 标示;下脚标标示发生跃迁的始末能级。
在上图中,设各能级上的原子集居密度分别为0n ,1n ,2n 和3n ,介质中总的原子集居数密度为n ,则可以写出四能级的速率方程为:3033133233033133233033133233S n S n S n W n W n W n A n A n A n dtdn ---------= 030131232W n W n W n +++3233232322022122022122022122W n A n W n W n W n S n S n A n A n dtdn ++-------= 323020121S n W n W n +++2123132123131311211011011011W n W n A n A n W n W n W n S n A n dtdn ++++-----= 212313010S n S n W n +++3032021013032021010300200100A n A n A n S n S n S n W n W n W n dtdn ++++++---= 3210n n n n n +++=六.He —Ne 激光器的激发过程在He —Ne 激光器中,实现粒子数反转的主要激发过程如下:第一是共振转移。
由能级图可见,He 原子的21S0、23S1态分别与Ne 原子的3S 、2S 态靠得很近,二者很容易进行能量转移,并且转移几率很高,可达95%,其转移过程如下:1*1'001*3'01*1*10020*3*110201*1'001*3'01*1*00He(1S )e He (2S )e He(1S )e He (2S )e He (2S )Ne(1S )Ne (3S )He(1S )0.048eVHe (2S )Ne(1S )Ne (2S )He(1S )0.039eVHe(1S )e He (2S )e He(1S )e He (2S )e He (2S )Ne(1S )Ne (+→++→++→+++→+++→++→++→120*3*110203S )He(1S )0.048eVHe (2S )Ne(1S )Ne (2S )He(1S )0.039eV+++→++式中,He(101S )表示He 的101S 能级;*He 和*Ne 表示激发态的He 和Ne ;e 表示碰撞前的电子,'e 表示碰撞后能量(或速度)变小的电子。
第二是电子直接碰撞激发。
在气体放电过程中,基态Ne 原子与具有一定动能的电子进行非弹性碰撞,直接被激发到2S 和3S 态,与共振转移相比,这种过程激发的速率要小得多。
第三是串级跃迁,Ne 与电子碰撞被激发到更高能态,然后再跃迁到2S 和3S 态,与前述两过程相比,此过程贡献最小。
根据能量跃迁选择定则,Ne 原子可以产生很多条谱线,其中最强的谱线有三条,即0.6328um 、3.39um 和 1.15um ,对应跃迁能级分别为23S →42P ,2433S P → 和2422S P → 。
2P 和3P 态,不能直接向基态跃迁,而向1S 态跃迁很快。
lS 态向基态的跃迁是被选择定则禁止的,不能自发地回到基态,但它与管壁碰撞时,可把能量交给管壁,自己回到基态。
这就是为什么He —Ne 激光器中要有一根内径较细的放电管的原因。
从能级图可见,He —Ne 激光器是典型的四能级系统。
七、He —Ne 激光器的输出特性(1)谱线竞争: He-Ne 激光器三条强的激光谱线:3S →2P 0.6328μm ,2S →2P 1.15μm ,3S →3P 3.39μm 中哪一条谱线起振完全取决于谐振腔介质膜反射镜的波长选择。
如图2所示, 0.6328um 和3.39umm 两条激光谱线有共同的激光上能级3S,而后者增益系数比较高,如果不进行抑制,则3.39um 的辐射在腔内振荡过程中将消耗大量的3S2态原子。
抑制3.39um 辐射的办法主要有:①选用对3.39um 的光具有低反射率的谐振腔反射镜,使3.39um 达不到阈值条件,如下图所示,在腔内加色散棱镜,将两谱线分开,通过调整谐振腔反射镜的位置,只允许0.6328um 的辐射起振,而使3.39um 的辐射偏离出谐振腔外;图3②腔内放置甲烷吸收盒,因为甲烷对3.39um 的光具有强吸收而对0.6328um 的光透明,因此可用甲烷抑制3.39um 振荡;③外加非均匀磁场也能抑制3.39um 振荡。