分式的基本性质

合集下载

15.1.2分式的基本性质2

15.1.2分式的基本性质2
15.1.2分式的基本性质
1.分式的基本性质:
(1)语言叙述:分式的分子与分母乘(或除以)
同一个不等于0 的整式,分式的值不变. (2)字母表示:
A C A B C B
A ,B
A C B C
(C≠0),其中
A,B,C是整式.
2.约分: (1)约分:把分式的分子、分母的 公因式 约去,不改变 分式的值. 没有公因式 的分式. (2)最简分式:分子与分母___________ 3.通分: (1) 通分 : 把几个异分母的分式化成与原来的分式相 同分母 的分式. 等的_______ (2)最简公分母:各分母的所有因式的 最高次幂的积 .
【例1】将下列各式通分:
2a c x 1 , , . b ab 2ab
a b c , , 2 . 2 2 x-y 2y-2x x -2xy y
【解】 (1)∵最简公分母是2ab,
2a 2a 2a 4a ∴ b b 2a 2ab c c2 2c ab ab 2 2ab x x 2ab 2ab
b b b ( x y) b(x y) 2y 2x 2(x y) 2(x y) (x y) 2(x y)
2
c c c2 2c x 2xy y (x y) (x y) 2 2(x y)
2 2 2 2
2
【想一想】
【方法一点通】 找最简公分母的方法 1.找系数:如果各分母的系数都是整数,那么取 它们的最小公倍数. 2.找字母:凡各分母因式中出现的所有字母或含 字母的式子都要选取. 3.找指数:取分母因式中出现的所有字母或含字 母的式子中指数的最大值.
】 分式约分的“两思路” 1.分子分母都是单项式:先确定分子、分母的公因式, 再约分. 2. 分子或分母中有多项式:先因式分解 , 再确定公因 式,然后约分.

分式的基本性质

分式的基本性质

分式的概念和性质【要点梳理】要点一:分式的概念★一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式.其中A 叫做分子,B 叫做分母,0≠B ,例如:x a ,x S ,yx b a ++,…都是分式. 要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况. (3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如aπ是整式而不能当作分式. (4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x yx是分式,与xy 有区别,xy 是整式,即只看形式,不能看化简的结果. 【例1】下列式子中,哪些是整式?哪些是分式?2a ,3x ,1m m +,23x +,5π,2a a ,23-.【变式1.1】指出下列各式中的整式与分式:x 12,y x +1,2b a +,πx ,132-x ,32-,223y +-,x x 2,42y . 【变式1.2】在-3x ,x y ,23x 2y ,-7xy 2,-32,,855x a b y -+中属于分式的是_______.【变式1.3】下列代数式属于分式的是( )A .2xB .)(31y x +C .12.4x yD π-要点二:求分式的值★将给定字母的值代入分式可求得分式的值,分支的值是由字母的取值确定的,分式的值分式中字母取值的变化二变化.要点三:分式有意义,无意义或等于零的条件★分式有意义的条件:分母不等于零. ★分式无意义的条件:分母等于零.★分式的值为零的条件:分子等于零且分母不等于零. 要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值. 【例2】下列各式中,m 取何值时,分式有意义?(1)2m m +;(2)1||2m -;(3)239mm --.【变式2.1】若分式11x x -+有意义,则x 的取值范围是 . 【变式2.2】当x 为何值时,下列各式的值为0.(1)2132x x +-;(2)221x x x +-;(3)224x x +-.【变式2.3】当x 取什么数时,下列分式有意义?当x 取什么数时,下列分式的值为零?(1)12+x x ;(2)25x x -;(3)5102--x x .要点四:分式的基本性质★分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M 是不等于零的整式). 要点诠释:(1)基本性质中的A 、B 、M 表示的是整式.其中B ≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了.【例3】写出下列等式中未知的分子或分母 (1)ba ab b a 2)(=+;(2)) (1)(=-y x x x .【变式3.1】不改变分式的值,将下列分式的分子、分母中的系数化为整数.(1)0.20.020.5x y x y+-; (2)11341123x yx y +-. 【变式3.2】如果把分式中的都扩大3倍,那么分式的值( )A 扩大3倍B 不变C 缩小3倍D 扩大2倍【变式3.3】填写下列等式中未知的分子或分母.(1)22?x y x y x y +-=-; (2)()()?()()()b a c b a c a b b c a c--=----. 要点五:分式的符号法则★分式的分子、分母、分式本身的符号,改变其中的任意两个,分式的值不变.改变其中任何一个或三个,分式的值为原分式值的相反数. ★式子表示B A B A B A B A --=--=--=或BAB A B A B A -=-=---=- 要点诠释:(1)分子、分母是多项式时,分子、分母的符号是整个多项式的符号,应注意加括号,特别注意,不要把多项式中第一项的符号当成整个分子或分母的符号. (2)根据分式的基本性质有b b a a -=-,b ba a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与ab-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.【例4】不改变分式的值,使下列分式的分子和分母不含“-”号.(1)2a b -;(2)45x y --;(3)3m n -;(4)23b c--.典型例题题型一:分式的定义【练习1.1】在π1、21、πxy 3、y x y x 3232+-、512+x 、abn m 7-中,分式的个数有( )A .2个B .3个C .4个D .5个【练习1.2】代数式x -,y x -4,yx +,π22+x ,y y 372,a b 55,x -89中是分式的有( ) A .1个B .2个C .3个D .4个yx x232-y x ,【练习1.3】式子31,x 1,y x +2,πxy 2,232+x 中,分式的个数为( )A .2B .3C .4D .5【练习1.4】在下列式子:x 5-,b a +1,222121ba -,mb a 10+,22+π中,分式有( ) A .1个B .2个C .3个D .4个【练习1.5】下列各式中,分式的个数有( )83+x ,32+a b ,132++πy x ,21--m ,22)()(y x y x +-x12- A .2个B .3个C .4个D .5个【练习1.6】在代数式22+π,51x +,21x x +-,22-x 中,分式有( ) A .1个B .2个C .3个D .4个【练习1.7】下列各代数式x 2,y x 221,422b a -,51+a ,5am +中,分式有( ) A .1个B .2个C .3个D .4个【练习1.8】在式子a 1,πxy 2,4332c b a ,x +55,87y x +,xx 2中,分式的个数是( ) A .2B .3C .4D .5【练习1.9】下列式子x 1,212+x ,πba +,y x 13+,m m 22中,是分式的有( )A .2个B .3个C .4个D .5个【练习1.10】下列式子:x 5-,b a +1,222121ba -,m 103,π2,其中分式有( ) A .1个B .2个C .3个D .4个【练习1.11】下列式子中:x 3,π23-a ,25320+b ,32y x ,m n-,分式的个数是( )A .1B .2C .3D .4【练习1.12】下列各式n m 2,y x xy +,32y x -,a b a -2,y x x xy ++2,,分式有( )A .1个B .2个C .3个D .4个【练习1.13】在y x 2,π52ab ,103xy ,m n m +,acb +-5中,分式有( )A .2个B .3个C .4个D .5个【练习1.14】在式子a 1,πxyz 2,5423c b a ,x +65,87y x +,xyyx 3中,分式的个数是( ) A .5 B .4C .3D .2【练习1.15】在58,n m 3,3y x +,x 1,ba +3中,分式的个数是( )A .1B .2C .3D .4题型二:分式有意义的条件 【练习2.1】要使分式21+x 有意义,则x 的取值应满足( ) A .2-=xB .2≠xC .2->xD .2-≠x【练习2.2】无论a 取何值时,下列分式一定有意义的是( )A .221a a +B .21aa +C .112+-a aD .112+-a a 【练习2.3】若代数式4+x x有意义,则实数x 的取值范围是( ) A .0=x B.4=xC .0≠xD .4-≠x【练习2.4】若分式21+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >﹣2 B .x <﹣2C .x =﹣2D .x ≠﹣2【练习2.5】若代数式31-x 在实数范围内有意义,则实数x 的取值范围是( ) A .x <3 B .x >3C .x ≠3D .x =3【练习2.6】分式)2)(1(3-+-x x x 有意义,则x 的取值范围是( )A .x ≠2B .x ≠2且x ≠3C .x ≠﹣1或x ≠2D .x ≠﹣1且x ≠2【练习2.7】若代数式41-a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4B .a >4C .a <4D .a ≠4【练习2.8】使分式23+x x有意义的x 的取值范围为( ) A .x ≠﹣2B .x ≠2C .x ≠0D .x ≠±2【练习2.9】分式)1)(2(42-+-x x x 有意义的条件是( )A .x ≠﹣2或x ≠1B .x ≠﹣2且x ≠1C .x ≠﹣2D .x ≠1【练习2.10】如果分式32+x x有意义,那么x 的取值范围是 . 【练习2.11】要使分式21+x 有意义,则x 的取值范围为 .【练习2.12】若分式121-x 有意义,则x 的取值范围是 .【练习2.13】使分式22-x 有意义的x 的取值范围是 .【练习2.14】若式子0)4(3-+-x x x 有意义,则实数x 的取值范围是 . 【练习2.15】若分式21-+x x 无意义,则x = . 【练习2.16】要使分式x-23有意义,则x 的取值范围是 .题型三:分式的值为0的条件【练习3.1】若分式112--x x 的值为零,则x 的值为( )A .0B .1C .﹣1D .±1【练习3.2】如果分式11+-x x 丨丨的值为0,那么x 的值为( ) A .﹣1B .1C .﹣1或1D .1或0【练习3.3】若分式112+-x x 的值为0,则x 的值为( )A .0B .1C .﹣1D .±1【练习3.4】若分式4242--x x 的值为零,则x 等于( )A .2B .﹣2C .±2D .0【练习3.5】分式33+-x x 丨丨的值为零,则x 的值为( )A .3B .﹣3C .±3D .任意实数【练习3.6】若分式3312+-x x 的值为0,则x 应满足的条件是( )A .x =﹣1B .x ≠﹣1C .x =±1D .x =1【练习3.7】如果分式xx x 222+-丨丨的值等于0,则x 的值是( )A .2B .﹣2C .﹣2或2D .2或0【练习3.8】已知分式3312+-x x 的值等于零,则x 的值为( )A .1B .±1C .﹣1D .12【练习3.9】分式24+-x x 的值为0,则( ) A .x =﹣2B .x =±2C .x =2D .x =0【练习3.10】能使分式122--x xx 的值为0的所有x 的值是( )A .x =0B .x =1C .x =0或x =1D .x =0或x =±1【练习3.11】若分式)1)(2(1+--x x x 丨丨的值为0,则x 等于( )A .﹣1B .﹣1或2C .﹣1或1D .1【练习3.12】要使分式9392+-x x 的值为0,你认为x 可取得数是( )A .9B .±3C .﹣3D .3【练习3.13】使分式112+-x x 的值为0,这时x 应为( )A .x =±1B .x =1C .x =1 且 x ≠﹣1D .x 的值不确定【练习3.14】若分式xx 42-的值为0,则x 的值是( )A .2或﹣2B .2C .﹣2D .0【练习3.18】若分式33+-x x 丨丨的值为零,则x 的值为 . 【练习3.25】若式子)2)(1(12+--x x x 的值为零,则x 的值为 .【练习3.26】当x = 时,分式325+-x x 的值为零. 【练习3.29】若a ,b 为实数,且0416)2(22=+-+-b b a 丨丨,求3a ﹣b 的值. 题型四:分式的值 【练习4.1】若分式211=-y x ,则分式yxy x y xy x ---+3454的值等于( ) A .−35B .35C .−45D .45【练习4.2】已知0432=--x x ,则代数式42--x x x的值是( ) A .3 B .2 C .13D .12【练习4.3】已知211=+y x ,则xyy x xy 32-+的值为( ) A .12B .2C .−12D .﹣2【练习4.4】若411=-y x ,则分式yxy x y xy x ---+2232的值是( ) A .112B .56C .32D .2【练习4.5】已知ab b a 622=+,,且ab ≠0,则abb a 2)(+的值为( )A .2B .4C .6D .8【练习4.6】若x 取整数,则使分式1236-+x x 的值为整数的x 值有( ) A .3个B .4个C .6个D .8个【练习4.7】横坐标和纵坐标都是整数的点叫作整点,函数1236-+=x x y 的图象上的整点的个数是( ) A .3个B .4个C .6个D .8个【练习4.8】若分式5122+-x x 的值为正数,则x 的取值范围是( ) A .x >12B .x <12C .x ≥12D .x 取任意实数【练习4.9】如果m 为整数,那么使分式12+m 的值为整数的m 的值有( ) A .2个B .3个C .4个D .5个【练习4.10】若x 是整数,则使分式1228-+x x 的值为整数的x 值有( )个. A .2B .3C .4D .5【练习4.11】若31=+x x,则=++1242x x x . 【练习4.12】若x 31=+x x ,则12++x x x的值是 . 【练习4.13】若211=+n m ,则分式nm mnn m ---+255的值为 .【练习4.14】若c b a 432==,且0≠abc ,则bc ba 2-+的值是 .【练习4.15】已知:0142=-+x x ,则1242++x x x 的值为 .【练习4.16】已知572z y x ==,则代数式zx zy x +-+32的值是 . 【练习4.17】若代数式112++x x 的值为整数,则满足条件的整数x 为 .【练习4.18】分式3322-++x x x 的值为负数,则x 的取值范围是 .【练习4.19】已知x 为整数,且分式1)1(22-+x x 的值为整数,则x 可取的所有值为 .【练习4.20】已知072=++z y x ,032=--z y x (0≠xyz ),则=+-++zy x zy x .【练习4.21】若分式326+-x 的值为负数,则x 的取值范围是 .【练习4.22】若分式2)5(4-+x x 的值为负数,则x 的取值范围是 . 【练习4.23】若分式1222--x x 的值为整数,则整数x = .【练习4.25】已知32=-yxx y ,则=---22222623x y y xy x . 【练习4.26】已知2=ba,则ab a b a --222的值 .【练习4.27】已知023=--z y x ,082=-+z y x ,则=+-+yzxy z y x 222 . 【练习4.28】阅读下面的解题过程:已知3112=+x x ,求142+x x 的值. 解:由3112=+x x ,知0≠x ,所以312=+x x ,即31=+x x 所以72312)1(11222224=-=•-+=+=+x x x x x x x x 所以142+x x 的值为71说明:该题的解法叫做“倒数法” 请你利用“倒数法”解下面题目:已知:4222=--x x x.求(1)xx 2-的值;(2)46242+-x x x 的值.【练习4.29】我们知道,假分数可以化为整数与真分数的和的形式,例如:21123+=. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像21-+x x ,22+x x ,…,这样的分式是假分式;像21-x ,12-x x,…,这样的分式是真分式,类似的,假分式也可以化为整式与真分式的和的形式. 例如:23123)2(21-+=-+-=-+x x x x x ;24224)2)(2(22++-=++-+=+x x x x x x x . 解决下列问题: (1)将分式32+-x x 化为整式与真分式的和的形式为: .(直接写出结果即可) (2)如果分式322++x xx 的值为整数,求x 的整数值.【练习4.30】已知:代数式14-m . (1)当m 为何值时,式子有意义? (2)当m 为何值时,该式的值大于零? (3)当m 为何整数时,该式的值为正整数? 题型五:分式的基本性质 【练习5.1】若分式yx yx 232-的x 和y 均扩大为原来各自的10倍,则分式的值( ) A .不变B .缩小到原分式值的101 C .缩小到原分式值的1001D .缩小到原分式值的10001【练习5.2】如果分式ba a +2中的a ,b 都同时扩大2倍,那么该分式的值( )A .不变B .缩小2倍C .扩大2倍D .扩大4倍【练习5.3】下列各式从左到右的变形正确的是( )A .322322323.02.0a a aa a a a a --=--B .yx x y x x --=-+-11C .263631211+-=+-a a a aD .b a ba ab -=+-22 【练习5.4】根据分式的基本性质,分式ba a--可变形为( ) A .ba a--B .ba a + C .ba a--D .ba a +-【练习5.5】分式x-22可变形为( ) A .x +22 B .x +-22 C .22-x D .22--x【练习5.6】如果把分式abba 623-中的a 、b 同时扩大为原来的2倍,那么得到的分式的值( )A .不变B .缩小到原来的21C .扩大为原来的2倍D .扩大为原来的4倍【练习5.7】如果把分式xyyx +中的x ,y 同时扩大为原来的4倍,那么该分式的值( ) A .不变 B .扩大为原来的4倍C .缩小为原来的21 D .缩小为原来的41 【练习5.8】如果把分式yx xy+中的x 和y 都扩大2倍,则分式的值( ) A .扩大4倍B .扩大2倍C .不变D .缩小2倍【练习5.9】下列变形从左到右一定正确的是( )A .22--=b a b aB .bcac b a =C .22ba b a =D .ba bx ax = 【练习5.10】如果把分式nm n-3中的m 和n 都扩大3倍,那么分式的值( ) A .不变B .扩大3倍C .缩小3倍D .扩大9倍【练习5.11】化简3422222++••-n nn ,得( )A .8121-+n B .12+-nC .87D .47 【练习5.12】若分式ba a+2中的a 、b 的值同时扩大到原来的10倍,则分式的值( ) A .是原来的20倍B .是原来的10倍C .是原来的101 D .不变【练习5.13】如果把分式yx x232-中的x ,y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .扩大2倍【练习5.15】下列各式中,正确的是( ) A .212+=+a b a b B .22++=a b a b C .cb ac b a +-=+- D .22)2(422--=-+a a a a 【练习5.16】把分式xyyx 33-中的x 、y 的值同时扩大为原来的2倍,则分式的值( ) A .不变B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的一半【练习5.17】若c b a 543==,则分式=+++-222c b a ac bc ab . 【练习5.18】已知432zy x ==,则=+--+z y x z y x 232 . 【练习5.19】如果分式22532y x x+的值为9,把式中的x ,y 同时扩大为原来的3倍,则分式的值是 .【练习5.22】我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:121121112111-+=-+--=-+-=-+x x x x x x x x . (1)请写出分式的基本性质 ; (2)下列分式中,属于真分式的是 ;A .12-x xB .11+-x xC .123--x D .1122-+x x (3)将假分式132++m m ,化成整式和真分式的形式.【练习5.23】(1)yxy x 3532=() (2)()x x x -=--121。

分式的基本性质

分式的基本性质

再见
2.当 x 取何值时,下列分式的值为零。
x2 3x 2 (1) ( x 2)
我们已经知道:
2 3 16 36
= =
25 3 5
=
10 15
;
4 9
16 4 36 4
=
这是根据分数的基本性质:
分数的分子与分母都乘以或除以同 一个不等于零的数,分数的值不变.
分式 分数的基本性质 分式 分数的分子与分 母都乘以(或除以)同一个不等于零的 整式 数 , 分式 分数的值不变.
2
归纳:
分式的约分:把一个分式的分子和分母的公 因式约去,这种变形称为分式的约分。
最简分式:分子和分母没有公因式的分式叫 最简分式。
(化简分式时,通常要使结果成为 最简分式或者整式)
补充练习:
b 5 ab 1、已知 ,则 的值是( ) a 13 ab 2 3 9 4 A. B. C. D. 3 2 4 9
x y z 2、已知 0, 求代数式 2 3 4 2x y z 的值. x yz
3、已知x 3 1, y 3 1, 求 x 2 xy y 的值. 2 2 x y
2 2
1﹑分式的基本性质。 2﹑分式基本性质的应用。 3﹑化简分式,通常要使结果 成为最简分式或者整式。
阶一席窗 下杯间外 辰未花日 牌尽影光 又笙坐弹 报歌前指 时送移过
1.分式的概念
①分子分母都是整式 ②分母中含有字母 ③分母不能为零
2. 分式无意义的条件:分母等于零
分式有意义的条件:分母不等于零 分式的值为零的条件:分子等于零且 分母不等于零
1.求使下列分式有意义的 x 的取值范围.
2x 2 x 3x 4

分式的基本概念及性质

分式的基本概念及性质

分式的概念:当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式.一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.整式与分式统称为有理式.在理解分式的概念时,注意以下三点:⑴分式的分母中必然含有字母;⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.如:分式1x,当0x≠时,分式有意义;当0x=时,分式无意义.分式的值为零:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质:分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a amb bm=,a a mb b m÷=÷(0m≠).注意:①在运用分式的基本性质时,基于的前提是0m≠;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】在下列代数式中,哪些是分式?哪些是整式?1 t ,(2)3xx+,2211x xx-+-,24xx+,52a,2m,21321xx x+--,3πx-,323a aa+【例2】代数式22221131321223x x x a b a b abm n xyx x y+--++++,,,,,,,中分式有()A.1个B.1个C.1个D.1个分式的基本概念及性质二、分式有意义的条件【例3】求下列分式有意义的条件:⑴1x⑵33x+⑶2a ba b+--⑷21nm+⑸22x yx y++⑹2128x x--⑺293xx-+【例4】x为何值时,分式2141xx++无意义?【例5】x为何值时,分式2132x x-+有意义?【例6】x为何值时,分式211xx-+有意义?【例7】要使分式23xx-有意义,则x须满足的条件为.【例8】x为何值时,分式1111x++有意义?【例9】要使分式241312aaa-++没有意义,求a的值.【例10】x为何值时,分式1122x++有意义?【例11】x为何值时,分式1122xx+-+有意义?【例12】若分式25011250xx-++有意义,则x;若分式25011250x x-++无意义,则x ;【例13】 若33aa-有意义,则33a a -( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对【例14】 x 为何值时,分式29113x x-++有意义?【例15】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ;⑵ 若分式216(3)(4)x x x --+无意义,则x ;三、分式值为零的条件【例16】 当x 为何值时,下列分式的值为0?⑴1x x+ ⑵211x x -+ ⑶33x x -- ⑷237x x ++ ⑸2231x x x +--⑹2242x x x-+【例17】 当x 为何值时,下列分式的值为0?⑴213x x -+ ⑵223(1)(2)x x x x --++ ⑶2656x x x --- ⑷221634x x x -+-⑸288xx + ⑹2225(5)x x -- ⑺(8)(1)1x x x -+-【例18】 若分式41x x +-的值为0,则x 的值为 .【例19】 若分241++x x 的值为零,则x 的值为________________________.【例20】 若分式242x x --的值为0,则x 的值为 .【例21】 若分式 242a a -+ 的值为0,则a 的值为 .【例22】 若分式221x x -+的值为0,则x = .【例23】 (2级)(2010房山二模)9. 若分式221x xx +-的值为0,则x 的值为 .【例24】 若分式231x x ++的值为零,则x = ________________.【例25】 (2级)(2010平谷二模)已知分式11x x -+的值是零,那么x 的值是( ) A .1 B. 0 C. 1- D. 1±【例26】 若分式2532x x -+的值为0,则x 的值为 .【例27】 如果分式2321x x x -+-的值是零,那么x 的取值是 .【例28】 若分式()()321x x x +-+的值不为零,求x 的取值范围.【例29】 若22x x a-+的值为0,则x = .【例30】 x 为何值时,分式29113x x-++分式值为零?【例31】 若22032x xx x +=++,求21(1)x -的值.【例32】 x 为何值时,分式23455x xx x ++-+值为零?【例33】 若分式2160(3)(4)x x x -=-+,则x ;【例34】 若分式233x x x--的值为0,则x = .【巩固】 若分式250011250x x-=++,则x .【例35】 若2(1)(3)032m m m m --=-+,求m 的值.四、分式的基本性质【例36】 填空:(1)()2ab ba = (2)()32x x xy x y =++(3)()2x y x xyxy ++=(4)()222x y x y x xy y +=--+【例37】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴x y x y +- ⑵xy x y - ⑶22x y x y -+【例38】 把下列分式中的字母x 和y 都扩大为原来的5倍,分式的值有什么变化?(1)2x y x y ++ (2)22923x x y +【例39】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴2222x y x y +-⑵3323x y⑶223x y xy-【例40】 不改变分式的值,把下列各式的分子与分母的各项系数都化为整数. ⑴1.030.023.20.5x y x y +- ⑵32431532x yx y -+【例41】 不改变分式的值,把下列各式分子与分母的各项系数都化为整数。

分式1 分式定义和分式的基本性质

分式1            分式定义和分式的基本性质

分式定义和分式的基本性质一、基础知识:1. 分式定义:(1)、代数式:用运算符号(包括加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫做代数式;单独一个数或一个字母 代数式;(2)、单项式:只含 运算的代数式叫做单项式;单独一个数或一个字母 单项式; 单项式中的叫做单项式的系数,单项式中所有字母指数的叫做单项式的次数;(3)、多项式:几个 的和叫做多形式;多形式中的每个单项式叫做多形式的 ,多形式里含有几项,就把这个多形式叫做 ,其中次数最高的项的次数叫做这个多形式的 ,不含字母的项叫做 ; (4)、整式: 和 统称为整式;(5)、分式:一般地,如果A 、B 表示两个整式,并且B 中含有 ,那么代数式 叫做分式,其中A 是分式的分子,B 是分式的分母。

2.分式的基本性质:(1)、分式的基本性质:分式的分子和分母都乘(或除以) 一个不等于 的整式,分式的值 ; 即A B =A×CB×C , A B =A÷CB÷C (其中C 是不等于0的整式); (2)、有关概念:①分式的约分:根据分式的基本性质,把一个分式的分子和分母分别除以它们的 ,叫做分式的约分;约分的目的是把分式 ;②最简分式:分子和分母没有 的分式叫做最简分式;③分式的通分:根据分式的基本性质,把几个 分母的分式变形成 分母的分式,叫做分式的通分,变形后的分母叫做这几个分式的公分母;④最简公分母:几个分式中各分母系数(都是整数)的最小 与所有字母的最高次幂的 叫做这几个分式的最简公分母。

二、经典例题: 题型一:考查分式的定义例1、下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,分式有: 个。

变式训练:下列各式中哪些是分式:9x+4, x 7 , 209y +, 54-m , 238y y -,91-x题型二:考查分式有意义的条件 例2、当x 有何值时,下列分式有意义(1)44+-x x (2)122-x (3)xx 11-变式训练:当x 有何值时,下列分式有意义 (1)232+x x(2)3||6--x x题型三:考查分式的值为0的条件 例3、当x 取何值时,下列分式的值为0. (1)31+-x x(2)42||2--x x (3)653222----x x x x变式训练:当x 取何值时,下列分式的值为0. (1)x x 37+ (2)xx 3217- (3)x 2−1x 2−x题型四:考查分式的值为正、负的条件例4、(1)当x 时,分式x-84为正; (2)当x 时,分式2)1(35-+-x x 为负;变式训练:当x 时,分式32+-x x 为非负数. 题型五:化分数系数、小数系数为整数系数例5、不改变分式的值,把分子、分母的系数化为整数. (1)y x yx 41313221+- (2)ba ba +-04.003.02.0变式训练:不改变分式的值,把分子、分母的系数化为整数. yx yx 5.008.02.003.0+-题型六:分数的系数变号例6、不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx yx --+- (2)ba a---(3)b a ---变式训练:不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- (2) 2317ba ---题型七:约分例7、将下列各式 化为最简分式:(1)c ab bc a 2321525- (2)96922++-x x x (3)yx y xy x 33612622-+-变式训练:将下列各式 化为最简分式:(1)ac bc 2 (2)22)(y x xyx ++ (3)b a b ab a +++36922题型八:通分例8、通分:(1)xab ,yac ; (2)yx (y +1) ,xy (y +1); (3)aab−b ,bab +a.变式训练:通分:(1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--;题型九:化简求值题例9、已知:511=+y x ,求yxy x yxy x +++-2232的值. 变式训练:已知:311=-b a ,求a ab b b ab a ---+232的 ;例10、已知:21=-x x ,求221xx +的值. 变式训练:已知:31=+x x ,求1242++x x x 的值.例11、若0)32(|1|2=-++-x y x ,求yx 241-的值.变式训练:若0106222=+-++b b a a ,求ba ba 532+-的值.三、巩固练习:1.当x 取何值时,下列分式有意义:(1)3||61-x(2)1)1(32++-x x2.当x 为何值时,下列分式的值为零: (1)4|1|5+--x x(2)562522+--x x x3.解下列不等式 (1)012||≤+-x x (2)03252>+++x x x4.不改变分式的值,把分式b a ba 10141534.0-+的分子、分母的系数化为整数. 5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.6.分式11−x ,11+x ,12x1+x 的最简公分母为四、课后作业:1.当x 取何值时,分式x111+有意义:2当x 为何值时,分式 的值为零x x x --213.约分: (1)2)(xy yy x + (2)222)(y x y x --(3)b a abc ab 22369+ (4)122362+-x x4.通分:(1)22,21,1222--+--x x x x xx x ; (2)aa -+21,25.已知:31=+x x ,求1242++x x x 的值.。

分式的基本性质

分式的基本性质
例2
解分式方程 $\frac{x}{2} - \frac{3x}{4} = 1$

将方程两边同时乘以4,得 $2x + 3 = 7$,解得 $x = 2$。

将方程两边同时乘以4,得 $2x - 3x = 4$,解得程的步骤 • 整理方程:将方程中的分式转化为整式,通过通分、约分等方式简化方程。 • 确定未知数的值或取值范围:根据简化后的方程,确定未知数的值或取值范围。 • 检验:将求得的未知数的值代入原方程进行检验,确保方程的根的正确性。 • 注意事项 • 在解分式方程时,需要注意方程的化简和约分,避免出现计算错误。 • 在求出未知数的值或取值范围后,需要进行检验,确保根的正确性。 • 当方程的根的个数多于1个时,需要注意解的取舍,确保得到正确的解。
分式除法是指一个分式除以另一 个分式。在进行分式除法时,需 要将除数的分子和分母颠倒,然 后将颠倒后的除数与被除数相乘 。
分式的运算性质应用举例
求解分式方程
通过使用代入消元法或加减消元法,可以将分式方程转化为整式方程,从而求解出未知数的值。
简化分式
通过使用分式的加法、减法、乘法和除法,可以将一个复杂的分式简化成一个简单的分式。
分数的定义可以扩展到复数范围, 但在高中数学中通常只涉及有理数 分式的讨论。
分式的形式
1 2
最简分式
分子和分母没有公共因子,且分子和分母的最 高次数相同。
真分式
分子和分母都是多项式,且分子和分母的次数 不同。
3
假分式
分子和分母的次数相同,或分子和分母有公共 因子。
分式的基本性质
分式的值不等于零
分式的值是分子与分母相除的结果,当分母为零时,分式 的值不存在,即分式不等于零。

分式的基本性质

分式的基本性质

分式性质应用1
例:1:
ab ( 2a b ( ) ) (1) , 2 2 2 ab a b a a b
x xy x y x ( ) (2) 2 , 2 x ( x 2 x x 2 )
2
观察
×
a
×
a b (a 2 ab ) (1) 2 ab a b
分式性质应用2
不改变分式的值,使下列分子与分 母都不含“-”号 2x 3a 10m 2x 3a 10m , , , , 5y 7b 3n 5y 7b 3n
有什么发现? 变号的规则是怎样 的?
a a b b
a a a a b b b b a a a a b b b b
分母: ab
a
2b a
a b (a 2 2a b (2ab b 2) ab ) , (1) 2 2 2 ab a b a a b
÷x
2
×
b
x xy x y x ( 1) (2) 2 , 2 x ( x 2 x x 2 x) ÷x
八年级
上册
15.1 分式 基本性质
• 学习目标: 1.了解分式的基本性质,体会类比的思想方法. 2.掌握分式的约分,了解最简分式的概念. • 学习重点: 分式的基本性质和分式的约分.
问题1、什么是分式?
果除式B中含有字母,那么称
A 整式A除以整式B,可以表示成 B 的形式。如 A
为分式,
其中A称为分式的分子,B为分式的分母。 问题2、在分式的概念中我们尤其要注意什么? 对于任意一个分式,分母都不能为零。 问题3、当x取什么值时,下列分式有意义:
分式的分子、分母和分式本身的 符号,同时改变其中任意两个,分式 的值不变。

分式的基本性质分式的变形

分式的基本性质分式的变形

1 2 a a (1) ( 2 ) 1 a a1 2 a a2 ( 3) 2 1 a
练习
不改变分式的值,使下列各式的分子与 分母的最高次项系数是正数,然后再约分
1- a - a ⑴ 2 3 1+a - a

2
x +1 ⑵ 2 1- x
1- a - 2 a - a +3
2

分式性质应用
(2a -
解:原式 =
2 ( a + b) ? 6 3
2
b) ? 6
12a 9b 4a 6b
巩固练习
y 的 x和 y 都扩大两倍,则分式的值( B ) 1.若把分式 x+y
A.扩大两倍 C.缩小两倍 B.不变 D.缩小四倍
xy 2.若把分式 中的 x+y 的值( A ).
A.扩大3倍 C.扩大4倍
12 xy 的最简公分母是
的最简公分母
2 ;

1 2x , , (3)分式 最简公分母 2 2 2 6 x 3 x x 4 2 x 4 ) 2 ( 是 12 x ( x + 2) ( x - 2) ;
10a b c
x
2 2 2
4a 3c 5b , 2 , 2 2 5b c 10a b - 2ac

分式性质应用
不改变分式的值,把下列各式的分 子与分母的各项系数都化为整数。
0.01x 0.5 ( 1) 0.3xБайду номын сангаас 0.04
(0.01x 0.5) 100 解:原式 (0.3 x 0.04) 100
x 50 30 x 4
3 2a - b 2 ( 2) 2 a +b 3 3

分式的基本性质及其应用

分式的基本性质及其应用

x2 1 2x 1

(x
1)(x 1) (x 1)2
x 1 x 1
3/3/2020
最简分式
最简分式

a a2
x 1
,x 1
这样分子和分母只有
公因式 “ 1 ” 的分式称为最简分式.
注意:
化简分式和分式的计算时,通常 要使结果成为最简分式.
3/3/2020
分式的约分
把一个分式的分子和分母的公因式 约去,不改变分式的值,这种变形叫做分 式的约分。
m
a ÷n = 2a 问题2.如图2,面积为1的长方形平均分成了2份,阴影部分
n 的面积是多少?
2
n
×2
2
1=
= mn
m
42
m≠0 n≠0
,
÷n
3/3/2020
分式的基本性质:
分式的分子与分母都乘以(或除以)同一个不等于 零的整式,分式的值不变。
几何语言表达:
a a•m am b b•m bm
a,b,m均为整式,m≠0
讨论:为什么所乘的整式不能为零呢?
3/3/2020
分式性质应用1
填空:
(1)b a

ab

1 a2 (2)2
b2
(
)
a b 2a 2b
(3) 3a a6


6ab
(b 0)
(4)3x 2 ( ) (x 2)
3x 2
另外还须注意: (1)分子与分母按某一个字母降幂排列; (2)最高次方项的符号化为正; (3)把分子与分母的各项系数化为整数。
3/3/2020
必做题:
36xy2 z3 1、约分: (1) 6 yz2 ;

分式的基本性质1

分式的基本性质1

分式基本性质(1)分式的基本性质是:分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变.用式子表示是:C B C A B A ⋅⋅= CB C A B A ÷÷= (0≠C ) 约分:把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质.【例】约分:(1)d b a c b a 42342135-, (2)23)(4)(2x y y y x x -- , (3)2222)()(z y x z y x -+--. 1.对于分式11-x ,永远成立的是( ) A .1211+=-x x B. 11112-+=-x x x C. 2)1(111--=-x x x D. 3111--=-x x 2.下列各分式正确的是( ) A.22a b a b = B. b a b a b a +=++22 C. a a a a -=-+-11122 D. x x xy y x 2168432=--3.若)0(54≠=y y x ,则222y y x -的值等于________. 4.化简分式xx ---112的结果是________. 5.将分式的分子与分母中各项系数化为整数,则b a b a 213231++=__________.6.把下列各式约分:(1)432304ab b a , (2)22112m m m -+- , (3)42)()(a b b a --. 7.已知:分式xyy x -+1的值是m ,如果分式中y x ,用它们的相反数代入,那么所得的值为n 则n m ,的关系是什么?8.有四块小场地:一块边长为a 米的正方形,一块边长为b 米的正方形,两块长a 为米,宽为b 米的长方形.另有一块大长方形场地,它的面积等于上面四块场地面积的和,它的长为2(a+b )米,试用最简单的式子表示出大长方形场地的周长.9.已知511=-y x ,求分式yxy x y xy x 272-+++-的值. 10.10.已知432z y x ==,求222z y x zx yz xy ++++的值.。

分式的基本性质

分式的基本性质
×
a
分子: 2b
×
a
2ab
例2:在下面的括号内填上适当的整式,使等式成立:
×
a b a ab (2) 2 ab ab
2
a
分母: ab
×
a ×a
2 ab
分式的基本性质
分式的分子与分母都乘以(或除以)同一个不为零的整式,分式 的值不变。
式子表达: = =
(其中,M是不等于零的整式)
• 练习1、说出下列等式的右边是怎样从左边得到的?
×
a
÷2b
• ( 1)
(2)
×

a
×12
a
(3)
÷2b
×12
a
不改变分式的值,把下列各式的分子与分母中 的各项的系数都化为整数。
0.01x 30x 4 y
例1、不改变分式的值,把下列各式的分子与分母中的 各项的系数都化为整数。
( x 2) 2 ( x 3)
x2 2 x 3
• 练习:不改变分式的值,使下列分式的分子与分母的最高次项的 系数是正数。
• (1)
2x 1 x 3 2x
2
x 2x 1 2x 3
2
• (3)
x 3x 1 2 2 x
2
x 3x 1 2 x2
分式的符号法则
• 分式的分子、分母和分式本身的符号,改变其中任何两个, 分式的值不变。
• 练习:不改变分式的值,使下列分式的分子与分母中都不含“ - ” 号。
(1 )
2a 5b
(2)
2x (3) 7y
x 3y
2
例1、不改变分式的值,使下列分式的分子与分母的最 高次项的系数是正数。

分式的基本性质

分式的基本性质

3m -n
-3m n
-3m n
练习
分数线有除号和括号的作用,如:
x 1 可表示为(x -1) (x 3) x3
小测试
1、在下面四个有理式中,分式为( B )
A、2x
7
5
B、31x
C、x
8
8
D、-
1 4
+
x 5
2、当x=-1时,下列分式没有意义的是( PPT模板:

PPT下载:
PPT教程:
资料下载:
范文下载:
试卷下载:
教案下载:
PPT论坛:
PPT课件:
语文课件: 数学课件:
英语课件: 美术课件:
科学课件: 物理课件:
化学课件: 生物课件:
地理课件:
历史课件:
A、x
x
1
B、x
x
1
C、x2x1
C)
D、x
x
1
3、⑴ 当x ≠
1 时,分式 2
x2 2x 1
有意义。
⑵ 当x =2
时,分式 x 2 的值为零。 2x 1
4、已知,当x=5时,分式 2x k 的值等于零,
则k =-10 。
3x 2
分式 的 基本性质
类比分数的基本性质, 你能获得分式的基本性质吗?
【分数的 分数的分子与分母都乘以或除以同一个不等于零的数, 基本性质 】 分数的值不变. 【分式的 分式的分子与分母都乘以或除以同一个不等于零的整式, 基本性质 】分式的值不变.
1 m
,即括号内应填入-1.
不改变分式的值,使下面分式的分子与分母都不含负号:
(1) -3x -4 y
(2) -a 2b

分式分式的基本性质

分式分式的基本性质

2023-11-04CATALOGUE目录•分式的定义与概念•分式的基本性质•分式的运算•分式方程•分式的简化与化简•分式在实际生活中的应用01分式的定义与概念分式的定义分子在分式$\frac{A}{B}$中,A叫做分式的分子。

分母在分式$\frac{A}{B}$中,B叫做分式的分母。

定义如果A、B表示两个整式,并且B中含有字母,那么式子$\frac{A}{B}$叫做分式。

分式值为0的条件当分母为0,而分子不为0时,分式的值无意义。

分式通分将异分母的分式化为同分母的分式的过程。

分式约分将分子和分母同时除以它们的公因式,将分式化简。

分式的基本概念分式的重要性分式是数学中一个重要的概念,是连接整式与分数的桥梁。

分式的运算是数学中的基本运算之一,掌握好分式的性质和运算法则是学习数学的基础。

02分式的基本性质03约分后结果约分后的结果是分子、分母没有公因式的分式或整式。

分式的约分01约分定义约分是分式的一种恒等变形,其目的是将一个分式化简成最简分式或整式。

02约分步骤首先将分子、分母的公因式提取出来,然后约去分子、分母的公因式。

分式的通分通分定义通分是将几个异分母的分式化为同分母的分式的一种恒等变形。

通分步骤首先确定每个分式的最简公分母,然后将每个分式的分子、分母同时乘以同一个不等于零的整式,化为同分母的分式。

通分后结果通分后的结果是同分母的分式。

分式的相等与不相等分式相等如果两个分式的值相等,那么这两个分式是相等的。

分式不相等如果两个分式的值不相等,那么这两个分式是不相等的。

03分式的运算1分式的加减法23将异分母分式转化为同分母分式,然后进行加减运算。

异分母分式相加减通过通分,将异分母分式转化为同分母分式。

通分分母不变,分子相加减得到结果。

分母不变,分子相加减将分子和分母进行因式分解,找到公因式并约分。

约分将分子和分母同时乘以一个不为零的数或式子,使得分母相同。

通分按照分数的乘除法规则进行计算。

分式的乘除法分式的乘除法按照运算顺序进行先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。

第一讲 分式的基本性质

第一讲  分式的基本性质

第一讲 分式的基本性质学习目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件3. 理解分式的基本性质.4.会用分式的基本性质进行通分、约分、化简一、知识回顾知识点1、与分式有关的条件①分式有意义:分母≠0②分式无意义:分母=0③分式值为0:⎩⎨⎧≠=00分母分子) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )知识点2分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:C B C ∙∙=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。

知识点3、分式的约分◆约分时。

分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式. 3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.知识点5、分式的通分◆通分时,最简公分母的确定方法:1.系数取各个分母系数的最小公倍数作为最简公分母的系数.2、取各个公因式的最高次幂作为最简公分母的因式课前热身.1.用式子表示分式的基本性质:____________________________.2.对于分式122x x -+(1)当________时,分式的值为0(2)当________时,分式的值为1(3)当________时,分式无意义(4)当________时,分式有意义3.填充分子,使等式成立;2)2()(22+=+-a a a4.x x x 3222+= ()3+x5.化简:233812a b c a bc =_______。

《分式的基本性质》分式

《分式的基本性质》分式
总结词
注意符号运算
详细描述
在进行分式的加减法时,需要注意符号运算,特别是当 分子或分母为负数时,需要特别小心。
总结词
化简运算结果
详细描述
在进行分式的加减法后,需要对结果进行化简,即约分 ,将结果化为最简形式。
分式的乘除法
总结词
分子乘除、分母乘除法
详细描述
在进行分式的乘除法时,需要将分子和分母分 别进行乘除运算。
通分的注意事项
通分是将两个或多个分式化为相同分 母的过程。
通分时要注意分母的选择,要选择一 个所有分母都能整除的最小正整数作 为最简公分母。
通分的步骤
首先找出各个分式的最简公分母,然 后将各个分式的分子和分母都乘以相 应的倍数,使其分母与最简公分母相 同。
分式的运算性质
运算性质的定义
分式的运算性质是指在进 行分式的加减乘除等运算 时,可以运用的一些性质 和规则。
数,简化分式。
约分时,要特别注意约去的公因 数是否为0,避免出现除数为0
的情况。
约分时,要注意分子和分母的符 号,确保约分后分式的符号正确

通分时注意最简公分母的选择
通分时,要选择最简公分母, 避免出现复杂和不必要的计算 。
最简公分母的选择要考虑分式 的分母和分子,确保最简公分 母能够同时整除分式的分母和 分子。
数学中的分式
总结词
数学中分式用于解决几何、代数等问 题。
详细描述
在数学中,分式经常被用来解决几何 和代数等问题。例如,在几何学中, 分式用于计算面积和体积的比率;在 代数中,分式用于解决方程和不等式 等问题。
05
分式的注意事项与易错点
约分时注意分子和分母的公因数
约分时,要仔细观察分子和分母 的公因数,确保正确地约去公因

第二课时分式的基本性质

第二课时分式的基本性质
分式的基本性质
分式约分的结果
最简分式或整式的形式
巩固练习
1、下列各式中是最简分式的( B )
a b x y A、 B、 ba x y
2
2
x 4 C、 D、 x2
2
x y 2 2 x y
巩固练习
2、化简下列分式(约分)
(1)
a bc ab
32a 3 b 2 c 24a 2 b 3 d
x( x 2 1) = 3y( x 2 1)
反思:运用分式的基本性质应注意什么? (1) “都” (2) “同一个” (3) “不为0”
巩固练习 二、选一选
y 的 和 都扩大两倍,则分式的值( 1.若把分式 x y
x y x
B
)
A.扩大两倍 B.不变 C.缩小两倍 D.缩小四倍 xy 2.若把分式 中的 和 都扩大3倍,那么分式 x y 的值( A ).
.
ab 1 1 1 (苏州·中考)已知 , 则 的值是多 a b 2 a b
少?
通分:
1 1 c a b (1) 2 , 3 2 ; (2) , , ; 2a b 3a b ab bc ac y x 1 4a 3c 5b (3) , 2 , ; (4) 2 , , 2 2 2 x 3 y 4 xy 5b c 10a b 2ac ; 1 1 1 1 (5) 2 , ; (6) 2 , ; 2 2 x xy xy y x y x y 1 1 1 1 (7 ) 2 , 2 ; (8) 2 , 2 x x x x x x x 2x 1
2
(2)
(3)
15a b 25a b
2
x 1 (1) 2 x 2x 1 2 m 3m ( 2) 2 9m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:16. 1.2分式的基本性质
教学重点:理解分式的基木性质.分式的分子、分母和分式木身符号变号的法则。

教学难点:灵活应用分式的基本性质将分式变形。

利用分式的变号法则,把分子或分母是多项式的变形。

教学课时:两课
教学反思、:木节课的内容有三点:分式的基木性质.约分、通分。

总的來说分式的基木性质比较简单••而约分和通分是比较难的•因为在这之前需要先对分子分母进行闵式分解.而因式分解这个知识点是上学期学的,必须要复习。

所以我对木节课的内容做了如下安排,先讲基木性质和约分•中间花一段时间复习因式分解,使得基础比较差的学生也能接受, 而通分的内容就安排到第二课时。

相关文档
最新文档