牛头刨床刨刀的往复运动机构
《机械原理》课程设计_牛头刨床
牛头刨床设计一、工作原理牛头刨床是一种靠刀具的往复直线运动及工作台的间歇运动来完成工件的平面切削加工的机床。
图1为其参考示意。
电动机经过减速传动装置(带和齿轮传动)带动执行机构(导杆机构和凸轮机构),完成刨刀的往复运动和间歇移动。
刨床工作时,刨头6由曲柄2带动右行,刨刀进行切削,称为工作行程。
在切削行程H中,前、后各有一段0.05H的空刀距离,工作阻力F为常数;刨刀左行时,即为空回行程,此行程无工作阻力。
在刨刀空回行程时,凸轮8通过四杆机构带动棘轮机构,棘轮机构带动螺旋机构使工作台连同工件在垂直纸面方向上做一次进给运动,以便刨刀继续切削。
图1 牛头刨床二、设计要求电动机轴与曲柄轴2平行,刨刀刀刃点E与铰链点C的垂直距离为50mm,使用寿命10年,每日一班制工作,载荷有轻微冲击。
允许曲柄2转速偏差为土5%。
要求导杆机构的最大压力角应为最小值;凸轮机构的最大压力角应在许用值[α]之内,摆动从动件9的升、回程运动规律均为等加速、等减速运动。
执行构件的传动效率按0.95计算,系统有过载保护。
按小批量生产规模设计。
三、设计数据表1 设计数据四、设计内容及工作量(1)根据牛头刨床的工作原理,拟定2~3个其他形式的执行机构(连杆机构),并对这些机构进行分析对比。
(2)根据给定的数据确定机构的运动尺寸。
要求用图解法设计,并将设计结果和步骤写在设计说明书中。
(3)导杆机构的运动分析。
将导杆机构放在直角坐标系下,建立数学模型。
(4)凸轮机构设计。
根据给定的已知参数,确定凸轮的基本尺寸(基圆半径r o、机架l o2o9和滚子半径r r)和实际轮廓,并将运算结果写在说明书中(可选)。
(5)编写设计计算说明书。
实验四__牛头刨床 机构设计
θ
B1
ψ
D
ωm2 ψ / t2 t1 180 +θ 180 −θ 180 +θ = K= = = = ω ω 180 −θ ωm1 ψ / t1 t2
设计具有急回要求的机构时,应先确定 值 设计具有急回要求的机构时,应先确定K值,再计算θ。
*急回特性 从动件作往复运动的平面连杆机构中, 从动件作往复运动的平面连杆机构中, 从动件工作行程的平均速度小于回程的 工作行程的平均速度小于 若从动件工作行程的平均速度小于回程的 平均速度,则称该机构具有急回特性 急回特性。 平均速度,则称该机构具有急回特性。
行程速度变化系数——K来衡量急回运动的相对程度。 来衡量急回运动的相对程度。 行程速度变化系数 来衡量急回运动的相对程度
二、设计参数的确定: 设计参数的确定:
1.根据运动设计要求(K=2),可得到该机构的极位 根据运动设计要求(K=2),可得到该机构的极位 ), 夹角为: 夹角为:
2.由导杆机构的运动特性可知,导杆的角行程 由导杆机构的运动特性可知,
由此可得到导杆的两个极限位置CD1和CD2。 由此可得到导杆的两个极限位置CD1和CD2。 CD1
5.合理选则固定铰链A的位置(lAC=100 mm),则即可确定曲柄AB mm),则即可确定曲柄AB ),则即可确定曲柄 合理选则固定铰链A的位置( 的的长度为
三、根据上述参数进行草图参数约束: 根据上述参数进行草图参数约束:
四、 运动仿真与分析
位移线图
速度线图
加速度线图
牛头刨床主体机构设计
一 、设计 方 案分析与比较
由设计要求可知, 由设计要求可知,刨削主体机构系统 的特点是: 在运动方面, 的特点是: 在运动方面,有曲柄的回转运动 变换成具有急回特性的往复直线运动 具有急回特性的往复直线运动, 变换成具有急回特性的往复直线运动,且要求 执行件行程较大,速度变换平缓; 执行件行程较大,速度变换平缓;在受力方面 ,由于执行件(刨刀)受到较大的切削力,故 由于执行件(刨刀)受到较大的切削力, 要求机构具有较好的传力特性。 要求机构具有较好的传力特性。根据对牛头刨 床主体刨削运动特性的要求, 床主体刨削运动特性的要求,可以列出以下几 个运动方案: 个运动方案:
机械原理牛头刨床的VB
一·机构简介·1.1牛头刨床的组成牛头刨床主要由床身、滑枕、刀架、工作台、横梁、进给机构和变速机构等组成。
(1)床身床身内部有变速机构和曲柄摇杆机构。
床身的顶面有水平导轨,滑枕沿水平导轨作往复直线运动。
在床身前面有垂宜导轨,横梁带动工作台沿垂直导轨升降。
2)滑枕滑枕的前端有环状T形槽,用来安装刀架和调节刀架的偏转角度:滑枕的内部装有调整滑枕行程位置的机构,它是由一对锥齿轮和丝杠组成。
滑枕的下部有两条燕尾型导轨,它与床身上部的水平导轨配合。
在曲柄摇杆机构的带动下,滑枕在床身水平导轨上作往复直线运动。
(3)横梁与工作台校梁安装在床身前部垂直导轨上。
横梁的底部装有升降丝杠,使校梁能沿着床身前部的垂直导轨作上下移动。
工作台和滑板连接在一起,安装在横梁水平导轨上,转动安装在校梁凹框内的横向进给丝杠,工作台就沿着横梁的水平导轨作横向移动。
工作台的前部底下装有支架,以防止工作台在刨削过程中产生向下倾斜和振动现象。
工作台的上平面和两侧面均制有T形槽、v 形槽和圆孔,用来固定不同形状的工件或夹具。
(4)刀架刀架用于装夹刨刀,并使刨刀沿着垂直方向和倾斜方向移动。
刀架由手柄、丝杠、刻度转盘、夹刀座、拍板、拍板座、滑板等组成。
刻度转盘6用T形职栓5紧固在滑枕前端的“环”状T形槽内。
可按加工的需要作160’的回转。
刻度转盘6与滑板13通过导轨相配合,只要摇动丝杠3上端的手柄1,就可使滑板13沿着刻度转盘6上的导轨移动,通过刻度环2来控制背吃刀量的大小。
拍板10与拍板座11的凹槽相配合,用铰链销7连接。
在拍板10的孔内装有夹刀座8刨刀就装在它的槽孔内,拍板10可以绕铰链销7向前上方拾起,这样可避免滑枕回程时刨刀与工件已加工。
(5)进给机构进给机构主要用来控制工作台横向进给运动的大小。
(6)变速机构操纵变速机构的手柄,可以把各种不同的转速传递到曲柄摆杆机构而改变格杆在相同时间间隔内的摆动次数。
(7)曲柄摇杆机构主要作用是把电动机的旋转运动转换为滑枕的往复直线运动。
机械原理课程设计——牛头刨床
对于滑块中心D 点分析
Page 15
对摇杆进行分析
十二、飞轮转动惯量的计算
计算阻力距 确定等效力矩 确定最大盈亏功 估算飞轮转动惯量
Wmax 900 Wmax JF 2 2 2 213.7kg m2 (1 [ ]) π n1 [ ]
Page 16
Page
12
九、主机构尺度综合及运动特性评定
机构位置划分图
以 7号和 14 号位置 作运动分析
Page
13
十、电动机功率与型号的确定
电动机的选择 传动比分配与 减速机构设计 工作台进给方案
Page 14
确定电动机功率
总传动比 采用展开式二级圆柱齿轮减速器
工作台横向进给运动 工作台垂直进给运动
十一、主机构受力分析
Page
3
三、三维模型示意图
ቤተ መጻሕፍቲ ባይዱ三维模型示意图
Page 4
四、设计内容
课题:牛头刨床
1.对导杆机构进行运动分析 设 计 内 容 2.对导杆机构进行动态静力分析
3. 用UG模拟仿真运动校核机构运动分析和动态静 力分析结果
4. 确定电动机功率与型号 5. 减速装置的设计
Page 5
五、机构方案的初步确定
方案一
方案三
方案二
Page 6
五、机构方案的初步确定
功能要求
方 案 对 比
可动性
传递性能 动力性能 制造工艺及经济性
Page
7
六、对方案二的性能分析
(1)机械功能分析
杆1、2、3、6为曲柄摇杆,曲柄1为原动件,作 周期往复运动,使滑块同时周期往复运动,带动导 杆摆动,从而使得滑块4上下往复运动带动刨刀在 水平轨道上来回运动。 其中,刨刀向左为工作行程,速度平稳,运动行 程大;向右为工作回程,速度快,具有快速返回的 特性。
牛头刨床刨刀的往复运动机构
机械原理课程设计令狐采学计算说明书课题名称:牛头刨床刨刀的往复运动机构姓名:院别:工学院学号:专业:机械设计制造及其自动化班级:机设1201指导教师:2014年6月7日工学院课程设计评审表目录一.设计任务书 (4)1.1 设计题目 (4)1.2 牛头刨床简介 (4)1.3 牛头刨床工作原理 (4)1.4 设计要求及设计参数 (6)1.5 设计任务 (7)二.导杆机构的设计及运动分析 (8)2.1 机构运动简图 (8)2.2 机构运动速度多边形 (9)2.3 机构运动加速度多边形 (11)三.导杆机构动态静力分析 (14)3.1 静态图 (14)3.2 惯性力及惯性力偶矩 (14)3.3 杆组拆分及用力多边形和力矩平衡求各运动反力和曲柄平衡力 (15)心得与体会 (21)参考文献 (22)一、设计任务书1.1 设计题目:牛头刨床刨刀的往复运动机构1.2 牛头刨床简介:牛头刨床是用于加工中小尺寸的平面或直槽的金属切削机床,多用于单件或小批牛头刨床外形图量生产。
为了适用不同材料和不同尺寸工件的粗、精加工,要求主执行构件—刨刀能以数种不同速度、不同行程和不同起始位置作水平往复直线移动,且切削时刨刀的移动速度低于空行程速度,即刨刀具有急回现象。
刨刀可随小刀架作不同进给量的垂直进给;安装工件的工作台应具有不同进给量的横向进给,以完成平面的加工,工作台还应具有升降功能,以适应不同高度的工件加工。
1.3 牛头刨床工作原理:牛头刨床是一种刨削式加工平面的机床,图1所示为较常见的一种机械运动的牛头刨床。
电动机经皮带传动和两对齿轮传动,带动曲柄2和曲柄相固结的凸轮转动,由曲柄2驱动导杆2-3-4-5-6,最后带动刨头和刨刀作往复运动。
当刨头右行时,刨刀进行切削,称为工作行程。
当刨头左行时,刨刀不切削,称为空回行程。
当刨头在工作行程时,为减少电动机容量和提高切削质量,要求刨削速度较低,且接近于匀速切削。
在空回行程中,为节约时间和提高生产效率,采用了具有急回运动特性的导杆机构。
刨床进给机构设计
刨床进给机构设计学生姓名学号所属学院机械电气化工程学院专业农业机械化及其自动化班级指导老师日期前言牛头刨床是刨削类机床中应用较广的一种,主要用于单件小批量生产中刨削中小型工件上的平面、成形面和沟槽等。
一般牛头刨床工作原理是当曲柄匀速转动时,摇杆左右摆动,使牛头刨床的刨刀沿着固定的轨迹运动,通过曲柄转动驱动刨头作往复移动。
牛头刨床机构具有急回的特性,即牛头刨床工作时刨刀慢慢向前移动,完成一次工作后刨刀急速返回原来的位置。
如何实现刨头在切削行程中速度平稳,难以凭经验确定。
而且机构的几何参数对切削行程刨头速度的平稳性的影响,也难以直接判断。
为了确定牛头刨床进给机构的设计是否满足要求,就必须对其进行分析。
牛头刨床是用棘轮机构完成进给运动。
工作台进给量的大小是用棘轮外圈加一档环,在摇杆固定摆角的范围内盖住棘轮上一部分牙齿来进行调整。
由于正反向进给要来回调整棘轮外圈挡环,操作比较麻烦。
为此,可以对进给机构进行改进,不用挡环来回调整,而只要将棘爪调整180度,就能实现正反进给。
牛头刨床主要用于单件小批量生产中刨削中小型工件上的平面、成形面和沟槽及一些成形面。
滑枕带着刨刀作直线住复运动的刨床,因滑枕前端的刀架形似牛头而得名。
中小型牛头刨床的主运动大多采用曲柄摇杆机构(见曲柄滑块机构)传动,故滑枕的移动速度是不均匀的。
大型牛头刨床多采用液压传动,滑枕基本上是匀速运动。
滑枕的返回行程速度大于工作行程速度。
由于采用单刃刨刀加工,且在滑枕回程时不切削,牛头刨床的生产率较低。
刨床进给机构实现的功能是除水平进给可自动外,垂直进给、非工作时工作台的水平移动和垂直升降均需手动。
关键词:刨床;进给;工作台;水平移动;垂直升降目录1 牛头刨床简要介绍 (1)1.1 牛头刨床外形图 (1)1.2 牛头刨床解析 (1)1.3 牛头刨床工作原理 (1)1.4 牛头刨床的组成 (2)2 牛头刨床进给机构总体设计 (2)2.1 牛头刨床进给机构方案的确定 (2)2.2 牛头刨床进给机构的组成 (3)2.3 牛头刨床进给机构工作原理 (3)2.4 牛头刨床垂直进给机构方案的确定 (4)3 连杆机构部分设计 (4)3.1 曲柄摇杆机构解析 (4)3.2 曲柄摇杆机构运动分析 (5)3.3 建立数学模型 (5)4 棘轮机构部分的设计 (6)4.1 棘轮机构工作原理 (6)4.2 棘轮机构的特点及应用 (7)4.3 棘轮机构的设计要点 (7)4.4 棘轮机构方案的确定 (8)4.5 棘轮和棘爪的设计 (8)4.6 棘爪架 (10)4.7 棘轮罩 (10)5 螺旋机构(丝杠副)部分的设计 (10)5.1 螺旋机构的选型 (10)5.2 螺旋机构基本参数的确定 (11)6 工作台垂直进给机构部分的设计 (11)6.1 工作台垂直进给机构分析 (11)6.2 工作台垂直进给机构原理 (11)总结 (13)致谢 (14)参考文献 (15)1 牛头刨床简要介绍1.1 牛头刨床外形图牛头刨床主要由床身、滑枕、刀架、工作台、横梁等组成如图1-1所示。
机械原理课程设计报告牛头刨床说明书
目录一、课程设计任务书21.工作原理及工艺动作过程22.原始数据及设计要求4二、设计说明书51.画机构的运动简图52.对位置4点进展速度分析和加速度分析63.对位置9点进展速度分析和加速度分析9速度分析图:104.对位置9点进展动态静力分析12心得体会16谢辞17参考文献18一、课程设计任务书1.工作原理及工艺动作过程牛头刨床是一种用于平面切削加工的机床。
刨床工作时,如图(1-1〕所示,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进展切削,称工作行程,此时要求速度较低并且均匀;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
刨头在工作行程中,受到很大的切削阻力,而空回行程中那么没有切削阻力。
切削阻力如图(b〕所示。
Y图〔1-1〕(b)2.原始数据及设计要求曲柄每分钟转数n2,各构件尺寸及重心位置,且刨头导路x-x位于导杆端点B所作圆弧高的平分线上。
要求作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图。
以上内容与后面动态静力分析一起画在1号图纸上。
二、设计说明书1.画机构的运动简图1、以O4为原点定出坐标系,根据尺寸分别定出O2点,B点,C点。
确定机构运动时的左右极限位置。
曲柄位置图的作法为:取1和8’为工作行程起点和终点所对应的曲柄位置,1’和7’为切削起点和终点所对应的曲柄位置,其余2、3…12等,是由位置1起,顺ω2方向将曲柄圆作12等分的位置〔如下列图〕。
图1-2取第I 方案的第4位置和第9位置〔如下列图1-3〕。
图 1-32. 对位置4点进展速度分析和加速度分析〔a 〕 速度分析 取速度比例尺l μ=mm s m001.0对A 点:4A V = 3A V + 34A A V方向:4BO ⊥A O 2⊥ //B O 4大小: ? √ ?4A V =l μ⨯4pa =sm mm mmsm673239.0239.673001.0=⨯ 4ω=AO A l V 44=sr mmsm38431.1486334.0673239.0= 34A A V =l μ43a a l =sm mm mmsm156326.0326.156001.0=⨯ V 5B = V 4B =4ω⨯B O l 4=s m 747530.0对于C 点:C V = B V + CB V 方向: //'XX B O 4⊥BC ⊥大小: ? √ ?C V =l μ⨯pc l =mm sm001.0sm mm 749708.0708.749=⨯ CB V =l μ⨯bc l =mmsm001.0sm mm 0490895.00895.49=⨯ 5ω=bcl CBl u V =s r 363626.0 速度分析图:图 1-4(b)加速度分析 选取加速度比例尺为a μ=mm s m2001.0对于A 点:4A a = n A a 4 + t A a 4 = 3A a + k A A a 34 + 34rA A a 方向:A →4OB O 4⊥ A →2O B O 4⊥//B O 4 大小: √ ? √√ ? 由于3A a =22ωA O l 2=234263.4smKA A a 34=24ω34A A V =2432808.0s mnA a 4=24ωA O l 4=2931975.0s m ,根据加速度图1-5可得:t A a 4=a μ''a n l =2549416.0sm, r A A a 34=a μ''a k l =2298112.3sm 。
牛头刨床工作原理
1.棘轮机构的工作原理:
当主动摆杆逆时针摆动时,摆杆上铰接的主动棘 爪插入棘轮的齿槽中,推动棘轮同向转动一定角 度,制动在棘轮的背上滑过。当摇杆逆时针方向 转动,棘轮在齿背上滑过,止回棘爪阻止棘轮反 向转动,此时主动棘爪在棘轮的齿背上滑回原位, 棘轮静止不动。此机构将主动件的往复摆动转换 为从动棘轮的单向间歇转动。
连杆机构的急回特性
1.凸轮机构特点及运用:
优点:简单紧凑,易于设计,只要适当的设计凸
轮轮廓,就可以实现复杂或特殊的运动;
缺点:凸轮轮廓曲线加工比较复杂,易磨损,不
便润滑,故传力不大。
应用:自动机 半自动机。
2.凸轮机构的分类:
1.按凸轮形状分类: 盘形凸轮 移动凸轮 圆 柱凸轮;
2.按从动件的形式分 类 :尖顶从动件 滚 子从动件 平底从动件 球面底从动件。
牛头刨床机械系统及工 作原理
牛头刨床外形图及基本参数
牛头刨床主要由床身、滑枕、 刀架、工作台、横梁等组成, 如图所示。因其滑枕和刀架形 似牛头而得名。
牛头刨床外形图 1-工作台2-刀架3-滑枕4-床身5-变速手柄 6-滑枕行程调节柄7-横向进给手柄8-横梁
牛头刨床解析
牛头刨床工作时,装有刀架的滑枕3由床身内部的摆杆 带动,沿床身顶部的导轨作直线往复运动,使刀具实现 切削过程的主运动,通过调整变速手柄5可以改变滑枕 的运动速度,行程长度则可通过滑枕行程调节柄6调节。 刀具安装在刀架2前端的抬刀板上,转动刀架上方的手 轮,可使刀架沿滑枕前端的垂直导轨上下移动。刀架还 可沿水平轴偏转,用以刨削侧面和斜面。滑枕回程时, 抬刀板可将刨刀朝前上方抬起,以免刀具擦伤已加工表 面。夹具或工件则安装在工作台1上,并可沿横梁8上的 导轨作间歇的横向移动,实现切削过程的进给运动。横 梁8还可沿床身的竖直导轨上、下移动,以调整工件与 刨刀的相对位置。
(整理)牛头刨床的连杆机构运动分析.
牛头刨床的连杆机构运动分析0 前言机构运动分析的任务是对于结构型式及尺寸参数已定的具体机构,按主动件的位置、速度和加速度来确定从动件或从动件上指定点的位置、速度和加速度。
许多机械的运动学特性和运动参数直接关系到机械工艺动作的质量,运动参数又是机械动力学分析的依据,所以机构的运动分析是机械设计过程中必不可少的重要环节。
以计算机为手段的解析方法,由于解算速度快,精确度高,程序有一定的通用性,已成为机构运动分析的主要方法。
连杆机构作为在机械制造特别是在加工机械制造中主要用作传动的机构型式,同其他型式机构特别是凸轮机构相比具有很多优点。
连杆机构采用低副连接,结构简单,易于加工、安装并能保证精度要求。
连杆机构可以将主动件的运动通过连杆传递到与执行机构或辅助机构直接或间接相连的从动件,实现间歇运动,满足给定的运动要求,完成机器的工艺操作。
牛头刨床是一种利用工作台的横向运动和纵向往复运动来去除材料的一种切削加工机床。
工作台的纵向往复运动是机床的主运动,实现工件的切削。
工作台的横向运动即是进给运动,实现对切削精度的控制。
本文中只分析纵向运动的运动特性。
牛头刨床有很多机构组成,其中实现刨头切削运动的六连杆机构是一个关键机构。
刨床工作时,通过六杆机构驱动刨刀作往复移动。
刨刀右行时,当刨刀处于工作行程时;要求刨刀的速度较低且平稳,以减小原动机的容量和提高切削质量。
当刨刀处于返回行程时,刨刀不工作,称为空行程,此时要求刨刀的速度较高以提高生产率。
由此可见,牛头刨床的纵向运动特性对机床的性能有决定性的影响。
1 牛头刨床的六连杆机构牛头刨床有很多机构组成,其中实现刨头切削运动的六杆机构是一个关键机构。
图1所示的为一牛头刨床的六连杆机构。
杆1为原动件,刨刀装在C点上。
假设已知各构件的尺寸如表1所示,原动件1以等角速度ω1=1rad/s沿着逆时针方向回转,要求分析各从动件的角位移、角速度和角加速度以及刨刀C点的位移、速度和加速度的变化情况。
棘轮机构的组成及工作原理.
棘轮机构的组成及工作原理
一 二 三
课题引入
棘轮机构的组成
棘轮机构的工作原理
课题引入
牛头刨床中刨刀做往复 直线运动。由于刨刀刨削工 件时工件必须保持静止,而 刨削动作完成后,刨刀往回 退时,工作台送进到下一刨 削位置。因此,工作台需做 时进时停的间歇移动。 棘轮机构:连续转动 歇转动
牛头刨床的横向棘轮进给机构
(点击图片演示视频)
图示牛头刨床工作台的横向进给机构利用棘轮机构实现 正反间歇转动, 然后通过丝杠螺母带动工作台作横向间歇送 进运动。
螺旋机构:间歇转动 直线进给运动。
间
间歇
牛头刨床进给自动机械中,加工成品或输送工件时,在加 工工位为完成所需的加工过程,需要提供给工件一 定时间的间歇,所采用的机构是间歇机构。
光盘印制机械中的间歇机构
课题引入
• 间歇机构是能够将主动件的连续运动转换成从 动件的周期性运动或停歇(时动时停)的机构。
• 常见的间歇机构类型有:棘轮机构、槽轮机构、 不完全齿轮机构等。
棘轮机构的组成
2-棘爪 3-摇杆 5 -曲柄 4 -止回爪 1-棘轮
曲柄摇杆机构:由曲柄5与摇杆3和机架、连杆组成。 将曲柄的转动 摇杆的往复摆动。 棘轮机构:驱动棘爪2与主动摇杆3用转动副连接;止动棘爪4(止 回爪)与机架用转动副连接,弹簧保证棘爪与棘轮啮合。
棘轮机构的工作原理
摇杆顺时针摆动: 驱动 棘爪借助弹簧或自重的作 用插入棘轮的齿槽内使棘 轮随着转过一定的角度。
摇杆逆时针摆动:驱动 棘爪在棘轮齿背上滑过。 这时,簧片迫使制动棘爪 插入棘轮的齿槽,阻止棘 轮顺时针方向转动——棘 轮静止不动 。
主动件摇杆连续往复摆动 轮作单向的间歇运动。
牛头刨床导杆机构的运动分析、动态静力分析
摘要——牛头刨床运动和动力分析一、机构简介与设计数据1、机构简介牛头刨床是一种用于平面切削加工的机床,如图1-1a。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,由导杆机构2 –3 –4 –5 –6 带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生常率。
为此刨床采用有急回作用的导杆机构。
刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1 – 9 – 10 – 11 与棘轮带动螺旋机构(图中未画),使工作台连同工件做一次进给运动,以便刨刀继续切削。
刨头在工作行程中,受到很大的切削阻力(在切削的前后各有一段约0.05H的空刀距离,图1-1b),而空回行程中则没有切削阻力。
因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减少电动机容量a b图目录摘要 (III)1设计任务 (1)2 导杆机构的运动分析 (2)导杆机构的动态静力分析 (4)3.1运动副反作用力分析 (4)3.2力矩分析 (6)4方案比较 (7)5总结 (10)6参考文献 (10)《机械原理课程设计》说明书1设计任务机械原理课程设计的任务是对机器的主题机构进行运动分析。
动态静力分析,确定曲柄平衡力矩,并对不同法案进行比较,以确定最优方案。
要求根据设计任务,绘制必要的图纸和编写说明书等。
2 导杆机构的运动分析2.1 速度分析取曲柄位置1’对其进行速度分析,因为2和3在以转动副相连,所以V A2=V A3,其大小等于ω2l02A,指向于ω2相同。
取构件3和4的重合点A进行速度分析。
列速度矢量方程,得υA4 = υA3 + υA4A3大小 ? √ ?方向⊥O4A ⊥O2A ∥O4B选比例尺μv=0.004(m/s)/mm,做出速度矢量图(见图a)νA4=0.088m/sνA3=0.816m/s取5构件作为研究对象,列速度矢量方程,得υC5 = υB5 + υC5B5大小 ? √ ?方向∥XX ⊥O4B ⊥BC取速度极点p,选比例尺μv=0.004(m/s)/mm,做出速度矢量图(见图a)νC5=0.16m/sνC5B5=0.044m/s2.2 加速度分析取曲柄位置“1”进行加速度分析。
牛头刨床主传动机构运动方案分析
三、机构选型、方案分析及方案的确定方案一的运动分析及评价(1)运动是否具有确定的运动该机构中构件n=5。
在各个构件构成的的运动副中Pl=6,Ph=1.凸轮和转子、2杆组成运动副中有一个局部自由度,即F'=1。
机构中不存在虚约束。
.由以上条件可知:机构的自由度 F=3n-(2Pl+Ph-p')-F'=1机构的原动件是凸轮机构,原动件的个数等于机构的自由度,所以机构具有确定的运动。
(2)机构传动功能的实现在原动件凸轮1带动杆2会在一定的角度范围内摇动。
通过连杆3推动滑块4运动,从而实现滑块(刨刀)的往复运动。
(3)主传动机构的工作性能凸轮1的角速度恒定,推动2杆摇摆,在凸轮1随着角速度转动时,连杆3也随着杆2的摇动不断的改变角度,使滑块4的速度变化减缓,即滑块4的速度变化在切削时不是很快,速度趋于匀速;在凸轮的回程时,只有惯性力和摩擦力,两者的作用都比较小,因此,机构在传动时可以实现刨头的工作行程速度较低,而返程的速度较高的急回运动。
传动过程中会出现最小传动角的位置,设计过程中应注意增大基圆半径,以增大最小传动角。
机构中存在高副的传动,降低了传动的稳定性。
(4)机构的传力性能要实现机构的往返运动,必须在凸轮1和转子间增加一个力,使其在回转时能够顺利的返回,方法可以是几何封闭或者是力封闭。
几何封闭为在凸轮和转子设计成齿轮形状,如共扼齿轮,这样就可以实现其自由的返回。
机构在连杆的作用下可以有效的将凸轮1的作用力作用于滑块4。
但是在切削过程中连杆3和杆2也受到滑块4的作用反力。
杆2回受到弯力,因此对于杆2的弯曲强度有较高的要求。
同时,转子与凸轮1的运动副为高副,受到的压强较大。
所以该机构不适于承受较大的载荷,只使用于切削一些硬度不高的高的小型工件。
该机构在设计上不存在影响机构运转的死角,机构在运转过程中不会因为机构本身的问题而突然停下。
(5)机构的动力性能分析。
由于凸轮的不平衡,在运转过程中,会引起整个机构的震动,会影响整个机构的寿命。
牛头刨床横向进给运动分析.
横向进给机构及进给量的调整
1、2—齿轮 3—连杆 4—棘爪 5—棘轮 6—丝杆 7—棘轮护盖
B6065牛头刨床横向进给运动及调整 由变速机构将运动传递给齿轮2,齿轮2带动齿轮1(曲柄)转动, 通过连杆3驱使棘爪4(摇杆)往复摆动。正向进给时,棘爪4拨动 棘轮5使丝杆6转一个角度,实现横向进给。反向时,由于棘爪后面 是斜的,爪内弹簧被压缩,棘爪从棘轮顶滑过。因此工作台横向自 动进给是间歇的。
进给量分析例题:
已知牛头刨床工作台横向进给单线螺纹的螺距 P为6mm,最小进给量Lmin为0.2mm,最大横向 进给量Lmax为2.4mm,求该棘轮齿数为Z多少? 当进给量为1mm时,棘轮应转过多少个齿?进给 量最大时转过多少齿,转过多少度?
解: 由棘轮和单线螺纹的相关知识可知:
P=Lmin×Z
牛头刨床横向进给量分析
牛头刨床横向进给量分析
导入
通过学习牛头刨床的知识 我们知道牛头刨床的切削运动, 普通牛头刨床由滑枕带着刨刀 作水平直线往复运动,刀架可 在垂直面内回转一个角度,并 可手动进给,工作台带着工件 作间歇的横向或者垂直运动, 常用于加工平面、沟槽和燕尾 面等。
牛头刨床的进给运动为: 电动机——变速机构——齿轮 进给机构——工作台横向进给 机构(棘轮机构和螺旋机构)
则Z=P/Lmin=6÷0.2=30
当进给量为1mm时其转过的齿当最大进给量时转过的齿数为 Lmax÷Lmin=2.4÷0.2=12;
当最大进给量时转过的角度为 360°×12/30=144°
横向进给机构及进给量的调整
棘轮机构:将棘爪的往复摆动转化为棘轮的间歇转动 螺旋机构:将棘轮(丝杆)的间歇转动转化为工作台(螺母) 的间歇直线移动 结论:工作台的每次进给量取决于棘轮每次转过的角度,即棘 爪每次拔动棘轮转过的齿数。
机械原理课程设计--牛头刨床
录第一章设计的任务与原始参数............................................................................................ - 3 -1.1设计任务.......................................................................................................................... - 3 -1.2 原始参数......................................................................................................................... - 4 -第二章运动方案设计·............................................................................................................ - 5 -2.1减速装置的选择............................................................................................................. - 5 -2.2刨刀切削运动的实现结构 ............................................................................................ - 5 -第三章电动机的选择................................................................................................................. - 6 -3.1 确定电机功率P d........................................................................................................... - 6 -3.2 根据P d查得电动机部分型号表选择电动机 ............................................................ - 7 -第四章传动比分配..................................................................................................................... - 8 -4.1计算传动比i和选定减速装置..................................................................................... - 8 -第五章减速机构设计................................................................................................................. - 9 -5.1 总体方案图 .................................................................................................................... - 9 -5.2 减速零件参数........................................................................................................... - 10 -第六章主机构设计................................................................................................................ - 12 -1.1机构运动简图及标号.................................................................................................. - 12 -1.2 极位夹角、曲柄1(杆AB)角速度及各杆件长度计算..................................... - 12 -第七章主机构运动分析.......................................................................................................... - 14 -7.1.位置分析....................................................................................................................... - 14 -7.2.速度分析....................................................................................................................... - 15 -7.3.加速度分析 .................................................................................................................. - 15 -7.4矩阵计算及绘图.......................................................................................................... - 15 -7.5输出图像及数据表格.................................................................................................. - 19 -第八章主机构受力分析........................................................................................................ - 21 -8.1 位置1:θ1=0˚........................................................................................................... - 21 -8.2 位置2:θ1=90˚......................................................................................................... - 24 -8.3 位置3:θ1=270˚ ...................................................................................................... - 26 -第九章主机构的速度波动调节........................................................................................... - 29 -9.1 等效驱动力矩及飞轮质量的计算............................................................................ - 29 -9.2 运用excel函数及绘图处理matlab输出的数据................................................ - 30 -第十章小结............................................................................................................................... - 32 -10.1 心得体会................................................................................................................... - 32 -10.2 参考文献................................................................................................................... - 32 -10.3 致谢 ........................................................................................................................... - 32 -第一章设计的任务与原始参数1.1设计任务●题目:牛头刨床●工作原理:牛头刨床是一种常用的平面切削加工机床,电动机经带传动、齿轮传动(图中未画出)最后带动曲柄1(见图1)转动,刨床工作时,是由导杆机构1-2-3-4-5带动刨头和刨刀作往复运动,刨头5右行时,刨刀切削,称工作行程,此时要求速度较低并且均匀;刨头左行时,不进行切削,称空回行程,此时速度较高,以节省时间提高生产率,为此刨床采用有急回作用的导杆机构。
牛头刨床机构的运动特点
牛头刨床机构的运动特点
牛头刨床是一种常用的木工机床,用于加工木料的平整表面。
其机构的运动特点主要包括刨刀的直线来回运动、工作台的往复运动以及刨床本身的旋转运动。
牛头刨床机构的运动特点之一是刨刀的直线来回运动。
刨刀是刨床上最重要的部件之一,它负责将木料上的凸起部分切削掉,使其表面变得平整。
刨刀的运动是通过传动装置实现的,通常是由电机驱动传动带或传动链带动刨刀轴旋转,使刨刀进行直线来回运动。
这种运动方式可以保证刨刀在切削过程中保持稳定的切削速度和切削力,从而得到平整的切削表面。
牛头刨床机构的运动特点之二是工作台的往复运动。
工作台是刨床上承载木料的部件,它的运动方式通常是沿着刨刀运动方向往复移动。
工作台的往复运动可以通过传动装置实现,通常是由电机驱动传动带或传动链带动工作台进行往复运动。
工作台的往复运动可以使木料在刨刀的作用下平稳地进行切削,保证切削表面的平整度和精度。
牛头刨床机构的运动特点之三是刨床本身的旋转运动。
刨床通常由机身和床身组成,机身上安装有刨刀和传动装置,床身上安装有工作台和支撑装置。
刨床本身可以通过传动装置实现旋转运动,通常是由电机驱动传动带或传动链带动刨床旋转。
刨床的旋转运动可以
使木料在刨刀的作用下均匀地进行切削,保证切削表面的平整度和精度。
牛头刨床机构的运动特点主要包括刨刀的直线来回运动、工作台的往复运动以及刨床本身的旋转运动。
这些特点使得牛头刨床能够有效地进行木料的切削加工,保证切削表面的平整度和精度。
在实际应用中,根据不同的加工要求和木料特性,可以调整刨刀的运动速度、工作台的运动频率和刨床的旋转速度,以获得最佳的切削效果。
牛头刨床机构简介与设计数据(1)
1 牛头刨床机构简介与设计数据牛头刨床机构简介与设计数据1.1机构简介机构简介牛头刨床是一种用于平面切削加工的机床,主要由齿轮机构、导杆机构和凸轮机构等组成,如图1(a)所示。
电动机经过减速装置(图中只画出齿轮z 1、z 2)使曲柄2转动,再通过导杆机构2—3—4—5—6带动刨头6和刨刀作往复切削运动。
工作行程时,刨刀速度要平稳;空回行程时,刨刀要快速退回,空回行程时,刨刀要快速退回,即要有急回作用。
即要有急回作用。
即要有急回作用。
切削阶段刨刀应近似匀速运动,切削阶段刨刀应近似匀速运动,切削阶段刨刀应近似匀速运动,以提高刨以提高刨刀的使用寿命和工件的表面加工质量。
刀具与工作台之间的进给运动,是由固结于轴O 2上的凸轮驱动摆动从动件O 7D 和其他有关机构(图中未画出)来完成的。
为了减小机器的速度波动,在曲柄轴O 2上安装一调速飞轮。
切削阻力如图1(b)所示。
所示。
图1 牛头刨床机构简图及阻力线图牛头刨床机构简图及阻力线图1.2设计数据设计数据设计数据见表1。
表1 设计数据设计数据1.3 设计内容设计内容1.导杆机构的设计及运动分析.导杆机构的设计及运动分析已知:曲柄每分钟转数n 2,各构件尺寸及质心位置,且刨头导路J —J 位于导杆端点B 所作圆弧高的平分线上,如图2所示。
所示。
图2 曲柄位置图曲柄位置图要求:设计导杆机构,作机构1~2个位置的速度多边形和加速度多边形,作滑块的运动线图,以上内容与后面动态静力分析一起画在3号图纸上。
号图纸上。
2.导杆机构的动态静力分析.导杆机构的动态静力分析已知:各构件的重量G(曲柄2、滑决3和连杆5的重量都可忽略不计),导杆4绕质心轴的转动惯量J S ,及切削力F r 的变化规律如图1(b)所示。
所示。
要求:确定机构1~2个位置的各运动副反力及应加于曲柄上的平衡力矩。
作图部分画在运动分析的图纸上。
在运动分析的图纸上。
3.飞轮设计.飞轮设计已知:机器运转的速度不均匀系数δ,轴O 2的转速n 2,由动态静力分析所得的平衡力矩M b ;驱动力矩M 。
牛头刨床刨刀往复运动机构的分析与设计
机械工程学院机械原理课程设计说明书设计题目:牛头刨床刨刀往复运动机构的分析和设计专业:机械设计制造及其自动化班级:级姓名:学号指导教师:侍红岩年月日目录设计任务设计题目牛头刨床刨刀往复运动机构的分析和设计。
工作原理及工艺动作过程牛头刨床是一种用于平面切削加工的机床,整个机构的运转是由原动件带动杆的,通过连杆推动滑块运动;从而实现刨刀的往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。
原始数据及设计要求图已知行程比系数原动件曲柄转速,刨刀行程,其它参数为,,,,|3,,尺寸应满足传动角尽可能大;故刨刀移动导路位于点圆弧轨迹弦高一半处;构件重量分别为,,质心位于、处;构件绕质心转动惯量,回程阻力为零,其它忽略不计。
刨刀工作阻力如图所示,回程阻力为零,其它条件忽略不计。
表设计任务()绘制机构运动简图。
()作机构运动分析,求出各个运动副中的反力。
()用图解法作机构动态静分析;并求作用在原动件上的平衡力矩。
系统传动方案设计曲柄滑块机构和摆动导杆机构()曲柄滑块机构和摆动导杆机构的分析牛头刨床的主传动机构采用导杆机构、连杆滑块机构组成的杆机构。
如图所示,采用导杆机构,滑块和导杆之间的传动角始终为,且适当确定构件尺寸,图可以保证机构工作行程速度较低并且均匀,而空回行程速度较高,满足急回特性要求。
适当确定刨头的导路位置,可以使压力角 尽量小。
()机械功能分析该构件中完成主运动的是由杆、、、组成的四连杆机构,杆带该构件中和其铰接的杆完成刨床的刨削运动。
在由杆、、、所组成的曲柄摇杆机构中,曲柄在原动机的带动下做周期性往复运动,从而连杆带动滑块作周期性往复运动实现切削运动的不断进行。
()工作性能分析从机构简图中可以看出,该机构得主动件和连杆的长度相差很大,这就是的机构在刨削的过程中刨刀的速度相对较低,刨削质量比较好。
杆和杆在长度上的差别还是的刨刀在空行程的急回中,有较快的急回速度,缩短了机械的运转周期,提高了机械的效率。
机械机电毕业设计_牛头刨床刨刀的往复运动机构
工程技术学院课程设计题目:牛头刨床刨刀的往复运动机构专业:车辆工程年级:2009学号:20050988姓名:指导教师:日期:20013-1-15云南农业大学工程技术学院目录:1、课程设计任务书 (2)原始数据及设计要求 (3)2、设计(计算)说明书 (4)(1)画机构的运动简图 (4)(2)对位置1)05.0(H 点进行速度分析和加速度分析 (4)(3) 对位置1)05.0(H 点进行动态静力分析 (6)(4)对位置2)05.0(H 点进行速度分析和加速度分析 (8)(5) 对位置2)05.0(H 点进行动态静力分析 (9)3、位置线图,速度线图,和加速度图 (10)4、参考文献 (11)5、课程设计指导教师评审标准及成绩评定................................. 12 6、附件 (13)一、课程设计任务书1、工作原理及工艺动作过程牛头刨床是一种用于平面切削加工的机床,如图(a)所示,由导杆机构1-2-3-4-5带动刨头5和削刀6作往复切削运动。
工作行程时,刨刀速度要平稳,空回行程时,刨刀要快速退回,即要有极回作用。
切削阶段刨刀应近似匀速运动,以提高刨刀的使用寿命和工件的表面加工质量。
切削阻力如图(b)所示。
(a)(b)原始数据及设计要求设计指导教师(签字):二、设计(计算)说明(1)画机构的运动简图 (选取尺寸比例尺为 m m m m l 2=μ) 1、以C 为原点定出坐标系,根据尺寸分别定出A 点,C 点,O 点。
如图1所示。
2、确定机构运动时的左右极限位置,此位置AB CD 。
3、在左右极限位置,由运动副D 点为圆心,ED 的长度为半径分别作圆,并与导轨运动线相交,并判断E 点的正确位置,确定E 点的位置,此时可确定工作行程H ,并量取H 的长度。
4、由任务书中切削阻力图1B 中的比例关系0.05H 确定位置编号1)05.0(H 和(0.05H)2两点,即分别为刨刀开始切削工作时杆4的运动副E 点和刨刀离开工件时杆4`的运动副E '点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛头刨床刨刀的往复运动机构Company number:【0089WT-8898YT-W8CCB-BUUT-202108】机械原理课程设计计算说明书课题名称:牛头刨床刨刀的往复运动机构姓名:院别:工学院学号:专业:机械设计制造及其自动化班级:机设1201指导教师:2014年6月7日工学院课程设计评审表目录一.设计任务书 (4)设计题目 (4)牛头刨床简介 (4)牛头刨床工作原理 (4)设计要求及设计参数 (6)设计任务 (7)二.导杆机构的设计及运动分析 (8)机构运动简图 (8)机构运动速度多边形 (9)机构运动加速度多边形 (11)三.导杆机构动态静力分析 (14)静态图 (14)惯性力及惯性力偶矩 (14)杆组拆分及用力多边形和力矩平衡求各运动反力和曲柄平衡力 (15)心得与体会 (21)参考文献 (22)一、设计任务书设计题目:牛头刨床刨刀的往复运动机构牛头刨床简介:牛头刨床是用牛头刨床外形图于加工中小尺寸的平面或直槽的金属切削机床,多用于单件或小批量生产。
为了适用不同材料和不同尺寸工件的粗、精加工,要求主执行构件—刨刀能以数种不同速度、不同行程和不同起始位置作水平往复直线移动,且切削时刨刀的移动速度低于空行程速度,即刨刀具有急回现象。
刨刀可随小刀架作不同进给量的垂直进给;安装工件的工作台应具有不同进给量的横向进给,以完成平面的加工,工作台还应具有升降功能,以适应不同高度的工件加工。
牛头刨床工作原理:牛头刨床是一种刨削式加工平面的机床,图1所示为较常见的一种机械运动的牛头刨床。
电动机经皮带传动和两对齿轮传动,带动曲柄2和曲柄相固结的凸轮转动,由曲柄2驱动导杆2-3-4-5-6,最后带动刨头和刨刀作往复运动。
当刨头右行时,刨刀进行切削,称为工作行程。
当刨头左行时,刨刀不切削,称为空回行程。
当刨头在工作行程时,为减少电动机容量和提高切削质量,要求刨削速度较低,且接近于匀速切削。
在空回行程中,为节约时间和提高生产效率,采用了具有急回运动特性的导杆机构。
此外,当刨刀每完成一次刨削后,要求刨床能利用空回行程的时间,使工作台连同工件作一次进给运动,以便于刨刀下一次切削。
为此,该刨床采用凸轮机构,双摇杆机构经棘轮机构和螺旋机构(图中未示出),带动工作台作横向进给运动。
图1 牛头刨床机构简图图3 曲柄位置图设计要求及设计参数: 设计要求:1、绘图问题A1图纸一张,A1图纸1张,绘图工具一套。
2、绘图要求作图准确,布置匀称,比例尺合适,图面整洁,线条尺寸应 符合国家标准。
HScF maxF 图2 刨刀阻力曲线ABCxys 5 s 3X s 5E D Y S512 3 756 n 1F rY Fr43、计算说明书要求计算程序清楚,叙述简要明确,文字通顺,书写端正。
设计参数:设计任务:用图解法对牛头刨床的连杆机构进行运动分析和动力分析。
要求画出A1图纸一张,A2图纸一张,写出计算说明书一份。
二、导杆机构的设计及运动分析机构运动简图:图2-1 机构运动简图1.选方案Ⅰ,在连杆机构中,曲柄有30个连续等分1~30个位置(见图3),选取4位置进行设计及运动分析,取长度比例尺l μ=/m s mm.2.取构件2和导杆3垂直(即构件5在最左方)时为起始位置1,用量角器量取(4-1)×12=36度,两个工作行程的极限位置1和18'',E 点两极限位置如图虚线,极限位置距离h=312mm ,机构运动简图如图2-1所示。
机构运动速度多边形:图2-2 机构运动速度多边形根据机构运动简图,进行速度分析:根据同一构件上相对速度原理列速度矢量方程式,得:υB3=υB3B2+υB2大小√方向⊥CB ∥BC⊥AB计算:n=60r/min=1r/s,ω=2πn=2πrad/s,υB2=ω×l AB=2πrad/s×=πm/s速度多边形:在图上任取速度极点P,速度比例尺μv【=υB2/Pb1=(πm/s)/120㎜】=(m/s)/mm,过点p作直线pb1(长度为120㎜)垂直杆AB 代表υB2的方向线,过点p作垂直杆CB的直线,代表υB3;再过点b1作直线平行于BC,代表υB3B2的方向线,这两方向线交点为b3,则矢量pb3和b1b3分别代表υB3和υB3B2,其大小分别为:υB3=μv×pb3=(m/s)/mm×62㎜=sυB3B2=μv×b2b3=(m/s)/mm×101㎜=s.根据影像相似原理求出υD:CB/CD=pb3/pd,即135=62/pd,解得pd=78㎜,υD=μv×pd=(m/s)/mm×78㎜= m/s方向在pb3的延长线上。
再根据同一构件上相对速度原理列速度矢量方程式,得υE= υED+υD大小√方向∥导路⊥ED ⊥CD速度多边形:pd=78㎜,方向在pb 3的延长线上,再过点P 作水平线代表点E 的速度方向,再过点d 作杆ED 的垂直线,这两方向线交于点e ,则矢量pe 和de 分别代表υE 及υED ,其大小分别为:υE =μv×pe=(m/s)/mm ×75㎜=s υED =μv×de=(m/s)/mm ×20㎜=s因为4位置为工作行程,故刨头在此过程中匀速即:υS5=υE ,根据重心得加速度影像相似原理求出υS3:CS 3/CD=PS 3/Pd 即㎜/135㎜=PS 3/78㎜,解得PS 3=39㎜,υS3=μv×PS 3=(m/s)/mm ×39㎜= m/s方向在Pd 上,机构运动速度多边形如图 2-2所示。
机构运动加速度多边形:由理论力学可知,点B 3的绝对加速度与其重合点B 2的绝对加速度之间的关系为a nB3 + a tB3 = a B2 + akB3B2 +a r B3B2方向 B 3→C ⊥B 3C B 2→A ⊥B 3C ∥B 3C大小2ω3VB3B2计算:由图2-1 结构运动简图得:l B3C =l =㎜×mm=426㎜= ;由图2-2 机构运动速度多边形求出:V B3=μv×pb3=(m/s)/mm×62mm=s;ω3=v3/l b3c=s)/=s;故a n B3=ω23×l B3C=s)2×=s2ω=2πn=2πrad/s; l AB=110mm=故a B2==(2πrad/s)2×=s2由图2-2机构运动速度多边形求出:V B3B2=μv×b2b3=(m/s)/㎜×101mm=s故a k B3B2=2ω3V B3B2 =2×s×s=1m/s2在一般情况下,a r B3B2=a n B3B2+a t B3B2,但是目前情况下,由于构件2和构件3组成移动副,所以a n B3B2=0,则a r B3B2=a t B3B2,其方向平行于相对移动方向;a k B3B2是哥氏加速度,对于平面运动之内,a k B3B2=2ω3V B3B2哥氏加速度a k B3B2的方向是将V B3B2沿ω2的转动方向转90度(即图2-3中的b′k′的方向),在上面的矢量方程式中只有a t B3和a r B3B2的大小为未知,故可用图解法求解。
加速度多边形:从任意极点π连续作矢量πb′2(120mm)和b′2k′代表a B2和a k B3B2,其加速度比例尺u a=a B2/πb′2=(m/s2)/㎜;再过π作矢量πb3’’代表a n B3 ,然后过k′作直线k′b3’平行于线段CB3代表a r B3B2的方向线,并过点b3’’作直线b3’’b3’垂直于线段CB3,代表a t B3的方向线,它们相交于点b3’,则矢量πb′3便代表a B3。
机构运动加速度多边形如图2-3所示。
图2-3 机构运动加速度多边形由机构运动加速度多边形可求出:a t B3=b3’’b3’×u a =㎜×(m/s2)/㎜=s2;a r B3B2=k′b3’×u a=55㎜×(m/s2)/㎜=s2再根据加速度影像相似原理,得:CB/CD=πb3’/πd3’即㎜/135㎜=㎜/πd3’解得πd3’=93㎜;CS3/CD=πS3/πd3’即㎜/135㎜=πS3/93㎜解得πS3 =㎜;故a D3=πd3’×u a=93㎜×(m/s2)/㎜=s2;a s3=πS3×u a=㎜×(m/s2)/㎜=s2因此位置为工作进程,故E点和重心S5点匀速前进,故无加速度。
.三.导杆机构动态静力分析静态图图3-1 机构位置状态图惯性力及惯性力偶矩:因重心S5无加速度,故S5点无惯性力Fi及惯性力偶矩M i;下面求重心S3的惯性力F i及惯性力偶矩M i:惯性力:Fi s3= -m ×a s3= -G 3/g ×a S3= -G 3/g ×u a ×πS 3=-(200N )/(㎏)×【(m/s 2)/㎜】×㎜= - 34N方向:a s=a ns +a ts ,它决定了Fi 的方向,因Fi s3= -m 3×a s3,故F i3及F ’i3的方向与图2-3中的πS3(代表as3的方向)的方向相反。
惯性力偶矩:Mi s3= -J S3·αS3= -J S3×(a tCD /l CD ) = ㎏㎡×[(m/s 2)/㎜)×93㎜]/= ·m作用线间距离为h :h=Mi s3/F i3=(·m )/ (- 34N )=200㎜变速转动的构件都同时具有惯性力Fi 和惯性力偶矩Mi ,故它们均可用一等于F i3的总惯性力F ’i3来代替。
按照比例尺l =/m s mm.确定F i3与F ’i3之间的图上距离,将F i3和F ’i3在静力图上表示,如图3-1所示。
杆组拆分及用力多边形和力矩平衡求各运动反力和曲柄平衡力 :将机构拆分成若干杆组,以基本杆组为研究对象,画出作用在其上的所有外力。
如图3-2(a )(b )(c )所示。
(a ) (b ) (c )图3-2杆组拆分及静力分析将机构拆分为两个二级杆组,一个机架。
图(a):导杆4和刨头5为杆组,组成三个运动副(一个移动副和两个转动副E、D)。
动力静态分析:杆件ED为二力杆,故在点D构件3对构件4的作用力R34方向在ED 的延长线上;刨头受到机架7竖直向上的压力R75,已知Fr及G5的方向和大小,R34和R75的方向已知,大小未知,故用力的封闭多边形来求解R34和R75的大小。
力的封闭多边形:下面借助图3-2(a)来画力的封闭多边形。