往复压缩机管道振动分析及减振方法
往复式压缩机振动原因分析及减振措施探讨
往复式压缩机振动原因分析及减振措施探讨造成往复式压缩机振动的原因主要有以下几个方面:
1. 设备安装不稳:往复式压缩机的安装位置不平稳、固定螺栓松动等原因都可能导
致设备振动。
2. 不平衡质量:往复式压缩机在制造过程中,如果某些零部件的质量分布不均匀,
或者安装不当,都会导致设备在运行时产生不平衡质量,进而引起振动。
3. 压力脉动和气流不稳定:由于往复式压缩机的工作原理决定了其输出的压力和气
流是周期性变化的,如果设计不当或者存在机械故障,都会引起压力脉动和气流的不稳定,进而导致振动问题。
1. 合理设计:在往复式压缩机的设计和制造过程中,应该严格按照相关标准和规范
进行。
合理选择和配置零部件,确保其质量分布均匀,减少不平衡质量的存在。
2. 定期维护:定期对往复式压缩机进行检查和维护,确保设备的正常运行和固定的
螺栓不松动。
定期检查和更换磨损严重的零部件,避免因故障导致振动。
3. 合理安装:在设备安装过程中,应该确保设备安装位置平稳,固定螺栓紧固牢固。
还应考虑减振装置的使用,以减少机械振动的传递。
4. 减少压力脉动和气流不稳定:通过优化往复式压缩机的工作参数和调整设备结构,可以减少压力脉动和气流的不稳定。
合理选择和使用阀门和管道设备,也可以降低振动问题。
往复式压缩机振动的产生可能由多种原因引起,因此必须采取适当的措施来减少振动。
通过合理设计、定期维护、合理安装和减少压力脉动,可以有效地降低振动问题,提高往
复式压缩机的运行稳定性和工作效率。
往复式压缩机出口管道振动分析及消振措施研究
往复式压缩机出口管道振动分析及消振措施研究刖H管道振动是往复式压缩机出口管线常见的故障之一。
往复式压缩机是炼油和化工装置中的重要设备。
其出口管道的振动对安全生产是一个很大的威胁。
它会引起:(1) 管道的疲劳损伤,尤其可能使小口径管道损坏;(2)管道保温材料的破损;(3)测量仪表及导管的损坏和控制系统误动作;(4)管道摆动或振动以及噪声对人的影响等。
强烈的管道振动使得管路附件的连接部位发生松动和破裂,轻则造成泄漏,重则引起爆炸。
通常引起往复式压缩机出口管道振动的原因往往很复杂,只有通过正确诊断和分析,才能找出引起管道振动的主要原因,并采取有效的措施消除隐患。
因此,管道设讣时必须充分重视管道振动的消除和控制。
对出现强烈振动的管道,需要分析原因,采取减振措施。
1、管道振动原因分析压缩机气体管道系统主要有3个振动源:(1) 气流压力脉冲在管件处冲击振动;(2) 管道内气柱的振动(共振);(3) 管道的机械振动;(1)气流压力脉动往复式压缩机工作特点是吸、排气流呈间歇性和周期性。
因此会激发进、出口管道内的流体呈脉动状态,使管内流体参数随位置及时间作周期性变化,这种现象称为气流脉动。
管道内气流压力随时间变化的情况如图1所示。
压力脉动越大,管道振动的振幅和动应力越大。
脉动气流会严重影响阀门的正常开关,还会引起管系机械振动,使管件疲劳破坏而发生泄漏,其至造成火灾爆炸等严重事故。
往复式压缩机的气流压力脉动除了可能引起气柱共振之外,管道中的压力和速度波动在管道的转弯处、截面变化处和各种阀件、盲板处还可能产生冲击作用,引起管道振动和噪声。
下图所示的一段等截面管弯头,设弯管的直径为d,弯管的转角B,弯管进气口处的压力为P。
1. 压力脉动的消减措施(1) 避开气柱共振。
消减气流脉动,首先应避免气柱共振。
要进行气柱固有频率的讣算,使气柱固有频率与活塞激发频率错开。
(2) 采用合理的吸排气顺序。
通过改进汽缸的结构和配置,)气,采用合理的吸、排气顺序,使压缩机较均匀地向管道排(吸可以达到减小气流压力脉动的U的。
往复压缩机工艺管道振动分析及消减措施
往复式压缩机设计过程中,尽可能保证工艺管线的直线性,避免管线弯曲大或垂直振幅明显,同时尽量减少工艺管线直径的变化,提高管线的强度和刚度,从而提高管线结构的稳定性和可靠性。敷设工艺管道时,应遵循与地面毗邻的原则,为管道提供足够的支撑,以减少工艺管道振动对往复式压缩机的影响,同时为技术人员减轻振动提供更多的便利。
5.5消减激振力的强度
为了进一步减少压缩机振动效应的发生,应降低激励强度,例如b .减少压缩机组固有振动频率的气体压力,并将压缩机之间的频率分配到特定频率,有效地避免振动。此外,还可以通过提高抗振动性、优化管道结构、使用固定工艺材料或在管道没有固定振动频率的情况下改变管道形状来提高管道的稳定性。上述措施可更好地保护压缩机管道系统,从而延长使用寿命并使操作更加平稳。
5.2安装节流板
减小往复式压缩机工艺管道振动时,可采用隔膜安装方法,使管道内最初流动的气流从柱状波变为行波,从而使管道内压力更加均匀,从而使管道振动缓冲。通过在管道中安装孔板,气流必须穿过孔板,这时可以改变气流的大小,但也可以使气流方向更加分散,管道中的能量会大大减少,气流脉动会减少。必须特别注意,采用这种方法减轻管道振动时,必须准确计算孔板上的压力降。
往复压缩机工艺管道振动分析及消减措施
摘要:由于往复压缩机的工作机制,使用能耗较低,可实现与传统压缩机相同的效果和生产率,永久压缩机具有足够的灵活性,能够适应石油化工目前偏好的调整和反应机制。鉴于此,本文对往复压缩机工艺管道振动分析及消减措施进行了分析,以供参考。
关键词:往复压缩机;工艺管道;振动分析;消减措施
2气流脉动分析
2.1气流脉动分析基本内容
分析气流脉动的主要目的是计算管道的气流脉动强度和激振力,以确保管道布局的调整和缓冲罐设计符合国家/地区相关标准的要求。声学模拟是分析气流脉动的方法之一,主要是根据一维波浪理论计算和分析压力脉动程度和和声激励力的方法,使用传递矩阵法将模型单位的声压、声音体积和音速紧密联系在一起。模型单位包括管道单位、阀门、孔和体积构件,边界条件包括管线洞口、闭合和反向缺陷。
往复式压缩机振动原因分析及减振措施探讨
往复式压缩机振动原因分析及减振措施探讨往复式压缩机气体管道振动是管道设计和机器运行中经常遇到的问题,往往影响到设备装置的正常运行,并严重威胁着工厂的安全生产。
本文分析了通常引起往复式压缩机气体管道振动的原因及常见的减振方法。
通过对一起往复式压缩机振动实例分析,针对原因提出合理的减震措施。
实施后现场实际运行情况良好,振动有明显改善。
标签:往复式压缩机;气体;管道振动;原因;减振措施管道内工作介质为气体的称为气体管道,动设备以及静设备是通过管道串联成工艺流程的,它主要起输运、传递介质的作用。
往复式压缩机在石油、化工、冶金、纺织、动力等部门中应用非常广泛,气体管道是压缩机装置中最主要的系统之一。
往复式压缩机管道的振动是管道设计和机器运行中经常遇到的问题,往往影响到装置的正常运行。
在生产实际中,由于强烈地管道振动,将会使管路附件,尤其是管道的连接部位、管道与附件的连接部位和管道与支架的连接部件等处发生磨损、松动;在振动所产生的交变应力作用下,导致疲劳破坏,从而发生管线断裂、介质外泄,甚至引起严重的生产事故,给生产和环境造成严重危害。
因此分析其振动原因及消振措施,很有必要。
本文对往复式压缩机气体管道振动原因进行了简单地分析,并针对往复式氢气压缩机的振动问题提出了具体地减振措施。
通过减振措施的实施,机组运行情况明显改善,振动减小。
1管道振动分析使用的控制标准往复式压缩机管系的振动分析应满足:(1)满足美国石油学会API618标准脉动控制要求,保证压缩机管系气流脉动不超过允许值。
(2)根据美国普渡压缩机技术协会关于机械振幅要求,保证机械振动全振幅不超过允许值。
美国石油学会制订的AP1618标准,从量上规定了对压力脉动和振动控制的设计要求。
2 压缩机气体管道振动原因分析压缩机气体管道系统主要有3个振动源:一是管道内气柱的振动;二是气流压力脉冲在管件处冲击振动;三是管道的机械振动。
2.1气柱共振往复式压缩机在运行过程中,由于吸气、排气是交替和间断性的,另外活塞运动的速度又是随时间变化的,这种现象就会引起压力脉动。
往复压缩机工艺管道振动分析及消减措施
往复压缩机工艺管道振动分析及消减措施摘要:现阶段的石化产业、化工产业正不断的优化、创新,目的在于各类资源的开采过程中尽量采用优秀的技术手段来完善,减少对资源造成的严重破坏。
在资源的开采、加工过程中,各类机械设备的运用是重要的组成部分,但是往复压缩机工艺管道振动的发生造成了严重的安全隐患,需要在消减措施上进行有效的优化,避免造成严重的破坏。
关键词:往复式;压缩机;工艺管道;振动;消减大部分情况下,往复压缩机工艺管道振动的出现并非偶然情况,而是通过一系列的恶劣原因所造成的,每一种原因都会造成严重的安全威胁、安全事故,所以在往复压缩机工艺管道振动的消减措施上需针对不同的原因采取差异性的办法来完善,否则很有可能造成振动加剧的现象,这对于未来的设备应用必定造成更加严重的后果。
一、往复压缩机工艺管道振动的原因分析(一)气流脉动往复压缩机工艺管道振动的出现会对管道的正常运行造成恶劣的影响,因此在原因分析方面尤为重要。
管道的运行过程中,如果出现了振动的现象有很大的概率是气流脉动所造成的。
管道的内部存在很多的气体,不仅能够出现压缩的现象同时也会表现出膨胀的问题,因此气体形成气柱以后本身就会造成弹性振动的现象,受到周期性的吸气、排气的影响以后,会导致管道出口位置的流体表现出脉动的状态,并且针对管道内部的流体参数造成较大的变化,这些参数会受到位置的影响、时间的影响表现为周期性变化的特点。
气流脉动的发生会对压缩机造成严重的破坏,导致压缩机的容积效率不断的下降,在产量的降低方面也非常的明显,对压缩机的消耗功率造成大幅度的提升,对管道造成的振动效果非常的强烈,最终造成安全生产的严重威胁。
气流脉动的解决难度是非常高的,必须考虑到往复压缩机工艺管道振动的全局影响,尽量对压缩机的性能和工艺管道的功能做出创新,否则难以在气流脉动上彻底的解决。
(二)共振往复压缩机工艺管道的运行过程中,在气体的输送过程中表现为气柱的特点,气柱本身是拥有一定质量的,而且在本身的固定频率就是气柱所固有的频率。
往复式压缩机振动原因分析及减振措施探讨
往复式压缩机振动原因分析及减振措施探讨摘要:往复式压缩机的振动问题一直是行业的关注焦点之一。
本文通过对振动原因的分析及产生机理的探讨,提出了适合往复式压缩机的减振措施方案。
一、引言往复式压缩机广泛应用于各行各业,是现代化生产的重要设备,但常常被振动问题所困扰。
压缩机的振动会影响其工作效率、工作稳定性、降低机械安全性能和寿命,还会导致与之相连的管道和设备发生损坏,造成生产事故。
因此,对于往复式压缩机振动原因的深入探究和减振技术的研究,具有重要的意义。
二、往复式压缩机振动产生的原因及机理1. 动平衡不良往复式压缩机的转子和曲柄往复运动,机体自然存在不平衡的情况,如果动平衡处理不良,将导致转子与机体相互影响,发生振动。
2. 受力不均衡管路的布置不合理、设备安装松动、地基变形等因素会导致往复式压缩机受到非均匀力的作用,从而引起振动问题。
3. 频率共振频率共振是指在机体内部或与周围环境形成共振的现象。
当往复式压缩机固有频率与其它设备或管道的共振频率相同或接近时,会引发共振,导致机体振动。
4. 液体脉动液体流动过程中,由于液体压力变化,使得液体速度也随之变化,进而引起质量分布和涡流产生,形成液体脉动。
如果装置不合理或运行条件恶劣,液体脉动将从液体端传递到机械端,引起振动。
5. 脚螺栓不紧往复式压缩机的底座与地基之间采用脚螺栓连接,如果螺栓连接不紧或者螺纹损坏,将导致机体稳定性受到损害,从而引发振动。
三、减振措施针对上述振动产生原因的分析,可以采取以下措施:采用成熟的动平衡处理技术对往复式压缩机的各部件进行动平衡处理,降低不平衡对机体的影响。
2. 设备安装合理设计管路,采用合适的减振措施,安装压力表和温度计,定期检查设备是否松动,确保设备的安装牢固。
测定往复式压缩机固有频率,对与之相邻的设备或管道进行改动,消除频率共振点,降低共振振幅。
遵循设计标准,使用合适的管道和阀门,控制液体流速和压力,避免液体脉动。
定期检查脚螺栓连接状态,修补螺纹或更换脚螺栓,确保底座稳定。
往复式压缩机振动原因分析及减振措施探讨
往复式压缩机振动原因分析及减振措施探讨往复式压缩机是一种常见的压缩机类型,广泛应用于工业和商业领域。
在使用过程中,往复式压缩机经常会出现振动问题,给设备的正常运行和使用带来困扰。
对往复式压缩机振动原因进行分析,并探讨减振措施,对于提高设备的稳定性和性能具有重要意义。
1. 不平衡不平衡是往复式压缩机振动的主要原因之一。
不平衡可能发生在转子、曲轴、飞轮等旋转部件上。
当这些部件出现不平衡时,会导致压缩机产生较大的振动。
2. 错位或偏心错位或偏心是往复式压缩机振动的另一个常见原因。
这可能是由于装配不当、机械零件磨损或损坏等原因导致的。
当机件错位或偏心时,会导致压缩机的运转不平稳,产生振动。
3. 轴承故障压缩机的轴承是支撑转子和其他旋转部件的重要部件。
当轴承出现故障,如磨损、疲劳等,会导致往复式压缩机的运转不稳定,产生振动。
4. 轴向不平衡力在往复式压缩机的工作过程中,由于活塞的上下运动,会产生轴向不平衡力。
这种不平衡力会导致压缩机的振动增大。
1. 均衡和调整旋转部件为了减少不平衡振动,可以对压缩机中的旋转部件进行均衡和调整。
通过精确矫正旋转部件的质量分布,可以减少不平衡振动的产生。
2. 检查和更换磨损零件定期检查往复式压缩机的机械零件,特别是轴承等易磨损部件,及时更换磨损严重的零件。
这样可以有效减少因零件磨损引起的振动。
3. 使用弹性支撑或减振器在安装往复式压缩机时,可以使用弹性支撑或减振器来降低振动传递。
弹性支撑能够吸收振动能量,减少振动的传递。
减振器可以调整其刚度和阻尼,以实现最佳的减振效果。
4. 框架设计优化对往复式压缩机的框架进行优化设计,可以提高其刚度和稳定性。
采用合理的结构和材料,可以减少振动的产生和传递。
总结:往复式压缩机的振动问题会影响设备的稳定性和性能,甚至可能导致设备的损坏。
对往复式压缩机振动原因的分析和减振措施的探讨具有重要意义。
通过采取合适的措施,如均衡和调整旋转部件、检查和更换磨损零件、使用弹性支撑或减振器、优化框架设计等,可以有效减少往复式压缩机的振动,提高设备的稳定性和性能。
往复式压缩机管道振动的原因及减振技术
一、往复式压缩机管道振动的原因往复式压缩机管道振动的影响因素较多,由往复式压缩机的工作原理可知,其管线的振动形式是受迫振动。
根据激振力的不同情况,其主要原因通常有三种:(1)压缩机本身运动部件的动平衡性能差,安装不对中、基础设计不当等均能引起机组的振动,从而使与之连接的管线也发生振动。
(2)由气流脉动引起管线受迫振动。
往复式压缩机的工作特点是吸、排气呈间歇性和周期性变化,这种特性会导致管内气体呈脉动状态,使管内介质的压力、速度和密度等既随位置变化,又随时间作周期性变化,这种现象称之为气流脉动。
脉动的气流沿管线输送遇到弯头、异径管、控制阀和盲板等元件时,将产生随时间变化的激振力,受此激振力作用,管线系统便产生一定的机械振动响应,压力脉动越强,管线振动的位移峰值和应力越大。
(3)当往复式压缩机激励频率与气柱固有频率或管系机械固有频率重合或接近时所引起的共振现象导致的往复式压缩机管线振动。
在研究和分析气流脉动引起管线振动时,将同时存在2个振动系统和3个固有频率,即管内气体形成的气柱系统,它由压缩机气缸的吸、排气产生激发使管内压力产生脉动;管线结构的机械系统,压力脉动激发管线作机械振动。
显然若管线内脉动压力较大,则会对机械振动系统产生较大的激振力,引起较强烈的机械振动。
3个频率是气柱固有频率、管路结构固有频率和压缩机激发频率,当三者或其中二者相同及接近时就会产生共振,且表现为耦合振动。
系统振动的迭加必然产生该阶频率的共振,使管线产生该阶频率的共振,使管线产生较大的位移和应力。
2.1针对机组振动引起管线振动的减振方法针对往复式压缩机机组本身引起的管线振动,其解决方法的根本在于提高设备的支撑刚度和阻尼,尤其是往复式压缩机基础底座的支撑刚度。
支撑松动也会使管道在机组的带动下振动超过安全标准。
压缩机管线的支撑应采用固定支撑或防振管卡,尽量避免采用悬挂结构或者简单的支托;防振管卡布置时应该尽量避免几何上与管道同心、同型,并且可以在管道的加固位置和支撑位置加弹性材料的吸振衬垫。
往复式压缩机振动原因分析及减振措施探讨
往复式压缩机振动原因分析及减振措施探讨往复式压缩机是一种常见的工业设备,用于将气体压缩为高压气体。
在运行过程中,往复式压缩机常常会出现振动问题,这会给设备运行和使用带来一定的困扰。
分析往复式压缩机振动原因,并探讨相应的减振措施,对于提高其工作效率和使用寿命具有重要意义。
往复式压缩机振动产生的原因有很多,下面主要从以下几个方面进行分析:1. 动力系统问题:往复式压缩机的动力系统主要由电机、传动系统和曲轴等部件组成。
如果电机不稳定、传动系统松动或曲轴不平衡等原因都可能导致往复式压缩机振动。
2. 液压平衡问题:往复式压缩机在工作过程中,需要利用气体和液体之间的相互作用来完成压缩过程。
而当气体和液体在往复运动中没有得到良好的平衡时,就会产生振动。
3. 气动系统问题:往复式压缩机的气动系统包括气缸、活塞、曲柄连杆等部件。
如果这些部件之间的连接松动、活塞密封不良或气缸存在磨损等问题,都会使往复式压缩机振动加剧。
针对往复式压缩机振动问题,可以采取以下几个减振措施:1. 动力系统调整:对于电机、传动系统和曲轴等部件,要保证其运行的稳定性和平衡性。
可以通过校正电机的线圈绕组、检查和调整传动系统的螺丝紧固度以及平衡曲轴等方式,来减少往复式压缩机的振动。
3. 气动系统维护:对于气缸、活塞、曲柄连杆等气动系统部件,要经常检查和维护。
及时更换磨损严重的部件,保持活塞与气缸的密封性,确保气缸内气体的流动平稳,避免振动产生。
以上只是往复式压缩机振动原因分析及减振措施探讨的一些基本内容,实际应用中还有一些其他因素也会影响往复式压缩机的振动情况。
为了确保设备的正常运行和安全使用,我们需要根据具体情况,采取相应的措施进行防范和处理。
定期检查和维护设备,及时处理振动问题,也是保证往复式压缩机正常工作的重要手段。
往复压缩机管道振动分析及减振措施
往复压缩机管道振动分析及减振措施李泽豪* 顾海明(南京工业大学)摘 要 针对一往复压缩机组管道异常振动情况,通过现场测试以及对管道声学特性和结构特性的详细计算,分析了引起该管道振动的原因,提出了相应的减振措施,使问题得到了解决。
关键词 往复压缩机 管道 振动中图分类号 TQ051 21 文献标识码 B 文章编号 0254 6094(2010)01 0087 03往复式压缩机的管道异常振动对安全生产有很大的威胁,强烈的管道振动会使管路附件,管道的连接部位等处发生松动和破裂,轻者造成泄漏,重者由破裂而引起爆炸,造成严重事故[1]。
压缩机在运行过程中,由于吸、排气是交替的,另外活塞运动的速度又是随时间变化的,这种现象引起气流压力脉动[2],是引起很多管道振动的一个基本原因。
消减管道气流压力脉动的一个重要措施是在压缩机气缸附近的管路上设置具有一定容积的缓冲器或声学滤波器。
不过,引起压缩机管道振动的原因比较复杂,大多与管道的设计、安装和缓冲器的设置等因素有关。
仅考虑缓冲器容积等单一原因往往是不够的[2]。
本文对某化工企业往复压缩机管道异常振动进行了现场振动测试和分析,提出了减振措施,使问题得到了解决。
1 管道振动的基本情况及相关计算1.1 管线基本情况某化肥厂合成工段M型活塞压缩机,7级压缩,活塞行程0.36m,该机组自运行以来,其3级排气管道一直强烈振动,尤其缓冲器附近管道振动更为激烈。
厂方为此对缓冲器附近管段进行了加固,效果不佳。
3级排气管内气体压力1.5M Pa。
管线走向如图1a所示。
缓冲器是立式布置,支腿式支撑。
缓冲器后高、低架管道的高度差为3m。
a.3级排气管道b.4级排气管道图1 M型压缩机3、4级排气管道示意图1 压缩机气缸;2 缓冲器;3 支架1.2 缓冲器容积的核算将该机组3、4级排气管道的缓冲器容积与国内通常应取最小容积以及美国API标准中规定的最小容积相比较,列于表1。
表1 缓冲器容积的有关数据m3缓冲器位置3级排气管4级排气管气缸行程容积0.08240.0801缓冲器容积 1.40.5210倍气缸容积0.8240.801API规定容积 1.3181.282国内厂家通常要求缓冲器的最小容积应在气缸行程容积的10倍以上。
往复式压缩机振动原因分析及减振措施探讨
往复式压缩机振动原因分析及减振措施探讨往复式压缩机是工业生产中常用的一种设备,其主要作用是将气体压缩,使其增加压力。
但在使用过程中往复式压缩机常常会出现振动问题,振动不仅会影响设备的稳定性和工作效率,还可能导致设备的损坏甚至危险。
对往复式压缩机的振动原因进行分析,并探讨减振措施显得尤为重要。
一、往复式压缩机振动原因分析1. 设备自身原因往复式压缩机在工作过程中,由于设备运转等原因,可能会产生不平衡的振动。
设备的零部件安装不均匀、结构设计不合理等因素都有可能导致设备振动增加。
2. 润滑不足往复式压缩机在工作时需要进行润滑,以减少摩擦和磨损。
如果润滑不足或者润滑油质量不合格,都会导致设备摩擦增加,引起振动。
3. 气阀失调气阀是往复式压缩机正常运转的关键部件,如果气阀失调,工作不正常,可能会导致设备振动增加。
4. 压缩机负载过大在一些特殊情况下,往复式压缩机可能会因为负载过大而导致振动增加。
在设备超载运转时,设备可能会因为负载过大而出现振动现象。
5. 环境因素环境温度、湿度等因素都可能会影响往复式压缩机的工作状态,导致设备振动增加。
1. 设备日常维护定期对往复式压缩机进行检查和维护,及时发现和解决设备运转中的问题,是减少设备振动的重要措施。
在维护过程中,要特别注意设备的零部件安装情况和润滑情况,保证设备的正常运转。
2. 合理设计和安装在往复式压缩机的设计和安装过程中,要尽量保证设备的均衡和稳定性。
避免在设备设计和安装中出现不合理的因素,以减少设备的不平衡振动。
3. 优质润滑保证往复式压缩机良好的润滑情况是减少设备振动的有效途径。
选择合适的润滑油,控制润滑油的质量和使用量,对设备进行定期的润滑维护,可以有效降低设备的摩擦和磨损,减少设备的振动。
4. 气阀调整定期对往复式压缩机的气阀进行检查和调整,确保气阀的正常工作。
对气阀进行维护和更换,减少因为气阀工作不良导致的设备振动。
5. 控制压缩机负载在设备运转过程中,合理控制往复式压缩机的负载,尽量避免设备超载运转,可以有效降低设备的振动。
往复式压缩机管道振动原因分析及对策
气流脉动不但能够降低压缩机的容积效率,从而使功率消耗大大增加,还能够使管道产生强烈的振动,为安全生产埋下隐患。
如果当管道内部的气流压力不均匀度增加的情况下,振动频率就会不断提升,而振动能量也会随之增加,给管道带来的破坏性也会不断扩大。
假如脉动气流经过管道弯头、分支管、阀门等,其不均匀的压力则会引起管道产生强大的机械振动。
2.3 共振因素气柱作为往复式压缩机管道内输送的主要气体,气柱可以进行压缩与膨胀,具有质量。
它自身原有的频率就是气柱自身存在的频率,管道和其组件组成了一个庞大的系统,该系统结构的频率就是管系机械自身存在的频率,而机组活塞往复运动频率就是激发频率。
工程中通常把0.8到1.2之内的频率规定为激发频率的共振区,假如气柱自身存在的频率处于这个共振区域之内,则会引起巨大的压力脉动从而导致气柱出现共振;假如管系机械自身存在的频率处于这个共振区之内,则会导致结构共振产生,这些情况都会引起严重后果。
所以设计配管需要防止气柱和结构共振的产生,应该合理的调整气柱原有存在的频率以及管系原有存在的频率来实现良好效果。
2.4 外力引起的管道振动引起管道振动的原因较多,强大的外力作用也会引起管道产生振动,假如出现强大的风力横吹管道的时候,管线的背风面就会出现卡曼漩涡流从而引发管道出现振动。
发生地震的时候,土壤和管道的相互作用会使管道内部产生地震应力,较大的应力会致使管道被损坏,从而给管道的安全运行带来严重影响。
3 解决往复式压缩机振动的有效策略3.1 设置缓冲器在管道系统中设置合适的缓冲器,不但可以使管系气柱固有的频率得到改善,还可以使气流脉动的幅值得以降低,这属于一种较为简单且效果很好的气流脉动设施。
要想使缓冲器的作用得到全面发挥,设置过程当中需要注意其容积大小和安放位置,可以把缓冲器安放在压缩机的进排气口。
缓冲器以及管道需要选择适合的连接方式。
缓冲罐的容积应该根据实际情况,具体计算之后才可以确定。
同时需要保证缓冲器容积大小高于气缸每行程容积的10倍。
往复式压缩机振动原因分析及减振措施探讨
往复式压缩机振动原因分析及减振措施探讨
往复式压缩机是一种常见的工业设备,常常用于将气体压缩后输送至其他系统中。
往复式压缩机在运行过程中产生的振动问题常常困扰着用户。
为了解决这一问题,本文将从振动的原因分析和减振措施探讨两个方面来进行讨论。
我们来分析往复式压缩机振动的原因。
往复式压缩机在运行过程中,振动主要有以下几个原因:
1. 不平衡:往复式压缩机的压缩机体和曲轴是关键部件,其中不平衡会导致压缩机在转动过程中产生振动。
2. 油膜振动:当润滑油膜不均匀分布时,会导致摩擦力的不均匀,从而引起振动。
3. 弹性变形:往复式压缩机中的零部件,比如气缸、连杆等,在运行过程中会发生弹性变形,导致振动。
接下来,我们来讨论如何减振。
往复式压缩机的振动减振措施主要包括以下几个方面:
1. 平衡调整:通过平衡调整来消除压缩机体和曲轴的不平衡,可以减小振动。
可以采用动平衡仪来检测和调整不平衡量。
3. 结构设计改进:对于容易发生弹性变形的部件,可以通过结构设计的改进,增加刚度,减小变形量,从而降低振动。
4. 安装减振:往复式压缩机在安装时,可以采取减振措施,比如采用减振垫片、减振螺栓等,来减小振动对设备和周围环境的影响。
往复式压缩机振动问题的解决主要从原因分析和减振措施探讨两个方面入手。
通过平衡调整、润滑措施、结构设计改进和安装减振等措施的综合应用,可以有效降低往复式压缩机的振动,并提高设备的运行效果和稳定性。
往复式压缩机管道振动原因与减振措施
理论 分 析 和计 算 较 详 细地 分 析 了压 缩 机管 道 振 动 的原 因 , 并 采 取 了较 为 有 效 的减 振 措施 。 关键 词 : 往 复式 压 缩 机 ; 管道振动原因 ; 减振 措 施
0 引 言
往 复式 压 缩 机 管 道振 动是 影 响 其工 作 效 率 的 重 要 因素 , 因 此, 必 须 引 起 工 作 人 员 的 重 视 。往 复 式 压 缩 机 管 道 的强 烈 振 动 严 重 影 响 装 置 的正 常 运 行 , 危 害 很 大 。 引 起 管 道 振 动 的 原 因往 往很复杂 , 只有通过正确的诊断 , 找 出振 动 的原 因 , 才 能 有 效 采
s — — 管 道截 面积 : v — — 容 器 的容 积 。
引起 的 。该 压 缩 机 缓 冲 器 容 积 V T = 0 . 4 m3 ,气 缸 行 程 容 积 V h = 0 . 0 1 7 m3 , V T 为V 的2 3 . 5 倍。 而 国 内多 数压 缩 机 缓 冲器 的 V 仅
为V 的1 0倍 多 一 点 。按 美 国石 油 学 会 ( A P I ) 的 规定 , 往 复 式 压
缩 机 缓 冲器 容 积 的 最 小值 由下 式 计 算 :
Tr T1 —
( b) 简化模 型
L
图 1 管道简化示意图
V 8 ( p D) (
上
)
( 1 )
采用 式 ( 3 ) 算得图 2 ( b ) 所示 简化 管 系 的气 柱 固有频 率 见表 2 。
式 中: -—- 最小 吸气 缓 冲 器 容 积 ; p D — — 气 缸 每 冲程 吸 入 净 容 积 ; k ——气体介质绝热指数 : T 广 _ 吸气 温 度 , 绝 对 华 氏温 度 ; M— — 气 体 分 子 量 ; V厂一 最 小 排 气 缓 冲 器 容积 ; R— — 气 缸 压 力 比。 按式 ( 1 ) 、 ( 2 ) 算得 该装 置最 小排 气 缓 冲 器 容 积 V a = 0 . 3 2 m ,
往复式压缩机振动原因分析及减振措施探讨
往复式压缩机振动原因分析及减振措施探讨往复式压缩机是一种常见的工业设备,广泛应用于制冷、空调、石油化工等行业。
由于工作原理的特殊性,往复式压缩机在运行过程中往往会出现振动现象,严重影响设备的正常运行和使用寿命。
分析往复式压缩机振动的原因并探讨减振措施,对于提高设备的稳定性和可靠性具有重要意义。
往复式压缩机振动的原因主要有以下几个方面:1. 不平衡质量:往复式压缩机内部的活塞、连杆、曲轴等零部件在制造和安装过程中有可能存在不平衡现象,导致转动部件的质量分布不均匀,引发振动。
2. 摩擦与磨损:摩擦与磨损是往复式压缩机振动的另一个重要原因。
摩擦不仅会加剧设备零部件的磨损,还会改变零部件的阻尼特性,导致振动的发生与扩散。
3. 动力失衡:动力失衡是指往复式压缩机在运行过程中,由于工作负载、自重变化等因素,导致转动部件受到不平衡的力矩作用而产生的振动。
特别是当设备的工作负载突变时,往复式压缩机的振动问题更加突出。
为了减少往复式压缩机的振动,我们可以采取以下几种减振措施:1. 平衡调试:通过对设备的转动部件进行平衡调试,消除不平衡质量,以减少振动。
可以应用动平衡设备和方法,在设备正常运行后,通过调整零部件的质量分布,使设备达到平衡状态。
2. 优化润滑:合适的润滑是减少摩擦和磨损的有效手段。
选择适当的润滑剂,并确保润滑系统的正常运行,可以大大减少摩擦和磨损引起的振动。
3. 增加阻尼:在往复式压缩机的连接部件上增加适当的阻尼材料(如橡胶减振垫、减振屏等),可以有效减少振动的传导和扩散,起到减振的作用。
4. 加强设备维护:定期对往复式压缩机进行维护和检修,及时更换磨损严重的零部件,清洁润滑系统等,有助于减少振动的发生和传播。
往复式压缩机振动的原因是多方面的,可以通过平衡调试、优化润滑、增加阻尼和加强设备维护等减振措施来降低振动幅度,提高设备的稳定性和可靠性,保障其正常运行。
需要注意的是,减振措施的选择和实施应根据具体设备的工作情况和振动特性来确定,并保持良好的维护管理体系,以提高减振效果。
往复式压缩机振动原因分析及减振措施探讨
往复式压缩机振动原因分析及减振措施探讨往复式压缩机是一种广泛应用于各种工业领域的重要设备,但在使用过程中常常会出现振动问题。
振动不仅会影响设备的稳定工作,还会导致设备寿命缩短,甚至引发安全事故。
因此,对往复式压缩机振动原因进行分析和采取适当的减振措施是非常重要的。
一、振动原因1.重量不平衡重量不平衡是导致往复式压缩机振动的主要原因之一。
往复式压缩机内部的活塞、连杆等构件质量分布不均匀,显然会导致其产生不同程度的重量不平衡,进而引起振动。
此外,输入轴、输出轴传动装置也可能存在重量不平衡的问题,如传动带、齿轮间隙不当等。
2.支撑刚度不足支撑刚度不足是另一个常见的导致往复式压缩机振动的原因。
支撑系统的刚度不足时,其密集的压缩和展开过程的力量会应用于压缩机,振动也随之出现。
受到振动的影响,在给定的工作压力下,支撑刚度越低,压缩机就会被振动得越厉害。
3.轴承失效轴承的失效也是往复式压缩机振动的原因之一。
轴承不良或轴承磨损严重,会导致往复式压缩机的产生过多的摩擦及摆臂转换不良,从而导致振动。
二、减振措施为防止重量不平衡的问题,往复式压缩机上的部件必须进行平衡和校正。
通过使部件质量均匀,在其运动方向上反转重量不平衡,可以减少磨合和减少振动。
在对压缩机进行加工和结构设计时,应尽可能减少其部件质量的不均匀性,保持压缩机的几何中心与质心的对称性。
提高支撑刚度是消除往复式压缩机振动的有效方法。
为了提高支撑刚度,可将支撑系统的刚度加强、支撑点设置在合理位置、增加支撑点数量,以确保压缩机在其整个操作范围内保持稳定的运行。
轴承失效可采取更换轴承的方法来解决。
但更换轴承可以立即解决振动问题,但并不能保证一劳永逸。
4.隔振隔振法是常用的减振措施之一。
隔振装置可以将往复式压缩机与外部环境隔开,以减少振动的传导。
隔振垫、隔振脚等隔振装置都是有效的隔振方法。
综上所述,往复式压缩机振动要想得到彻底的解决,必须综合考虑多种原因,并采取相应的减振措施。
往复式压缩机振动原因分析及减振措施探讨
往复式压缩机振动原因分析及减振措施探讨往复式压缩机是目前工业生产中最常见的压缩机之一。
但是在使用、维护和保养过程中,往复式压缩机有时会出现振动的情况。
由于往复式压缩机主要是靠运动的活塞内部压缩气体,因此振动问题是一个非常常见的问题。
本文将会分析往复式压缩机振动的原因,并探讨一些减振的方法。
1. 排气管设计不合理如果排气管在运行过程中发生振动,那么整个压缩机就会震动。
排气管设计不合理也会影响排气管固定件的选择,不能很好地固定排气管。
2. 基础设计及支撑问题如果往复式压缩机的基础设计不合理,将会影响整个压缩机的稳定性和结构坚固性。
支撑不足也会导致振动。
3. 内部失衡如果往复式压缩机的活塞、曲轴、连杆及轴承等关键部分出现失衡,将会导致整个压缩机振动。
4. 传动系统问题5. 内部密封不好如果往复式压缩机内部密封性不好,气体在压缩过程中容易泄漏。
泄漏会导致压缩机运行不平衡。
二、往复式压缩机的减振方法在排除以上原因后,需要考虑一些有效的减振方法。
可以通过重新设计排气管,更换排气管固定件等方法,提高排气管的稳定性。
优化往复式压缩机的基础设计,加强基础的坚固性、稳定性和刚度等方面,在一定程度上可以减少振动。
定期检查活塞等关键部件的失衡情况,及时进行维护。
定期检查压缩机传动系统,如皮带、齿轮等部分是否完好,避免传动系统故障导致的振动。
除此之外,可以在往复式压缩机的安装位置上添加减震垫等措施,以提高往复式压缩机的稳定性和减少振动。
综上所述,往复式压缩机是一种机械设备,振动是其常见问题之一,而且振动不仅会损害机器本身,也会影响其所在的生产线,因此需要定期检查、维护和保养,采取相应的措施来解决振动问题,从而保证设备的正常运转。
往复式压缩机振动原因分析及减振措施探讨
往复式压缩机振动原因分析及减振措施探讨往复式压缩机是工业中常见的一种压缩机类型,其工作原理是通过往复运动将气体压缩。
在运行过程中,往复式压缩机往往会产生较大的振动,这可能会对设备的运行稳定性、噪音产生和设备寿命等方面造成一定的不良影响。
下面将分析往复式压缩机振动的原因,并提出相应的减振措施。
1.不平衡振动:往复式压缩机在运行过程中,由于旋转部件的质量分布不均匀或是连接部件松动等原因,会产生不平衡,从而引起振动。
减振措施可以采取在旋转部件进行校正平衡或是加装平衡片等方式来解决。
在设备安装过程中也应加强对连接部件的检查和紧固,以防止因松动而引起的振动。
2.共振振动:当往复式压缩机在特定运行频率下与其它部件或结构物的自然频率相接近时,可能会发生共振振动现象。
这种振动一般比较严重,会对设备和周围结构物造成较大影响。
减振措施可以包括增加设备的固定点数量、改变设备的运行频率或是加装减振器等方式来解决。
3.不良润滑或轴承问题:当往复式压缩机的轴承润滑不良或是轴承损坏时,会引起振动。
此时,应及时更换润滑油或修理或更换轴承,以解决振动问题。
4.杂质和堵塞:当往复式压缩机的气体进出口管道存在杂质或是堵塞时,会导致气流不畅或是气体压力不均,从而引起振动。
减振措施可以包括定期清洗管道、安装合适的滤网或是安装排气装置等方式来改善气流情况,从而解决振动问题。
5.安装和基础问题:在往复式压缩机的安装过程中,如果没有选择合适的基础或是基础不稳固,也会导致设备振动。
在安装过程中应选择合适的基础,加强基础的固定,以降低振动。
往复式压缩机振动的原因可能包括不平衡振动、共振振动、不良润滑或轴承问题、杂质和堵塞以及安装和基础问题等。
针对这些原因,可以采取相应的减振措施来解决问题,包括校正平衡、加装平衡片、增加固定点数量、改变运行频率、加装减振器、更换润滑油或修理轴承、清洗管道、安装滤网和排气装置,选择适当的基础等措施。
通过合理的减振措施,可以降低往复式压缩机的振动,提高设备的运行稳定性和寿命,减少噪音产生。
往复式压缩机出口管系振动及减振的研究
三、管系振动研究
管系的振动问题主要是由流体的流动和外部机械力的作用引起的。管系的振动 特性与流体的性质(如流量、流速、压力等)、管材的特性(如弹性模量、泊 松比等)、支撑和约束条件以及外部机械力的作用等因素有关。为了降低管系 的振动,需要从以下几个方面进行考虑:
1、优化管系布局:合理安排管系的走向和支撑,避免形成振动节点。
故障诊断方法研究
故障诊断是往复式压缩机振动信号特征分析的重要应用之一。通过故障诊断, 可以及时发现压缩机存在的故障,避免事故的发生,保证生产过程的稳定性和 安全性。
1、基于神经网络的故障诊断方 法
神经网络是一种非线性映射方法,能够模拟人脑对信息的处理过程。基于神经 网络的故障诊断方法可以使用BP神经网络、RBF神经网络等,将采集到的振动 信号特征作为输入,将压缩机的故障类型和状态作为输出,通过训练神经网络 建立输入与输出之间的映射关系。
2、基于支持向量机的故障诊断 方法
支持向量机是一种二分类器,能够将输入数据分成两个类别。基于支持向量机 的故障诊断方法可以使用支持向量机对不同状态的振动信号进行分类,通过训 练模型将正常状态和故障状态分别映射到两个不同的类别中,从而实现故障诊 断。
3、基于深度学习的故障诊断方 法
深度学习是一种基于神经网络的机器学习方法,能够自动学习输入数据中的特 征。基于深度学习的故障诊断方法可以使用卷积神经网络、循环神经网络等深 度学习模型对振动信号进行特征提取和分类,通过训练模型实现故障诊断。
一、往复式压缩机出口管系振动 的原因
往复式压缩机出口管系的振动主要是由于压缩机的工作原理和管道系统自身的 特性所引起的。在往复式压缩机的运行过程中,活塞在气缸内往复运动,周期 性地改变气体压力,从而产生脉动流体。这种脉动流体在管道系统中产生机械 振动,进而引发管道系统的振动。此外,管道系统的振动还可能受到管道内部 流体的不稳定流动、管道支撑的刚度及阻尼等因素的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数名 气缸特性
介质 温度,℃ 流量,m3/h 管系规格,mm
图1 机组概貌图 表1 机组参数
参数值 双作用 焦化富气 40/100 15000 Φ377×10
参数名 压缩级数 曲轴转速,r/min 压力,MPa 电机功率,kW 管系总长,m
参数值 2 372
0.0跃华,钱文臣.管系振动问题的分析及消振处理措施
[J].石油化工设计,2008,25(1):22-26. [2] 卢秀荥.浅议金属波纹管膨胀节的力学特性、主要类型
与工程应用[J].化工设备与管道,2010,47(2):39-44. [3] 张德姜,王怀义,刘绍叶,等.工艺管道安装设计手册.第
1 引言
随着石油化工领域的快速发展,往复压缩机作 为重要的过程流体机械,得到越来越广泛的应用。 管道振动是一种重要的多发问题,一直威胁着企业 的安全生产。管道振动所产生的交变应力,会引发 管道疲劳损伤,连接件、支架的松动和磨损,严重 时甚至会导致管道断裂、泄漏、燃烧和爆炸等严重 生产事故。因此,对管道振动状况和原因进行研 究,对于工业安全生产有着重要的意义。
Technical Transformation
测点 振值 测点 振值
气缸1 水平 194 入口 1 管道 146
表4 各测点位移全频值
气缸 1 垂直
85 出口 1 管道
302
气缸 1 轴向
60 出口 2 管道
268
气缸 2 水平 174
缓冲罐 1
790
气缸 2 垂直 134
气缸 2 轴向
54
测点 振值 测点 振值
振动频谱分析:图3中Power Spectrum为功率 谱,mm/sr为以mm/s单位测得的速度有效值。由所 测得的波形频谱图来看,冲击能量明显,振动以 24.75 Hz的频率成分占主导并伴有丰富的电机转速 倍频成分。气柱第二阶固有频率为22.156 Hz,恰 好处于压缩机激发频率2倍频共振区 (19.84~29.76 Hz) 范围内。
2 管道振动机理分析
往复压缩机管道剧烈振动的主要原因有2个: (1) 气流脉动的激励:往复压缩机的工作特 点是吸、排气流呈间歇性和周期性变化,因此不可 避免的激发进、出口管道内流体呈脉动状态。脉动 气流沿管道输送时,会产生变化的激振力,受到该 激振力的作用,管系会产生一定的机械振动响应。 压力脉动越大,管道振动的振幅和响应越大。 (2) 管道振动的另一个因素是共振。管道内
由此可以认为造成机组及管道高振动的原因 可能为: (1) 气柱共振; (2) 机组部件可能存 在松动现象。 4.5 改进措施
针对上述案例,决定在检查机组是否存在松
图4 改造后一段出口缓冲罐频谱图
5 结语
由往复压缩机的工作特点可知,管道振动是 不可避免的,为此应尽可能将振幅降低。气流脉 动是管道振动的内因,管道的结构是引起振动的 条件,通过测试、分析及计算,采取适当的方式 进行减振,使压缩机达到理想工况,对于压缩机 组和管道系统的安全运行有着重要的意义。
收稿日期:2012-03-17
气体构成一个系统,称为气柱,气柱本身具有的频 率称为气柱固有频率。活塞的往复式运动的频率称 为激发频率。管道及其组成件组成一个系统,该系 统结构本身具有的频率称为管系机械固有频率。管 系和气柱固有频率可由ANSYS软件分析获得。
压缩机的激发频率可按下式计算 f= imn
4.4 诊断意见 气缸1至缓冲罐处振动最为严重,振动速度和
位移均为最大值或较大值,出口管道2处振动较为 严重,而压缩机入口管道,气缸3、4振动较小。
振动速度分析:往复压缩机一段出口缓冲罐 振动剧烈,达到59.792 mm/s,气缸1出口管道振动
2012 年 04 期(总第 234 期)
45
技术改造
压缩机激发频率由公式推算为 f=2×372/60=12.4Hz
表2 气体组分表
介质
H2S
体积百分比 1.2
介质
C3H6
体积百分比 4.09
H2 9.81 C3H8 7.81
CO 0.44 C4H8 5.6
CH4 45.07 CH10 4.24
C2H4 2.47 C5H12 0.98
C2H6 15.02 C5+ 3.27
图3 一段出口缓冲罐频谱图
也有着很大的能量值,为30.860 mm/s。对压缩机 体进行测试,发现气缸2振动较严重。其垂直方向 振动最大,为17.157 mm/s,水平方向和轴向可以 接受,分别为10.610 mm/s和5.09 mm/s。
振动位移分析:由测振仪测得的全频值来看, 往复压缩机一段出口缓冲罐振动最大,已达到790 μm,其次为出口管道1,振动达到302 μm,出口 管道2的振动为268 μm。
3 管道减振的主要措施
3.1 在管道中的特定位置设置孔板 孔板作为一种阻力元件,能够使气流脉动下
44
2012 年 04 期(总第 234 期)
技术改造
Technical Transformation
降,气体流经孔板之后由于能量损失使管道振动 得到衰减,不同尺寸的孔板对应着不同的局部损 失系数。对于容器来说,如果脉冲较大的是入口 管,则孔板应安装在入口处,如果出口管有较大 的脉冲则应安装在出口处。在加装孔板时,孔板 的厚度、孔径、材料与形式应作为重要因素来考 虑。 3.2 优化管道结构尺寸或布置
Abstract:This paper gave a brief introduction of the mechanism of piping vibration and vibration reduction measures.Field testing and computational analysis of a particular unit was made.And the paper also described the treatment measures and the running effect of the unit. Key words:reciprocating compressors;piping vibration;damping
支架应尽量采用独立基础,压缩机管道支架 应避免设置于厂房的结构梁上,如不可避免,应 使其脱离厂房的共振区。振动管道的支撑不得在 固定于厂房、构架、平台和设备上。另外,管道 支架需要不等间距布置,其差值一般取 100 ~200 mm,2个支架的间距通常不大于3 m,管道支架上 应设置防振管卡。
4 应用实例
一篇(设计与计算)[M].北京:中国石化出版社,2009. [4] 姜文全,杨帆,等.基于ANSYS的往复式压缩机管系气柱
固有频率计算[J].压缩机技术,2008(6):13-15. [5] 党锡淇,陈守五.活塞式压缩机气流脉动与管道振动[M].
西安:西安交通大学出版社,1984,33-56.
作者简介: 喻迪垚(1986-),男,辽宁人,北京化工大学09级硕士研 究生,机械电子工程专业,主要研究方向为往复压缩机。
技术改造
Technical Transformation
文章编号:1006-2971(2012)04-0044-03
往复压缩机管道振动分析及减振方法
喻迪垚,江志农
(北京化工大学诊断与自愈工程研究中心,北京 100029)
摘要: 对管道振动的机理及减振措施作出了简要的分析;对特定机组的管道振动问题进行现场测试和计算分析,阐述了处理 措施和设备的运行效果。 关键词:往复压缩机;管道振动;减振 中图分类号:TH457 文献标志码:B
60 式中 i———激发频率的阶次
n— ——压缩机曲轴转速 m—— —压 缩 机 的 作 用 方 式 , 单 作 用 时 m =1,
双作用时m=2 工程上,把0.8~1.2 f的频率范围作为共振区。 当气柱固有频率落在机器的激发频率共振区范围 内时,会产生较大的压力脉动;当管系机械固有 频率落在激发频率或气柱固有频率的共振范围内 时,将发生结构共振。
气缸1 水平 10.205 入口 1 管道 10.881
表5 各测点振动速度
气缸 1 垂直 10.857 出口 1 管道 30.860
气缸 1 轴向 7.471 出口 2 管道 7.806
气缸 2 水平 10.610
缓冲罐 1
59.792
气缸 2 垂直 17.157
气缸 2 轴向 5.09
动的基础上,在一级出口管线上加装金属波纹管 膨胀节,通过膨胀节的补偿作用来改善压缩机的 管线振动情况。膨胀节为补偿因温度差与机械振 动引起的附加应力,而设置在容器壳体或管道上 的一种挠性结构,其通过波纹管的变形能够吸收 或转移位移,具有占用空间小、补偿量大、密封 性好等特点。改造完成后,这台压缩机的振动情 况 得 到 了 改 善 , 一 段 出 口 缓 冲 罐 处 振 值 由 59.792 mm/s降至7.517 mm/s,运行稳定,基本达到了柔性 改造的目的,见图4。
4.1 机组信息 C4203A为中石油某分公司炼油厂延迟焦化装
置往复压缩机。该机组于2010年5月进行大修,检 修期间更换了活塞杆等零部件。根据现场设备人 员反映的压缩机运行情况得知,在工艺并无调整 的前提下,机组开车后压缩机的一段出入口管道 及气缸振动呈缓慢上涨趋势,各段出入口压力、 温度均无异常。机组概貌图及参数见图1和表1。 4.2 相关计算
由于标准管件本身强度较高,压缩机主要工 艺管道的分支以及变径处应尽可能利用标准管件 实现。对于仪表管嘴或三通等不能使用标准管件 的地方,应适当采取补强措施,同样此类管系不 宜采用螺纹连接。由于支管较小,较易发生振动, 在支管处也应装有适当的支撑。放空、排凝、阀 门、仪表管道的安装应尽量靠近主管。 3.3 合理设置管道支架
利用ANSYS软件对管道建模如下: 压缩机介质为焦化富气,组分见表2。 压缩机出口压力0.7 MPa,根据各介质及体积 参数求得焦化富气密度为934.82 kg/m3。利用声单 元 (FLUID 3D acoustic 30) 对气体建模,温度100 ℃时声速约为391.9 m/s。根据压缩机及管道参数, 可计算管道气柱的固有频率。