工程力学习题答案第十三章王永跃

合集下载

工程力学习课后习题答案

工程力学习课后习题答案

W
B
(c)
上海理工大学 力学教研室
1
《工程力学》习题选解
A F
C B
(d)
A C
WB (e)
解:
A
E
FE
C
A
FA C FD
FA A
FD W DB
FB (a)
A F
FA C
B
WD
C
B
om FB .c (b)
W
B
FB (c)
daw A
.kh FA
C
FB
ww W wB
(d)
FB

(e)
案 1-3 试画出以下各题中 AB 梁的受力图。
(2) 列平衡方程:
∑ Fx = 0 FAC × cos 45o − FAB × cos 45o = 0
∑ Fy = 0 F − FAD cos 60o = 0
∑ Fz = 0 FAD sin 60o − FAC sin 45o − FAB sin 45o = 0
解得:
FAD = 2F = 1.2 kN
力。


2a

B
C
a
A
D
解:(1) 取整体 ABCD 为研究对象,受力分析如图,画封闭的力三角形:
F
B
C
F
A FA
(2) 由力三角形得
D
FD
FD FA
上海理工大学 力学教研室
6
《工程力学》习题选解
F = FD = FA = F = FD = FA BC AB AC 2 1 5
1
5
∴ FD = 2 F FA = 2 F = 1.12F
ቤተ መጻሕፍቲ ባይዱ

工程力学课后习题答案(静力学和材料力学)

工程力学课后习题答案(静力学和材料力学)

解:图(a):θ = arcsin 4 ,
5
∑ Fx = 0 ,
F sin(60° − θ ) − W sinθ = 0 , F = 1672 N
图(b):θ = 53.13° ,
∑ Fx = 0 , F cos(θ − 30°) − W sinθ = 0 , F = 217N
Fy
x
30D B

y
可推出图(b)中 FAB = 10FDB = 100F = 80 kN。
FED αD
FDB FD′ B
FCB
α
B
F 习题 1-12 解 1 图
F AB 习题 1-12 解 2 图
1—13 杆 AB 及其两端滚子的整体重心在 G 点,滚子搁置在倾斜的光滑刚性平面上,如
图所示。对于给定的θ 角,试求平衡时的 β 角。
=
25 kN 6

FR
= ( 5 , 10 )kN 23
作用线方程: y = 4 x + 4 3
讨论:本题由于已知数值的特殊性,实际 G 点与 E 点重合。
2-3三个小拖船拖着一条大船,如图所示。每根拖缆的拉力为5kN。试求:(1)作用于大 船上的合力的大小和方向。(2)当A船与大船轴线x的夹角θ为何值时,合力沿大船轴线方向。
投影: Fx1 = F cosα , Fy1 = F sinα
讨论: ϕ = 90°时,投影与分力的模相等;分力是矢量,投影是代数量。
图(b):
分力: Fx2 = (F cosα − F sin α tan ϕ )i2 ,
Fy2
=
F sinα sinϕ
j2
投影: Fx2 = F cosα ,
Fy2 = F cos(ϕ − α )

工程力学材料力学(北京科大东北大学版)第4版13章习题答案

工程力学材料力学(北京科大东北大学版)第4版13章习题答案

第一章参考答案1-1: 解:(a):N 1=0,N 2=N 3=P (b):N 1=N 2=2kN (c):N 1=P,N 2=2P,N 3= -P (d):N 1=-2P,N 2=P (e):N 1= -50N,N 2= -90N (f):N 1=0.896P,N 2=-0.732P 注(轴向拉伸为正,压缩为负)1-2: 解: σ1= 2118504P kN S d π==35.3Mpa σ2=2228504P kNS d π==30.4MPa∴σmax =35.3Mpa 1-3:解:下端螺孔截面:σ1=19020.065*0.045P S ==15.4Mpa上端单螺孔截面:σ2=2PS =8.72MPa上端双螺孔截面:σ3= 3PS =9.15Mpa∴σmax =15.4Mpa 1-4:解: 受力分析得: F 1*sin15=F 2*sin45 F 1*cos15=P+F 2*sin45∴σAB = 11F S =-47.7MPa σBC =22F S =103.5 MPa1-5:解: F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2FS =38.1MPa1-6:解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm (2) ∴AB l ∆=-0.02mm 1-7:解:AC AC AC LNL EA EA σε===1.59*104, CB CB CB LNL EA EA σε===6.36*1041-8:解: 1-9:解: 1-10:解:[][]max 59.5MPa σσ=<1-11:解:(1)当45oα=,[]11.2σσ=>强度不够(2)当60oα=,[]9.17σσ=< 强度够1-12:解:1-13:解:[]max 200213MPa MPa σ=< 1-14:解: 1.78, 1.26d cm d cm==拉杆链环1-15 解:22BC F Q ==70.7 kN查表得: 45*45*3 1-16解:(1)[]2401601.5ssn σσ===MPa(2)1-17 解:(1)'61544014.521542390F n F ===≈1-18 解:P=119kN 1-19 解:所以最大载荷 84kN 1-20 解: P=33.3 kN 1-21 解: 1-22 解: 1-23 解:第二章习题2-1 一螺栓连接如图所示,已知P=200 kN , =2 cm ,螺栓材料的许用切应力[τ]=80Mpa ,试求螺栓的直径。

工程力学第13章答案

工程力学第13章答案

习题13-1图(a)第13章 弹性杆件位移分析与刚度设计13-1 直径d = 36mm 的钢杆ABC 与铜杆CD 在C 处连接,杆受力如图所示。

若不考虑杆的自重,试:1.求C 、D 二截面的铅垂位移;2.令F P1 = 0,设AC 段长度为l 1,杆全长为l ,杆的总伸长EA lF l 2P =∆,写出E 的表达式。

解:(1)4π)(4π)(2sN 2sN d E l F d E l F u u BC BC ABAB A C ++=947.236π41020030001010020001015002333=⨯⨯⨯⨯⨯+⨯⨯+=mm286.536π101054250010100947.24π)(2332cN =⨯⨯⨯⨯⨯⨯+=+=d E l F u u CD CD C D mm(2)A E l l F A E l F l l l EAl F C D AC c 12P s 12P 2P )(-+=∆+∆=∆=, 令l l 1=ηc s 11E E E ηη-+=s c sc )1(E E E E E ηη-+=13-2长为 1.2m 、横截面面积为31010.1-⨯m 2的铝制筒放置在固定刚块上,直径为15.0mm 的钢杆BC 悬挂在铝筒顶端的刚性板上,若二者轴线重合、载荷作用线与轴线一致,且已知钢和铝的弹性模量分别为E s = 200GPa ,E a = 70GPa ,F P = 60kN 。

试求钢杆上C 处位移。

习题13-2图m(a)A E kN kNx l l l l解:铝筒:a a P A E l F u u ABB A -=-(其中u A= 0)935.0101010.11070102.1106063333=⨯⨯⨯⨯⨯⨯⨯=-B u mm钢杆:50.4154π10200101.21060935.02333s s P =⨯⨯⨯⨯⨯⨯+=+=A E l F u u BC B C mm13-3 对于图a 、b 、c 、d 所示的坐标系,小挠度微分方程可写成EI M x w /d /d 22-=形式有以下四种。

《工程力学》课后习题解答

《工程力学》课后习题解答

《工程力学》课后习题解答————————————————————————————————作者:————————————————————————————————日期:1-1试画出以下各题中圆柱或圆盘的受力图。

与其它物体接触处的摩擦力均略去。

解:1-2 试画出以下各题中AB 杆的受力图。

B A O W( BA O W F(O W(AA O W(BAO W (BFFB O W(B A O WF(F FAO W(F F O A O W(F FAO W (BF F AWC B(cD (AWC E B(AW CD B解:1-3 试画出以下各题中AB 梁的受力图。

ABF(C AB W(CA BW (C FFABF(C FF(FFF D AWCE B(bAWCD BFFF(cAWC BFFAWCB(aWABC D(cABF q D(bCCA BF WDA ’ D ’B ’(d ABF q(e解:1-4 试画出以下各题中指定物体的受力图。

(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。

解:A WCB(aF BF AABF qD(bF CF DWABC (cF CF BCA BF WD(d F BF AF DAB Fq(eF BxF By F AABF(aDCWAF (bDB(cFAB DD ’ABF(dCDW ABCD(eWABC(fAB F(a DCWF AxF AyF DAF (b BF BF A(cFABDF BF D1-5 试画出以下各题中指定物体的受力图。

(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。

解:(a)AB F(d CF B F CW AB CD(e F BF AWB (fF ABF BCA B W (a (c B CW 1W 2 FA F D A BCE F (dA F ABF AT F ABF BAF BTWAB P P (bW AB C C ’ DO G (e(b)(c)(d)(e)F CAPCF BB PCF ’CF AAB PPF B F NBCW 1W 2 F AF CxF CyF AxF AyB W 1F A F Ax F AyF Bx F ByB C W 2 F Cx F CyF ’Bx F ’By FA BC F C F BDC E F F E F ’C F F FDAB C E F F EF FF BB C D G F B F C WABCC ’ DO GF Oy F OxF C ’A B O W F BF Oy F Ox2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。

工程力学 13章、14章习题

工程力学  13章、14章习题

第十三章思考题:13-1 何谓失稳?何谓稳定平衡与不稳定平衡?何谓临界载荷?13-2何谓临界应力?欧拉公式的适用范围?13-3当压杆的临界应力大于材料的比例极限时,采用何种方式计算压杆的临界应力? 13-4如何提高压杆的稳定性?13-5压杆的稳定条件?习题:13-1图示托家中,CD 杆视为刚性杆,AB 杆直径d =40mm ,长度l =800mm ,材料为Q235.试求:(1)托架的临界载荷cr F ;(2)若已知F =60KN ,AB 杆规定的稳定安全系数2=st n ,试校核托架的稳定性。

题13-1图13-2某内燃机挺杆为空心圆截面,D =10mm ,d =7mm ,两端都是球形支座。

挺杆承受载荷F =1.4KN,材料为Q235钢,E =206GPa,杆长l =45.6cm ,取规定稳定安全系数st n =3,校核挺杆的稳定性。

13-3图示结构中,横梁AB 为T 形截面铸铁梁,[]MPa t 40=σ,[]MPa c 120=σ,4800cm I z =,mm y 501=,mm y 902=,O 为形心。

CD 杆为mm mm 5030⨯的矩 形截面,材料为Q235钢,若取3=st n ,m l 1=,试求此结构的许可载荷[]F 。

题13-3图13-4图示工字钢立柱,A 端自由、B 端固定,顶部轴向载荷F=200KN ,材料为 Q235钢,[]M P a 160=σ,在立柱中点处开有直径d =70mm 的圆孔,试选择工字钢的型号。

题13-4图13-5图示结构中,AB 为b =40mm, h =60mm 的矩形截面梁,AC 及CD 为d =40mm 的圆形截面杆,l =1m ,材料均为Q235钢,若取强度安全系数n =1.5,规定稳定安全系数st n =4,试求许可载荷[]F 。

题13-5图第十三章答案13-1 (1)KN F cr 109=(2)不满足稳定条件13-2 358.2〈=n 不满足稳定条件13-3 []KN F 4.6=13-4 25a 工字钢13-5 []KN F 5.7=第十四章思考题:14-1 何为交变应力?试举工程实例说明?14-2交变应力时材料发生破坏的原因是什么?疲劳断口有什么特点?14-3何为循环特征?在一次应力循环中的σm、σa、σmax、σmin之间有何关系?14-4何为材料的持久极限?简述通过实验方法测定材料的疲劳极限的过程?14-5每一种材料是否只有一个疲劳极限?由此得到什么体会?14-6影响构件疲劳极限的主要因素有哪些?如何提高构件的疲劳极限?14-7在对称交变循环应力、非对称交变循环应力及弯扭组合交变应力作用下,如何进行构件的疲劳强度计算?14-8线性累积损伤理论的基本假设是什么?复习题:14-1 试分别计算下图所示各交变应力的平均应力,应力幅度和循环特征r。

《工程力学》习题答案解析

《工程力学》习题答案解析

第1章静力学基础思考题1-1 说明下面两个式子的意义。

(1)F1=F2(2)F1=F2解:(1)式中F表示力矢量;因此F1=F2表示力F1和F2的大小相等,方向相同。

(2)式中F表示力的大小;因此F1=F2表示力F1和F2的大小相等。

1-2 能否说合力一定比分力大,为什么?解:不一定。

例如,大小相等、方向相反,且作用在同一直线上的两个力的合力为零。

1-3 二力平衡原理与作用和反作用定律有何异同?解:二力平衡原理是指:作用在刚体上的两个力,使刚体保持平衡的充要条件是:这两个力的大小相等,方向相反,且作用在同一直线上。

作用和反作用定律是指:任何两个物体间的作用,总是大小相等、方向相反、沿同一作用线分别作用在两个物体上。

可以看出,二力平衡原理描述的是,两个不同的力作用在同一个物体上的情况;作用和反作用定律描述的是两个不同物体之间相互作用的情况。

但它们有一个相同点,即上述两种情况下的一对力均满足大小相等、方向相反。

1-4 约束反力的方向和主动力的方向有无关系?解:约束反力的方向总是与约束限制物体位移的方向相反。

对于有些约束类型,如具有光滑接触表面的约束,其约束反力必然作用在接触点处,作用线沿着接触面的公法线方向,且指向被约束物体。

又如绳索类柔性约束,其约束反力只能是沿柔性体的轴线而背离被约束物体的拉力。

而对于圆柱铰链约束等,其约束反力的作用点位置(即接触点位置)、方向和大小由构件所受主动力确定。

因此,约束反力的方向是否和主动力的方向有......专业资料...仅供学习.参考.分享关,取决于约束类型。

1-5 什么叫二力构件?分析二力构件受力时与构件的形状有无关系?解:所谓二力构件,是指只有两点受力而处于平衡状态的构件,如下图所示。

二力构件受力时,二力大小相等、方向相反,且都沿两作用点的连线方向;与构件的形状无关。

1-6 图1-18所示物体的受力图是否正确?如有错误如何改正?(a)(b)图1-18解:图1-18(b)所示受力图错误,正确的受力图所图1-18(c)所示。

《工程力学》课后习题与答案全集

《工程力学》课后习题与答案全集

工程力学习题答案第一章静力学基础知识思考题:1. X ;2. V ;3. V ;4. V ;5. K 6. K 7. V ;8. V习题一1•根据三力汇交定理,画出下面各图中A 点的约束反力方向。

解:(a )杆AB 在 A B 、C 三处受力作用。

u由于力p和uuv R B 的作用线交于点Q 如图(a )所示,根据三力平衡汇交定理, 可以判断支座A 点的约束反力必沿 通过A 0两点的连线。

uP 3uvB 处受绳索作用的拉力uuv R B (b )同上。

由于力交于0点,根据三力平衡汇交定理, 可判断A 点的约束反力方向如 下图(b )所示。

的作用线 2.不计杆重,画出下列各图中 AB 杆的受力图。

uP 解:(a )取杆AB 和E 两处还受光滑接触面约束。

约束力UJVN E uuvuuN A 和 N E,在A的方向分别沿其接触表面的公法线, 外,在 并指向杆。

其中力uuvN A 与杆垂直,通过半圆槽的圆心 Q力 AB 杆受力图见下图(a )。

和C 对它作用的约束力 NBo------- r -------- —y —uuv N C铰销此两力的作用线必须通过(b )由于不计杆重,曲杆 BC 只在两端受 故曲杆BC 是二力构件或二力体,和 B 、C 两点的连线,且B O两点的连线。

见图(d).第二章力系的简化与平衡思考题:1. V ;2.>;3. X ;4. K 5. V ;6.$7.>;8. x ;9. V .1.平面力系由三个力和两个力偶组成, 它们的大小和作用位置如图示,长度单位为cm 求此力系向O 点简化的结果,并确定其合力位置。

uvR R 解:设该力系主矢为 R ,其在两坐标轴上的投影分别为Rx、y。

由合力投影定理有:。

4.梁AB 的支承和荷载如图, 小为多少?解:梁受力如图所示:2. 位置:d M o /R 25000.232 火箭沿与水平面成F ,100 0.6100 80 2000 0.5 580m 23.2cm,位于O 点的右侧。

工程力学第13章答案

工程力学第13章答案

工程力学(天津大学)第13章答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习 题 解 答13?1 木制构件中的单元体应力状态如图所示,其中所示的角度为木纹方向与铅垂线的夹角。

试求:(l )平行于木纹方向的切应力; (2)垂直于木纹方向的正应力。

解: 由图a 可知MPa0MPa,6.1,MPa 2.0=-=-=x y x τσσ(1)平行于木纹方向的切应力:则由公式可直接得到该斜截面上的应力MPa1.0)]15(2sin[26.12MPa 97.1)]15(2cos[26.1226.121515=-⨯+-=-=-⨯+-+--=--τσ (2)垂直于木纹方向的正应力MPa1.0)752sin(26.12MPa 527.1]752cos[26.1226.127575-=⨯+-=-=⨯+-+--=τσ 由图b 可知MPa 25.1,0,0-===x y x τσσ(1)平行于木纹方向的切应力:则由公式可直接得到该斜截面上的应力MPa08.1)]15(2cos[25.12cos MPa625.0)15(2sin 25.12sin 1515-=-⨯⨯-==-=-⨯=-=--αττατσx x(2)垂直于木纹方向的正应力MPa08.1)752cos(25.12cos MPa625.0)752sin(25.12sin 7575=⨯⨯-===⨯⨯=-=αττατσx x13?2 已知应力状态如图一所示(应力单位为MPa ),试用解析法计算图中指定截面的正应力与切应力解:(a )已知 MPa 20MPa,10,0MPa 3-===x y x τσσ则由公式可直接得到该斜截面上的应力习题13?1图(a)(b)MPa10)42cos(20)42sin(210302cos 2sin 2MPa40)42sin(20)42cos(21030210302sin 2cos 22=⨯⨯-⨯⨯-=+-==⨯⨯+⨯⨯-++=--++=ππατασστππατασσσσσααx y x x yx yx(b )已知 MPa20MPa,10,0MPa 3===x y x τσσ则:MPa21.21)5.222cos(20)5.222sin(210302cos 2sin 2MPa93.12)5.222sin(20)5.222cos(21030210302sin 2cos 22=⨯⨯+⨯⨯-=+-==⨯⨯-⨯⨯-++=--++=ατασστατασσσσσααx y x x yx y x (c )已知60MPa15MPa,20,MPa 10-====ατσσx y x则:60(2cos[15)]60(2sin[220102cos 2sin 2MPa49.30)]60(2sin[15)]60(2cos[22010220102sin 2cos 22-⨯⨯+-⨯⨯-=+-==-⨯⨯--⨯⨯-++=--++=ατασστατασσσσσααx yx x yx yx 13?3 已知应力状态如图所示(应力单位为MPa ),试用图解法(应力圆)计算图中指定截面的正应力与切应力。

工程力学习题 及最终答案

工程力学习题 及最终答案

——————————————工程力学习题——————————————第一章绪论思考题1) 现代力学有哪些重要的特征?2) 力是物体间的相互作用。

按其是否直接接触如何分类?试举例说明。

3) 工程静力学的基本研究内容和主线是什么?4) 试述工程力学研究问题的一般方法。

第二章刚体静力学基本概念与理论习题2-1 求图中作用在托架上的合力F R。

习题2-1图2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。

2-3 求图中汇交力系的合力F R 。

2-4 求图中力F 2的大小和其方向角α。

使 a )合力F R =1.5kN, 方向沿x 轴。

b)合力为零。

2习题2-2图(b)F 1F 1F 2习题2-3图(a )F 1习题2-4图2-5 二力作用如图,F 1=500N 。

为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和α角。

2-6 画出图中各物体的受力图。

F 12习题2-5图(b)(a)(c)(d)AC2-7 画出图中各物体的受力图。

(f)(g) 习题2-6图(b)(a )DC2-8 试计算图中各种情况下F 力对o 点之矩。

(d)习题2-7图习题2-8图 P(d)(c)(a ) A2-9 求图中力系的合力F R 及其作用位置。

习题2-9图( a )1F 3 ( b )F 3F 2( c) 1F /m( d )F 32-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。

2-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。

( a )q 1=600N/m2( b )q ( c )习题2-10图B习题2-11图第三章静力平衡问题习题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm,压力p=6N/mm2,若α=30︒, 求工件D所受到的夹紧力F D。

工程力学习题答案_第三章王永跃 (1)

工程力学习题答案_第三章王永跃 (1)

第三章 习 题D o n e (略)3-1 如图(a )所示,已知F 1=150N ,F 2=200N ,F 3=300N ,N 200='=F F 。

求力系向O 点简化的结果,并求力系合力的大小及其与原点O 的距离d 。

解:(1)将力系向O 点简化N6.43752300101200211505210121321R-=---=---=∑='F F F F F x xN6.16151300103200211505110321321R-=+--=+--=∑='F F F F F y y()()N F F F y x 5.4666.1616.437222R 2R R=-+-='+'='设主矢与x 轴所夹锐角为θ,则有61206.4376.161arctanarctanRR '︒=--=''=x y F F θ因为0R <'x F ,0R <'y F ,所以主矢F 'R在第三象限。

mN 44.2108.02002.0513001.02115008.02.0511.021)(31⋅=⨯-⨯+⨯=⨯-⨯+⨯==∑F F F M M O O F(a)(b) (c)将力系向O 点简化的结果如图(b )。

(2)因为主矢和主矩都不为零,所以此力系可以简化为一个合力如图(c ),合力的大小mm 96.4504596.05.46644.21N 5.466RR R ====='=m F M d F F o3-2重力坝的横截面形状如图(a )所示。

为了计算的方便,取坝的长度(垂直于图面)l =1m 。

已知混凝土的密度为2.4×103 kg/m 3,水的密度为1×103 kg/m 3,试求坝体的重力W 1,W 2和水压力P 的合力F R ,并计算F R 的作用线与x 轴交点的坐标x 。

解:(1)求坝体的重力W 1,W 2和水压力P 的大小kNN dy y dy y q P mN y dyy dy y q 5.9922105.9922245108.9)45(108.9)()45(108.9)45(8.91011)(3234534533=⨯=⨯⨯=⋅-⨯=⋅=-⨯=-⨯⨯⨯⨯⨯=⎰⎰(2)将坝体的重力W 1,W 2和水压力P 向O 点简化,则kN 5.9922R==∑='P F F x xkN 3057621168940821R-=--=--=∑='W W F F y y()kN 7.32145305765.9922222R 2R R=-+='+'='y x F F FkN N W kN N W 2116810211688.9104.2136)545(2194081094088.9104.218)545(332331=⨯=⨯⨯⨯⨯⨯+==⨯=⨯⨯⨯⨯⨯+=(a) (b) (c)设主矢与x 轴所夹锐角为θ,则有︒=-=''= 02.725.992230576arctanarctanRR x y F F θ因为0R >'x F ,0R <'y F ,所以主矢F 'R在第四象限,如图(b )。

《工程力学》第十三章精选习题及解答提示

《工程力学》第十三章精选习题及解答提示

《工程力学》第十三章精选习题及解答提示思 考 题13.1什么是牵连速度?是否动参考系中任何一点的速度就是牵连速度?答:牵连速度指的是某一瞬时动参考系上与动点相重合的那一点(牵连点)的速度。

因此动参考系中一般情况下只有牵连点的速度才是牵连速度。

特殊情况下:动参考系做平移运动时,任何一点的运动(速度,角速度)都与牵连点的运动相同。

13.2 某瞬时动点的绝对速度0=a v ,是否动点的相对速度0=r v 及牵连速度0=e v ?为什么? 答:不一定。

当动点的相对速度与牵连速度大小相等方向相反时,动点的绝对速度为零,但相对速度与牵连速度有可能不为零。

习 题13.1 试在图示机构中,选取动点、动参考系,并指出动点的绝对运动、相对运动、牵连运动(即牵连点的运动)。

解:(a )选择滑块上A 1点为动点,动参考系固结在导槽2上,定参考系为地面,则动点的绝对运动为绕O 点的圆周运动,相对运动为垂直方向的往返直线运动;牵连运动为水平方向的往返直线运动。

(b )选择摇杆1上A 1点为动点,动参考系固结在摇杆2上,定参考系为地面,则动点的绝对运动为水平方向的直线运动,相对运动为沿曲柄方向的往返直线运动;牵连运动为绕O 点的摆动。

(c )选择导杆1上A 1点为动点,动参考系固结在曲柄2上,定参考系为地面,则动点的绝对运动为垂直方向的直线运动,相对运动为沿曲柄方向的往返直线运动;牵连运动为绕O 1点的转动。

(d )选择圆环2上A 2点为动点,动参考系固结在摇杆1上,定参考系为地面,则动点的绝对运动为沿大圆环圆周运动,相对运动为沿摇杆方向的往返直线运动;牵连运动为绕O 1点的摆动。

13.2 车厢以速度1v 沿水平直线轨道行驶,雨滴M 以速度2v 铅垂落下,试求从车厢中观察到的雨滴速度的大小和方向。

解:以雨滴为动点,动参考系固定在车厢上,则(牵连运动为水平平移,动点绝对运动为垂直方向直线运动,如图13.2所示):2v v a =1v v e =从车厢中观察到的雨滴的速度为相对速度:222122v v v v v a e r +=+=2111tan tan v v v v a e --==α 方向图13.2所示13.3 三角块沿水平方向运动,其斜边与水平线成α角。

(完整版)工程力学课后习题答案

(完整版)工程力学课后习题答案

(完整版)工程力学课后习题答案一、选择题1. 在静力学中,刚体是指()A. 不可变形的物体B. 受力后不发生变形的物体C. 受力后变形很小的物体D. 受力后变形可以忽略的物体答案:D2. 平面汇交力系的平衡方程是()A. ΣF = 0B. ΣF_x = 0,ΣF_y = 0C. ΣM = 0D. ΣM_x = 0,ΣM_y = 0答案:B3. 在材料力学中,胡克定律适用于()A. 弹性体B. 塑性体C. 非线性体D. 理想弹性体答案:D二、填空题1. 静力学的基本公理有:______、______、______。

答案:力的平行四边形法则、二力平衡公理、力的可传递性公理2. 材料力学的任务是研究材料在______、______、______作用下的力学性能。

答案:外力、温度、湿度3. 轴向拉伸和压缩时,应力与应变的关系可表示为______。

答案:σ = Eε三、计算题1. 题目:一重10kg的物体,受到两个力的作用,如图所示。

求两个力的合力大小和方向。

答案:解:首先,将重力分解为水平和竖直两个方向的分力。

重力大小为F_g = mg = 10 × 9.8 = 98N。

水平方向分力为F_x = F_g × cos30° = 98 × 0.866 = 84.82N竖直方向分力为F_y = F_g × sin30° = 98 × 0.5 = 49N设合力大小为 F,合力方向与水平方向的夹角为α。

根据力的平行四边形法则,可得:F_x = F × cosαF_y = F × sinα联立以上两个方程,解得:F = √(F_x^2 + F_y^2) = √(84.82^2 + 49^2)≈ 95.74Nα = arctan(F_y / F_x) ≈ 28.96°所以,合力大小为 95.74N,方向与水平方向的夹角为28.96°。

工程力学课后习题答案(单辉祖著)

工程力学课后习题答案(单辉祖著)

工程力学课后习题答案(单辉祖著)工程力学课后习题答案(单辉祖著)在工程力学课程中,习题是提高学生运用理论知识解决实际问题的有效途径。

然而,在自学过程中,学生常常会遇到一些困难和疑惑。

为了帮助同学们更好地掌握工程力学的知识,我将为大家提供工程力学课后习题的答案和详细解析,希望能够对大家的学习有所帮助。

1. 第一章:静力学1.1 问题1:答案:根据平面力系统的平衡条件,可以将每个力分解为水平力和垂直力的分量,然后通过求和计算每个方向上的合力和力矩。

使用力学平衡方程,可以解得所需的未知量。

1.2 问题2:答案:该问题是一个平面力系统的静力平衡问题。

通过绘制自由体图,在各个方向上应用平衡条件,计算出所需的未知量。

2. 第二章:静力学2.1 问题1:答案:根据刚体受力平衡的条件,可以通过求和计算每个力的合力和力矩,并解得所需的未知量。

2.2 问题2:答案:该问题是一个刚体受力平衡的问题。

通过绘制刚体的自由体图,在各个方向上应用平衡条件,计算出所需的未知量。

3. 第三章:运动学3.1 问题1:答案:根据物体的运动规律,可以利用位置、速度和加速度之间的关系,通过计算得到所需的未知量。

3.2 问题2:答案:该问题是一个物体运动规律的问题。

根据已知条件,计算物体的加速度、速度和位置等参数。

4. 第四章:动力学4.1 问题1:答案:根据牛顿第二定律和动量定理,利用所给条件计算物体的加速度、速度和位置等参数。

4.2 问题2:答案:该问题是一个物体的动力学问题。

根据已知条件,应用动力学定律,计算所需的未知量。

5. 总结与展望通过解答上述习题,我们可以更深入地理解和应用工程力学的知识。

在解题过程中,我们不仅要熟练掌握理论知识,还需要运用数学工具进行计算和分析。

希望同学们在学习过程中能够勤思考、勤问问题,并结合实际进行练习,以提高解决实际问题的能力。

通过学习工程力学,在实际工程中可以更好地应用科学知识,并解决现实生活中的问题。

(完整版)工程力学课后详细答案

(完整版)工程力学课后详细答案

第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。

工程力学第四版课后习题答案

工程力学第四版课后习题答案

工程力学第四版课后习题答案工程力学第四版课后习题答案工程力学是一门研究物体静力学和动力学的学科,是工程学的基础课程之一。

通过学习工程力学,可以帮助我们理解和解决各种工程问题。

而课后习题则是巩固和应用所学知识的重要方式。

本文将为读者提供工程力学第四版课后习题的答案,希望能够帮助大家更好地掌握这门学科。

第一章:力的基本概念1. 一个物体的质量是5kg,重力加速度为9.8m/s²,求其重力。

答案:重力 = 质量× 重力加速度= 5kg × 9.8m/s² = 49N2. 一个力的大小为20N,方向与x轴夹角为30°,求其在x轴上的分力。

答案:在x轴上的分力 = 力的大小× cos(夹角) = 20N × cos(30°) ≈ 17.32N第二章:力的作用效果1. 一个物体受到两个力的作用,一个力的大小为10N,方向与x轴正向夹角为30°;另一个力的大小为15N,方向与x轴正向夹角为60°。

求物体所受合力的大小和方向。

答案:合力的x分力= 10N × cos(30°) + 15N × cos(60°) ≈ 17.32N合力的y分力= 10N × sin(30°) + 15N × sin(60°) ≈ 23.09N合力的大小= √(合力的x分力² + 合力的y分力²) ≈ 28.35N合力的方向 = arctan(合力的y分力 / 合力的x分力) ≈ 53.13°第三章:力的分解与合成1. 一个力的大小为30N,方向与x轴夹角为45°,求其在x轴和y轴上的分力。

答案:在x轴上的分力 = 力的大小× cos(夹角) = 30N × cos(45°) ≈ 21.21N在y轴上的分力 = 力的大小× sin(夹角) = 30N × sin(45°) ≈ 21.21N2. 一个物体受到两个力的作用,一个力的大小为20N,方向与x轴正向夹角为60°;另一个力的大小为15N,方向与x轴正向夹角为45°。

(完整版)工程力学习题解答(详解版)

(完整版)工程力学习题解答(详解版)

工程力学答案详解1-1试画出以下各题中圆柱或圆盘的受力图。

与其它物体接触处的摩擦力均略去。

解:1-2 试画出以下各题中AB 杆的受力图。

(a) B(b)(c)(d)A(e)A(a)(b) A(c)A(d)A(e)(c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。

(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。

(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。

解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b)B(c)BF D1-5 试画出以下各题中指定物体的受力图。

(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。

解:(a)(d) FC(e)WB (f)F FBC(c)(d)AT F BAF (b)(e)(b)(c)(d)(e)CAA C’CDDB2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。

解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。

2-3 水平力F 作用在刚架的B 点,如图所示。

如不计刚架重量,试求支座A 和D 处的约束力。

解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)F 1F FDF F AF D211 1.122D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章习 题 解 答13−1 木制构件中的单元体应力状态如图所示,其中所示的角度为木纹方向与铅垂线的夹角。

试求:(l )平行于木纹方向的切应力; (2)垂直于木纹方向的正应力。

解: 由图a 可知MPa0MPa,6.1,MPa 2.0=-=-=x y x τσσ(1)平行于木纹方向的切应力:则由公式可直接得到该斜截面上的应力MPa1.0)]15(2sin[26.12MPa 97.1)]15(2cos[26.1226.121515=-⨯+-=-=-⨯+-+--=--τσ (2)垂直于木纹方向的正应力MPa1.0)752sin(26.12MPa 527.1]752cos[26.1226.127575-=⨯+-=-=⨯+-+--=τσ 由图b 可知MPa 25.1,0,0-===x y x τσσ(1)平行于木纹方向的切应力:则由公式可直接得到该斜截面上的应力MPa08.1)]15(2cos[25.12cos MPa625.0)15(2sin 25.12sin 1515-=-⨯⨯-==-=-⨯=-=--αττατσx x(2)垂直于木纹方向的正应力MPa08.1)752cos(25.12cos MPa625.0)752sin(25.12sin 7575=⨯⨯-===⨯⨯=-=αττατσx x13−2 已知应力状态如图一所示(应力单位为MPa ),试用解析法计算图中指定截面的正应力与切应力解:(a )已知 MPa 20MPa,10,0MPa 3-===x y x τσσ则由公式可直接得到该斜截面上的应力MPa 习题13−1图(a)(b)MPa10)42cos(20)42sin(210302cos 2sin 2MPa40)42sin(20)42cos(21030210302sin 2cos 22=⨯⨯-⨯⨯-=+-==⨯⨯+⨯⨯-++=--++=ππατασστππατασσσσσααx y x x yx y x(b )已知 MPa20MPa,10,0MPa 3===x y x τσσ则:MPa21.21)5.222cos(20)5.222sin(210302cos 2sin 2MPa93.12)5.222sin(20)5.222cos(21030210302sin 2cos 22=⨯⨯+⨯⨯-=+-==⨯⨯-⨯⨯-++=--++=ατασστατασσσσσααx y x x yx y x (c )已知60MPa15MPa,20,MPa 10-====ατσσx y x则:60(2cos[15)]60(2sin[220102cos 2sin 2MPa49.30)]60(2sin[15)]60(2cos[22010220102sin 2cos 22-⨯⨯+-⨯⨯-=+-==-⨯⨯--⨯⨯-++=--++=ατασστατασσσσσααx yx x yx yx13−3 已知应力状态如图所示(应力单位为MPa ),试用图解法(应力圆)计算图中指定截面的正应力与切应力。

13−4 已知应力状态如习题13−2图所示(应力单位为MPa ),计算图示应力状态中的主应力及方位。

习题13−2图(c)(b)(a) (d)习题13−3图(a)(b)x y x 则由公式可直接得到该单元体的主应力主应力为:因为,主应力对应的方位角为。

13−5 试确定图示应力状态中的主应力及方位、最大切应力(按三向应力状态考虑)。

图中应力的单位为MPa 。

解:(a )已知 MPa 20MPa,20,0MPa 4===x y x τσσ则由公式可直接得到该单元体的主应力主应力为:因为,主应力对应的方位角为。

(a)习题13−5图(b) (c)x y x 则由公式可直接得到该单元体的主应力主应力为:因为,主应力对应的方位角为。

(c )已知 MPa 20MPa,03,20MPa ==-=x y x τσσ则由公式可直接得到该单元体的主应力主应力为:因为,主应力对应的方位角为。

13−6已知应力状态如图所示(应力单位为MPa ),试画三向应力圆,求最大切应力。

解:图a 为单向应力状态,图b 为纯剪切应力状态,图c 为平面应力状态,其应力圆(a)习题13−6图τ(b) (c)如图。

最大切应力分别为:13−7已知应力状态如图所示,试画三向应力圆,并求主应力、最大切应力(应力单位为MPa )。

解:图a 为三向主应力状态,,应力圆如图(a )。

图b 一方向为主应力,另两方向为纯剪切应力状态,则根据公式可直接得出另两主应力。

于是有其应力圆如图(b )。

13−8图示悬臂梁,承受荷载F = 10KN 作用,试求固定端截面上A 、B 、C 三点最大切应力值及作用面的方位。

解:固定端截面的弯矩,剪力。

截面a 点的应力:习题13−7图(a)(b)习题13−8图图a图b图c图a图b,其应力状态为单向应力状态,即,最大切应力作用面的方位为。

截面b点的应力:,其应力状态为平面应力状态,即主应力:。

求最大切应力作用面的方位先求主应力的方位,即截面c点的应力:,其应力状态为纯剪切应力状态,则,最大切应力作用面的方位为13−9 空心圆杆受力如图所示。

已知F=20kN,D=120mm,d = 80mm,在圆轴表面A点处测得与轴线成30°方向的线应变ε30°= 1.022×10-5,弹性模量E=210GPa,试求泊松比ν。

解:1、A点对应的横截面上只有正应力,即2、取A点的单元体3、由斜截面应力计算公式有习题13−9图3、根据广义胡克定律有则13−10 在其本身平面内承受荷载的铝平扳,巳知在板平面内的主应变为ε1 = 3.5×10-4,ε3 = -5.4×10-4 其方向如图13−10 所示。

铝的E =70 GPa ,ν=0.33,试求应力分量σx 、σy 及τx 。

解:由题意可知该应力状态为平面应力状态,根据广义胡克定律有代入得利用斜截面应力公式及得13−11 已知各向同性材料的一主应力单元体的σ1 = 30MPa ,σ2 = 15MPa ,σ3 =-5MPa ,材料的弹性模量E = 200GPa ,泊松比250.ν=。

试求该点得主应变。

解:直接应用广义胡克定律即可求出。

5-35-24-31108.125- 104.375 101.375)((1⨯=⨯=⨯=+=εεε;;)σσ-νσE2113−12 图示矩形板,承受正应力σx 与σy 作用,试求板厚的改变量Δδ与板件的体积改变ΔV 。

已知板件厚度δ=10mm ,宽度b = 800mm ,高度h = 600mm ,正应力σx = 80MPa ,σy = -40MPa ,材料为铝,弹性模量E =70GPa ,泊松比ν = 0.33。

解:由广义胡克定律即可求出3y 886.1)4080(33.010701-)]([1⨯=-⨯⨯=+=σσ-νσE x z z ε则 mm z 3410886.11010886.1--⨯=⨯⨯==∆δεδ体应变4310943.1)4080(107033.021)(2-1-⨯=-⨯⨯-=+=y x E σσνθ习题13−12图hσxσy习题13−10图板件的体积改变量3457.9321060080010943.1mm V V =⨯⨯⨯⨯==∆-θ13−13 如图所示,边长为20cm 均质材料的立方体,放入刚性凹座内。

顶部受轴向力F = 400kN 作用。

已知材料的E = 2.6×104MPa ,ν = 0.18。

试求下列两种情况下立方体中产生的应力。

(1)凹座的宽度正好是20cm ; (2)凹座的宽度均为20.001cm 。

解:(1)根据题意立方体两水平方向的变形为零,即0==y x εε为变形条件,由广义胡克定律得)]([10)]([1x y =+==+=σσ-νσEσσ-νσEz y y z x x εε上式解出z y x σννσσ-==1。

式中 MPa A Fz 100.20.2104003=⨯⨯==σ。

代入数据,得 MPa y x 195.2100.1810.18=⨯-==σσ(2)根据题意立方体两水平方向的变形为0.001cm ,应变5-105.0200.001⨯===y x εε,由广义胡克定律得 5-x 5-y 105.0)]([1105.0)]([1⨯=+=⨯=+=σσ-νσEσσ-νσEz y y z x x εε式中 MPa A Fz 100.20.2104003=⨯⨯==σ。

上式解出 E z y x σννσσ-⨯⨯==-1100.55。

代入数据,得MPay x 854.2106.2100.1810.18100.545=⨯⨯⨯-⨯⨯==-σσ13−14 已知如图所示受力圆轴的直径d =20mm ,若测得圆轴表面A 点处与轴线45°方向的线应变ε45°= 5.20×10-4,材料的弹性模量E = 200GPa ,泊松比ν = 0.3。

试求外力偶矩M e 。

解:A 点应力状态为纯剪切状态,故45°方向为主应力习题13−13图20cm 20.001cm方向,且有 -0 321τσστσ===,,。

由 43111020.5)1(1)(1-⨯=+=-=τννσσεEE 得MPa 80=τ。

对于扭转是A 点的切应力PeM W =τ,则m kN D M e ⋅=⨯⨯==6.125161080W 36P πτ13−15 一直径为25mm 的实心钢球承受静水压力,压强为14MPa 。

设钢球的E=210GPa ,ν=0.3。

试问其体积减少多少?解:根据题意有MPa -14321===σσσ体应变53321100.-8143100213.021-)(2-1-⨯=⨯⨯⨯⨯-=++=σσσνθE 体积改变量3350.654176100.8V mm d V =⨯⨯==∆-πθ13−16 试对图示三个单元体写出第一、二、三、四强度理论的相当应力值,设ν =0.3。

解:(a) 由题图可知MPa MPa MPa 30,10,20321-===σσσ则MPa MPa MPa MPa 83.45])()()[(21;503020;26)3010(3.020)(;20213232221r431r3321r21r1=-+-+-==+=-==--=+-===σσσσσσσσσσσσνσσσσ(b)已知MPa01τ0MPa,2σ,30MPa σx y x =-==习题13−16图(a)(b)(c)MPaMPa MPa 93.21,0,93.31321-===σσσ则MPa MPa MPa MPa 91.46])()()[(21;86.5393.2193.31;51.38)93.210(3.093.31)(;93.31213232221r431r3321r21r1=-+-+-==+=-==--=+-===σσσσσσσσσσσσνσσσσ (c )由题图可知MPa MPa MPa x 20,0,51xy y z -====τσσσ则MPa MPa MPa 20,51,20321-===σσσMPa MPa MPa MPa 75.37])()()[(21;402020;5.21)2015(3.020)(;20213232221r431r3321r21r1=-+-+-==+=-==--=+-===σσσσσσσσσσσσνσσσσ则由公式可直接得到该单元体的主应力13−17 有一铸铁制成的零件。

相关文档
最新文档