教会你的孩子解应用题的方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教会你的孩子解应用题的方法
一、三种关系
1、整体量=各部分量的和
这是数学中最基本的关系,这一关系从小学数学到大学数学都是最重要的,小学老师们如果能从小学一年级开始就培养学生这一意识,那么他们将来的数学一定不会差。
“整体量=各部分量的和”的变式是“部分量=整体量减去其他部分量”
2、整体量=一份量×份数
“整体量=一份量×份数”是“整体量=各部分量的和”当各部分都相等时的特例,这是归一问题的本质关系,在学习了乘法运算后就要有意培学生的这种意识。有两种变形,“一份量=整体量÷份数”,“份数=整体量÷一份量”。
3、“部分量=整体量×分率”有两种变形,“整体量=部分量÷分率”,“分率=部分量÷整体量”。
正是因为许多学生就是没有真正体会到这一关系,没有对这一关系变成自已意识中的一部分,才使他们怕做应用题,才使他们对数学失去了兴趣的。虽然到了高年级大多数学生能够解相应的问题,但是能从本质上理解的学生不多,因此必然要影响到初中高中剩至大学的学习,数学老师们千万要
加强这个意识的培养!
二、吃糖吃瓜子
从具体的、形象的、身边的东西为对象进行数学教学在哪个年级都是实用的,只要你对你所教的数学知识有一个整体的把握怎么教都行,比如上面我提到的`小学数学的三种关系就是小学数数的灵魂一定要把握好。
例1、左手抓3粒糖,右手抓6粒糖,两手共抓几粒糖?
例2、两手共抓几13粒糖,知道了左手抓5粒糖,问右手抓几粒糖?
例3、平均1分钟吃4粒瓜子,则5分钟吃几粒?
例4、3分钟吃15粒瓜子,平均1分钟吃几粒瓜子?
例5、3分钟吃15粒瓜子,问5分钟能吃几粒瓜子?
例6、小明3分钟吃15粒瓜子,有一堆瓜子,小明吃5分钟后还剩下20粒。问这堆瓜子原来有几粒?
例7、小明3分钟能吃15粒瓜子,小红5分钟能吃20粒瓜子,一堆瓜子,小明与小同时吃了4分钟恰好吃完,问这堆瓜子原来有几粒?
例8、小明3分钟能吃15粒瓜子,小红5分钟能吃20粒瓜子,一堆瓜子,小明与小同时吃了4分钟恰好吃完,剩下的部分小明还吃了2分钟,问这堆瓜子原来有几粒?
例9、一堆瓜子共60粒,小明先吃掉其中的1/3,接着小红吃掉剩下的1/5,最后还剩几粒?
例10、一堆瓜子共60粒,小明5分钟先吃掉其中的1/3,接着小红4分钟吃掉剩下的1/5,最后还剩下瓜子的由两人同时吃还要几分钟能吃完?
例11、一堆瓜子,小明5分钟先吃掉其中的1/3,接着小红4分钟吃掉剩下的1/5,最后还剩下32粒瓜子,问(1)这堆瓜子原来有几粒?(2)小明与小红共同吃3分钟能吃几粒瓜子?
用这此学生最常见并且常吃的东西出应用题学生是容易理解的。学会了吃糖吃瓜子就可以学会算术了,哪个年级都可以用吃糖吃瓜子出题。
三、鸡兔同笼
古老“鸡兔同笼”问题是小数数学中及好的问题从低年级到高年级可以如下出题:
学会了吃糖吃瓜子就可以学会算术了,哪个年级都可以用吃糖吃瓜子出题,古老“鸡兔同笼”问题是小数数学中及好的问题从低年级到高年级可以如下出题:
例1、一个笼子里有鸡4头,兔5头,鸡与兔共有与几条腿?(小学一年级)
例2、鸡和兔在一个笼子内,笼内有兔4头,鸡与兔共有20条腿,问鸡有几头?(小学一年级)
例3、鸡和兔在一个笼子内,鸡和兔共有10头,其中鸡腿12条,求鸡和兔分别有几头?(小学二年级)
条,求鸡和兔分别有几头?(小学二年级,可用罗列的方法,直到找出正确的答案)
例4、鸡和兔在一个笼子内,鸡和兔子共有头10个,腿26条,求鸡和兔分别有几头?
(小学三年级)
解1、先用可罗列的方法,直到找出正确的答案。
解2、设笼子内是10头鸡,则只有20条腿,于是要把一些鸡换成兔子,变成9头鸡,1头兔,则有22条腿,变成8头鸡,2头兔,则有24条腿,变成7头鸡,3头兔,则有26条腿,就找出正确的答案了。
解3、在解2的基础上进行概括,一头鸡换一头兔多出2条腿,我们知道26条腿比20条腿多6条腿,因此要把6÷2=3头鸡换成3头兔子。本题也可先假设笼子内是10只兔子。
解4、让每头鸡去掉1条腿,每头兔去掉2条腿,则26条腿就只剩下了26÷2=13条腿了,
再让这10头鸡兔每头都去掉1条腿,只剩下了13-10=3条腿了,这恰好是3头兔子的腿,因此有3头兔子,7头鸡
解5、请所有的兔子站起来,让所有的鸡都飞走,留下26-10×2=6条腿
留下6条腿是兔子的,得到3只兔子,7只鸡。
280只,求鸡和兔分别有几头?
在小学好好学过过鸡兔同笼的学生将来数学一定不差
上了初中可用方程解鸡兔同笼问题。
四、羊吃草问题:
例1、有一草地,假设每天都生长一样多的草,每只羊每天吃一样多的草。这片草地可供10只羊吃90天,或者可以供20只羊吃30天.那么35只羊可以吃多少天?
解:设一只羊1天1份草
则10只羊吃90天吃900份草
20只羊吃30天吃600份草
900份草减去600份草=300份草,就是60天草地自然长出的草,
由此可知,1天草地长出5份草,30天长草150份,原来草地有450份草。1天草地长出5份草,恰好够5头吃。而原来草地有450份草够30头羊吃15天。
答:35只羊可以吃15天.
例2、工厂的质量检验车间积压着部分产品待检,与此同时,流水线传送带按一定速度送来待检验产品,如果打开一部质检机,需半个小时可使待检产品全部通过质量检验,同时打开两部质检机,只需10分钟便可将待检产品全部通过质量检验.现因生产需要,在5分钟内将待检产品全部通过质量
检验,此时最少要打开几部质检机?
解:设一部质检机1分钟检验1份产品
则半个小时可使检验30份产品
两部质检机,只需10分钟可使检验20份产品
相减得:10份产品,这是20分钟流水线传送带送来的新产品
所以,传送带1分钟送来新产品0.5份,积压着部分产品有30-0.5×30=15(份)
5分钟之内要检验15+0.5×5=17.5
因此要用质检机17.5÷5=3.5(部)
答:至少要4部
五、容斥问题:
例1、在若干名歌舞演员中,有7人会唱歌,有6人会跳舞,有3人既会唱歌又跳舞,歌舞演员共有多少名解答:7+6=13,但是3个既会唱歌又跳舞,被算了两次,因此
歌舞演员有13-3=10(人)
例2、求不超过30的正整数中是2的倍数或3的倍数的数共有多少个。
解:求不超过30的正整数中
2的倍数有2、4、6、…、30共15个
3的倍数有3、6、9、…、30共10个