必修1第一章函数奇偶性练习题
高中数学必修一函数的性质奇偶性精选习题测试(打印版)(1)

奇偶性1.已知函数f (x )=ax 2+bx +c (a≠0)是偶函数,那么g (x )=ax3+bx 2+cx ( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( )A .31 a ,b =0 B .a =-1,b =0 C .a =1,b =0D .a =3,b =03.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2) D .y =x (|x |-2)4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( )A .-26B .-18C .-10D .105.函数1111)(22+++-++=x x x x x f 是( ) A .偶函数 B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-37.函数2122)(x x x f ---=的奇偶性为________(填奇函数或偶函数) .8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________.9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为_______.10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________.11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0,试证f (x )是偶函数.13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f(x )在R 上的表达式.14.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明.15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.函数的奇偶性练习参考答案1. 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A 2.解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A .3.解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2).∴,,)0()0()2()2()(<≥---=⎩⎨⎧x x x x x x x f 即f (x )=x (|x |-2)答案:D 4.解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26.答案:A 5.解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.解析:)(x ϕ、g (x )为奇函数,∴)()(2)(x bg x a x f +=-ϕ为奇函数.又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3.∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1.答案:C7.答案:奇函数 8.答案:0解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.解析:由f (x )是偶函数,g (x )是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f .答案:11)(2-=x x f 10.答案:0 11.答案:21<m 。
数学必修1 1.3.2《函数的奇偶性》同步讲练

高中数学必修1 编辑:吉红勇高中数学必修一《函数奇偶性》导学导练【知识要点】1.偶函数的定义:如果对于函数()y f x =的定义域内的任意一个x ,都有 ,那么称函数()y f x =是偶函数. 2.奇函数的定义:如果对于函数()y f x =的定义域内的任意一个x ,都有 ,那么称函数()y f x =是奇函数. 3.函数图像与单调性:奇函数的图像关于 对称; 偶函数的图像关于 对称. 4.函数奇偶性证明的步骤:(1)考察函数的定义域是否关于原点对称;(2)计算()f x -的解析式,并考察其与()f x 的解析式的关系; (3)下结论.【范例析考点】考点一.判断函数的奇偶性:例1:判断下列函数是否是奇函数或偶函数:(1)3()f x x x =+ (2)()31f x x =+ (4)()0f x =(3) 331)(2-+-=x x x f (5))1(11)1()(<-+-=x x xx x f【变式练习】1、下列函数是偶函数的是( ) A、B 、C 、f(x)=x 3+3x D 、f(x)=x 2+x+22、函数x xx f +-=11lg)(在区间]1,1[-上是( )A .奇函数又是增函数B .偶函数又是增函数C .奇函数又是减函数D .偶函数又是减函数3、函数f(x)=111122+++-++x x x x 的图象 ( )A 、关于x 轴对称B 、关于y 轴对称C 、关于原点对称D 、关于直线x=1对称考点二:根据函数奇偶性定义求一些特殊的函数值:例2:已知函数()y f x =是定义域为R 的奇函数,求(0)f 的值.【变式练习】1、函数f(x)=ax 7+6x 5+cx 3+dx+8,且f(-5)=-15,则f(5)= 2、已知8)(32005--+=xb ax x x f ,10)2(=-f ,则)2(f = .考点三:已知函数的奇偶性求参数值:例3:已知函数2()(2)(1)3f x m x m x =-+-+是偶函数,求实数m 的值.【变式练习】1、函数f(x)=21x b ax ++是定义在(-1,1)上的奇函数,且f(21)=52.(1)确定函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数; (3)解不等式f(t -1)+f(t)<0;考点四:利用函数奇偶性求函数解析式:例4:已知()f x 是定义域为R 的奇函数,当x>0时,f(x)=x|x-2|,求x<0时,f(x)的解析式.编辑:吉红勇【变式练习】1、定义在()1,1-上的奇函数()21x m f x x nx +=++,则常数m = ,n = ;2、已知f(x)是偶函数,g(x)是奇函数,它们的定义域均为{x|x ∈R且x ≠±1},若f(x)+g(x)=11-x ,则f(x)= ,g(x)=________ 3、设f(x)是R 上的奇函数,且x ∈(0,+∞)时,f(x)=x(1+),那么x ∈(-∞,0)时f(x)为( ) A 、-x(1+) B 、x(1+) C 、-x(1-) D 、x(1-)考点五:函数的单调性和奇偶性结合性质推导:例5:已知函数f (x )是定义在集合{x|x ∈R 且x ≠0}上的奇函数,且在区间(-∞,0)上是减函数,若ab <0,a+b ≥0,求证:f (a )+f (b )≤0。
高一数学必修一函数专题:奇偶性

高一数学必修一函数专题:奇偶性第一部分:常见的奇函数和偶函数常见奇函数:第一种:nx x f =)((n 为奇数)例:x x f =)(;x x x f 1)(1==-;3)(x x f =;331)(xx x f ==-。
第二种:n x x f =)((n 为奇数)例:331)(x x x f ==;515)(x x x f ==。
第三种:)sin()(x A x f ϖ=例:)2sin()(x x f =;)sin()(x x f --=;x x f sin 21)(=。
第四种:)tan()(x A x f ϖ=例:x x f tan )(=;)21tan(2)(x x f --=;x x f tan 3)(=。
常见偶函数:第一种:n x x f =)((n 为偶数)例:2)(x x f =;221)(x x x f ==-;4)(x x f =;441)(x x x f ==-。
第二种:c x f =)((c 为常数)例:2)(=x f ;21)(-=x f 。
第三种:)cos()(x A x f ϖ=例:)cos(3)(x x f -=;)2cos(21)(x x f =;)cos()(x x f -=。
第四种:|)(|)(x g x f =()(x g 为奇函数或者偶函数)例:|)sin(2|)(x x f -=;||)(4x x f =;|tan |)(x x f =;|)21cos(|)(x x f -=。
两种特殊的奇偶函数:第一种:)()()()(x f x g x g x f ⇒-+=是偶函数例:x x e e x f -+=)(,假设:)()()()()()(x f x g x g x f e x g e x g x x ⇒-+=⇒=-⇒=-是偶函数。
第二种:)()()()(x f x g x g x f ⇒--=是奇函数例:x x x f 313)(-=,假设:)()()()(313)(3)(x f x g x g x f x g x g xx x ⇒--=⇒==-⇒=-是奇函数。
高一数学 必修一函数的奇偶性

数学·必修1(人教A版)1.3.3函数的奇偶性►基础达标1.已知f(x)是定义在R上的奇函数,则f(0)的值为() A.-1B.0C.1D.无法确定解析:∵f(x)为R上的奇函数,∴f(-x)=-f(x),∴f(0)=-f(0),∴f(0)=0.答案:B2.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(-1)=()A.-2 B.0 C.1 D.2答案:A3.如果偶函数在区间[a,b]上有最大值,那么该函数在区间[-b,-a]上()A.有最大值B.有最小值C.没有最大值D.没有最小值解析:∵偶函数图象关于y轴对称,由偶函数在区间[a,b]上具有最大值,∴在区间[-b,-a]上有最大值.答案:A4.已知f(x)=ax3+bx+5,其中a,b为常数,若f(-7)=-7,则f(7)=()A.7 B.-7 C.12 D.17解析:∵f(-7)=-7,∴a(-7)3+b(-7)+5=-7,∴73a+7b=12.∴f(7)=73a+7b+5=12+5=17.答案:D5.若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的递减区间是________.解析:∵f(x)是偶函数,∴f(-x)=f(x),∴k-1=0,∴k=1,∴f(x)=-x2+3的递减区间为[0,+∞).答案:[0,+∞)►巩固提高6.设f(x)是R上的任意函数,则下列叙述正确的是()A.f(x)f(-x)是奇函数B.f(x)|f(-x)|是奇函数C .f (x )-f (-x )是偶函数D .f (x )+f (-x )是偶函数解析:取f (x )=x ,则f (x )f (-x )=-x 2是偶函数,A 错,f (x )|f (-x )|=x 2是偶函数,B 错;f (x )-f (-x )=2x 是奇函数,C 错.故选D.答案:D7.已知定义在R 上的偶函数f (x )的单调递减区间为[0,+∞),则使f (x )<f (2)成立的自变量取值范围是( )A .(-∞,2)B .(2,+∞)C .(-2,2)D .(-∞,-2)∪(2,+∞)解析:∵f (x )是偶函数且在[0,+∞)为减区间,示意图如下:由图示可知:f (x )<f (2)成立的自变量的取值范围是(-∞,-2)∪(2,+∞).答案:D8.设函数f (x )满足:①函数在(-∞,-1)上递减;②函数具有奇偶性;③函数有最小值.则f (x )可以是:____________答案:f (x )=x 2(答案不唯一)9.已知函数f (x )是定义在(-∞,+∞)上的奇函数,当x ∈(-∞,0)时,f (x )=x -x 2.求当x ∈(-∞,+∞)时,f (x )的表达式.解析:当x ∈(0,+∞)时,-x ∈(-∞,0),因为x ∈(-∞,0)时,f (x )=x -x 2,所以f (-x )=(-x )-(-x )2,因为f (x )是定义在(-∞,+∞)上的奇函数,所以f (-x )=-f (x ),所以f (x )=x +x 2.综上,x ∈(-∞,+∞)时,f (x )=⎩⎪⎨⎪⎧ x +x 2(x >0),0(x =0),x -x 2(x <0).10.已知函数f (x )=-x 3+3x .求证:(1)函数f(x)是奇函数;证明:显然f(x)的定义域是R.设任意x∈R,∵f(-x)=-(-x)3+3(-x)=-(-x3+3x)=-f(x),∴函数f(x)是奇函数.(2)函数f(x)在区间(-1,1)上是增函数.证明:在区间(-1,1)上任取x1,x2,且x1<x2.f(x2)-f(x1)=-(x2-x1)(x22+x2x1+x21)+3(x2-x1)=(x2-x1)(3-x22-x2x1-x21).因为-1<x1<x2<1,所以(x2-x1)>0,(3-x22-x2x1-x21)>0,所以f(x2)>f(x1).所以函数f(x)=-x3+3x在区间(-1,1)上是增函数.。
北师大版高中数学 必修第一册 2.4.1函数的奇偶性

所以f(-1)=f(1),
所以f(1)=-f(1),得f(1)=0.
答案:0
.
偶函数求值
角度二
例10.设f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2-x,
则f(1)等于(
A.-3
B.-1
)
C.1
D.3
解析:∵f(x)是定义在R上的偶函数,且当x≤0
解: −, − , , , ,
1
3
1.设f ( x)是偶函数,在区间 , 上是减(增)
函数,则f 在区间 −, − 上是增(减)函数.
2.设f ( x)是奇函数,在区间 , 上是减(增)
函数,则f 在区间 −, − 上是减(增)函数.
奇同偶异
角度三
利用对称性研究性质
一方面它影响着对解 析式的化简,另一方面,也是衡
量奇偶性的重要指标;学生最常犯的错误是一上来就
考虑f(-x)与f(x)关系;
2.能化简就化简,化简后再验证f(-x)与f(x)关系;
3.在判断f(x)与f(-x)的关系时,有时应用
定义的变通形式较方便,常见的变通形式:f
(-x)=±f(x)⇔f(-x)±f(x)=0⇔f(-x)
(3)函数的定义域为{-1,1},因为对定义域内
的每一个x,都有f(x)=0,所以f(-x)=f(x),故函数
f(x)为偶函数.又f(-x)=-f(x),故函数f(x)为奇函
数.即该函数既是奇函数又是偶函数.
经验
如果不把x的值代入,发现不了既奇又偶,感
觉是偶。说明结合定义域 化简函数很必要
例1.判断并证明下列函数的奇偶性:
例6.已知f(x)是定义在区间[-2,0)∪(0,2]上的奇函数,当x>0时,f(x)的图
(word完整版)高一必修一数学函数的奇偶性经典习题秒杀(2021年整理)

(word完整版)高一必修一数学函数的奇偶性经典习题秒杀(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高一必修一数学函数的奇偶性经典习题秒杀(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高一必修一数学函数的奇偶性经典习题秒杀(word版可编辑修改)的全部内容。
高一必修一数学函数的奇偶性经典习题秒杀例1.判断下列函数是否具有奇偶性 (1) x x f 2)(= (2)2)1()(-=x x f(3)0)(=x f(4)()1,0,1)(2∈-=x x x f (5)x x x f -+-=11)( (6)x x x x f 32)(35++=例2.已知函数xx x f 1)(-=⑴判断奇偶性⑵判断单调性⑶求函数的值域例3.若f (x )为奇函数,且当x>0时,f (x )=x |x-2| ,求x 〈0时f (x )的表达式[课内练习]1.奇函数y=f(x ),x ∈R 的图象必经过点 ( )A .(a,f(-a))B .(-a,f (a))C .(-a, -f (a ))D .(a, f (a1)) 2.对于定义在R 上的奇函数f (x )有 ( )A .f (x)+f(-x )<0B .f (x) -f (—x)<0C .f(x ) f (—x )≤0D .f (x ) f (-x)>03.已知8)(35-++=bx ax x x f 且f (-2)=0,那么f (2)等于4.奇函数f (x )在1≤x ≤4时解吸式为54)(2+-=x x x f ,则当-4≤x ≤—1时,f(x)最大值为5.f(x )=nx mx x ++23为奇函数,y=32++nx x 在(—∞,3)上为减函数,在(3,+∞)上为增函数,则m= n=[归纳反思]1.按奇偶性分类,函数可分为四类:(1)奇函数 (2)偶函数(3)既是奇函数又是偶函数 (4)既非奇函数又非偶函数2.在判断函数的奇偶性的基本步骤:(1)判断定义域是否关于原点对称(2)验证f(-x)=f (x )或f(—x)=—f(x)3.可以结合函数的图象来判断函数的奇偶性[巩固提高]1.已知函数f(x)在[-5,5]上是奇函数,且f (3) <f (1),则 ( )(A )f(-1) <f (-3) (B )f(0) >f (1)(C)f (-1) <f (1) (D )f (-3) >f(-5)2.下列函数中既非奇函数又非偶函数的是 ( )(A )y=x 1 (B )y=112+x (C )y=0 , x ∈[—1,2] (D )y=12+x x 3.设函数f (x)=211x ax ---是奇函数,则实数a 的值为 ( )(A ) -1 (B ) 0 (C ) 2 (D ) 14.如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是 ( )(A )增函数且最小值为—5 (B)增函数且最大值为—5(C )减函数且最大值为-5 (D )减函数且最小值为-55.如果二次函数y=ax 2+bx+c (a ≠0)是偶函数,则b=6.若函数f (x )是定义在R 上的奇函数,则 f (0)=7.已知函数f(x )在(0, +∞)上单调递增,且为偶函数,则f(—π),f (-31), f(3)之间的大小关系是8.f (x )为R 上的偶函数,在(0,+∞)上为减函数,则p= f(43-)与q= f(12+-a a。
高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单调性和奇偶性例1 (1)画出函数y= -X2+2 I x | +3的图像,并指出函数的单调区间.解:函数图像如下图所示,当X>0时,y = -X2+2X+3 = - (X-1 ) 2+4;当X V 0 时,y = -X2-2X+3 = - ( X+1) 2 +4 .在(4, -1 ]和[0, 1 ]上,函数是增函数:在[-1 , 0]和[1 , +〜上,函数是减函数.评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上.(2)已知函数f ( X)=X2+2 (a-1) X+2在区间(亠,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征.解:f ( X ) = X2+2 (a-1) X+2 =[X+ (a-1)]2- (a-1) 2+2,此二次函数的对称轴是X = 1-a.因为在区间(-a, 1-a]上f (x)是单调递减的,若使f (X)在(4, 4]上单调递减,对称轴X= 1-a必须在X=4的右侧或与其重合,即1-a>4 a<3.评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断下列函数的奇偶性:(1) f ( X)=-2 f ( X)=(X-1 ) •1 .解:(1) f (x)的定义域为R.因为f ( -X )=| -X+1 | - | -X-1 |=| X-1 | - | X+1 | = -f (X).所以f ( X )为奇函数.(2) f ( X)的定义域为{X | -1WV 1},不关于原点对称.所以 f ( X )既不是奇函数,也不是偶函数.评析用定义判断函数的奇偶性的步骤与方法如下:(1 )求函数的定义域,并考查定义域是否关于原点对称.(2)计算f (-x),并与f ( x)比较,判断f (-x) = f ( x)或f (-x) = -f (x)之一是否成立.f(-x)与-f (x)的关系并不明确时,可考查f (-x) ± (x)= 0是否成立,从而判断函数的奇偶性.例3已知函数f (x)= 1 +「.(1)判断f (x)的奇偶性.(2)确定f (x)在(-a, 0) 上是增函数还是减函数?在区间(0, +8)上呢?证明你的结论. 解:因为f (x)的定义域为R,又] 1f ( -x )= j 亠- J = j : ... = f (x),所以f (x)为偶函数.(2) f ( 乂)在(-8, 0) 上是增函数,由于f (x)为偶函数,所以f (x)在(0, +8)上为减函数. 其证明:取X i V X2V0,] ] £_彳(心-珂)(乃+可)f (x i) -f (X2)= J「- j = I—「= r — h .因为x1v X2v 0,所以X2-X1> 0, X什X2< 0 ,2 2x 1+1 > 0, x 2+1 > 0,得 f (X1) -f (X2)V 0,即 f (X1)V f (X2).所以f ( X )在(-8, 0) 上为增函数.评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反.1例4已知y=f (x)是奇函数,它在(0, +8)上是增函数,且 f (x)v 0,试问F (x)= 在(-8, 0)上是增函数还是减函数?证明你的结论.1 ]分析根据函数的增减性的定义,可以任取X1V X2< 0,进而判定F( X1)-F( X2)==「:• ' ■■-的正负•为此,需分别判定 f (X1)、f (X2)与f (X2)的正负,而这可以从已条件中推出.解:任取X1、X2^( -8, 0)且X1< X2,则有-X1 > -X2> 0 .T y = f (x)在(0, +8)上是增函数,且f (X)< 0,二 f (-x2)< f (-x1)< 0. ①又••• f (x)是奇函数,• •• f ( -X2)= -f (X2), f ( -X i)= -f (X i) ②由①、②得 f ( X2)> f (X i)> 0 •于是F (x i) -F (X2)= * '…一 >0,即F (X i)> F (X2),1所以F ( X)=在(-m, 0)上是减函数.评析本题最容易发生的错误,是受已知条件的影响,一开始就在( 0 , +8)内任取X i< X2,展开证明.这样就不能保证-X i , -X2,在(-8, 0)内的任意性而导致错误.避免错误的方法是:要明确证明的目标,有针对性地展开证明活动.ax例5讨论函数f (x)= 1-/ (a^0在区间(-1, 1)内的单调性.分析根据函数的单调性定义求解.解:设-1 < x1< x2< 1,贝Uf (X i) -f (X2)= • 一' 1 - _以帀―X?)(l+可巧)=''-'l'lT x1, x2€( -1, 1),且x1< x2 ,•- X1-X2< 0, 1+X1X2> 0,(1-x21)( 1-X22)> 0于是,当a> 0 时,f (X1)< f (X2);当a< 0 时,f (X1)> f (X2).故当a> 0时,函数在(-1, 1)上是增函数;当a< 0时,函数在(-1, 1) 上为减函数.评析根据定义讨论(或证明)函数的单调性的一般步骤是:(1 )设x1、X2是给定区间内任意两个值,且X1< X2;(2)作差f (X1) -f (X2),并将此差式变形;(3)判断f (X1) -f (X2)的正负,从而确定函数的单调性.例6求证:f (x) = x+ .■. ( k> 0)在区间(0, k]上单调递减.解:设0 < X1 < X2 < k 贝Uf (X1) -f (X2)= X<|+ -X2---■ 0 V x1< X2w k2二X i-X2< 0, 0< X i X2< k ,••• f ( X1) -f (x2)> 0••• f ( X1)> f ( X2),• f ( X) = X+一中(0, k]上是减函数.评析函数f ( X)在给定区间上的单调性反映了函数 f (X)在区间上函数值的变化趋势,是函数在区间上的整体性质.因此,若要证明 f (X)在]a,b]上是增函数(减函数),就必须证明对于区间[a,b]上任意两点X1 , X2,当X1< X2 时,都有不等式 f ( X1)< f ( X2)( f(X1)> f ( X2))类似可以证明:函数f (X)= X+ 二(k > 0)在区间[k, +8]上是增函数.例7判断函数f (x)= 工-'二的奇偶性.分析确定函数的定义域后可脱去绝对值符号.)—2 01^ - 2| + x 0解:由II 1得函数的定义域为]-1, 1].这时,丨X-2 | = 2-X.• f ( X)= - ,• f (-X) = - = - = f (X)是偶函数,不是奇函数.且注意到f ( X)不恒为零,从而可知,f ( X )评析由于函数解析式中的绝对值使得所给函数不像具有奇偶性,若不作深入思考,便会作出其非奇非偶的判断.但隐含条件(定义域)被揭示之后,函数的奇偶性就非常明显了.这样看来,解题中先确定函数的定义域不仅可以避免错误,而且有时还可以避开讨论,简化解题过程.函数奇偶性练习、选择题1 .已知函数f (X) = ax2+ bx+ c (a^ 0)是偶函数,那么g (X) = ax3+ bx2+ ex ( )已知函数f (x ) = ax + bx + 3a + b 是偶函数,且其定义域为]a — 1, 2a ],则(2义在R 上的奇函数,当x >0时,f (x ) = x — 2x ,则f (x )在R 上的表达式是()二、填空题X —2 —2-「的奇偶性为,1-x 2(填奇函数或偶函数)2若y =( m — 1) x + 2mx+ 3是偶函数,则m =1已知f (x )是偶函数,g (X )是奇函数,若 f(x) ■ g (x):X 一 1 则f (x )的解析式为 10•已知函数f( x )为偶函数,且其图象与x 轴有四个交点,贝y 方程f( x )= 0的所有实根之和为 三、解答题 11.设定义在[—2, 2]上的偶函数 f (x )在区间[0, 2]上单调递减,若f (1 — n ) v f (m ),求实 数m 的取值范围. 12.已知函数f (x )满足f (x + y ) + f (x — y )= 2f (x ) • f (y ) (x R, y R ),且 f (0)工 0, 试证f (x )是偶函数. 13.已知函数f (x )是奇函数,且当x >0时,f (x )= x 3 + 2x 2— 1,求f (x )在R 上的表达式.A .奇函数B .偶函数 C.既奇又偶函数D.非奇非偶函数A . a — — , b = 03B. a =— 1, b = oC. a = 1, b = 0D. a = 3, b = 0已知f (x )是定.A . y = x (x — 2)B . y = x (| x |— 1)C. y =1 x | (x — 2)D. y = x (| x | — 2)已知 f (x )= x 5 + ax 3 + bx — 8,且 f (— 2)= 10, 那么f (2)等于( A . — 26B.— 18C.— 10D. 10函数f (x) a Y —x :—x 二1 是 (J x 2A .偶函数B.奇函数C.非奇非偶函数D.既是奇函数又是偶函数 若:(x) , g (x )都是奇函数, f (x^ bg (x) 2 在(0,+m )上有最大值 5,则 f (x ) 在(—a,0)上有(A. 最小值—5B .最大值—5 C.最小值—1 D.最大值—3函数f (x)二14. f (x )是定义在(—s,— 5: : 5,+^)上的奇函数,且试判断f (x )在(— s,— 5]上的单调性,并用定义给予证明.15.设函数y =f (x ) (R 且x 丰0)对任意非零实数 求证f (x )是偶函数.函数的奇偶性练习参考答案1. 解析:f (x ) = ax 2 + bx + c 为偶函数,::(x)二x 为奇函数,••• g (x )= ax 3 + bx 2 + cx = f (x ) • :(x)满足奇函数的条件.答案:A2 .解析:由f (x ) = ax 2 + bx + 3a + b 为偶函数,得b = 0.1 又定乂域为]a — 1, 2a ], • a — 1 = 2a ,「・ a =—.故选 A .33.解析:由x > 0时,f (x ) = x 2— 2x , f (x )为奇函数,2 2•••当 X V 0 时,f (x )=— f (— x )=—( x + 2x )=— x — 2x = x (— x — 2).f (x )在]5,+s)上单调递减,X i 、X 2 满足 f ( x i • X 2)= f ( x i )+ f ( X 2),(X—O),即f (x)= x( |x| - 2)(X 0),答案:D4.解析:f (x) + 8=x5+ ax3+ bx 为奇函数,f (- 2)+ 8= 18,「.f (2)+ 8=- 18,「. f (2)=- 26. 答案:A5•解析:此题直接证明较烦,可用等价形式 f ( —x)+ f (x)= 0. 答案:B6. 解析:(x)、g (x)为奇函数,••• f (x) - 2 二a「(x) • bg (x)为奇函数.又f (x)在(0,+s)上有最大值5, • f (x)—2有最大值3.• f (x)—2在(—a, 0) 上有最小值—3, • f (x)在(—a, 0) 上有最小值—1 . 答案:C7. 答案:奇函数8. 答案:0解析:因为函数y =( m—1) x2+ 2mx^ 3为偶函数,2 2••• f ( —x)= f (x),即(m—1) (—x) + 2m(—x)+ 3 =( m-1) x + 2m好3,整理,得m= 0.9. 解析:由f (x)是偶函数,g (x)是奇函数,可得1丄1立f(x) g(x)=X - 1F 八 _ 八—联1 \人)5入丿“,_ x T1111 f (X):(.- )22x -1_ X - 1X -1答案:f (X)二1210.答案:0 11.答案:1m -x -1 212. 证明:令x = y= 0,有f (0)+ f (0)= 2f (0) • f (0),又f (0)工0,二可证f (0)= 1.令x=0,•-f (y) + f ( —y)= 2f (0) • f (y)二f (—y) = f (y),故f (x)为偶函数.13. 解析:本题主要是培养学生理解概念的能力.f (x)= x3+ 2x2—1.因f (x)为奇函数,• f ( 0)= 0.当X V0 时,一x>0, f (—x) = (—x) 3+ 2 (—x) 2— 1 = —x3+ 2x2—1,• f (x)= x3—2x2+ 1.'X3+2X2-1 (x>0),因此,f(x)=20 (x = 0),X3一2x2 1 (x :: 0).点评:本题主要考查学生对奇函数概念的理解及应用能力.14. 解析:任取X1<X2W —5,则一X1>—X2》一5.因f (X )在[5 ,+a]上单调递减,所以 f (—X1)V f (—X2)= f (X1)V—f (X2)= f ( X1) f(x)”2)> f ( X2),即单调减函数.精品文档点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15. 解析:由X1, X2E R且不为0的任意性,令X1 = X2 = 1代入可证,f (1 )= 2f (1), ••• f (1)= 0.又令X1 = X2=—1 ,•f :—1 x(—1) = 2f (1 )= 0,•(—1)= 0.又令X1 = —1, X2= X,•f (—X) = f (—1) + f (X)= 0+ f (X)= f (X),即f (x)为偶函数.点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,X1 = X2= 1, X1 X2= 0等,然后再结合具体题目要求构造出适合结论特征的式子即可. X2=—1 或X=。
高一数学必修一,函数的奇偶性题型归纳

函数的奇偶性 题型归纳题型一、函数奇偶性的概念➢ 函数奇偶性的定义:设函数D x x f y ∈=,)(,(D 为关于原点对称的区间):①如果对于任意的D x ∈,都有)()(x f x f -=,则称)(x f y =为偶函数;②如果对于任意的D x ∈,都有)()(x f x f --=,则称)(x f y =为奇函数。
➢ 函数奇偶性的性质:①函数具有奇偶性的必要条件是其定义域关于原点对称。
②奇偶函数的图像:奇函数关于原点对称;偶函数关于y 轴对称。
③奇函数)(x f y =在0=x 处有意义,则必有0)0(=f 。
④偶函数)(x f y =必满足|)(|)(x f x f =。
1. 若)(x f 是奇函数,则其图象关于( )【答案:C 】A .x 轴对称B .y 轴对称C .原点对称D .直线x y =对称2. 若函数))((R x x f y ∈=是奇函数,则下列坐标表示的点一定在函数)(x f y =图象上的是( )【答案:C 】A .))(,(a f a -B .))(,(a f a --C .))(,(a f a ---D .))(,(a f a -3. 下列说法错误的是( )【答案:D 】A.奇函数的图像关于原点对称B.偶函数的图像关于y 轴对称C.定义在R 上的奇函数()x f y =满足()00=fD.定义在R 上的偶函数()x f y =满足()00=f题型二、判断函数的奇偶性➢ 定义法:➢ 运算函数奇偶性的规律:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×÷奇=偶;奇×÷偶=奇;偶×÷偶=偶。
➢ 复合函数奇偶性判断:内偶则偶,两奇为奇。
➢ 抽象函数奇偶性:赋值法。
1、定义法:1. 下列函数中为偶函数的是( )【答案:C 】A .x y =B .x y =C .2x y =D .13+=x y2. 判断函数的奇偶性 ①)3,1(,)(2-∈=x x x f ②2)(x x f -=;③25)(+=x x f ; ④)1)(1()(-+=x x x f .⑤()xx x f 1-= ⑥()13224+-=x x x f 【答案:】(1)非奇非偶函数.(2)偶函数.(3)非奇非偶函数.(4)偶函数.(5)奇函数(6)偶函数.2、奇偶函数的四则运算法则:3. 下列函数为偶函数的是( )【答案:D 】A.()x x x f +=B.()xx x f 12+= C.()x x x f +=2 D.()2x x x f =4. 判断函数的奇偶性①53)(x x x x f ++=; ②1y 2+=x x【答案:(1)奇函数. (2)奇函数. 】5. 已知函数)(x f y =是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号)。
必修1函数的性质奇偶

1 函数奇偶性作业1:已知2()3f x ax bx a b =+++是偶函数,定义域为[1,2]a a -.则a = ,b =2.下列函数中,在其定义域内既是奇函数又是减函数的是A. R x x y ∈-=,3B. R x x y ∈=,sinC. R x x y ∈=,D. R x xy ∈=,)21(3.函数()y f x =是R 上的偶函数,且在(,0]-∞上是增函数,若()(2)f a f ≤,则实数a 的取值范围是( )A.2a ≤ B.2a ≥- C.22a -≤≤ D.2a ≤-或2a ≥4.设函数(1)()()x x a f x x++=为奇函数,则a = . 5已知函数()y f x =为奇函数,若(3)(2)1f f -=,则(2)(3)f f ---= .6.下列函数为偶函数的是 ( )A .y=3xB .y=xC .y=312+x D .y=x 3 7.已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,a 的取值范围是( )A.(22,3)B.(3,10)C.(22,4)D.(-2,3) 8.若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________.9.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是 ( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23 D.⎣⎡⎭⎫12,23 10.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3) D .f (3)<f (1)<f (-2)11.(2010·温州一模)设奇函数f (x )的定义域为[-5,5],当x ∈[0,5]时,函数y =f (x )的图象如图所示 则使函数值y <0的x 的取值集合为________.12.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称13.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是14已知函数()x f 是奇函数,且定义域为R ,若0>x 时,()2+=x x f ,则函数()x f 的解析式为( )15.已知()x f 的定义域在()2,2-上的奇函数,且定义域上递减,若()()02322<-+-a f a f 成立,求实数a 的取值范围.。
高中数学必修一函数的性质奇偶性精选习题测试(打印版)

VIP 免费 欢迎下载(X )在(— a, — 5]上的单调性,并用定义给予证明.15.设函数y = f (x ) (R 且x z 0)对任意非零实数 X 1、X 2满足f 求证f (x )是偶函数.函数的奇偶性练习参考答案1. 解析:f (x )= ax 2+ bx + c 为偶函数, (x) x 为奇函数, 奇函数的条件.2a ], • a — 1 = 2a ,「. a =丄.故选 A .33.解析: 由 x >0 时,f (x )= x — 2x , f (x )为奇函数,••当 x v 0 时,f (x )=— f ( — x )=—( x + 2x ) =2X (X —2) (X 畠 0),—x — 2x = x (— x — 2). • f(x)=丿即 f (x )= x (|x | — 2)答案:D 4.解析:f (x )、x(—X-2)(x£0),53+ 8= x + ax + bx 为奇函数,f (— 2)+ 8 = 18,二 f (2)+ 8=— 18,二 f (2)=— 26.答案:A 5.解析:此 题直接证明较烦,可用等价形式f (— x )+ f (x )= 0.答案:B 6 .解析:「(X )、g (x )为奇函数,•f(x) - 2二a (x) bg(x)为奇函数.又f (X )在(0,+a )上有最大值 5, • f (X )— 2有最大值3.二 f (X ) — 2在(—a, 0)上有最小值—3, • f ( X )在(—a, 0)上有最小值—1.答案:C7.答案:奇函数8 .答案:0 解析:因为函数 y =( m- 1) x 2+ 2mx+ 3 为偶函数,• f (— x )= f (x ),即(m- 1) ( — x ) 2+ 2m (— x )2 1 + 3= (m- 1)x + 2m )+ 3,整理,得m= 0.9.解析:由f(x)是偶函数,g(x)是奇函数,可得f(x) - g(x) =_ x _ 1奇偶性 2 3 21.已知函数 f (x )= ax + bx + c (a z 0)是偶函数,那么 g (x )= ax + bx + cx ( D.非奇非偶函数 a — 1, 2a ],贝卩( A 奇函数 B.偶函数 C.既奇又偶函数22.已知函数f (x )= ax + bx + 3a + b 是偶函数,且其定义域为]A a , b = 0 3 (x )是定义在 y = x (x — 2) 5 3B. a =— 1, b = 0C. a = 1, b = 0D. a = 3, b = 0 3. 已知f A . 4. 已知f R 上的奇函数,当 x > 0时, B . y = x (| x | — 1) A — 26 (x )= x + ax + bx — 8,且 f (— 2)= 10, C.— 10 5.函数 f (x)- B .— 18 1 x 2 x - 1 曰 2是( .1 X 2 X 1 B .奇函数 f (x ) = x 2— 2x , y = 1 x | f (2)等于 10 C. 那么 D. 则f (x )在R 上的表达式是( )(x — 2) D. y = x (| x |— 2) ( )C.非奇非偶函数 既是奇函数又是偶函数 A 偶函数 6.若(x) , g ( X )都是奇函数,f (x) = • bg(x) 2 在(0,+a)上有最大值 5,则 f ( X )在(— a, 0) 上有( ) A .最小值—5 一 X —2—2 一" f 的奇偶性为— 心-X 2若y =( m-1) x 2+ 2m 灶3是偶函数,则B.最大值—5C.最小值—1D. D.最大值—3 7. 8. 9. 函数f (x)= (填奇函数或偶函数) m = 已知f (x )是偶函数,g (x )是奇函数, 10. 已知函数f (x )为偶函数,且其图象与 11. 设定义在[—2, 2]上的偶函数 值范围. 12. 已知函数f (x )满足f (x + y ) 是偶函数. 13. 已知函数f (x )是奇函数,且当 14. f (x )是定义在(— a,— 1 若 f(x) g(xp X - 1 x 轴有四个交点,则方程 f ( X ) 在区间[0, 2]上单调递减,若 (x )的解析式为=0的所有实根之和为 ____________ .f (1 — m ) v f (m )求实数m 的取+ f (x — y )= 2f (x ) • f (y ) (R 疗 R),且 f (0)M0,试证 f(x )x > 0时,f ( x )= x 3+ 2x 2— 1,求f (x )在R 上的表达式. 5::5,+^)上的奇函数,且(x )在]5,+^)上单调递减,试判断 f(X i • X 2)= f ( x i )+ f ( X 2),g (x ) = ax 3 + bx 2+ cx = f (x ) •:(x)满足答案:A 2.解析:由f (x )= ax 2+ bx + 3a + b 为偶函数,得 b = 0.又定义域为[a — 1,联立f(x) g(x)二£&)=丄(」1) J .答案:f(x) J 10 .答案:0 2x — 1 —x — 1 x -1 x - 111.答案:m 芝1 12.证明:令x = y = 0,有f ( 0)+ f (0)= 2f (0) • f (0),又f (0)z 0,「.可证f (0) 2。
高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)首先,画出函数y=-x^2+2|x|+3的图像,然后确定函数的单调区间。
当x≥0时,y=-x^2+2x+3=-(x-1)+4;当x<0时,y=-x^2-2x+3=-(x+1)^2+4.因此,在区间(-∞,-1]和[1,+∞)上,函数是增函数;在[-1,1]上,函数是减函数。
需要注意的是,函数单调性是针对某个区间而言的,对于单独一个点没有增减变化,因此对于区间端点只要函数有意义,都可以带上。
接下来,考虑函数f(x)=x^2+2(a-1)x+2在区间(-∞,4]上是减函数的情况下,求实数a的取值范围。
首先,要充分运用函数的单调性,以对称轴为界线这一特征。
将f(x)=x^2+2(a-1)x+2写成[x+(a-1)]^2-(a-1)^2+2的形式,可以发现其对称轴是x=1-a。
因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.最后,判断函数f(x)=-2的奇偶性和函数f(x)=(x-1)的奇偶性。
对于第一个函数,其定义域为R,因为f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-f(x),因此f(x)为奇函数。
对于第二个函数,其定义域为{x|-1≤x<1},不关于原点对称,因此f (x)既不是奇函数,也不是偶函数。
判断函数的奇偶性时,需要先求出函数的定义域,并考查定义域是否关于原点对称。
然后计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f (-x)=-f(x)之一是否成立。
如果f(-x)与-f(x)的关系不明确,可以考查f(-x)±f(x)是否成立,从而判断函数的奇偶性。
最后,对于函数f(x)=|x|/x,需要判断其奇偶性并确定其在(-∞,+∞)上是增函数还是减函数。
由于f(x)的定义域为R,且f(-x)=f(x),因此f(x)为偶函数。
高中数学《函数的奇偶性》同步练习3 新人教B版必修1

函数的奇偶性1、下列说法中不正确的是 ______A 图象关于原点成中心对称的函数一定是奇函数B 奇函数的图象一定经过原点C 偶函数的图象若不经过原点,则它与x 轴交点的个数一定是偶数D 图象关于y 轴呈轴对称的函数一定是偶函数2、设f(x)是R 上的偶函数 ,且在[ 0 ,+∞]上单调增 ,则 f(-2) ,f(-π) ,f(3) 的大小顺序是________3、已知五个函数:①xy 1=;②12+=x y ;③2)1(-=x y ;④2)()(x x f =;⑤ y=1(x∈R).其中奇函数的个数为______4、已知函数1)(2++=bx x x f 为R 上的偶函数,b =_____5、f(x) 是定义在R 上的奇函数 ,则f(0)=6、在直角坐标系中,函数y=x 2-3|x|+1的图象关于____对称7、判断下列函数的奇偶性 (1 ) f(x)= x 3+5x (2) 122)(2++=x x x x f(3 ) x x x f 2)(3-= (4) ⎩⎨⎧+-=)1()1()(x x x x x f .0,0<≥x x8、已知函数 f(x) =x 2-2x -1,试判断函数f(x)的奇偶性,并作出函数的图象参考答案函数的奇偶性(1)1、B2、f(-π)>f(3)>f(-2)3、14、05、06、y 轴7、(1)奇函数 (2)非奇非偶函数 (3)奇函数 (4)奇函数8、解:定义域为R对于任意x∈R,都有f(-x)=(-x)2-2|-x|-1=x 2-2|x|-1=f(x)所以,y=f(x)是偶函数图象如下:x。
高中数学必修1第一章基础训练题(有详解)

高中数学必修1第一章基础训练题(有详解) 一、单选题 1.已知定义在R 上的奇函数()f x 和偶函数()g x ,则( ) A .()()f x g x +是奇函数 B .()()f x g x ⋅是奇函数 C .()()f x g x ⋅是偶函数 D .()()f x g x ⋅是偶函数 2.已知奇函数()f x 定义在(1,1)-上,且对任意1212,(1,1)()x x x x ∈-≠都有2121()()0f x f x x x -<-成立,若(21)(32)0f x f x -+->成立,则x 的取值范围为( )A .(0,1)B .1(,1)3C .13(,)35D .3(0,5 3.已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( ) A .[]2,0- B .(],8∞-- C .[)2,∞+ D .(],0∞- 4.已知函数是定义在上的奇函数,对于任意的,且,有.若,则的解集为( ) A . B . C . D . 5.设奇函数在上为单调递减函数,且,则不等式的解集为 ( ) A . B . C . D . 6.定义在的偶函数,当时,,则的解集为( ) A . B . C . D . 7.设奇函数在上是减函数,且,若不等式对所有的都成立,则的取值范围是( ) A . B . C . D .8.函数,则下列结论错误的是( ) A .是偶函数 B .的值域是 C .方程的解只有 D .方程的解只有 二、填空题 9.给定映射22f a b a b a b →+-:(,)(,),则在映射f 下,31(,)的原象是______.10.若函数f (x )同时满足: ①对于定义域上的任意x 恒有f (x )+f (﹣x )=0,②对于定义域上的任意x 1,x 2,当x 1≠x 2时,恒有0,则称函数f (x )为“理想函数”.给出下列四个函数中①f (x ); ②f (x ); ③f (x );④f (x ),能被称为“理想函数”的有_______________(填相应的序号).11.给出下列五个命题:①函数f (x )=22a x ﹣1﹣1的图象过定点(12,﹣1);②已知函数f (x )是定义在R 上的奇函数,当x≥0时,f (x )=x (x+1),若f (a )=﹣2则实数a =﹣1或2.③若log a 12>1,则a 的取值范围是(12,1);④若对于任意x ∈R 都f (x )=f (4﹣x )成立,则f (x )图象关于直线x =2对称; ⑤对于函数f (x )=lnx ,其定义域内任意12x x ≠都满足f (122x x +)()()122f x f x +≥其中所有正确命题的序号是_____.12.下列结论中:①定义在R 上的函数f (x )在区间(-∞,0]上是增函数,在区间[0,+∞)上也是增函数,则函数f (x )在R 上是增函数;②若f (2)=f (-2),则函数f (x )不是奇函数;③函数y=x -0.5是(0,1)上的减函数;④对应法则和值域相同的函数的定义域也相同;⑤若x 0是二次函数y=f (x )的零点,且m<x 0<n ,那么f (m )f (n )<0一定成立.写出上述所有正确结论的序号:_____. 13.已知函数,若函数过点,那么函数一定经过点____________ 14.已知是R 上的增函数,则的取值范围是__________; 15.函数在区间上的最小值为___________.三、解答题 16.已知函数. (Ⅰ)用定义证明是偶函数; (Ⅱ)用定义证明在上是减函数; (Ⅲ)作出函数的图像,并写出函数当时的最大值与最小值. 17.设函数y =f (x )的定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ()=1,当x >0时,f (x )>0. (1)求f (0)的值; (2)判断函数的奇偶性; (3)如果f (x )+f (2+x )<2,求x 的取值范围. 18.已知全集为R ,集合, . (1)求, ; (2)若,且,求a 的取值范围. 19.已知f (x )为一次函数,g (x )为二次函数,且f[g (x )]=g[f (x )]. (1)求f (x )的解析式; (2)若y=g (x )与x 轴及y=f (x )都相切,且g (0)= ,求g (x )的解析式. 20.已知函数. (1)求; (2)求值域.参考答案1.D【解析】【分析】逐个选项去判断是否是奇函数或者偶函数。
函数的奇偶性(必修1)

函数的奇偶性
教
学
流
程
观 图 激 趣 感 知 概 念
归 纳 提 炼 得 出 概 念
互 动 交 流 深 化 概 念
知 识 应 用 巩 固 提 高
课 堂 小 结 理 论 升 华
布 置 作 业 能 力 提 升
函数的奇偶性
创设 情境
一)观图激趣 感知概念
蝴蝶
建 筑 物
图象有什么 特点呢?
麦当劳
奇函数函数图象关于原点对称 偶函数函数图象关于y轴对称
函数的奇偶性
四)知识应用,巩固提高
例1. 根据奇偶性的定义判断下列函数的奇偶性
(1) f ( x) x x 3 x 5 (2) f ( x) x 2 1 (3) f ( x) x 1 (4) f ( x) x 2 , x [ 1, 3] (5) f ( x) 0
函数的奇偶性
六)布置作业 能力提升
巩固题:教材第52页习题2-1A 6、7题 ;教材 第53页习题2-1B2、3题 补充题:判断下列函数的奇偶性:
1 x2 1 x (1) f ( x) (2) f ( x) ( x 1) | x 2 | 2 1 x
(3)若F ( x)是定义在(a, a)(a 0)上的奇函数,则
x
函数的图象关于原点对称
函数的奇偶性
二)归纳提炼 得出概念
问题1:请同学们完成以下表格并作出函数
f ( x) x
2
2
的图象
x
f ( x) x2
… -3
…
9
-2
4
-1
1
0
0
1
1
3
9
…
高中数学必修一《函数的奇偶性练习题》

函数的奇偶性练习题1.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .y =-x 3,x ∈R B .y =sin2x ,x ∈RC .y =2x ,x ∈RD .y =-⎝⎛⎭⎫13x ,x ∈R2.函数f (x )=a 2x -1ax (a >0,a ≠1)的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称3.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ) A .-3 B .-1 C .1 D .34. 已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=________.能力提升5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=x ,则f ⎝⎛⎭⎫-134=( ) A.32 B .-32 C.12 D .-126. 已知函数f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),若f (1)=1,则f (3)-f (4)=( )A .-1B .1C .-2D .27. 若函数f (x )=|x -2|+a 4-x 2的图象关于原点对称,则f a2=( )A.33 B .-33C .1D .-1 8.已知定义在R 上的奇函数f (x )是一个减函数,若x 1+x 2<0,x 2+x 3<0,x 3+x 1<0,则f (x 1)+f (x 2)+f (x 3)的值( )A .大于0B .小于0C .等于0D .以上都有可能9. 已知f (x )是定义在R 上的函数,且满足f (x +1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2 005.5)=________.10. 函数f (x )是定义在R 上的奇函数,下列结论中,正确结论的序号是________.①f (-x )+f (x )=0;②f (-x )-f (x )=-2f (x );③f (x )f (-x )≤0;④f (x )f (-x )=-1.11. 若函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0是奇函数,则满足f (x )>a 的x 的取值范围是________.12.(13分)[2012·衡水中学一调] 已知函数f (x )=x m -2x 且f (4)=72.(1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.难点突破13.(12分)已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.1. 下列函数中既是奇函数,又在区间(-1,1)上是增函数的为( ) A .y =|x | B .y =sin xC .y =e x +e -x D .y =-x 32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-123.已知f (x )=⎩⎪⎨⎪⎧x 2-x +1(x >0),-x 2-x -1(x <0),则f (x )为( )A .奇函数B .偶函数C .非奇非偶函数D .不能确定奇偶性4. 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.能力提升5. 设函数f (x )=⎩⎪⎨⎪⎧2x,x <0,0,x =0,g (x ),x >0,且f (x )为奇函数,则g (3)=( )A .8 B.18 C .-8 D .-186.已知y =f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上是增函数,如果x 1<0,x 2>0,且|x 1|<|x 2|,则有( )A .f (-x 1)+f (-x 2)>0B .f (x 1)+f (x 2)<0C .f (-x 1)-f (-x 2)>0D .f (x 1)-f (x 2)<07.] 已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为( )A .1B .2C .-2D .-18.命题p :∀x ∈R ,3x >x ;命题q :若函数y =f (x -1)为奇函数,则函数y =f (x )的图象关于点(1,0)成中心对称.以下说法正确的是( ) A .p ∨q 真 B .p ∧q 真 C .綈p 真 D .綈q 假 9.函数f (x )对于任意实数x 满足条件f (x +2)f (x )=1,若f (1)=-5,则f (-5)=________. 10. 设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.11.设定义在[-2,2]上的奇函数f (x )在[0,2]上单调递减,若f (3-m )≤f (2m 2),则实数m 的取值范围是________.12.(13分)已知函数f (x )=lg 1+x1-x.(1)求证:对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f ⎝ ⎛⎭⎪⎫a +b 1+ab ;(2)判断f (x )的奇偶性,并予以证明.难点突破13.(12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.1.A [解析] y =sin2x 在R 上不单调,y =-13x 不是奇函数,y =2x 为增函数,所以B ,C ,D 均错.故选A.2.A [解析] 因为f (-x )=a -x -1a-x =-(a x -a -x )=-f (x ),所以f (x )是奇函数,其图象关于原点对称.故选A.3.A [解析] 依题意当x >0时,f (x )=-f (-x )=-(2x 2+x ),所以f (1)=-3.故选A. 4.3 [解析] 考查函数的奇偶性和转化思想,解此题的关键是利用y =f (x )为奇函数. 已知函数y =f (x )为奇函数,由已知得g (1)=f (1)+2=1, ∴f (1)=-1,则f (-1)=-f (1)=1,所以g (-1)=f (-1)+2=1+2=3. 【能力提升】5.A [解析] 依题意f -134=f -54=f 34=32.故选A.6.A [解析] 由f (x +2)=-f (x )得f (x +4)=-f (x +2)=f (x ),根据f (x )为R 上的奇函数,得f (0)=0,所以f (3)=f (-1)=-f (1)=-1,f (4)=f (0)=0,所以f (3)-f (4)=-1.故选A.7.A [解析] 函数f (x )定义域为{x |-2<x <2},依题意函数f (x )为奇函数,所以f (0)=0,得a =-2,所以f a 2=f (-1)=|-1-2|-24-1=33.故选A.8.A [解析] 由x 1+x 2<0,得x 1<-x 2. 又f (x )为减函数,所以f (x 1)>f (-x 2),又f (x )为R 上的奇函数,所以f (x 1)>-f (x 2). 所以f (x 1)+f (x 2)>0.同理f (x 2)+f (x 3)>0,f (x 1)+f (x 3)>0, 所以f (x 1)+f (x 2)+f (x 3)>0.故选A.9.1.5 [解析] 由f (x +1)+f (x )=3得f (x )+f (x -1)=3,两式相减得f (x +1)=f (x -1),所以f (x +2)=f (x ),所以函数f (x )是周期为2的周期函数,所以f (-2 005.5)=f (-1.5)=f (-2+0.5)=f (0.5)=1.5.10.①②③ [解析] 因为函数f (x )是定义在R 上的奇函数,所以①正确,由f (-x )+f (x )=0,可推得选项②,③正确,④中,要求f (-x )≠0,故④错误.11.(-1-3,+∞) [解析] 由函数f (x )是奇函数,所以当x <0时,-x >0,f (-x )=(-x )2-2(-x )=x 2+2x =-f (x )=x 2-ax ,所以a =-2.当x <0时,f (x )>a 即-x 2-2x >-2⇒x 2+2x -2<0,解得-1-3<x <0;当x ≥0时,f (x )>-2恒成立.综上,满足f (x )>a 的x 的取值范围是(-1-3,+∞).12.解:(1)因为f (4)=72,所以4m -24=72,所以m =1.(2)因为f (x )的定义域为{x |x ≠0},又f (-x )=-x -2-x=-x -2x =-f (x ),所以f (x )是奇函数.(3)设x 1>x 2>0,则f (x 1)-f (x 2)=x 1-2x 1-x 2-2x 2=(x 1-x 2)1+2x 1x 2,因为x 1>x 2>0,所以x 1-x 2>0,1+2x 1x 2>0,所以f (x 1)>f (x 2),所以f (x )在(0,+∞)上为单调递增函数.(或用求导数的方法) 【难点突破】13.解:(1)因为f (x )是定义域为R 的奇函数,所以f (0)=0, 即-1+b 2+a =0,所以b =1.所以f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,所以a =2.(2)方法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1.易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<f (-2t 2+k ). 因f (x )是减函数,所以t 2-2t >-2t 2+k . 即对一切t ∈R 有3t 2-2t -k >0.从而判别式Δ=4+12k <0,解得k <-13.方法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0,即(22t 2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)(-22t 2-k +1)<0. 整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0.上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.课时作业(六)B【基础热身】1.B [解析] 由题中选项可知,y =|x |,y =e x +e -x 为偶函数,排除A ,C ;而y =-x 3在R 上递减,故选B.2.B [解析] 因为函数f (x )=ax 2+bx 在[a -1,2a ]上为偶函数,所以b =0,且a -1+2a =0,即b =0,a =13.所以a +b =13.3.A [解析] 若x <0,则-x >0,所以f (-x )=(-x )2-(-x )+1=x 2+x +1=-f (x ).若x >0,则-x <0,所以f (-x )=-(-x )2-(-x )-1=-x 2+x -1=-f (x ).所以f (x )为奇函数.4.32[解析] 函数f (x )是定义在R 上的周期为2的偶函数,且当x ∈[0,1]时,f (x )=x +1,那么f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫2-32=f ⎝⎛⎭⎫12=32.【能力提升】5.D [解析] 因为f (x )为奇函数,所以x >0时,f (x )=-f (-x )=-2-x ,即g (x )=-2-x ,所以g (3)=-2-3=-18.故选D.6.D [解析] 因为x 1<0,x 2>0,|x 1|<|x 2|,所以0<-x 1<x 2.又f (x )是(0,+∞)上的增函数,所以f (-x 1)<f (x 2).又f (x )为定义在R 上的偶函数,所以f (x 1)<f (x 2),所以f (x 1)-f (x 2)<0.选D.7.A [解析] 由已知f (x )是偶函数且是周期为2的周期函数,则f (-2 012)=f (2 012)=f (0)=log 21=0,f (2 011)=f (1)=log 22=1,所以f (-2 012)+f (2 011)=0+1=1,故选择A.8.A [解析] 命题p 是真命题.对于命题q ,函数y =f (x -1)为奇函数,将其图象向左平移1个单位,得到函数y =f (x )的图象,该图象的对称中心为(-1,0),而得不到对称中心为(1,0),所以命题q 为假命题,所以p ∨q 是真命题.故选A.9.-15[解析] 因为f (x +2)f (x )=1,所以f (x +4)f (x +2)=1,于是有f (x +4)=f (x ),所以f (x )是以4为周期的周期函数,f (-5)=f (-1)=1f (-1+2)=1f (1)=-15.10.-9 [解析] 由f (a )=a 3cos a +1=11得a 3cos a =10, 所以f (-a )=(-a )3cos(-a )+1=-a 3cos a +1=-10+1=-9.11.{1} [解析] 因为f (x )是定义在[-2,2]上的奇函数,且在[0,2]上单调递减,所以f (x )在[-2,2]上单调递减,所以f (3-m )≤f (2m 2)等价于⎩⎪⎨⎪⎧-2≤3-m ≤2,-2≤2m 2≤2,3-m ≥2m 2⇔⎩⎪⎨⎪⎧1≤m ≤5,-1≤m ≤1,-32≤m ≤1,即m =1,所以m 的取值范围是{1}.12.解:函数的定义域为{x |-1<x <1}=(-1,1).(1)证明:∀a ,b ∈(-1,1),f (a )+f (b )=lg 1+a 1-a +lg 1+b 1-b =lg (1+a )(1+b )(1-a )(1-b ),f a +b 1+ab =lg 1+a +b 1+ab 1-a +b 1+ab=lg 1+ab +a +b 1+ab -a -b =lg (1+a )(1+b )(1-a )(1-b ), 所以f (a )+f (b )=f a +b1+ab.(2)∀x ∈(-1,1),f (-x )+f (x )=lg 1-x 1+x +lg 1+x 1-x =lg (1-x )(1+x )(1+x )(1-x )=lg1=0,即f (-x )=-f (x ),所以f (x )是奇函数. 【难点突破】13.解:(1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), 所以令x 1=x 2=1,得f (1)=2f (1),所以f (1)=0. (2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),所以f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), 所以f (-x )=f (x ),所以f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3, 又f (3x +1)+f (2x -6)≤3, 即f ((3x +1)(2x -6))≤f (64).(*) 方法一:因为f (x )为偶函数, 所以f (|(3x +1)(2x -6)|)≤f (64). 又f (x )在(0,+∞)上是增函数, 所以0<|(3x +1)(2x -6)|≤64.解上式,得3<x ≤5或-73≤x <-13或-13<x <3.所以x 的取值范围为x ⎪⎪-73≤x <-13或-13<x <3或3<x ≤5. 方法二:因为f (x )在(0,+∞)上是增函数, 所以(*)等价于不等式组⎩⎪⎨⎪⎧(3x +1)(2x -6)>0,(3x +1)(2x -6)≤64或⎩⎪⎨⎪⎧(3x +1)(2x -6)<0,-(3x +1)(2x -6)≤64, ⎩⎨⎧x >3或x <-13,-73≤x ≤5或⎩⎪⎨⎪⎧-13<x <3,x ∈R .所以3<x ≤5或-73≤x <-13或-13<x <3.所以x 的取值范围为 x⎪⎪⎪ )-73≤x <-13或-13<x <3或3<x ≤5.。
高一数学必修1函数奇偶性专项练习、题型分析

奇偶性概念考察1.下面四个结论中, 正确命题的个数是( )①偶函数的图象一定与y 轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y 轴对称④既是奇函数, 又是偶函数的函数一定是f(x)=0(x ∈R) A. 1 B. 2 C. 3 D. 42.下列判断正确的是( )A.定义在R 上的函数f(x), 若f(-1)=f(1),且f(-2)=f(2), 则f(x)是偶函数;B.定义在R 上的函数f(x)满足f(2)>f(1), 则f(x)在R 上不是减函数;C.定义在R 上的函数f(x)在区间 上是减函数, 在区间 上也是减函数, 则f(x)在R 上是减函数;D.既是奇函数又是偶函数的函数有且只有一个。
3.对于定义域为R 的任意奇函数f(x)一定有( ) A. f(x)-f(-x)>0 B. f(x)-f(-x)≤0 C. f(x)·f(-x)<0D. f(x)·f(-x)≤04、 是定义在R 上的奇函数, 下列结论中, 不正确的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=--(C ))(x f ·)(x f -≤0 (D )1)()(-=-x f x f判断函数奇偶性1. 下列函数中:①y =x2(x ∈[-1, 1]); ②y =|x |; ④y =x3(x ∈R), 奇函数的个数是( ) A. 1个 B. 2个 C. 3个D. 4个. 2.下列函数中是偶函数的是... )A.y=x4 (x<0) B 、y=|x+1| C 、y= D 、y=3x-13. 判断下列函数的奇偶性: (1)x x x f -+-=11)( (2)2211)(x x x f -+-=(3)x x y 2112-+-= (4)⎪⎩⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y(5)y =(6)⎩⎨⎧<+≥-=)0(1)0(1)(x x x x x f(7)122)(2++=x xx x f ; (8) a x f =)( (R x ∈)(9)⎩⎨⎧+-=)1()1()(x x x x x f .0,0<≥x x (10)()f x =(11) (12)22x (0)f(x)=x (0)x x x x ⎧+<⎪⎨->⎪⎩(13)|1||1|y x x =-++若f(x)是偶函数, 则 ______.5.下列给出的函数中, 既不是奇函数也不是偶函数的是 (A )2xy =(B )2y x x =-(C )2y x =(D )3y x =已知函数 的图象关于原点对称, 则 ________________奇偶函数四则运算性质1.判断下列函数的奇偶性(1)2413)(x x x f += (2)xx y 13+= (3)x x y +=4(4) x x x f 2)(3-=;(5)2||1y x x =-+ (6)y = 2.函数 , 是( )A. 偶函数B. 奇函数C. 不具有奇偶函数D. 与 有关已知函数 是 上的偶函数, 则实数 _____;不等式 的解集为_____.若 是偶函数, 讨论函数 的单调区间?已知函数 是偶函数, 判 的奇偶性。
人教新课标版数学高一-必修一 1.3.2奇偶性

数学人教A 必修1第一章1.3.2 奇偶性1.了解奇函数、偶函数的定义,明确定义中“任意”两字的意义. 2.了解奇函数、偶函数图象的对称性. 3.会用定义判断函数的奇偶性.1.偶函数和奇函数偶函数奇函数定义条件如果对于函数f (x )的定义域内______一个x ,都有f (-x )=______ f (-x )=______结论 函数f (x )叫做偶函数 函数f (x )叫做奇函数 图象特征 图象关于______对称 图象关于______对称(1)奇函数和偶函数的定义中的“任意”是指定义域中所有的实数;由于f (-x )与f (x )有意义,则-x 与x 同时属于定义域,即具有奇偶性的函数的定义域关于原点对称.(2)函数f (x )是偶函数对定义域内任意一个x ,有f (-x )-f (x )=0f (x )的图象关于y 轴对称.(3)函数f (x )是奇函数⇔对定义域内任意一个x ,有f (-x )+f (x )=0f (x )的图象关于原点对称.【做一做1-1】 函数y =f (x ),x [-1,a ](a >-1)是奇函数,则a 等于( ).A .-1B .0C .1D .无法确定【做一做1-2】下列条件,可以说明函数y=f(x)是偶函数的是().A.在定义域内存在x使得f(-x)=f(x)B.在定义域内存在x使得f(-x)=-f (x)C.对定义域内任意x,都有f(-x)=-f(x)D.对定义域内任意x,都有f(-x)=f(x)2.奇偶性基本初等函数的奇偶性如下:【做一做2-1】函数y=x是().A.奇函数B.偶函数C.奇函数又是偶函数D.非奇非偶函数【做一做2-2】函数f(x)=x2-2mx+4是偶函数,则实数m=__________.答案:1.任意f(x)-f(x)y轴原点【做一做1-1】 C【做一做1-2】D2.奇偶性【做一做2-1】A【做一做2-2】0理解函数的奇偶性剖析:函数f (x )的奇偶性的定义是用f (-x )=±f (x )来刻画函数f (x )的图象的特征(图象关于原点或y 轴对称)的;函数的奇偶性是对于函数的整个定义域来说的,这一点与函数的单调性不同.从这个意义上来讲,函数的单调性是函数的局部性质,而奇偶性是函数的整体性质.只有对函数f (x )的定义域的每一个值x ,都有f (-x )=f (x )或f (-x )=-f (x ),才能说f (x )为偶函数或奇函数;定义中要求“对于函数f (x )的定义域内任意一个自变量x ,都有f (-x )=f (x ) (f (-x )=f (x ))”成立,其前提为f (-x )和f (x )都有意义,所以-x 也属于f (x )的定义域,即自变量x 的取值要保持关于原点的对称性,于是奇(偶)函数的定义域是一个关于原点对称的数集,这是函数存在奇偶性的前提.例如将函数f (x )=x 2+1,f (x )=x 的定义域分别限定为(0,+)与(-3,3],那么它们都为非奇非偶函数;函数的奇偶性定义中的等式f (-x )=-f (x )〔或f (-x )=f (x )〕是其定义域上的恒等式,而不是对部分x 成立.如:函数f (x )=⎩⎪⎨⎪⎧1,|x |≤1,x +1,|x |>1,尽管当|x |≤1时,都有f (-x )=f (x ),但当|x |>1时,f (-x )≠f (x ),所以它不是偶函数.题型一 判断函数的奇偶性 【例1】 判断下列函数的奇偶性: (1) f (x )=2x 2+2xx +1;(2)f (x )=x 3-2x ;(3)f (x )=x 4+x 2+1.分析:先求出定义域,再判断f (-x )与f (x )的关系. 反思:判断函数奇偶性的方法: (1)定义法:(2)图象法:如果函数的图象关于原点对称,那么这个函数是奇函数;如果函数的图象关于y 轴对称,那么这个函数是偶函数;如果函数的图象关于原点和y 轴均对称,那么这个函数既是奇函数又是偶函数;如果函数的图象关于原点和y 轴均不对称,那么这个函数既不是奇函数又不是偶函数.本题(1)容易错解为:由题意得f (x )=2x 2+2xx +1=2x ,f (-x )=-2x =-f (x ),则函数f (x )=2x 2+2xx +1是奇函数.其错误原因是没有讨论该函数的定义域.避免出现此类错误的方法是在讨论函数的奇偶性时,要遵循定义域优先的原则.题型二 利用函数奇偶性作图 【例2】 已知函数f (x )=1x 2+1在区间[0,+∞)上的图象如图所示,请在坐标系中补全函数f (x )在定义域内的图象,并说明作图依据.分析:先证明f (x )是偶函数,再依据其图象关于y 轴对称作图.反思:利用函数的奇偶性作图,其依据是奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.题型三 利用函数的奇偶性求函数的解析式【例3】 若f (x )是定义在R 上的奇函数,当x <0时,f (x )=x (1-x ),求函数f (x )的解析式.反思:(1)若f (x )是奇函数,f (0)有意义,则f (0)=0;(2)已知函数的奇偶性和函数在某区间上的解析式,求对称区间上的解析式时,首先设出所求区间上的自变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到已知解析式的区间上,代入已知的解析式,然后再次利用函数的奇偶性求解即可.题型四 易混易错题易错点 分段函数奇偶性的判断【例4】 判断函数f (x )=⎩⎪⎨⎪⎧x 2,x <0,x 3,x ≥0的奇偶性.答案:【例1】 解:(1)函数的定义域为{x |x ≠-1},不关于原点对称,所以f (x )既不是奇函数又不是偶函数.(2)函数的定义域为R ,关于原点对称, f (-x )=(-x )3-2(-x )=2x -x 3=-f (x ), 所以f (x )是奇函数.(3)函数的定义域为R ,关于原点对称, f (-x )=(-x )4+(-x )2+1=x 4+x 2+1=f (x ),所以f (x )是偶函数.【例2】 解:∵f (x )=1x 2+1,∴f (x )的定义域为R .又对任意x R ,都有f (-x )=1(-x )2+1=1x 2+1=f (x ),∴f (x )为偶函数.则f (x )的图象关于y 轴对称,其图象如图所示.【例3】 解:∵f (x )是定义在R 上的奇函数, ∴f (-x )=-f (x ).当x >0时,-x <0, ∴f (x )=-f (-x )=x (1+x ).当x =0时,f (-0)=-f (0),即f (0)=-f (0), ∴f (0)=0.∴函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x (1+x ),x >0,0,x =0,x (1-x ),x <0.【例4】 错解:∵当x <0时,f (-x )=(-x )2=x 2=f (x );当x ≥0时,f (-x )=(-x )3=-x 3=-f (x ),∴当x <0时,函数f (x )是偶函数;当x ≥0时,函数f (x )是奇函数.错因分析:“当x <0时,函数是偶函数;当x ≥0时,函数是奇函数”这种说法是错误的.函数的奇偶性是函数的一个整体性质,是针对函数的整个定义域而言的.因此判断函数的奇偶性时,要考虑整个定义域,依据定义进行判断.正解:显然f (x )的定义域关于原点对称.当x <0时,-x >0,f (-x )=(-x )3,f (x )=x 2,于是f (-x )≠±f (x ),故函数f (x )既不是奇函数又不是偶函数.1函数f (x )=x 4+x 2( ).A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数2函数y =2(1)1x x x ++( ).A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 3若函数f (x )满足()()f x f x -=1,则f (x )图象的对称轴是( ).A .x 轴B .y 轴C .直线y =xD .不能确定 4已知f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=21x +,试求f (x )的解析式. 5定义在[-3,-1][1,3]上的函数f (x )是奇函数,其部分图象如图所示.(1)请在坐标系中补全函数f (x )的图象. (2)比较f (1)与f (3)的大小.答案:1. B 定义域是R ,f (-x )=(-x )4+(-x )2=x 4+x 2=f (x ),所以函数是偶函数. 2. D 定义域是(-,-1)∪(-1,+),不关于原点对称,所以函数既不是奇函数又不是偶函数.3. B 由于f (-x )=f (x ),则f (x )是偶函数,其图象关于y 轴对称. 4.解:当x <0时,-x >0,此时f (x )=f (-x )=21x -+, ∴f (x )=2,0,12,0,1x x x x ⎧≥⎪⎪+⎨⎪<⎪-+⎩即f (x )=21x +.5.解:(1)因为f (x )是奇函数,所以其图象关于原点对称,如图所示.(2)观察图象,知f (3)<f (1).。
高一上必修1 函数的奇偶性练习题

函数的奇偶性一、选择题1.若)(x f 是奇函数,则其图象关于 ( )A .x 轴对称B .y 轴对称C .原点对称D .直线x y =对称2.若函数))((R x x f y ∈=是奇函数,则下列坐标表示的点一定在函数)(x f y =图象上的是( )A . ))((a f a -,B . ))((a f a --,C . ))((a f a ---,D .))((a f a -,3.下列函数中为偶函数的是 ( )A .x y =B .x y =C .2x y =D .13+=x y4. 如果奇函数)(x f 在[]7,3上是增函数,且最小值是5,那么)(x f 在[]3,7--上是( )A .增函数,最小值是5-B .增函数,最大值是5-C .减函数,最小值是5-D .减函数,最大值是5-5. 已知函数)(1222)(R x a a x f x x ∈+-+⋅=是奇函数,则a 的值为 ( )A .1-B .2-C .1D .26. 已知偶函数)(x f 在],0[π上单调递增,则下列关系式成立的是 ( )A .)2()2()(f f f >->-ππB .)()2()2(ππ->->f f f C .)2()2()(ππ->>-f f f D .)()2()2(ππ->>-f f f 二、填空题 7.若函数)(x f y =是奇函数,3)1(=f ,则)1(-f 的值为____________ .8.若函数)(x f y =)(R x ∈是偶函数,且)3()1(f f <,则)3(-f 与)1(-f 的大小关系为_________________.9.已知)(x f 是定义在[)2,0-Y (]0,2上的奇函数,当0>x 时,)(x f 的图象如右图所示,那么f (x ) 的值域 是 .10.已知分段函数)(x f 是奇函数,当),0[+∞∈x 时的解析式为2x y =,则这个函数在区间)0,(-∞上的解析式 为 .三、解答题11. 判断下列函数是否具有奇偶性:(1)35()f x x x x =++; (2) 2(),(1,3)f x x x =∈-; (3)2)(x x f -=;(4)25)(+=x x f ; (5) )1)(1()(-+=x x x f .12.判断函数122+-=x x y 的奇偶性,并指出它的单调区间.13.已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函 数)(x f 的单调递增区间.能力题14.设()f x 是定义在R 上的偶函数,且在)0,(-∞上是增函数,则()2f -与()223f a a -+(a R ∈)的大小关 系是 ( )A .()2f -<()223f a a -+B .()2f -≥()223f a a -+C .()2f ->()223f a a -+ D .与a 的取值无关若函数 15. 已知)(x f 是奇函数,)(x g 是偶函数,且在公共定义域{}1,|±≠∈x R x x 上有11)()(-=+x x g x f ,求)(x f 的解析式.练习五一、选择题二、填空题7.3- 8.)1()3(->-f f 9.[)(]3,22,3Y -- 10.2x y -= 三、解答题11.(1)奇函数,(2)非奇非偶,(3)偶函数,(4) 非奇非偶函数,(5)偶函数12.偶函数. Θ⎩⎨⎧<++≥+-=,0,12,0,1222x x x x x x y ∴函数122+-=x x y 的减区间是(]1,-∞- 和 ]1,0[,增区间是]0,1[- 和 ),1[+∞. 13.Θ二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-. 能力题14.B (提示: Θ()f x 是定义在R 上的偶函数,且在)0,(-∞上是增函数,∴()f x 在),0(+∞上是减函数,)2()2(f f =-. Θ22)1(3222≥+-=+-a a a ,∴()223f a a -+)2(f ≤,因此()223f a a -+)2(-≤f . )15.⎪⎩⎪⎨⎧--=-+--=+,11)()(,11)()(x x g x f x x g x f ⇒⎪⎩⎪⎨⎧+-=+--=+11)()(11)()(x x g x f x x g x f 得11)(,1)(22-=-=x x g x x x f .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数奇偶性知识点
1.奇函数:一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数.
2.偶函数:一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.
3.具有奇偶性的函数的图象的特征
偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.
4. 利用定义判断函数奇偶性的步骤:
(1)首先确定函数的定义域,并判断其是否关于原点对称;
(2)确定()f x -与()f x 的关系;
(3)作出相应结论:若()()f x f x -=或()()0f x f x --=,则()f x 是偶函数;若
()()f x f x -=-或()()0f x f x -+=,则()f x 是奇函数.
5.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由()()0f x f x -±=或
()1()f x f x -=±来判定;(3)借助函数的图象判定。
函数奇偶性练习题
一.选择题. 1.已知()f x 是R 上的偶函数,且在区间[0,+)∞上是增函数,则(2)()(3)f f f π--、、的大小关系是 ( )
A.()(2)(3)f f f π->->
B.(3)()(2)f f f π>->
C.(2)(3)()f f f π->>- D.()(3)(2)f f f π->>-
2. 已知函数2()3f x ax bx a b =+++是偶函数,且其定义域为[a -1,2a ],则 ( )
A .3
1=a ,b =0 B .1a =-,b =0 C .1a =,b =0 D .3a =,b =0 3.下列命题中错误的是 ( ) ①图象关于原点成中心对称的函数一定为奇函数 ②奇函数的图象一定过原点
③偶函数的图象与y 轴一定相交 ④图象关于y 轴对称的函数一定为偶函数
A .①②
B .③④
C .①④
D .②③
4.如果奇函数()f x 在(0,+∞)上是增函数,则()f x 在(-∞,0)上 ( )
A .减函数
B .增函数
C .既可能是减函数也可能是增函数
D .不一定具有单调性
5.已知()f x =x 7+ax 5+bx -5,且(3)f -=5,则(+3)f = ( )
A .-15
B .15
C .10
D .-10
6.设()f x 是定义在R 上的奇函数,且当x >0时,()f x =2x
-3,则(2)f -的值等于( )
A .-1
B .1 C.114 D .-114 7.设()f x 在[-2,-1]上为减函数,最小值为3,且()f x 为偶函数,则()f x 在[1,2]上
A .为减函数,最大值为3
B .为减函数,最小值为-3 ( )
C .为增函数,最大值为-3
D .为增函数,最小值为3
8下列四个函数中,既是偶函数又在(0,+∞)上为增函数的是 ( )
A .y =x 3
B .y =-x 2+1
C .y =|x |+1
D .y =2-|x |
9.若函数()f x =(x +1)(x +a )为偶函数,则a = ( )
A .1
B .-1
C .0
D .不存在
10.定义域为2[32,4]a a --上的函数f(x)是奇函数,则a= ( )
A.1或2
B.1
C.2
D.0
二.填空题.
11.已知()f x 是奇函数,定义域为{x|x ∈R 且x ≠0},又()f x 在(0,+∞)上是增函数,且(1)0f -=,则满足()f x >0的x 取值范围是________.
12.若()f x 是定义在R 上的偶函数,且当x ≥0时为增函数,那么使()()f f a π<的实数a 的取值范围是_______.
13.(),()x g x ϕ都是奇函数,()f x =()()a x bg x ϕ++2在(0,+∞)上有最大值5,则()f x 在(-∞,0)上有最_______值________.
14. 若函数))(12()(a x x x x f -+=
为奇函数,则a = . 三.解答题
15.()f x 是定义在(-∞,-5] [5,+∞)上的奇函数,且()f x 在[5,+∞)上单调递减,试判断()f x 在(-∞,-5]上的单调性,并用定义给予证明.
16.已知偶函数()f x 在区间[0,)+∞单调增加,求满足(21)f x -<1
()3
f 的x 取值范围.。