高考数学讲义双曲线.知识框架

合集下载

双曲线 高考数学知识点总结 高考数学真题复习

双曲线 高考数学知识点总结 高考数学真题复习

§9.6双曲线2014高考会这样考 1.考查双曲线的定义、标准方程和几何性质;2.考查直线与双曲线的位置关系,考查数形结合思想的应用.复习备考要这样做 1.熟练掌握双曲线的定义和标准方程,理解双曲线的基本量对图形、性质的影响;2.理解数形结合思想,掌握解决直线与双曲线问题的通法.1.双曲线的概念平面内动点P与两个定点F1、F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a (2a<2c),则点P的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a>0,c>0:(1)当a<c时,P点的轨迹是双曲线;(2)当a=c时,P点的轨迹是两条射线;(3)当a>c时,P点不存在.2.双曲线的标准方程和几何性质[难点正本 疑点清源]1. 双曲线的定义用代数式表示为||MF 1|-|MF 2||=2a ,其中2a <|F 1F 2|,这里要注意两点:(1)距离之差的绝对值. (2)2a <|F 1F 2|.这两点与椭圆的定义有本质的不同. 2. 渐近线与离心率x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线的斜率为ba=b 2a 2=c 2-a 2a2=e 2-1.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.1. (2012·天津)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与双曲线C 2:x 24-y 216=1有相同的渐近线,且C 1的右焦点为F (5,0),则a =________,b =________. 答案 1 2解析 与双曲线x 24-y 216=1有共同渐近线的双曲线的方程可设为x 24-y 216=λ,即x 24λ-y 216λ=1. 由题意知c =5,则4λ+16λ=5⇒λ=14,则a 2=1,b 2=4.又a >0,b >0,故a =1,b =2.2. (2012·江苏)在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________. 答案 2解析 ∵c 2=m +m 2+4,∴e 2=c 2a 2=m +m 2+4m=5,∴m 2-4m +4=0,∴m =2.3. (2012·辽宁)已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________. 答案 2 3解析 设P 在双曲线的右支上,|PF 1|=2+x ,|PF 2|=x (x >0),因为PF 1⊥PF 2,所以(x +2)2+x 2=(2c )2=8,所以x =3-1,x +2=3+1, 所以|PF 2|+|PF 1|=2 3.4. 若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A. 5B .5C. 2D .2答案 A解析 焦点(c,0)到渐近线y =bax 的距离为bca 2+b 2=b ,则由题意知b =2a ,又a 2+b 2=c 2,∴5a 2=c 2, ∴离心率e =ca= 5.5. (2012·课标全国)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为 ( )A. 2 B .2 2 C .4D .8答案 C解析 设C :x 2a 2-y 2a2=1.∵抛物线y 2=16x 的准线为x =-4,联立x 2a 2-y 2a2=1和x =-4得A (-4,16-a 2),B (-4,-16-a 2),∴|AB |=216-a 2=43,∴a =2,∴2a =4.∴C 的实轴长为4.题型一 求双曲线的标准方程例1 (1)(2011·山东)已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________.(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2)的双曲线方程为__________. 思维启迪:设双曲线方程为x 2a 2-y 2b 2=1,求双曲线方程,即求a 、b ,为此需要关于a 、b的两个方程,由题意易得关于a 、b 的两个方程;也可根据双曲线的定义直接确定a 、b 、c .答案 (1)x 24-y 23=1 (2)y 22-x 24=1解析 (1)椭圆x 216+y 29=1的焦点坐标为F 1(-7,0),F 2(7,0),离心率为e =74.由于双曲线x 2a 2-y 2b 2=1与椭圆x 216+y 29=1有相同的焦点,因此a 2+b 2=7.又双曲线的离心率e =a 2+b 2a =7a ,所以7a =274, 所以a =2,b 2=c 2-a 2=3,故双曲线的方程为x 24-y 23=1.(2)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=k ,将点(2,-2)代入得k=222-(-2)2=-2. ∴双曲线的标准方程为y 22-x 24=1.探究提高 求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为x 2a 2-y 2b2=λ (λ≠0),再由条件求出λ的值即可.求适合下列条件的双曲线的标准方程:(1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12). 解 (1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1 (a >0,b >0). 由题意知,2b =12,e =c a =54.∴b =6,c =10,a =8.∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12.又2c =26,∴c =13.∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1.题型二 双曲线的几何性质例2 中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线半实轴长之差为4,离心率之比为3∶7. (1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.思维启迪: (1)分别设出椭圆方程为x 2a 2+y 2b 2=1 (a >b >0),双曲线方程为x 2m 2-y 2n 2=1 (m >0,n >0).(2)由已知条件分别求出a 、b 、m 、n 的值.(3)利用椭圆与双曲线定义及余弦定理求出cos ∠F 1PF 2.解 (1)由已知:c =13,设椭圆长、短半轴长分别为a 、b ,双曲线半实、虚轴长分别为m 、n ,则⎩⎪⎨⎪⎧a -m =47·13a=3·13m ,解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14, |PF 1|-|PF 2|=6, 所以|PF 1|=10,|PF 2|=4. 又|F 1F 2|=213,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-(213)22×10×4=45.探究提高 在研究双曲线的性质时,半实轴、半虚轴所构成的直角三角形是值得关注的一个重要内容;双曲线的离心率涉及的也比较多.由于e =ca 是一个比值,故只需根据条件得到关于a 、b 、c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形求e ,并且需注意e >1.(1)(2012·大纲全国)已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14B.35C.34D.45(2)(2011·浙江)已知椭圆C 1:x 2a 2+y 2b 2=1 (a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点,若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13C .b 2=12D .b 2=2答案 (1)C (2)C解析 (1)由x 2-y 2=2知,a 2=2,b 2=2,c 2=a 2+b 2=4, ∴a =2,c =2.又∵|PF 1|-|PF 2|=2a ,|PF 1|=2|PF 2|, ∴|PF 1|=42,|PF 2|=2 2. 又∵|F 1F 2|=2c =4,∴由余弦定理得cos ∠F 1PF 2=(42)2+(22)2-422×42×22=34. (2)由题意知,a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4=0,双曲线的一条渐近线方程为y =2x ,联立方程消去y ,得(5a 2-5)x 2+5a 2-a 4=0,∴直线截椭圆的弦长d=5×2a 4-5a 25a 2-5=23a ,解得a 2=112,b 2=12.题型三 直线与双曲线的位置关系例3 过双曲线x 23-y 26=1的右焦点F 2,倾斜角为30°的直线交双曲线于A ,B 两点,O 为坐标原点,F 1为左焦点. (1)求|AB |;(2)求△AOB 的面积.思维启迪:写出直线方程,然后与双曲线方程联立组成方程组,消去y 得关于x 的一元二次方程,利用弦长公式求|AB |;求O 到直线的距离,代入面积公式得△AOB 的面积. (1)解 由双曲线的方程得a =3,b =6,∴c =a 2+b 2=3,F 1(-3,0),F 2(3,0).直线AB 的方程为y =33(x -3). 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =33(x -3),x 23-y26=1,得5x 2+6x -27=0. ∴x 1+x 2=-65,x 1x 2=-275.∴|AB |=1+k 2|x 1-x 2|=1+⎝⎛⎭⎫332·(x 1+x 2)2-4x 1x 2 =43·3625+1085=1635. (2)解 直线AB 的方程变形为3x -3y -33=0. ∴原点O 到直线AB 的距离为d =|-33|(3)2+(-3)2=32. ∴S △AOB =12|AB |·d =12×1635×32=1235.探究提高 双曲线的综合问题主要是直线与双曲线的位置关系问题.解决这类问题的常用方法是设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x (或y )的一元二次方程,利用根与系数的关系及整体代入的思想解题.设直线与双曲线交于A (x 1,y 1),B (x 2,y 2)两点,直线的斜率为k ,则|AB |=1+k 2|x 1-x 2|.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点.(1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b 2=1 (a >0,b >0),则a 2=4-1=3,c 2=4,再由a 2+b 2=c 2,得b 2=1, 故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎪⎨⎪⎧1-3k 2≠0Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0, ∴k 2≠13且k 2<1.①设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k1-3k 2,x 1x 2=-91-3k 2. ∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1.又∵OA →·OB →>2,得x 1x 2+y 1y 2>2,∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13<k 2<3.②由①②得13<k 2<1,故k 的取值范围为⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1.忽视“判别式”致误典例:(12分)已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?易错分析 由于“判别式”是判断直线与圆锥曲线是否有公共点的重要方法,在解决直线与圆锥曲线相交的问题时,有时不需要考虑判别式,致使有的考生思维定势的原因,任何情况下都没有考虑判别式,导致解题错误. 规范解答解 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0), 若直线l 的斜率不存在,显然不符合题意.[2分] 设经过点P 的直线l 的方程为y -1=k (x -1), 即y =kx +1-k .[3分]由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0 (2-k 2≠0).① [6分] ∴x 0=x 1+x 22=k (1-k )2-k 2.由题意,得k (1-k )2-k 2=1,解得k =2.[8分]当k =2时,方程①成为2x 2-4x +3=0. Δ=16-24=-8<0,方程①没有实数解.[11分]∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点.[12分] 温馨提醒 (1)本题是以双曲线为背景,探究是否存在符合条件的直线,题目难度不大,思路也很清晰,但结论却不一定正确.错误原因是忽视对直线与双曲线是否相交的判断,从而导致错误,因为所求的直线是基于假设存在的情况下所得的.(2)本题属探索性问题.若存在,可用点差法求出AB 的斜率,进而求方程;也可以设斜率k ,利用待定系数法求方程.(3)求得的方程是否符合要求,一定要注意检验.方法与技巧1. 与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有公共渐近线的双曲线的方程可设为x 2a 2-y 2b 2=t (t ≠0).2. 已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的两条渐近线方程. 失误与防范1. 区分双曲线中的a ,b ,c 大小关系与椭圆中的a ,b ,c 大小关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.2. 双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1).3. 双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b2=1 (a >0,b >0)的渐近线方程是y =±abx .4. 若利用弦长公式计算,在设直线斜率时要注意说明斜率不存在的情况.5. 直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·湖南)已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1 C.x 280-y 220=1D.x 220-y 280=1 答案 A解析 ∵x 2a 2-y 2b2=1的焦距为10,∴c =5=a 2+b 2.①又双曲线渐近线方程为y =±bax ,且P (2,1)在渐近线上,∴2ba=1,即a =2b .② 由①②解得a =25,b =5,故应选A.2. (2012·福建)已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于 ( )A.31414B.324C.32D.43答案 C解析 由双曲线中a ,b ,c 的关系c 2=a 2+b 2,得32=a 2+5, ∴a 2=4.∴e =c a =32.3. 设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A.x 242-y 232=1B.x 2132-y 252=1 C.x 232-y 242=1D.x 2132-y 2122=1 答案 A解析 由题意知椭圆C 1的焦点坐标为F 1(-5,0),F 2(5,0),设曲线C 2上的一点P ,则||PF 1|-|PF 2||=8.由双曲线的定义知:a =4,b =3. 故曲线C 2的标准方程为x 242-y 232=1.4. (2011·课标全国)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 2B. 3 C .2D .3答案 B解析 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为l :x =c 或x =-c ,代入x 2a 2-y 2b 2=1得y 2=b 2(c 2a 2-1)=b 4a2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a 2=e 2-1=2,∴e = 3.二、填空题(每小题5分,共15分)5. 已知中心在原点的双曲线C ,过点P (2,3)且离心率为2,则双曲线C 的标准方程为______________________. 答案 x 23-y 29=1或y 253-x 25=1解析 ∵双曲线C 的离心率为2,∴2=1+b 2a 2,∴ba=3, ∴可设双曲线C 的标准方程为x 2a 2-y 23a 2=1或y 2a 2-x 23a 2=1,把P (2,3)代入得,a 2=3或a 2=53,∴所求双曲线C 的标准方程为x 23-y 29=1或y 253-x 25=1.6. 双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m =___________.答案 -14解析 由题意知a 2=1,b 2=-1m,则a =1,b =-1m. ∴-1m =2,解得m =-14. 7. 已知以双曲线C 的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C 的离心率为________. 答案62解析 如图,∠B 1F 1B 2=60°, 则c =3b ,即c 2=3b 2, 由c 2=3(c 2-a 2), 得c 2a 2=32,则e =62. 三、解答题(共22分)8. (10分)已知椭圆D :x 250+y 225=1与圆M :x 2+(y -5)2=9,双曲线G 与椭圆D 有相同焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程. 解 椭圆D 的两个焦点为F 1(-5,0),F 2(5,0), 因而双曲线中心在原点,焦点在x 轴上,且c =5. 设双曲线G 的方程为x 2a 2-y 2b 2=1 (a >0,b >0),∴渐近线方程为bx ±ay =0且a 2+b 2=25, 又圆心M (0,5)到两条渐近线的距离为r =3.∴|5a |b 2+a2=3,得a =3,b =4,∴双曲线G 的方程为x 29-y 216=1.9. (12分)已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点P (4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0; (3)求△F 1MF 2的面积.(1)解 ∵e =2,∴可设双曲线方程为x 2-y 2=λ.∵过点P (4,-10),∴16-10=λ,即λ=6. ∴双曲线方程为x 2-y 2=6.(2)证明 方法一 由(1)可知,双曲线中a =b =6, ∴c =23,∴F 1(-23,0),F 2(23,0), ∴kMF 1=m 3+23,kMF 2=m3-23,kMF 1·kMF 2=m 29-12=-m 23.∵点(3,m )在双曲线上,∴9-m 2=6,m 2=3, 故kMF 1·kMF 2=-1,∴MF 1⊥MF 2,∴MF 1→·MF 2→=0. 方法二 ∵MF 1→=(-3-23,-m ),MF 2→=(23-3,-m ),∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2. ∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0, ∴MF 1→·MF 2→=0.(3)解 △F 1MF 2的底|F 1F 2|=43, 由(2)知m =±3.∴△F 1MF 2的高h =|m |=3, ∴S △F 1MF 2=12×43×3=6.B 组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A. 2B. 3C.3+12D.5+12答案 D解析 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),如图所示,双曲线的一条渐近线方程为y =b a x ,而k BF =-bc ,∴b a ·(-bc)=-1,整理得b 2=ac . ∴c 2-a 2-ac =0,两边同除以a 2,得e 2-e -1=0, 解得e =1+52或e =1-52(舍去),故选D.2. 已知点F 是双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是钝角三角形,则该双曲线的离心率e 的取值范围是 ( )A .(1,+∞)B .(1,2)C .(1,1+2)D .(2,+∞)答案 D解析 根据双曲线的对称性,若△ABE 是钝角三角形,则只要0<∠BAE <π4即可.直线AB :x =-c ,代入双曲线方程得y 2=b 4a 2,取点A ⎝⎛⎭⎫-c ,b 2a ,则|AF |=b 2a,|EF |=a +c ,只要|AF |>|EF |就能使∠BAE <π4,故b 2a >a +c ,即b 2>a 2+ac ,即c 2-ac -2a 2>0,即e 2-e -2>0,得e >2或e <-1,又e >1,故e >2.故选D.3. 若点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1 (a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为 ( )A .[3-23,+∞)B .[3+23,+∞) C.⎣⎡⎭⎫-74,+∞D.⎣⎡⎭⎫74,+∞答案 B解析 由a 2+1=4,得a =3,则双曲线方程为x 23-y 2=1.设点P (x 0,y 0),则x 203-y 20=1,即y 20=x 203-1.OP →·FP →=x 0(x 0+2)+y 20=x 20+2x 0+x 203-1=43⎝⎛⎭⎫x 0+342-74,∵x 0≥3, 故OP →·FP →的取值范围是[3+23,+∞),故选B. 二、填空题(每小题5分,共15分)4. (2012·重庆)设P 为直线y =b 3a x 与双曲线x 2a 2-y 2b2=1 (a >0,b >0)左支的交点,F 1是左焦点,PF 1垂直于x 轴,则双曲线的离心率e =________. 答案324解析 ∵直线y =b 3a x 与双曲线x 2a 2-y 2b2=1相交,由⎩⎨⎧y =b 3ax ,x 2a 2-y 2b 2=1消去y 得x =32a4,又PF 1垂直于x 轴,∴32a 4=c ,即e =c a =324.5. 设点F 1,F 2是双曲线x 2-y 23=1的两个焦点,点P 是双曲线上一点,若3|PF 1|=4|PF 2|,则△PF 1F 2的面积为________. 答案 315解析 据题意,|PF 1|=43|PF 2|,且|PF 1|-|PF 2|=2,解得|PF 1|=8,|PF 2|=6.又|F 1F 2|=4,在△PF 1F 2中,由余弦定理得, cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=78.所以sin ∠F 1PF 2=1-cos 2∠F 1PF 2=158, 所以S △PF 1F 2=12×6×8×158=315.6. 已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为________. 答案 53解析 由定义,知|PF 1|-|PF 2|=2a . 又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a .在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2.要求e 的最大值,即求cos ∠F 1PF 2的最小值,∴当cos ∠F 1PF 2=-1时,得e =53, 即e 的最大值为53. 三、解答题7. (13分)直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.解 (1)将直线l 的方程y =kx +1代入双曲线C 的方程2x 2-y 2=1后,整理得(k 2-2)x 2+2kx +2=0.①依题意,直线l 与双曲线C 的右支交于不同两点,故⎩⎪⎨⎪⎧k 2-2≠0,Δ=(2k )2-8(k 2-2)>0,-2k k 2-2>0,2k 2-2>0. 解得k 的取值范围是-2<k <- 2. (2)设A 、B 两点的坐标分别为(x 1,y 1)、(x 2,y 2),则由①式得⎩⎪⎨⎪⎧ x 1+x 2=2k 2-k 2,x 1·x 2=2k 2-2.②假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0).则由F A ⊥FB 得:(x 1-c )(x 2-c )+y 1y 2=0.即(x 1-c )(x 2-c )+(kx 1+1)(kx 2+1)=0.整理得(k 2+1)x 1x 2+(k -c )(x 1+x 2)+c 2+1=0.③把②式及c =62代入③式化简得5k 2+26k -6=0. 解得k =-6+65或k =6-65∉(-2,-2)(舍去), 可知存在k =-6+65使得以线段AB 为直径的圆经过双曲线C 的右焦点.。

高考数学复习考点知识专题讲解课件47---双曲线

高考数学复习考点知识专题讲解课件47---双曲线

返回导航
新高考 大一轮复习 · 数学
解析:由题意得ba=34,c2=a2+b2=25,所以 a=4,b=3,所以所求双曲线的标 准方程为1x62 -y92=1. 答案:B
返回导航
新高考 大一轮复习 · 数学
(2)已知双曲线ax22-by22=1(a>0,b>0)的离心率为 2,过右焦点且垂直于 x 轴的直
返回导航
新高考 大一轮复习 · 数学
6.共轭双曲线 (1)定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么 这两条双曲线互为共轭双曲线. (2)性质:①它们有共同的渐近线;②它们的四个焦点共圆;③它们的离心率的倒 数的平方和等于 1.
返回导航
新高考 大一轮复习 · 数学
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内到点 F1(0,4),F2(0,-4)距离之差的绝对值等于 8 的点的轨迹是双曲 线.( × ) (2)方程xm2-yn2=1(mn>0)表示焦点在 x 轴上的双曲线.( × )
返回导航
新高考 大一轮复习 · 数学
题型分类 深度剖析
返回导航
新高考 大一轮复习 · 数学
题型一 双曲线的定义 例 1 (1)已知定点 F1(-2,0),F2(2,0),N 是圆 O:x2+y2=1 上任意一点,点 F1
关于点 N 的对称点为 M,线段 F1M 的中垂线与直线 F2M 相交于点 P,则点 P 的
新高考 大一轮复习 · 数学
解 析 : 椭 圆 C1 的 离 心 率 为
a2-b2 a



线
C2 的 离 心 率 为
a2+b2 a


备战高考数学复习考点知识与题型讲解67---双曲线

备战高考数学复习考点知识与题型讲解67---双曲线

备战高考数学复习考点知识与题型讲解第67讲双曲线考向预测核心素养考查双曲线的定义、标准方程和几何性质,双曲线的离心率和渐近线是高考命题热点;直线与双曲线是高考新的命题点.直观想象、数学运算一、知识梳理1.双曲线的定义(1)定义:平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹.(2)符号表示:||MF1|-|MF2||=2a(常数)(0<2a<|F1F2|).(3)焦点:两个定点F1,F2.(4)焦距:两焦点间的距离,表示为|F1F2|.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c) 焦距|F1F2|=2c范围x≤-a或x≥a,y∈Ry≤-a或y≥a,x∈R对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b;实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±bax y=±abxa,b,c关系c2=a2+b2(c>a>0,c>b>0)3.等轴双曲线实轴和虚轴等长的双曲线叫做等轴双曲线,其渐近线方程为y=±x,离心率为e=2.常用结论1.双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b.(2)若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c-a.(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b2a,异支的弦中最短的为实轴,其长为2a.(4)设P,A,B是双曲线上的三个不同的点,其中A,B关于原点对称,直线PA,PB斜率存在且不为0,则直线PA与PB的斜率之积为b2 a2 .2.巧设双曲线方程(1)与双曲线x2a2-y2b2=1(a>0,b>0)有共同渐近线的方程可表示为x2a2-y2b2=t(t≠0).(2)过已知两个点的双曲线方程可设为mx2+ny2=1(mn<0).二、教材衍化1.(人A选择性必修第一册P120例1改编)已知平面内两定点A(-5,0),B(5,0),动点M 满足|MA |-|MB |=6,则点M 的轨迹方程是( )A.x 216-y 29=1 B.x 216-y 29=1(x ≥4) C.x 29-y 216=1 D.x 29-y 216=1(x ≥3) 解析:选D.由双曲线的定义知,点M 的轨迹是双曲线的右支,故排除A ,C.又由题意可知焦点在x 轴上,且c =5,a =3,所以b =c 2-a 2=4,故点M 的轨迹方程为x 29-y 216=1(x ≥3).2.(人A 选择性必修第一册P 127习题3.2 T 6改编)经过点A (4,1),且对称轴都在坐标轴上的等轴双曲线的标准方程为________.解析:设双曲线的方程为x 2a 2-y 2a 2=±1(a >0),把点A (4,1)代入,得a 2=15(舍负), 故所求方程为x 215-y 215=1.答案:x 215-y 215=13.(人A 选择性必修第一册P 120例1改编)以椭圆x 24+y 23=1的焦点为顶点,顶点为焦点的双曲线方程为________.解析:设要求的双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由椭圆x 24+y 23=1,得焦点为(-1,0),(1,0),顶点为(-2,0),(2,0).所以双曲线的顶点为(-1,0),(1,0),焦点为(-2,0),(2,0).所以a =1,c =2,所以b 2=c 2-a 2=3,所以双曲线标准方程为x 2-y 23=1.答案:x 2-y 23=1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内到点F1(0,4),F2(0,-4)距离之差等于6的点的轨迹是双曲线.( )(2)方程x2m-y2n=1(mn>0)表示焦点在x轴上的双曲线.( )(3)若双曲线x2a2-y2b2=1(a>0,b>0)与x2b2-y2a2=1(a>0,b>0)的离心率分别是e1,e2,则1 e21+1e22=1.( )答案:(1)×(2)×(3)√二、易错纠偏1.(多选)(曲线方程中参数意义不明致误)若方程x23-t+y2t-1=1所表示的曲线为C,则下面四个命题中错误的是( )A.若C为椭圆,则1<t<3B.若C为双曲线,则t>3或t<1C.曲线C可能是圆D.若C为椭圆,且长轴在y轴上,则1<t<2解析:选AD.若t>3,则方程可变形为y2t-1-x2t-3=1,它表示焦点在y轴上的双曲线;若t<1,则方程可变形为x23-t-y21-t=1,它表示焦点在x轴上的双曲线;若2<t<3,则0<3-t<t-1,故方程x23-t+y2t-1=1表示焦点在y轴上的椭圆;若1<t<2,则0<t-1<3-t,故方程x23-t +y2t-1=1表示焦点在x轴上的椭圆;若t=2,方程x23-t+y2t-1=1即为x2+y2=1,它表示圆,综上,选AD.2.(忽视双曲线上的点的特征致误)已知双曲线x 2-y 216=1上一点P 到它的一个焦点的距离等于4,那么点P 到另一个焦点的距离等于________.解析:设双曲线的焦点为F 1,F 2,|PF 1|=4, 则||PF 1|-|PF 2||=2,故|PF 2|=6或2,又双曲线上的点到焦点的距离的最小值为c -a =17-1,故|PF 2|=6. 答案:63.(忽视焦点的位置致误)坐标原点为对称中心,两坐标轴为对称轴的双曲线的一条渐近线的斜率为3,则双曲线的离心率为________.解析:若双曲线的焦点在x 轴上,有ba=3,则c =2a ,此时e =2. 若双曲线的焦点在y 轴上, 有a b =3,则c =233a ,此时e =233. 综上,e =2或e =233. 答案:2或233考点一 双曲线的定义及标准方程(多维探究)复习指导:了解双曲线的定义及几何图形; 会求双曲线的标准方程,理解两种类型的标准方程的差异.角度1 双曲线的定义(1)已知圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A .x 2-y 28=1 B.x 28-y 2=1C .x 2-y 28=1(x ≤-1) D.x 2-y 28=1(x ≥1)(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则△F 1PF 2的面积为________.【解析】 (1)设动圆M 的半径为r ,由动圆M 同时与圆C 1和圆C 2相外切,得|MC 1|=1+r ,|MC 2|=3+r ,|MC 2|-|MC 1|=2<6,所以点M 的轨迹是以点C 1(-3,0)和C 2(3,0)为焦点的双曲线的左支,且2a =2,a =1,c =3,则b 2=c 2-a 2=8,所以点M 的轨迹方程为x 2-y 28=1(x ≤-1). (2)不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12,所以|PF 1|·|PF 2|=8,所以S △F 1PF 2=12|PF 1|·|PF 2|·sin 60°=2 3.【答案】 (1)C (2)2 3在本例(2)中,若将“∠F 1PF 2=60°”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积为________.解析:不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 因为PF 1→·PF 2→=0,所以PF 1→⊥PF 2→, 所以在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16,所以|PF 1|·|PF 2|=4, 所以S △F 1PF 2=12|PF 1|·|PF 2|=2.答案:2双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立|PF 1|与|PF 2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.角度2 双曲线的标准方程(一题多解)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是( )A.7x 216-y 212=1 B.y 23-x 22=1 C .x 2-y 23=1D.3y 223-x 223=1 【解析】 方法一:若双曲线的焦点在x 轴上,设其标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则由题意可得⎩⎪⎨⎪⎧4a 2-9b 2=1,b a=3,解得⎩⎨⎧a =1,b =3,所以双曲线的标准方程为x 2-y 23=1;若双曲线的焦点在y 轴上,设其标准方程为y 2a 2-x 2b 2=1(a >0,b >0),则由题意可得⎩⎪⎨⎪⎧9a 2-4b 2=1,ab =3,该方程组无解.综上,所求双曲线的标准方程为x 2-y 23=1.方法二:设双曲线的方程为x 2m -y2n =1(mn >0),则由题意可得⎩⎪⎨⎪⎧4m -9n =1,nm =3,解得⎩⎨⎧m =1,n =3,所以所求双曲线的标准方程为x 2-y 23=1.方法三:因为双曲线的渐近线方程为y =±3x ,所以可设双曲线的方程为3x 2-y 2=λ(λ≠0),则由双曲线过点(2,3),可得λ=3×22-32=3,故双曲线的方程为3x 2-y 2=3,其标准方程为x 2-y 23=1.【答案】 C若本例中“双曲线过点(2,3)”变为“焦距为2”,其他条件不变,则双曲线的标准方程为________.解析:由例题方法三知所求双曲线方程可设为3x 2-y 2=λ(λ≠0)即x 2λ3-y 2λ=1.又双曲线焦距为2,所以c =1.若λ>0,方程化为x 2λ3-y 2λ=1,所以λ3+λ=1,所以λ=34.此时方程为x 214-y 234=1;若λ<0,方程化为y 2-λ-x 2-λ3=1,所以-λ-λ3=1,所以λ=-34.此时方程为y 234-x 214=1.故所求双曲线的标准方程为x 214-y 234=1或y 234-x 214=1.答案:x 214-y 234=1或y 234-x 214=1求双曲线标准方程的常用方法(1)定义法:根据双曲线的定义确定a 2,b 2的值,再结合焦点位置,求出双曲线方程.(2)待定系数法:先确定焦点在x 轴还是y 轴上,设出标准方程,再由条件确定a 2,b 2的值,即“先定型,再定量”,如果焦点的位置不好确定,可将双曲线的方程设为x 2m2-y 2n2=λ(λ≠0)或mx 2-ny 2=1(mn >0),再根据条件求解. (3)常用设法:①与双曲线x 2a 2-y 2b 2=1共渐近线的方程可设为x 2a 2-y 2b 2=λ(λ≠0);②若双曲线的渐近线方程为y =±b a x ,则双曲线的方程可设为x 2a 2-y 2b2=λ(λ≠0).|跟踪训练|1.(多选)(2022·山东滨州期末)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-5,0),F 2(5,0),则能使双曲线C 的方程为x 216-y 29=1的条件是( ) A .双曲线的离心率为54B .双曲线过点⎝⎛⎭⎪⎫5,94C .双曲线的渐近线方程为3x ±4y =0D .双曲线的实轴长为4解析:选ABC.由题意可得焦点在x 轴上,且c =5,A 选项,若双曲线的离心率为54,则a =4,所以b 2=c 2-a 2=9,此时双曲线的方程为x 216-y 29=1,故A 正确;B 选项,若双曲线过点⎝ ⎛⎭⎪⎫5,94,则⎩⎪⎨⎪⎧25a 2-8116b 2=1,a 2+b 2=25,得⎩⎨⎧a 2=16,b 2=9,此时双曲线的方程为x 216-y 29=1,故B 正确;C 选项,若双曲线的渐近线方程为3x ±4y =0,可设双曲线的方程为x 216-y 29=m (m >0),所以c 2=16m +9m =25,解得m =1,所以此时双曲线的方程为x 216-y 29=1,故C正确;D 选项,若双曲线的实轴长为4,则a =2,所以b 2=c 2-a 2=21,此时双曲线的方程为x 24-y 221=1,故D 错误.故选ABC.2.经过点P (3,27),Q (-62,7)的双曲线的标准方程为________.解析:设双曲线的方程为mx 2+ny 2=1(mn <0),因为所求双曲线经过点P (3,27),Q (-62,7),所以⎩⎨⎧9m +28n =1,72m +49n =1,解得⎩⎪⎨⎪⎧m =-175,n =125.故所求双曲线的标准方程为y 225-x275=1.答案:y 225-x 275=1考点二 双曲线的几何性质(多维探究)复习指导:了解双曲线的几何性质.角度1 渐近线和离心率(1)(2021·高考全国卷甲)已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为( )A.72B.132C.7D.13(2)(2021·高考全国卷乙)已知双曲线C:x2m-y2=1(m>0)的一条渐近线为3x+my=0,则C的焦距为________.【解析】(1)设|PF2|=m,|PF1|=3m,则|F1F2|=m2+9m2-2×3m×m×cos 60°=7m,所以C的离心率e=ca=2c2a=|F1F2||PF1|-|PF2|=7m2m=72.(2)双曲线x2m-y2=1(m>0)的渐近线为y=±1mx,即x±my=0,又双曲线的一条渐近线为3x+my=0,即x+m3y=0,联立两式可得,m=3.设双曲线的实半轴长为a,虚半轴长为b,半焦距为c,则有a2=m=3,b2=1,所以双曲线的焦距2c=2a2+b2=4.【答案】(1)A (2)4角度2 双曲线性质的综合应用(1)(2022·潍坊模拟)已知F1,F2是双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左支交于点A,与右支交于点B,若|AF1|=2a,∠F1AF2=2π3,则S△AF1F2S△ABF2=( )A.1 B.12C.13D.23(2)(2022·合肥市名校联考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.53C.2D.73(3)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B. 3C.2D. 5【解析】 (1)如图所示,由双曲线定义可知|AF 2|-|AF 1|=2a . 又|AF 1|=2a ,所以|AF 2|=4a , 因为∠F 1AF 2=23π,所以S △AF 1F 2=12|AF 1|·|AF 2|·sin ∠F 1AF 2=12×2a ×4a ×32=23a 2.由双曲线定义可知|BF 1|-|BF 2|=2a ,所以|BF 1|=2a +|BF 2|,又知|BF 1|=2a +|BA |, 所以△BAF 2为等边三角形,边长为4a ,所以S △ABF 2=34|AB |2=34×(4a )2=43a 2, 所以S △AF 1F 2S △ABF 2=23a 243a 2=12.故选B.(2)设P (x P ,y P ),则双曲线的焦半径|PF 1|=ex P +a , |PF 2|=ex P -a ,由|PF 1|=4|PF 2|可得ex P +a =4(ex P -a ), 即3ex P =5a ,所以x P =5a 3e. 由于点P 在双曲线的右支上,则x P =5a3e≥a , 从而e ≤53,即此双曲线的离心率e 的最大值为53.(3)依题意,记F (c ,0),则以OF 为直径的圆的方程为⎝⎛⎭⎪⎫x -c 22+y 2=c 24,将圆⎝⎛⎭⎪⎫x -c 22+y 2=c 24与圆x 2+y 2=a 2的方程相减得cx =a 2,即x =a 2c ,所以点P ,Q 的横坐标均为a 2c .由于PQ 是圆x 2+y 2=a 2的一条弦, 因此⎝ ⎛⎭⎪⎫a 2c 2+⎝⎛⎭⎪⎫|PQ |22=a 2, 即⎝ ⎛⎭⎪⎫a 2c 2+⎝ ⎛⎭⎪⎫c 22=a 2, 即c 24=a 2⎝ ⎛⎭⎪⎫1-a 2c 2=a 2b 2c 2,所以c 2=2ab ,即a 2+b 2-2ab =(a -b )2=0,所以a =b , 因此C 的离心率e =1+⎝ ⎛⎭⎪⎫b a 2=2,故选A. 【答案】 (1)B (2)B (3)A双曲线的几何性质(1)求双曲线的渐近线或离心率的方法:①求出a ,b ,c 直接求离心率e ,写渐近线方程.②列出a ,b ,c 的齐次方程(或不等式),然后解方程或不等式.(2)双曲线性质的综合应用要充分注意与平面几何知识的联系,善于发现条件中的相等或不等关系.|跟踪训练|1.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为42,且两条渐近线互相垂直,则该双曲线的实轴长为( )A .2 B.4 C .6D.8解析:选B.因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线为y =±ba x ,两条渐近线互相垂直,所以-⎝ ⎛⎭⎪⎫b a 2=-1,得a =b .因为双曲线的焦距为42,所以c =22,由c 2=a 2+b 2可知2a 2=8,所以a =2,所以实轴长2a =4.故选B.2.已知抛物线y 2=4x 的焦点为F ,准线为l .若l 与双曲线x 2a 2-y2b2=1(a >0,b >0)的两条渐近线分别交于点A 和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( )A. 2B. 3C.2D. 5解析:选D.由题意,可得F (1,0),直线l 的方程为x =-1,双曲线的渐近线方程为y =±b a x .将x =-1代入y =±b a x ,得y =±b a ,所以点A ,B 的纵坐标的绝对值均为b a.由|AB |=4|OF |可得2b a =4,即b =2a ,b 2=4a 2,故双曲线的离心率e =c a=a 2+b 2a 2=5.3.(2022·济宁模拟)过双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右顶点作x 轴的垂线,与C的一条渐近线相交于点A .若以C 的右焦点F 为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的标准方程为________.解析:因为渐近线y =ba x 与直线x =a 交于点 A (a ,b ),c =4且(4-a )2+b 2=4,又a 2+b 2=c 2,解得a 2=4,b 2=12,因此双曲线的标准方程为x 24-y 212=1.答案:x 24-y 212=1考点三 直线与双曲线(综合研析)(2021·新高考卷Ⅰ)在平面直角坐标系xOy 中,已知点F 1(-17,0),F 2(17,0),点M 满足|MF 1|-|MF 2|=2.记M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |·|TB |=|TP |·|TQ |,求直线AB 的斜率与直线PQ 的斜率之和.【解】 (1)因为|MF 1|-|MF 2|=2<|F 1F 2|=217,所以点M 的轨迹C 是以F 1,F 2分别为左、右焦点的双曲线的右支.设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),半焦距为c ,则2a =2,c =17,得a =1,b 2=c 2-a 2=16,所以点M 的轨迹C 的方程为x 2-y 216=1(x ≥1).(2)设T ⎝ ⎛⎭⎪⎫12,t ,由题意可知直线AB ,PQ 的斜率均存在且不为0,设直线AB 的方程为y -t =k 1⎝ ⎛⎭⎪⎫x -12(k 1≠0),直线PQ 的方程为y -t =k 2⎝⎛⎭⎪⎫x -12(k 2≠0),由⎩⎪⎨⎪⎧y -t =k 1⎝ ⎛⎭⎪⎫x -12,x 2-y216=1,得(16-k 21)x 2-2k 1⎝ ⎛⎭⎪⎫t -k 12x -⎝ ⎛⎭⎪⎫t -k 122-16=0.设A (x A ,y A ),B (x B ,y B ), 易知16-k 21≠0,则x A x B =-⎝ ⎛⎭⎪⎫t -k 122-1616-k 21,x A +x B =2k 1⎝⎛⎭⎪⎫t -k 1216-k 21, 所以|TA |=1+k 21⎪⎪⎪⎪⎪⎪x A -12=1+k 21⎝ ⎛⎭⎪⎫x A -12, |TB |=1+k 21⎪⎪⎪⎪⎪⎪x B -12=1+k 21⎝⎛⎭⎪⎫x B -12,则|TA |·|TB |=(1+k 21)⎝ ⎛⎭⎪⎫x A -12⎝ ⎛⎭⎪⎫x B -12=(1+k 21)⎣⎢⎡⎦⎥⎤x A x B -12(x A +x B )+14 =(1+k 21)⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫t -k 122-1616-k21-12·2k 1⎝⎛⎭⎪⎫t -k 1216-k 21+14 =(1+k 21)(t 2+12)k 21-16.同理得|TP |·|TQ |=(1+k 22)(t 2+12)k 22-16.因为|TA |·|TB |=|TP |·|TQ |,所以(1+k 21)(t 2+12)k 21-16=(1+k 22)(t 2+12)k 22-16,所以k 22-16+k 21k 22-16k 21=k 21-16+k 21k 22-16k 22,即k 21=k 22,又k 1≠k 2,所以k 1=-k 2,即k 1+k 2=0. 故直线AB 的斜率与直线PQ 的斜率之和为0.(1)判断直线与双曲线交点个数的方法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定.(2)弦长公式设直线y =kx +b 与双曲线交于A (x 1,y 1),B (x 2,y 2),则|AB |= 1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2.|跟踪训练|已知双曲线C 1:x 2-y 24=1.(1)求与双曲线C 1有相同的焦点且过点P (4,3)的双曲线C 2的标准方程; (2)直线l :y =x +m 分别交双曲线C 1的两条渐近线于A ,B 两点.当OA →·OB →=3时,求实数m 的值.解:(1)双曲线C 1的焦点坐标为(5,0),(-5,0),设双曲线C 2的标准方程为x 2a 2-y 2b2=1(a >0,b >0),则⎩⎨⎧a 2+b 2=5,16a 2-3b2=1,解得⎩⎨⎧a 2=4,b 2=1,所以双曲线C 2的标准方程为x 24-y 2=1.(2)双曲线C 1的渐近线方程为y =2x ,y =-2x , 设A (x 1,2x 1),B (x 2,-2x 2).由⎩⎨⎧x 2-y 24=0,y =x +m ,消去y 化简得3x 2-2mx -m 2=0.由Δ=(-2m )2-4×3×(-m 2)=16m 2>0,得m ≠0.因为x 1x 2=-m 23,OA →·OB →=x 1x 2+(2x 1)·(-2x 2)=-3x 1x 2,所以m 2=3,即m =± 3.[A 基础达标]1.若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|=( )A .11 B.9 C.5D.3解析:选 B.根据双曲线的定义,得||PF 2|-|PF 1||=2×3=6,所以||PF 2|-3|=6,所以|PF 2|=9或|PF 2|=-3(舍去).2.已知双曲线x 2m -y 2m +6=1(m >0)的虚轴长是实轴长的2倍,则双曲线的标准方程为( )A.x 22-y 24=1 B.x 24-y 28=1 C .x 2-y 28=1D.x 22-y 28=1 解析:选D.由题意,得2m =m +6,解得m =2,所以双曲线的标准方程x 22-y 28=1.故选D.3.设双曲线x 2-y 28=1的两个焦点为F 1,F 2,P 是双曲线上的一点,且|PF 1|∶|PF 2|=3∶4,则△PF 1F 2的面积为( )A .10 3B.8 3C.8 5D.16 5解析:选C.依题意|F 1F 2|=6,|PF 2|-|PF 1|=2, 因为|PF 1|∶|PF 2|=3∶4, 所以|PF 1|=6,|PF 2|=8, 所以S △PF 1F 2=12×8×62-⎝ ⎛⎭⎪⎫822=8 5.4.(2022·长春市质量监测)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个顶点分别为A ,B ,点P 为双曲线上除A ,B 外任意一点,且点P 与点A ,B 连线的斜率分别为k 1,k 2,若k 1k 2=3,则双曲线的渐近线方程为( )A .y =±x B.y =±2x C .y =±3xD.y =±2x解析:选C.设点P (x ,y ),由题意知k 1·k 2=yx -a ·yx +a =y 2x 2-a 2=y 2a 2y 2b 2=b 2a 2=3,所以其渐近线方程为y =±3x ,故选C.5.(2020·高考天津卷)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),过抛物线y 2=4x的焦点和点(0,b )的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A.x 24-y 24=1 B.x 2-y 24=1C.x 24-y 2=1 D.x 2-y 2=1解析:选D.方法一:由题知y 2=4x 的焦点坐标为(1,0),则过焦点和点(0,b )的直线方程为x +y b =1,而x 2a 2-y 2b 2=1的渐近线方程为x a +y b =0和x a -yb =0,由l 与一条渐近线平行,与另一条渐近线垂直,得a =1,b =1,故选D.方法二:由题知双曲线C 的两条渐近线互相垂直,则a =b ,即渐近线方程为x ±y =0,排除B ,C.又知y 2=4x 的焦点坐标为(1,0),l 过点(1,0),(0,b ),所以b -00-1=-1,b =1,故选D.6.已知离心率为52的双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若S △OMF 2=16,则双曲线的实轴长是( )A .32 B.16 C.84D.4解析:选B.由题意知F 2(c ,0),不妨令点M 在渐近线y =bax 上,由题意可知|F 2M |=bc a 2+b 2=b ,所以|OM |=c 2-b 2=a .由S △OMF 2=16,可得12ab =16,即ab =32,又a 2+b 2=c 2,ca =52,所以a =8,b =4,c =45,所以双曲线C 的实轴长为16.故选B. 7.(多选)(2020·新高考卷Ⅰ)已知曲线C :mx 2+ny 2=1.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nxD .若m =0,n >0,则C 是两条直线解析:选ACD.对于A ,若m >n >0,则mx 2+ny 2=1可化为x 21m+y 21n=1,因为m >n >0,所以0<1m <1n,即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若m =n >0,则mx 2+ny 2=1可化为x 2+y 2=1n,此时曲线C表示圆心在原点,半径为nn的圆,故B不正确;对于C,若mn<0,则mx2+ny2=1可化为x21m+y21n=1,此时曲线C表示双曲线.由mx2+ny2=0可得y=± -mnx,故C正确;对于D,若m=0,n>0,则mx2+ny2=1可化为y2=1 n ,y=±nn,此时曲线C表示平行于x轴的两条直线,故D正确.故选ACD.8.(2021·高考全国卷乙)双曲线x24-y25=1的右焦点到直线x+2y-8=0的距离为________.解析:由双曲线的性质知c2=a2+b2=4+5=9,则c=3,双曲线右焦点的坐标为(3,0),所以双曲线的右焦点到直线x+2y-8=0的距离d=|3-8|12+22= 5.答案: 59.已知左、右焦点分别为F1,F2的双曲线C:x2a2-y2b2=1(a>0,b>0)的一条渐近线与直线l:x-2y=0相互垂直,点P在双曲线C上,且|PF1|-|PF2|=3,则双曲线C的焦距为________.解析:双曲线C:x2a2-y2b2=1(a>0,b>0)的渐近线为y=±bax,一条渐近线与直线l:x-2y=0相互垂直,可得ba=2,即b=2a,由双曲线的定义可得2a=|PF1|-|PF2|=3,可得a=32,b=3,即有c=a2+b2=94+9=352,即焦距为2c=3 5.答案:3 510.已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是双曲线C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值范围是________.解析:由题意知a =2,b =1,c =3, 设F 1(-3,0),F 2(3,0),则MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0).因为MF 1→·MF 2→<0, 所以(-3-x 0)(3-x 0)+y 20<0,即x 20-3+y 20<0.因为点M (x 0,y 0)在双曲线C 上,所以x 202-y 20=1,即x 20=2+2y 20,所以2+2y 20-3+y 20<0,所以-33<y 0<33. 答案:⎝ ⎛⎭⎪⎫-33,33[B 综合应用]11.(多选)已知F 1,F 2分别是双曲线C :y 2-x 2=1的上、下焦点,点P 是其中一条渐近线上的一点,且以线段F 1F 2为直径的圆经过点P ,则( )A .双曲线C 的渐近线方程为y =±xB .以F 1F 2为直径的圆的方程为x 2+y 2=1C .点P 的横坐标为±1D .△PF 1F 2的面积为 2解析:选ACD.等轴双曲线C :y 2-x 2=1的渐近线方程为y =±x ,故A 正确;由双曲线的方程可知|F 1F 2|=22,所以以F 1F 2为直径的圆的方程为x 2+y 2=2,故B 错误;点P (x 0,y 0)在圆x 2+y 2=2上,不妨设点P (x 0,y 0)在直线y =x 上,所以⎩⎨⎧x 20+y 20=2,y 0=x 0,解得|x0|=1,则点P的横坐标为±1,故C正确;由上述分析可得S△PF1F2=12×22×1=2,故D正确.故选ACD.12.如图,F1,F2是双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右两个焦点,若直线y=x与双曲线C交于P,Q两点,且四边形PF1QF2为矩形,则双曲线的离心率为________.解析:由题意可得,矩形的对角线长相等,将直线y=x代入双曲线C的方程,可得x=±a2b2b2-a2,所以2·a2b2b2-a2=c,所以2a2b2=c2(b2-a2),即2(e2-1)=e4-2e2,所以e4-4e2+2=0.因为e>1,所以e2=2+2,所以e=2+ 2.答案:2+ 213.(2022·陕西榆林二模)已知双曲线C:x2a2-y2b2=1(a>0,b>0),左顶点为A,右焦点为F,过F且垂直于x轴的直线与双曲线C在第一象限内的交点为B,且直线AB的斜率为12,则C的离心率为________.解析:把x=c代入双曲线:x2a2-y2b2=1(a>0,b>0)得y=b2a,所以B⎝⎛⎭⎪⎫c,b2a,又A(-a,0),直线AB的斜率为12,所以b2aa+c=12,可得a2+ac=2c2-2a2,即2c2-3a2-ac=0,即2e2-3-e=0,因为e >1,所以e =32.答案:3214.(2022·临川一中模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,A 1,A 2是左、右顶点,F 是右焦点,B 是虚轴的上端点.若在线段BF 上(不含端点)存在不同的两点P i (i =1,2),使得P i A 1→·P i A 2→=0,则双曲线离心率的取值范围是________.解析:设c 为半焦距,则F (c ,0),又B (0,b ), 所以BF :bx +cy -bc =0,以A 1A 2为直径的圆的方程为⊙O :x 2+y 2=a 2, 因为P i A 1→·P i A 2→=0,i =1,2,所以⊙O 与线段BF 有两个交点(不含端点),所以⎩⎨⎧bc b 2+c 2<a ,b >a ,即⎩⎨⎧c 4-3a 2c 2+a 4<0,c 2>2a 2,故⎩⎨⎧e 4-3e 2+1<0,e 2>2,解得2<e <5+12.答案:⎝ ⎛⎭⎪⎫2,5+12 [C 素养提升]15.(2022·安徽皖南名校联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,其右支上存在一点M ,使得MF 1→·MF 2→=0,直线MF 2平行于双曲线的一条渐近线,则双曲线C 的离心率为( )A. 2B. 3C.2D. 5解析:选D.由MF 1→·MF 2→=0,得MF 1⊥MF 2.不妨设直线MF 2平行于双曲线的渐近线l :bx +ay =0,如图所示, 从而得l 是线段MF 1的垂直平分线,且直线MF 1的方程为y =ab(x +c ). 设MF 1与l 相交于点N (x ,y ),由⎩⎪⎨⎪⎧y =a b(x +c ),y =-ba x ,得⎩⎪⎨⎪⎧x =-a 2c ,y =abc ,即N ⎝ ⎛⎭⎪⎫-a 2c ,ab c .又F 1(-c ,0),由中点坐标公式,得M ⎝⎛⎭⎪⎫c -2a 2c ,2ab c , 将点M 的坐标代入x 2a 2-y 2b 2=1,得⎝⎛⎭⎪⎫c -2a 2c 2a 2-⎝ ⎛⎭⎪⎫2ab c 2b2=1, 化简得c 2=5a 2,则离心率e =ca= 5.故选D.16.(2022·长沙雅礼中学模拟)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 左支上一点,A (0,66),当△APF 周长最小时,则点P 的坐标为________.解析:如图,由双曲线C的方程可知c2=a2+b2=1+8=9,所以c=3,所以左焦点E(-3,0),右焦点F(3,0),因为|AF|=(-3)2+(66)2=15,所以当△APF的周长最小时,|PA|+|PF|最小.由双曲线的性质得|PF|-|PE|=2a=2,所以|PF|=|PE|+2,又|PE|+|PA|≥|AE|=|AF|=15,当且仅当A,P,E三点共线且点P在线段AE上时,等号成立,所以△APF的周长为|AF|+|AP|+|PF|=15+|PE|+|AP|+2≥15+15+2=32.直线AE的方程为y=26x+66,将其代入到双曲线方程得x2+9x+14=0,解得x=-7(舍)或x=-2,由x=-2,得y=26(负值已舍),所以点P的坐标为(-2,26).答案:(-2,26)17.(2021·上海春季高考卷节选)(1)某团队在基地O点西侧、东侧20千米处分别设有A,B两站点,测量距离发现一点P满足|PA|-|PB|=20千米,可知P在以点A,B 为焦点的双曲线上.以O点为坐标原点,正东方向为x轴正半轴方向,正北方向为y轴正半轴方向,建立平面直角坐标系,点P在基地O点北偏东60°处,求双曲线的标准方程和P点的坐标.(2)该团队又在基地O点南侧、北侧15千米处分别设有C,D两站点,测量距离发现一点Q满足|QA|-|QB|=30千米,|QC|-|QD|=10千米,求|OQ|(精确到1千米).解:(1)设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则a =10,c =20,所以b 2=c 2-a 2=300, 所以双曲线的标准方程为x 2100-y 2300=1. 由题意可得直线OP :y =33x , 由⎩⎪⎨⎪⎧x 2100-y 2300=1,y =33x ,可得⎩⎪⎨⎪⎧x =1522,y =562,所以P ⎝ ⎛⎭⎪⎫1522,562. (2)①由|QA |-|QB |=30可得点Q 在以A ,B 为焦点,实轴在x 轴上且实轴长为30的双曲线右支上,设双曲线方程为x 2a 21-y 2b 21=1(a 1>0,b 1>0),则a 1=15,c 1=20,所以b 21=175,双曲线的方程为x 2225-y 2175=1;②由|QC |-|QD |=10可得点Q 在以C ,D 为焦点,实轴在y 轴上且实轴长为10的双曲线上支上,设双曲线方程为y 2a 22-x 2b 22=1(a 2>0,b 2>0),则a 2=5,c 2=15,所以b 22=200,双曲线的方程为y 225-x 2200=1.由⎩⎪⎨⎪⎧x 2225-y 2175=1,y 225-x 2200=1,可得Q ⎝⎛⎭⎪⎫14 40047, 2 97547,所以经计算器计算得,|OQ|≈19(千米).。

专题50 双曲线-高考数学复习资料(解析版)

专题50 双曲线-高考数学复习资料(解析版)
2
的取值范围是( )
33 -, A. 3 3
22 22 -, C. 3 3
33 -, B. 6 6
23 23 -, D. 3 3
【答案】 A
【解析】 因为 F1(- 3,0),F2( 3,0),x20-y20=1,所以M→F1·M→F2=(- 3-x0,-y0)·( 3-x0,-y0) 2
=x20+y20-3<0,即 3y20-1<0,解得-
a2 b2
的垂线,垂足为 A,且交 y 轴于 B,若 A 为 BF 的中点,则双曲线的离心率为( )
A. 2
B. 3
C.2
6 D.
2
【答案】 A
π -1
【解析】
由题易知双曲线
C
的一条渐近线与
x
π 轴的夹角为 ,故双曲线
C
的离心率
e=
cos
4
= 2.
4
x2 y2 3.(2019·宁夏模拟)设 P 是双曲线 - =1 上一点,F1,F2 分别是双曲线的左、右焦点,若|PF1|=9,则
b 2a,即 =
2,所以该双曲线
a
a
b 的渐近线方程为 y=± x=± 2x.
a
c 法二 由 e= =
a
b2
b
b
1+ a = 3,得 = 2,所以该双曲线的渐近线方程为 y=± x=± 2x.
a
a
(2)(2017
山东)在平面直角坐标系
xOy
中,双曲线
x2 a2
y2 b2
1(a
0,b
0)
的右支与焦点为 F
F1
的直线与双曲
线的上下两支分别交于点 B,A,若△ABF2 为等边三角形,则双曲线的渐近线方程为( )

高三数学第一轮复习:双曲线的定义、性质及标准方程 知识精讲

高三数学第一轮复习:双曲线的定义、性质及标准方程 知识精讲

高三数学第一轮复习:双曲线的定义、性质及标准方程【本讲主要内容】双曲线的定义、性质及标准方程双曲线的定义及相关概念、双曲线的标准方程、双曲线的几何性质【知识掌握】【知识点精析】1. 双曲线的定义:(1)第一定义:平面内与两定点F1、F2的距离之差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做焦距。

(2)第二定义:平面内到一个定点F的距离与到一条定直线l的距离的比等于常数(e>1)的点的轨迹叫做双曲线,定点F为焦点,定直线l称为准线,常数e称为离心率。

说明:(1)若2a等于2c,则动点的轨迹是射线(即F1F2、F2F1的延长线);(2)若2a大于2c,则动点轨迹不存在。

2. 双曲线的标准方程、图形及几何性质:标准方程)0b,0a(1byax2222>>=-中心在原点,焦点在x轴上yaxba b2222100-=>>(,)中心在原点,焦点在y轴上图形几何性质X围x a≤-或x a≥y a≤-或y a≥对称性关于x轴、y轴、原点对称(原点为中心)顶点()()1200A a A a-,、,()()1200A a A a-,、,轴实轴长122A A a=,虚轴长122B B b=离心率ecae=>()1准线2212:,:a al x l xc c=-=2212:,:a al y l yc c=-=实轴、虚轴长相等的双曲线称为等轴双曲线,焦点在x 轴上,标准方程为()2220x y a a -=≠;焦点在y 轴上,标准方程为()2220y x a a -=≠。

其渐近线方程为y=±x 。

等轴双曲线的离心率为e =4. 基础三角形:如图所示,△AOB 中,,,,tan b OA a AB b OB c AOB a===∠=。

5. 共渐近线的双曲线系方程:与双曲线x a y b22221-=(a>0,b>0)有相同渐近线的双曲线系可设为()22220x y a b λλ-=≠,若λ>0,则双曲线的焦点在x 轴上;若λ<0,则双曲线的焦点在y 轴上。

高考数学一轮复习第8章解析几何第6讲双曲线

高考数学一轮复习第8章解析几何第6讲双曲线
题组一 走出误区
1.判断下列结论是否正确(请在括号中打“√”或“×”
(1平面内到点F1(0,4,F2(0,-4距离之差的绝对值等于8的点的轨迹是双曲线.( × )
(2方程 - =1(mn>0表示焦点在x轴上的双曲线.( × )
(3双曲线方程 - =λ(m>0,n>0,λ≠0的渐近线方程是 - =0,即 ± =0.( √ )
(4等轴双曲线的渐近线互相垂直,离心率等于 .( √ )
(5若双曲线 - =1(a>0,b>0与 - =1(a>0,b>0的离心率分别是e1,e2,则 + =1(此条件中两条双曲线称为共轭双曲线.( √ )
题组二 走进教材
2.(必修2P61T1若双曲线 - =1(a>0,b>0的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( A )
∴||PF2|-|PF1||=||PF2|-|PM||=|MF2|=2<|F1F2|,
∴由双曲线的定义可得,点P的轨迹是以F1,F2为焦点的双曲线.
(2设双曲线的右焦点为F1,则由双曲线的定义,可知|PF|=4+|PF1|,所以当|PF1|+|PA|最小时满足|PF|+|PA|最小.由双曲线的图形可知,当点A,P,F1共线时,满足|PF1|+|PA|最小,|AF1|即|PF1|+|PA|的最小值.又|AF1|=5,故所求的最小值为9.
(4过双曲线焦点F1的弦AB与双曲线交在同支上,则AB与另一个焦点F2构成的△ABF2的周长为4a+2|AB|.
(5双曲线的离心率公式可表示为e= .
(6双曲线的形状与e的关系:|k|= = = ,e越大,即渐近线斜率的绝对值就越大,双曲线开口就越开阔.
(7 - =1(a>0,b>0与 - =1(a>0,b>0互为共轭双曲线,其离心率倒数的平方和为1.

双曲线课件-2025届高三数学一轮复习

双曲线课件-2025届高三数学一轮复习
9

|PF1|-|PF2|=±2 a =±6,又|PF 1|=5,则|PF 2|=11.
6.
2
2
已知双曲线 C : 2 - 2 =1( a >0, b >0)的焦距为4


线 C 的渐近线方程为
3 ,实轴长为4 2 ,则双曲
2 x ± y =0 .

[解析] 由题意知,2 c =4 3 ,2 a =4 2 ,则 b = 2 − 2 =2,所以 C 的渐近线


C.
2 2
2
双曲线 - =1的渐近线方程是y=± x
9
4
3
D. 等轴双曲线的渐近线互相垂直,离心率等于 2
2. [浙江高考]渐近线方程为 x ± y =0的双曲线的离心率是(
A.
2
2
B. 1
C. 2
C )
D. 2
[解析] 因为双曲线的渐近线方程为 x ± y =0,所以无论双曲线的焦点在 x 轴上还是
轴上.又离心率 e =

2 ,所以 =

2 ,所以 a = 2 ,则 b 2= c 2- a 2=2,所以双曲
2
2
线 C 的标准方程为 - =1.
2
2
解法二
因为双曲线 C 的离心率 e = 2 ,所以该双曲线为等轴双曲线,即 a = b .又
双曲线 C 的焦点为(-2,0)和(2,0),所以 c =2,且焦点在 x 轴上,所以 a 2+ b 2=
1
以| PF 1|·| PF 2|=8,所以 △ = | PF 1|·| PF 2|·sin
2
1 2
解法二
60°=2 3 .
2
2
由题意可得双曲线 C 的标准方程为 - =1,所以可得 b 2=2,由双曲

高考数学复习考点知识与结论专题讲解54 双曲线的定义和性质

高考数学复习考点知识与结论专题讲解54 双曲线的定义和性质

高考数学复习考点知识与结论专题讲解第54讲 双曲线的定义和性质【知识通关】通关一通关一、、双曲线的标准方程当焦点在x 轴上时,22221(0,0)x y a b a b −=>>,其中222c a b =+;当焦点在y 轴上时,22221(0,0)y x a b a b −=>>,其中222c a b =+.要点诠释:1. 这里的“标准”指的是中心在坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2. 在双曲线的两种标准方程中,都有0a >,0b >和222c a b =+;3. 双曲线的焦点总在实轴上:当焦点在x 轴上时,双曲线的焦点坐标为(),0c ,(),0c −;当焦点在y轴上时,双曲线的焦点坐标为()0,c ,()0,c −;4. 在两种标准方程中,可以根据系数的正负来判定焦点在哪一个坐标轴上.通关二通关二、、双曲线的几何性质图形通关三通关三、、求双曲线的方程的两种方法1. 定义法根据双曲线定义,确定2a ,2b 的值,再结合焦点位置,求出双曲线方程,常用的关系有: (1)222c a b =+;(2)双曲线上任意一点到双曲线两焦点的距离的差的绝对值等于2a .注意:求轨迹方程时,满足条件:122PF PF a −=()1202a F F <<为双曲线的一支,应注意条件合理取舍.2. 待定系数法(1)一般步骤①判断:根据已知条件,确定双曲线的焦点是在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设:根据①中的判断结果,设出所需的未知数或者标准方程; ③列:根据题意,列出关于,,的方程或方程组; ④解:求解得到方程. (2)常见设法①与双曲线22221x y a b −=共渐近线的双曲线可设为()22220x y a b λλ−=≠;②若双曲线的渐近线方程为by x a =±,则可设为()22220x y a b λλ−=≠;③若双曲线过两个已知点,则可设为221(0)x y mn m n+=<; ④与双曲线22221x y a b −=共焦点的双曲线方程可设为()2222221x y b a a b λλλ−=−<<−+; ⑤与椭圆22221(0)x y a b a b +=>>有共同焦点的双曲线方程可设为()2222221x y b a a b λλλ+=<<−+. 结论一结论一、、双曲线定义的理解1. 设双曲线上的点M 到两焦点1F ,2F 的距离之差的绝对值为2a ,则有1202a F F <<,这一条①若122a F F =,则点M 的轨迹是分别以为端点的两条射线; ②若122a F F >,则点M 的轨迹不存在;③若20a =,则点M 的轨迹是线段12F F 的垂直平分线.2.若将双曲线的定义中“差的绝对值等于常数”中的“绝对值”去掉,则点的集合是双曲线的一支,具体是左支还是右支可借助图形来确定.【例1】到两定点()13,0F −,()23,0F 的距离之差的绝对值等于6的点M 的轨迹是() A. 椭圆B. 线段C. 双曲线D. 两条射线【答案】D【解析】到两个定点的距离之差的绝对值小于两个定点间距离的点的轨迹是双曲线,等于两个定点间距离时,双曲线退化成两条射线,分别以两个定点为射线的两个端点.12126F A F A F F −==时,这三点共线,且点A 在1F ,2F 之外.也可通过求轨迹方程的办法求出,此时要注意自变量的取值范围.【变式】已知点()2,0M −,()2,0N ,动点P 满足条件PM PN −=,则动点P 的轨迹方程为____.【答案】()221022x y x −=>【解析】由4PM PN MN −=<=,结合双曲线定义可知动点P 的轨迹为以M ,N 为焦点的双曲线右支,双曲线中2a =,24c =,所以a =,2c =,所以b =,轨迹方程为()221022x y x −=>. 结论二结论二、、双曲线上点的性质若P 为双曲线22221x y a b −=上一点,1F ,2F 为双曲线的左、右焦点,则122PF PF a −=.【例2】若双曲线E :221916x y −=的左右焦点分别为1F ,2F ,点P 在双曲线E 上,且13PF =,则2PFA. 11B. 9C. 5D. 3【答案】B【解析】由双曲线定义得1226PF PF a −==,即236PF −=,解得29PF =,故选B.【变式】P 是双曲线的右支上一点,M ,N 分别是圆和上的点,则的最大值为() A. 6B. 7C. 8D. 9【答案】D【解析】由题意得双曲线221916x y −=的焦点分别为()15,0F −,()25,0F ,且这两点刚好为两圆的圆心.由题意可得,当且仅当P 与M ,1F 三点共线,以及P 与N ,2F 三点共线时所求的值最大,此时()()1221639PM PN PF PF −=+−−=+= .故选D.结论三结论三、、焦点三角形周长拓展过双曲线22221x y a b −=上一个焦点作弦AB (交到同一支上),与另一个焦点F 构造三角形F AB ,则FAB 的周长等于42a AB +.【例3】如图,已知双曲线的左右焦点分别为1F ,2F ,过1F 的直线与左支交于A ,B 两点,若5AB =,且实轴长为8,则2ABF 的周长为____.【答案】26【解析】由双曲线的定义知,212F A F A a −=,212F B F B a −=,两式相加得22114F A F B F A F B a +−−=.又115AB F A F B ==+,28a =,故2211416521F A F B a F A F B +=++=+=,故2ABF 的周长为21526+= .【变式】设1F ,2F 为双曲线22221(0,0)sin 2x y b b πθθ−=<≤>的两个焦点,过1F 的直线交双曲线的同支于A ,B 两点,如果AB m =,则2AF B 的周长的最大值是() A. 4m − B. 4C. 4m + D. 42m +【答案】D【解析】由双曲线的定义有212sin AF AF θ−=,212sin BF BF θ−=,于是2AF B 的周长为22112sin 2sin 4sin 2AF BF m AF BF m θθθ++=+++=+,最大值当2πθ=时取得,最大值为42m +.故选D.结论四结论四、、双曲线的标准方程对于方程221x y m n+=, (1)表示双曲线的充要条件为0mn <;(2)表示焦点在x 轴上的双曲线的充要条件为0m >,0n <; (3)表示焦点在y 轴上的双曲线的充要条件为0m <,0n >.【例4】如果方程22121x y m m +=++表示双曲线,则m 的取值范围是()A. ()2,+∞B. ()2,1−−C. (),1−∞−D. ()1,2【答案】B【解析】由题意知,()()210m m ++<,解得21m −<<−,故m 的取值范围是()2,1−−.故选B.【变式】若方程2221523x y m m m +=−−−表示焦点在y 轴上的双曲线,求实数m 的取值范围. 【答案】()5,+∞【解析】由双曲线的焦点在y 轴上可知,m 需满足250,230m m m −> −−>,解得5m >.故实数m 的取值范围为()5,+∞.结论五结论五、、求双曲线的渐近线求双曲线22221(0,0)x y a b a b −=>>或22221(0,0)y x a b a b −=>>的渐近线方程的方法是令右边的常数等于0,即令22220x y a b −=得b y x a =±,或令22220y x a b −=得ay x b =±.【例5】双曲线2214y x −=的渐近线方程为()A. 12y x =± B. 2y x =± C. y = D. y =【答案】B【解析】令2204y x −=,得2y x =±,所以渐近线方程为2y x =±.故选B. 【变式】双曲线22149y x −=的渐近线方程是 A.32y x =± B. 23y x =± C. 94y x =± D. 49y x =±【答案】B【解析】渐近线方程为22049y x −=,即23y x =±.故选B.结论六结论六、、双曲线方程的设法1. 与双曲线22221(0,0)x y a b a b −=>>有相同渐近线的双曲线方程为2222(0)x y a b λλ−=≠2. 渐近线为ny x m =±的双曲线方程为2222(0)x y m nλλ−=≠3. 与双曲线22221(0,0)x y a b a b −=>>有共同焦点的双曲线方程为2222221()x y b a a b λλλ−=−<<−+ 4. 与椭圆22221(0)x y a b a b +=>>有共同焦点的双曲线方程为2222221()x y b a a b λλλ+=<<−+【例6】(1)与双曲线221169x y −=有相同的渐近线,且过点()3A −的双曲线方程是____. (2)与双曲线2211620x y −=有相同焦点,且经过点()5,2−的双曲线的标准方程是____.(3)与椭圆2214936x y +=有公共焦点,且经过点()2的双曲线的标准方程是____. 【答案】(1)224194y x −=(2)2212016x y −=(3)22194x y −= 【解析】(1)与双曲线221169x y −=有相同的渐近线方程的双曲线方程为()220169x y λλ−=≠,将点()3A −代入,得:()()22311694λ−=−=−.所以所求双曲线的方程为2211694x y −=−,即224194y x −=. (2)设所求双曲线方程为()22120161620x y λλλ−=−<<−+.因为双曲线过点()5,2−,所以25411620λλ−=−+,解得4λ=−或29λ=−(舍去),所以所求双曲线的方程为2212016x y −=.(3)设所求双曲线方程为()22136494936x y λλλ+=<<−−.因为双曲线过点(),所以18414936λλ+=−−,解得40λ=或23λ=(舍去),所以所求双曲线的方程为22194x y −=.【变式】已知双曲线过点(,且渐近线方程为12y x =±,则该双曲线的标准方程为____.【答案】2214x y −=【解析】设双曲线方程为()2204x y λλ−=≠,将点(代入得1λ=,所以双曲线方程为2214x y −=.结论七结论七、、点到线距离定值双曲线22221(0,0)x y a b a b −=>>的焦点到渐近线的距离等于虚半轴长b .【例7】双曲线22221(0,0)x y a b a b−=>>,则b 等于().A.1 C.2D.【答案】B【解析】焦点(,0)c 到0bx ay −=b =,故b ,故选B.【变式】已知双曲线2222:1(0,0)x y C a b a b−=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为().【答案】C【解析】由题意可设双曲线C 的右焦点为(,0)F c ,渐近线的方程为by x a=±,可得2d b a ===,可得c ==,可得离心率ce a==故选C. 结论八结论八、、比值为定值双曲线22221(0,0)x y a b a b−=>>的焦点到渐近线的距离与顶点到渐近线的距离之比等于双曲线的离心率.【例8】已知双曲线22221(0,0)x y a b a b−=>>的焦点F 到渐近线距离与顶点A 到渐近线距离之比为3:1,则双曲线C 的渐近线方程为().A.y =±B.y =C.y =D.y = 【答案】A【解析】如图所示,双曲线顶点为A ,焦点为F ,过,A F 作渐近线的垂线,垂足为,B C ,所以OAB OFC ∆∆与相似(O 为坐标原点).又由题意知31CF AB =,所以3OF c OA a ==,即3c a =,又因为222c b a =+,所以228b a =,即ba=.所以渐近线方程为:y =±,故选A.【变式】设双曲线2222:1(0,0)x y C a b a b−=>>的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为().A.2C. D.4【答案】B【解析】因为双曲线2222:1(0,0)x y C a b a b−=>>的两条渐近线互相垂直,所以渐近线方程为y x =±,所以a b =,因为顶点到一条渐近线的距离为11=,所以a b ==,所以双曲线C 的方程为22122x y −=,焦点坐标为(2,0),(2,0)−,所以双曲线的一个焦点到一条渐近线的距离d ==故选B.结论九结论九、、等轴双曲线已知双曲线方程为22221(0,0)x y a b a b−=>>,当a b =时,称为等轴双曲线.(1)方程形式为22(0)x y λλ−=≠;(2)渐近线方程为y x =±,它们互相垂直;(3)离心率e =.【例9】关于渐近线方程为0x y ±=的双曲线有下述四个结论:①实轴长与虚轴长相等,②离心率是,③过焦点且与实轴垂直的直线被双曲线截得的线段长与实轴长相等,④顶点到渐近线与焦点到.其中所有正确结论的编号是().A.①②B.①③C.①②③D.②③④【答案】C【解析】①因为渐进线的斜率为11b aa b ±=±±=±或,所以①正确;②离心率e ,所以②正确;③设双曲线的方程为222x y a −=,将x c =代入双曲线方程可得2222y c a b =−=,过焦点且与实轴垂直的直线被双曲线截得的线段长为22b a =,与实轴长相等,同理,当焦点在y 轴上时此结论也成立,所以③正确;④因为顶点到渐近线的距离小于焦点到渐近线的距离,所以④不正确.故选C.【变式】已知双曲线2222:1(0,0)x y C a b a b−=>>的两条渐近线互相垂直,焦距为实轴长为().A.3B.6C.9D.12【答案】B【解析】因为两条渐进线互相垂直,故可得21b a−=−,又因为焦距为,故可得2c =,结合222a b c +=,解得3a =,3b =,c =,故实轴长26a =.故选B.结论十结论十、、离心率与渐近线斜率关系在双曲线方程为22221(0,0)x y a b a b −=>>中,c e a ====,所以双曲线的渐近线方程by x a=±可以表示为y =.【例10】设双曲线2222:1(0,0)x y C a b a b−=>>的一条渐近线方程为C 的离心率为__________.【解析】双曲线的渐近线方程为y ==,23e =,e =.【变式】在平面直角坐标系xOy 中,若双曲线2221(0)5x y a a −=>的一条渐近线方程为y x =,则该双曲线的离心率是__________. 【答案】32【解析】双曲线的渐近线方程为y ==,294e =,32e =. 结论十一结论十一、、过定点直线与双曲线相交问题1.若直线恒过的定点落在双曲线两支之内,当直线与双曲线只有一个交点时,该直线的斜率为bk a=±;如图(a )所示,1l ,2l 分别与渐近线平行,显然此时与双曲线只有一个交点; 2.若直线恒过的定点落在双曲线两支之内,当直线与双曲线的左右两支都有交点时,该直线的斜率满足(,)b bk a a∈−;如图(b )所示,1l ,2l 分别与渐近线平行,如果直线与双曲线的左右两支都有交点,则动直线只需按箭头方向旋转即可;3.若直线恒过的定点落在双曲线两支之内,当直线与双曲线的单支有两个交点时,该直线的斜率满足(,)(,)b bk a a∈−∞−∪+∞.如图(c )所示,1l ,2l 分别与渐近线平行,如果直线与双曲线的单支有两个交点,则动直线只需按箭头方向旋转即可.(a )(b )(c )【例11】斜率为2的直线l 过双曲线22221(0,0)x y a b a b−=>>的右焦点,且与双曲线的左、右两支分别相交,则双曲线的离心率的取值范围是__________.【答案】)+∞【解析】直线l 与双曲线的两支分别相交,满足2b b a a −<<(其中ba±为双曲线的两条渐近线的斜率),即2b a ==>,解得e >.所以双曲线的离心率的取值范围是)+∞. 【变式】已知双曲线22221(0,0)x y a b a b−=>>的右焦点为F ,若过点F 且倾斜角为60 的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是() A.(]1,2B.()1,2C.[)2,+∞D.()2,+∞【答案】C【解析】如图,1l 与2l 分别为与双曲线22221x y a b −=的渐近线平行的两条直线,直线l为过点F 且倾斜角为60°的直线,要使与双曲线的右支有且只有一个交点,则应使tan 60b a ≥°=,所以2e =≥.故选C.结论十二、双曲线的通径过焦点做实轴的垂线与双曲线22221x y a b −=()0,0a b >>垂的交点为A ,B ,则AB 即为双曲线的通径,22b AB a=.【例12】已知F 已为双曲线C :22221x y a b −=()0,0a b >>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为__________. 【答案】2【解析】由题意可得3BF AF =,而2b BF a =,AFc a =−,即23b a c a=−,变形得22233c a ac a −=−,化简可得2320e e −+=,解得2e =或1e =(舍去).【变式】已知双曲线22221x y a b −=()0,0a b >>的离心率为2,过双曲线的右焦点垂直于x 轴的直线被双曲线截得的弦长为m ,则ma=__________. 【答案】6【解析】双曲线的焦距为2c ,则2ca =,即2c a =,则b =,由题意知m ,故32b m a =,所以2226m b a a==. 结论十三结论十三、、焦点三角形的面积若点()00,P x y 在22221x y a b−=()0,0a b >>在上,设12F PF θ∠=,则12F PF ∆的面积120F PF S c y ∆=2121sin 2tan 2b PF PF θθ==i .【例13】设双曲线C :22221x y a b −=()0,0a b >>的左右焦点分别为1F ,2F ,.P 是C 上的一点,且12F P F P ⊥.若12F PF ∆的面积为4,则a =()A.1B.2C.4D.8【答案】A【解析】因为12F P F P ⊥,所以1290F PF ∠=°,1222124tan 2F PF b S b F PF ∆===∠.因为222222c a b e a a +==2215b a=+=,所以244a =,21a =,即1a =.故选A.【变式】设1F ,2F 是双曲线C :2213y x −=的两个焦点,O 为坐标原点,点P 是C 上且2OP =,则12F PF ∆的面积为(). A.72B.3C.52D.2【答案】B【解析】由已知,不妨设()12,0F −,()22,0F ,则1a =,2c =.因为12122OP F F ==,所以点P 在以12F F 为直径的圆上,即12F PF ∆是以点P 为直角顶点的直角三角形,1222123tan 2F PF b S b F PF ∆===∠,故选B.结论十四结论十四、、焦半径最值F 为双曲线22221x y a b −=()0,0a b >>的右焦点,若P 是双曲线右支上的动点,则PF c a ≥−;若P 是双曲线左支上的动点,则PF c a ≥+.【例14】若椭圆或双曲线上存在一点P 到两个焦点的距离之比为2:1,则称此椭圆或双曲线上存在“Γ点”的是().A.2211615x y += B.2212524x y += C.22115y x −= D.221x y −=【答案】D 【解析】在椭圆中,1221PF PF =>,122PF PF a +=,122PF PF =,即223aPF =,又2PF c a ≥−,故21333a a a c c e ≥−⇒≥⇒≥,又01e <<,故113e ≤<.在双曲线中,1221PF PF =>,22PF a =,2PF c a ≥−,故233a c a a c e ≥−⇒≥⇒≤,又1e >,所以13e <≤.A 选项:2211615x y +=,11,143e =∉ ,错误;B 选项:2212524x y +=,11,153e =∉,错误;C 选项:22115y x −=,(]41,3e =∉,错误;D 选项:221x y −=,(]1,3e =,正确.综上,故选D.【变式】已知双曲线C :22221x y a b −=()0,0a b >>的左右焦点分别为()1,0F c −,()2,0F c ,若双曲线上存在一点P 使得1221sin sin PF F aPF F c∠=∠,则双曲线的离心率的取值范围是__________.【答案】D【解析】在12PF F ∆中,由正弦定理可得211221sin sin PF PF PF F PF F =∠∠,则由已知得21a cPF PF =,即12c PF PF a =,由双曲线的定义可知122PF PF a −=,则222cPF PF a a −=,即222a PF c a =−,由双曲线的几何性质可知2PF c a >−,则22a c a c a >−−,即2220c ac a −−<,所以2210e e −−<,解得11e +<<+,又()1,e ∈+∞,故双曲线的离心率()1e ∈+.结论十五结论十五、、双曲线中的线段和差最值设双曲线方程为22221x y a b −=()0,0a b >>,1F ,2F 分别为双曲线的左、右焦点,()00,Q x y 为平面上一定点,M 为双曲线右支上任意一点.1.若定点()00,Q x y 与双曲线右焦点2F 在双曲线右支的同侧,则2MQ MF +的最小值是12QF a −,最大值不存在;2.若定点()00,Q x y 与双曲线右焦点2F 在双曲线右支的异侧,则2MQ MF +的最小值是2QF ,最大值不存在.【例15】已知F 是双曲线221412x y −=的左焦点,()1,4A ,P 是双曲线右支上的动点,则PF PA +的最小值为__________. 【答案】9【解析】设双曲线的右焦点为1F ,14PF PF =+,1min 1()5PF PF AF +==,则PF PA +的最小值为9.【变式】已知2F 是双曲线:C 221412x y −=的右顶点,动点A 在双曲线左支上,点B 为圆:E 22(2)1x y ++=上的一点,则2AB AF +的最小值为()A.9B.8C.D.【答案】A【解析】设双曲线C 的左焦点为1F ,则21126AF AF a AF =+=+,所以216AB AF AB AF +=++=115559AB AF BE F E +++≥+=+=,故选A结论十六结论十六、、黄金双曲线双曲线22221x y a b −=()0,0a b >>中,若a ,b ,c 成等比数列,即212290b ac F B A =⇔∠=°,离心率e =. 【例16】已知双曲线22221x y a b−=()0,0a b >>.(1)若实轴长、虚轴长、焦距成等差数列,则该双曲线的离心率为__________. (2)若实轴长、虚轴长、焦距成等比数列,则该双曲线的离心率为__________.【答案】(1)53(2【解析】(1)由题设可知2b a c =+,且222c a b =+,故2222a c c a +−=,得4a c c a +−=,即35c a =,所以53c e a ==. (2)由题设可知2b ac =,且222c a b =+,故22c a ac −=,即220c ac a −−=,由ce a=可得210e e −−=,解得e =或e =(舍去),所以e =. 【变式】设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么双曲线的离心率是().【答案】D【解析】设双曲线的方程为22221x y a b−=(0,0)a b >>,不妨设一个焦点为(,0)F c ,虚轴的一个端点为(0,)B b ,则FB b k c =−.又渐近线的斜率为b a ±,所以由题意得1b b c a −⋅=−(b a−不符合,舍去),则2b ac =,又双曲线中222c a b −=,故22c a ac −=,即220c ac a −−=,由ce a=可得210e e −−=,解得e =或e =(舍去),故选D. 结论十七结论十七、、双曲线焦点弦弦长已知双曲线22221x y a b−=()0,0a b >>中,经过其焦点F 的直线交双曲线于A ,B 两点,直线AB的倾斜角为θ,双曲线的离心率为e ,则焦点弦长22221cos b a AB e θ=−. 【例17】过双曲线2214y x −=的右焦点为F 做A ,B 两点,则AB 为__________. 【答案】32【解析】由题知k =,所以1cos 2θ=,e =,由焦点弦长公式22221cos b a AB e θ=−得,2432AB ⋅=【变式】过双曲线22154x y −=的右焦点F 作一条斜率为2的直线与双曲线交于A ,B 两点,O 渐为坐标原点,则OAB ∆的面积为__________. 【答案】152【解析】由题意知2k =,所以cos θ=,e =,由焦点弦长公式22221cos b a AB e θ=−得AB ,O 到AB的距离d =,11522OAB S d AB ∆=××=.结论十八结论十八、、离心率的定义表示双曲线22221(0,0)x y a b a b −=>>中,121222F F c c e a a PF PF ===−.【例18】如图,已知ABCDEF 为正六边形,若以,C F 为焦点的双曲线恰好经过,,,A B D E 四点,则该双曲线的离心率为__________.1+【解析】设正六边形边长为1,则以FC 为x 轴,中垂线为y 轴建立直角坐标系,则(1,0)F −,(1,0)C ,故1c =.因为2FC =,1BC =,所以BF =,即12BF BC a −=−=,故a =.所以1ce a====.【变式】过双曲线22221(0,0)x y a b a b −=>>的左焦点(,0)(0)F c c −>,作圆2224a x y +=的切线,切点为E ,延长FE 交双曲线右支于点P ,若2OP OE OF =−,则双曲线的离心率是__________.【答案】√ଵ଴ଶ【解析】由ܱܲሬሬሬሬሬԦ=2ܱܧሬሬሬሬሬԦ−ܱܨሬሬሬሬሬԦ得 ܱܧሬሬሬሬሬԦ=ଵଶ(ܱܨሬሬሬሬሬԦ+ܱܲሬሬሬሬሬԦ),可知ܧ为ܲܨ的中点,令右焦点为ܨᇱ, 则ܱ为ܨܨᇱ的中点,ܲܨᇱ=2ܱܧ=ܽ.因为ܧ为切点,所以ܱܧ⊥ܲܨ,ܲܨᇱ⊥ܲܨ,ܲܨ−ܲܨᇱ=2ܽ,ܲܨ=3ܽ.又ܲܨଶ+ܲܨᇱଶ=ܨܨᇱଶ,则10ܽଶ=4ܿଶ,݁=√ଵ଴ଶ.结论十九结论十九、、离心率求值的正弦表示ܨଵ,ܨଶ为双曲线௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0)的左右焦点,ܲ是双曲线上的动点,若∠ܲܨଵܨଶ=ߙ,∠ܲܨଶܨଵ=ߚ,则双曲线的离心率为݁=ୱ୧୬(ఈାఉ)|ୱ୧୬ఈିୱ୧୬ఉ|.【例19】双曲线௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0)的左、右焦点分别是ܨଵ,ܨଶ,过ܨଵ作倾斜角为30∘的直线交双曲线右支于ܲ点,若ܲܨଶ垂直于ݔ轴,则双曲线的离心率为() A.√6B.√3C.√2D.√ଷଷ【答案】B【解析】解法一设|ܲܨଶ|=ݐ,|ܲܨଵ|=2ݐ,则|ܨଵܨଶ|=√3ݐ,即2ܽ=ݐ,2ܿ=√3ݐ,݁=ଶ௖ଶ௔=√3.故选B 解法二݁=ୱ୧୬ (ଽ଴∘ାଷ଴∘)ୱ୧୬ ଽ଴∘ିୱ୧୬ ଷ଴∘=√3故选B.【变式】已知ܨଵ,ܨଶ是双曲线ܧ:௫మ௔మ−௬మ௕మ=1的左、右焦点,点ܯ在ܧ上, ܯܨଵ与ݔ轴垂直,sin ∠ܯܨଶܨଵ=ଵଷ,则ܧ的离心率为() A √2B.ଷଶC √3D.2【答案】A【解析】解法一设ܯܨଵ=1,则ܯܨଶ=3,ܨଵܨଶ=2ܿ=2√2,2ܽ=ܯܨଶ−ܯܨଵ=2,݁=√2.故选A. 解法二݁=ୱ୧୬ (ଽ଴∘ା∠ெிమிభ)ୱ୧୬ ଽ଴∘ିୱ୧୬ ∠ெிమிభ=ୡ୭ୱ ∠ெிమிభଵିభయ=మ√మయమయ=√2.故选A.结论二十结论二十、、离心率的焦率的焦半半径比值表示若在双曲线௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0)上存在一点ܲ,使|ܲܨଵ|=ߣ|ܲܨଶ|(ߣ>1),则1<݁⩽ఒାଵఒିଵ. 【例20】双曲线௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0)的两个焦点分别为ܨଵ,ܨଶ若ܲ为其上一点,且 |ܲܨଵ|=2|ܲܨଶ|,则双曲线的离心率的取值范围是() A.(1,3)B (1,3]C (3,+∞)D.[3,+∞)【答案】B【解析】解法一由双曲线的定义知,||ܲܨଵ|−|ܲܨଶ||=2ܽ|ܲܨଵ|=2|ܲܨଶ|,即 |ܲܨଵ|=4ܽ,|ܲܨଶ|=2ܽ.又|ܲܨଵ|+|ܲܨଶ|⩾|ܨଵܨଶ|=2ܿ,故6ܽ⩾2ܿ,即݁⩽3.又݁>1,故1<݁⩽3.故选B解法二利用|௉ிభ||௉ிమ|的单调性,|௉ிభ||௉ிమ|=|௉ிమ|ାଶ௔|௉ிమ|=1+ଶ௔|௉ிమ|,随着∣ܲܨଶ|的增加,|௉ிభ||௉ிమ|减小,也就是说,当点ܲ右移时,|௉ிభ||௉ிమ|值减小,故要在双曲线上找到一点ܲ,使得 |௉ிభ||௉ிమ|=2,而当点ܲ在双曲线的右顶点上时,|௉ிభ||௉ிమ|⩾2,得௔ା௖௖ି௔⩾2,即3ܽ⩾ܿ,则1<݁⩽3故选B解法三由题知ߣ=2,结合1<݁⩽ఒାଵఒିଵ,所以1<݁⩽3,故离心率的取值范围为(1,3]故选B. 【变式】已知双曲线௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0)的左、右焦点分别为ܨଵ,ܨଶ,点ܲ在双曲线的右支上,且|ܲܨଵ|=4|ܲܨଶ|,则此双曲线的离心率݁的最大值为________. 【解析】解法一由定义知|ܲܨଵ|−|ܲܨଶ|=2ܽ又已知|ܲܨଵ|=4|ܲܨଶ|,解得|ܲܨଵ|=଼ଷܽ,|ܲܨଶ|=ଶଷܽ.在△ܲܨଵܨଶ中,由余弦定理得ܿ݋ݏ∠ܨଵܲܨଶ=లరవ௔మାరవ௔మିସ௖మଶ⋅ఴయ௔⋅మయ௔=ଵ଻଼−ଽ଼݁ଶ.要求݁的最大值,即求cos ∠ܨଵܲܨଶ的最小值.当ܲ为实轴的右端点时,cos ∠ܨଵܲܨଶ=−1,解得݁=ହଷ,即݁的最大值为ହଷ.解法二由定义知|ܲܨଵ|−|ܲܨଶ|=2ܽ,又已知|ܲܨଵ|=4|ܲܨଶ|,解得|ܲܨଵ|=଼ଷܽ,|ܲܨଶ|=ଶଷܽ,|ܲܨଶ|୫୧୬=ܿ−ܽ,从而只要ଶଷܽ⩾ܿ−ܽ,就能得到ܲ点存在,解得݁⩽ହଷ,等号可以取到,即݁的最大值为ହଷ解法三由题知ߣ=4,结合1<݁⩽ఒାଵఒିଵ,所以1<݁⩽ହଷ,故离心率的取值范围为ቀ1,ହଷቃ.结论二十一结论二十一、、双曲线焦半径比例模型1.已知双曲线௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0),经过其焦点ܨ的直线交双曲线于ܣ,ܤ两点,直线ܣܤ的倾斜角为ߠ,ܣܨሬሬሬሬሬԦ=ߣܨܤሬሬሬሬሬԦ,双由线的离心率݁满足:|݁cos ߠ|=ቚఒିଵఒାଵቚ或݁=√1+݇ଶቚఒିଵఒାଵቚ(其中݇=tan ߠ);2.已知双曲线௬మ௔మ−௫మ௕మ=1(ܽ>0,ܾ>0),经过其焦点ܨ的直线交双曲线于ܣ,ܤ两点,直线ܣܤ的倾斜角为ߠ,ܣܨሬሬሬሬሬԦ=ߣܨܤሬሬሬሬሬԦ,双曲线的离心率݁满足:|݁sin ߠ|=ቚఒିଵఒାଵቚ或 ݁=ට1+ଵ௞మቚఒିଵఒାଵቚ(其中݇=tan ߠ)【例21】已知双曲线ܥ:௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0)的右焦点为ܨ,过ܨ且斜率为√3的直线交ܥ于ܣ,ܤ两点,若ܣܨሬሬሬሬሬԦ=4ܨܤሬሬሬሬሬԦ,则ܥ的离心率为() A.଺ହ B.଻ହC.ହ଼D.ଽହ【答案】A【解析】由题知ߣ=4,带入结论݁=√1+݇ଶቚఒିଵఒାଵቚ得݁=ට1+(√3)ଶቚସିଵସାଵቚ=଺ହ故选A .【变式】已知双曲线ܥ:௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0)的离心率为√3,过右焦点ܨ且斜率为݇(݇>0)的直线与ܥ相交于ܣ,ܤ两点.若ܣܨሬሬሬሬሬԦ=3ܨܤሬሬሬሬሬԦ,则݇=() A.√3B √10C √11D 2√3【答案】C【解析】由题知ߣ=3,带入结论݁=√1+݇ଶቚఒିଵఒାଵቚ得√3=√(1+݇^2)|(3−1)/(3+1)|,解得݇=±√11,因为݇>0,所以݇=√11,故选C.结论结论二十二二十二二十二、、斜率乘积定值模型(一)直线݈与双由线௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0)相交于ܣ,ܤ两点,若ܯ(ݔ଴,ݕ଴)为ܣܤ的中点,则 ݇஺஻⋅݇ைܯ=௕మ௔మ,݇஺஻=௕మ௫బ௔మ௬బ.【例22】已知双曲线ܧ的中心为原点,ܨ(3,0)是ܧ的焦点,过ܨ的直线݈与ܧ相交于ܣ,ܤ两点,且ܣܤ的中点为ܰ(−12,−15),则ܧ的方程为() A.௫మଷ−௬మ଺=1 B.௫మସ−௬మହ=1 C.௫మ଺−௬మଷ=1 D.௫మହ−௬మସ=1【答案】B【解析】解法一设双曲线方程为௫మ௔మ−௬మ௕మ=1,ܣ(ݔଵ,ݕଵ),ܤ(ݔଶ,ݕଶ),代人双曲线方程两式相减可得(௫భି௫మ)(௫భା௫మ)௔మ=(௬భି௬మ)(௬భା௬మ)௕మ,从而௫భା௫మ௔మ=௬భି௬మ௫భି௫మ×௬భା௬మ௕మ,即ଶ×௫ಿ௔మ=݇஺஻×ଶ௬ಿ௕మ,即ିଶସ௔మ=ିଷ଴௕మ,整理可得5ܽଶ=4ܾଶ,又ܽଶ+ܾଶ=9,两式联立可得 ܽଶ=4,ܾଶ=5.双曲线方程为௫మସ−௬మହ=1.故选B.解法二由݇஺஻⋅݇ைெ=௕మ௔మ可得ିଵହିଵଶ×଴ି(ିଵହ)ଷି(ିଵଶ)=௕మ௔మ,即5ܽଶ=4ܾଶ,ܿ=3.故选B【变式】已知直线ݔ−2ݕ+1=0与双曲线௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0)交于ܣ,ܤ两点,且线段ܣܤ的中点ܯ的横坐标为1,则该双曲线的离心率为() A.√2B √଺ଶC.√ହଶD.√3【答案】B【解析】解法一因为直线ݔ−2ݕ+1=0与双曲线௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0)交于ܣ,ܤ两点,且线段ܣܤ的中点ܯ的横坐标为1,所以݇ைெ=1.设ܣ(ݔଵ,ݕଵ),ܤ(ݔଶ,ݕଶ),则有ݔଵ+ݔଶ=2,ݕଵ+ݕଶ=2,௬భି௬మ௫భି௫మ=ଵଶ,௬భା௬మ௫భା௫మ=݇ைெ=1,ቐ௫భమ௔మ−௬భమ௕మ=1௫మమ௔మ−௬మమ௕మ=1,两式相减可化为ଵ௔మ−ଵ௕మ.௬భି௬మ௫భି௫మ⋅௬భା௬మ௫భା௫మ=0,可得௕మ௔మ=ଵଶ,所以ܽ=√2ܾ,ܿ=√3ܾ,双曲线的离心率为௖௔=√ଷ√ଶ=√଺ଶ.故选B. 解法二由题知ܯ(1,1),由݇஺஻⋅݇ைெ=௕మ௔మ得ଵଵ⋅ଵଶ=௕మ௔మ,可得௕మ௔మ=ଵଶ,所以ܽ=√2ܾ,ܿ=√3ܾ,双曲线的离心率为௖௔=√ଷ√ଶ=√଺ଶ.故选B 结论结论二十三二十三二十三、、斜率乘积斜率乘积定定值模值模型型(二)经过原点的直线݈与双曲线௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0)相交于ܯ,ܰ两点,ܲ是双曲线上的动点,直线ܲܯ,ܲܰ的斜率都存在,则݇௉ெ⋅݇௉ே为定值௕మ௔మ=݁ଶ−1【例23】过原点的直线与双曲线௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0)交于ܯ,ܰ两点,ܲ是双曲线上异于ܯ,ܰ的一点,若直线ܯܲ与直线ܰܲ的斜率都存在且乘积为ହସ,则双曲线的离心率为________. 【答案】ଷଶ【解析】解法一由双曲线的对称性,可设ܲ(ݔ଴,ݕ଴),ܯ(ݔଵ,ݕଵ),则ܰ(−ݔଵ,−ݕଵ),由݇௉ெ⋅݇௉ே=ହସ,得௬బି௬భ௫బି௫భ⋅௬బା௬భ௫బା௫భ=ହସ,即ݕ଴ଶ−ݕଵଶ=ହସ(ݔ଴ଶ−ݔଵଶ),即ହସݔ଴ଶ−ݕ଴ଶ=ହସݔଵଶ−ݕଵଶ又 因为ܲ(ݔ଴,ݕ଴),ܯ(ݔଵ,ݕଵ)均在双曲线上,所以௫బమ௔మ−௬బమ௕మ=1,௫భమ௔మ−௬భమ௕మ=1,所以௕మ௔మ=ହସ.所以 双曲线的离心率݁=௖௔=ට1+௕మ௔మ=ଷଶ.解法二݇௉ெ⋅݇௉ே=௕మ௔మ=݁ଶ−1=ହସ,所以݁=ଷଶ【变式】ܲ(ݔ଴,ݕ଴)(ݔ଴≠±ܽ)是双曲线ܧ:௫మ௔మ−௬మ௕మ=1(ܽ>0,ܾ>0)上一点,ܯ,ܰ分别是双曲线ܧ的左、右顶点,直线ܲܯ,ܲܰ的斜率之积为ଵହ,则双曲线的离心率为________.【答案】√ଷ଴ହ【解析】解法一点ܲ(ݔ଴,ݕ଴)(ݔ଴≠±ܽ)在双曲线௫మ௔మ−௬మ௕మ=1上,有௫బమ௔మ−௬బమ௕మ=1.由题意又有௬బ௫బି௔⋅௬బ௫బା௔=ଵହ,可得ܽଶ=5ܾଶ,ܿଶ=ܽଶ+ܾଶ=6ܾଶ,则݁=௖௔=√ଷ଴ହ解法二݇௉ெ⋅݇௉ே=௕మ௔మ=݁ଶ−1=ଵହ,所以݁=√ଷ଴ହ.。

第6节 第1课时 双曲线的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析

第6节  第1课时  双曲线的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析

第六节双曲线第1课时双曲线的定义、标准方程及其简单几何性质1.双曲线的定义把平面内与两个定点F 1,F 2的距离的差的01绝对值等于非零常数(02小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的03焦点,两焦点间的距离叫做双曲线的04焦距.2.双曲线的标准方程和简单几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质焦点05F 1(-c ,0),F 2(c ,0)06F 1(0,-c ),F 2(0,c )焦距07|F 1F 2|=2c范围08x ≤-a 或09x ≥a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性对称轴:10坐标轴;对称中心:11原点顶点12A 1(-a ,0),A 2(a ,0)13A 1(0,-a ),A 2(0,a )轴实轴:线段14A1A2,长:152a;虚轴:线段B1B2,长:162b,实半轴长:17a,虚半轴长:18b离心率e=ca∈19(1,+∞)渐近线y=±bax y=±abxa,b,c的关系c2=20a2+b2(c>a>0,c>b>0)1.双曲线的焦点到渐近线的距离为b,顶点到两条渐近线的距离为常数abc.2.双曲线上的任意点P到双曲线C的两条渐近线的距离的乘积是一个常数a2b2c2.3.若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min =c-a.4.离心率e=ca=a2+b2a=1+b2a2.5.双曲线上一点P(x0,y0)与两焦点F1,F2构成的△PF1F2为焦点三角形,设∠F1PF2=θ,|PF1|=r1,|PF2|=r2,则cosθ=1-2b2r1r2,S△PF1F2=12r1r2sinθ=sinθ1-cosθ·b2=b2tanθ2.1.概念辨析(正确的打“√”,错误的打“×”)(1)到两定点的距离差的绝对值等于常数的点的轨迹是双曲线.()(2)方程x2m-y2n=1(mn>0)表示焦点在x轴上的双曲线.()(3)双曲线x2m2-y2n2=1(m>0,n>0)的渐近线方程是xm ±yn=0.()(4)等轴双曲线的渐近线互相垂直,离心率等于2.()答案(1)×(2)×(3)√(4)√2.小题热身(1)(人教A选择性必修第一册习题3.2T3改编)双曲线2y2-x2=1的渐近线方程是() A.y=±12x B.y=±2xC.y=±22x D.y=±2x答案C解析依题意知,双曲线y212-x2=1的焦点在y轴上,实半轴长a=22,虚半轴长b=1,所以双曲线2y 2-x2=1的渐近线方程是y=±22x.(2)若双曲线x2a2-y2b2=1(a>0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为()A.5B.5C.2D.2答案A解析由题意知焦点到其渐近线的距离等于实轴长,即b=2a,又a2+b2=c2,∴5a2=c2.∴e2=c2a2=5,∴e= 5.故选A.(3)(人教A选择性必修第一册习题3.2T1改编)设P是双曲线x216-y220=1上一点,F1,F2分别是双曲线的左、右焦点,若|PF1|=9,则|PF2|=________.答案17解析根据双曲线的定义得||PF1|-|PF2||=8,因为|PF1|=9,所以|PF2|=1或17.又|PF2|≥c-a =2,故|PF2|=17.(4)(人教A选择性必修第一册习题3.2T6改编)对称轴为坐标轴,且经过点P(5,3)的等轴双曲线的标准方程为________.答案x216-y216=1解析设双曲线方程为x2-y2=λ(λ≠0),则λ=52-32=16,所以双曲线的方程为x2-y2=16,即x216-y216=1.考点探究——提素养考点一双曲线的定义及其应用(多考向探究)考向1利用双曲线的定义求轨迹方程例1(2024·山东青岛质检)已知动点M(x,y)满足x2+(y-3)2-x2+(y+3)2=4,则动点M 的轨迹方程为________________.答案y 24-x 25=1(y ≤-2)解析因为x 2+(y -3)2-x 2+(y +3)2=4表示点M (x ,y )到点F 1(0,3)的距离与到点F 2(0,-3)的距离的差为4,且4<|F 1F 2|,所以点M 的轨迹是以F 1,F 2为焦点的双曲线的下支,且该双曲线的实半轴长a =2,半焦距c =3,所以b 2=c 2-a 2=5,即动点M 的轨迹方程为y 24-x 25=1(y ≤-2).【通性通法】利用双曲线的定义求方程,要注意三点:①距离之差的绝对值;②2a <|F 1F 2|;③焦点所在坐标轴的位置.提醒:一定要分清是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.【巩固迁移】1.已知圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2外切,则动圆的圆心M 的轨迹方程为()A .x 2-y 28=1B .x 28-y 2=1C .x 2-y28=1(x ≤-1)D .x 2-y28=1(x ≥1)答案C解析设圆M 的半径为r ,由动圆M 同时与圆C 1和圆C 2外切,得|MC 1|=1+r ,|MC 2|=3+r ,|MC 2|-|MC 1|=2<6,所以圆心M 的轨迹是以点C 1(-3,0)和C 2(3,0)为焦点的双曲线的左支,且2a =2,a =1,又c =3,则b 2=c 2-a 2=8,所以圆心M 的轨迹方程为x 2-y 28=1(x ≤-1).故选C.考向2利用双曲线的定义解决焦点三角形问题例2已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则△F 1PF 2的面积为________.答案23解析解法一:不妨设点P 在双曲线的右支上,则|PF 1|-|PF 2|=2a =22,在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=12,∴|PF 1|·|PF 2|=8,∴S △F 1PF 2=12|PF 1||PF 2|sin60°=23.解法二:S △F 1PF 2=b 2tan θ2=2tan30°=2 3.【通性通法】在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法建立与|PF 1|·|PF 2|的联系.【巩固迁移】2.(2023·河北邯郸模拟)已知F 1,F 2是双曲线x 24-y 2b 2=1(b >0)的左、右焦点,点P 为双曲线右支上一点,且P 在以F 1F 2为直径的圆上,若|PF 1|·|PF 2|=12,则tan ∠POF 2=()A .34B .43C .35D .45答案A解析解法一:设|PF 1|=m ,|PF 2|=n ,则m >n .由双曲线的定义知,m -n =4,又mn =12,故m =6,n =2,由于P 在以F 1F 2为直径的圆上,所以PF 1⊥PF 2,故有tan ∠PF 1F 2=13,从而tan ∠POF 2=tan2∠PF 1F 2=2tan ∠PF 1F 21-tan 2∠PF 1F 2=34.故选A.解法二:同解法一,得到m =6,n =2,则|F 1F 2|=210,从而得到双曲线的方程为x 24-y 26=1.设P (x 0,y 0)(y 0>0),-y 206=1,y 20=10,解得y 0x 0=34,即tan ∠POF 2=y 0x 0=34.故选A.考向3利用双曲线的定义求最值例3(2024·江西南昌外国语学校月考)已知F 1是双曲线x 216-y 29=1的左焦点,A (4,4),P 是双曲线右支上的动点,则|PF 1|+|PA |的最小值为________.答案8+17解析由题意知,a =4,b =3,c =5.设双曲线的右焦点为F 2,由P 是双曲线右支上的点,则|PF 1|-|PF 2|=2a =8,则|PF 1|+|PA |=8+|PF 2|+|PA |≥8+|AF 2|,当且仅当A ,P ,F 2三点共线时,等号成立.又A (4,4),F 2(5,0),则|AF 2|=(5-4)2+(0-4)2=17.所以|PF 1|+|PA |的最小值为8+17.【通性通法】在利用双曲线的定义求最值时,如果所求的式子不易直接求最值,那么可以先利用关系式|PF 1|=2a +|PF 2|或|PF 2|=2a +|PF 1|进行转化,然后利用三角形三边的关系来求最值.【巩固迁移】3.若点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x+5)2+y 2=1上,则|PQ |-|PR |的最大值是()A .9B .10C .11D .12答案B解析在双曲线C 1中,a =4,b =3,c =5,易知两圆圆心分别为双曲线C 1的两个焦点,记点F 1(-5,0),F 2(5,0),当|PQ |-|PR |取最大值时,P 在双曲线C 1的左支上,所以|PQ |-|PR |≤|PF 2|+1-(|PF 1|-1)=|PF 2|-|PF 1|+2=2a +2=10.故选B.考点二双曲线的标准方程例4(2024·天津北辰区模拟)与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线的标准方程是________________.答案x 22-y 2=1解析解法一:椭圆x 24+y 2=1的焦点坐标是(±3,0).设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),因为双曲线过点P (2,1),所以4a 2-1b 2=1,又a 2+b 2=3,解得a 2=2,b 2=1,所以所求双曲线的标准方程是x 22-y 2=1.解法二:由题意知,双曲线焦点F 1(-3,0),F 2(3,0),设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),则2a =||PF 1|-|PF 2||=(2+3)2+1-(2-3)2+1=8+43-8-43,即a =2+3-2-3,所以a 2=2,则b 2=c 2-a 2=1,所以所求双曲线的标准方程为x 22-y 2=1.解法三:设所求双曲线的标准方程为x 24-λ+y 21-λ=1(1<λ<4),将点P (2,1)的坐标代入,可得44-λ+11-λ=1,解得λ=2(λ=-2舍去),所以所求双曲线的标准方程为x 22-y 2=1.【通性通法】求双曲线的标准方程的方法定义法由题目条件判断出动点轨迹是双曲线,由双曲线定义确定2a ,2b 或2c ,从而求得双曲线方程待定系数法能确定焦点在x 轴还是y 轴上时,设出标准方程,再由条件确定a 2,b 2的值焦点的位置不确定,要注意分类讨论.也可以将双曲线的方程设为x 2m 2-y 2n2=λ(λ≠0)或mx 2-ny 2=1(mn >0)求解与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线的方程可设为x 2a 2-y 2b2=λ(λ≠0)【巩固迁移】4.(2023·湖南郴州模拟)若双曲线经过点(3,2),且渐近线方程是y =±13x ,则双曲线的标准方程是________________.答案y 2-x 29=1解析设双曲线的方程是y 2-x 29=λ(λ≠0).因为双曲线过点(3,2),所以λ=2-99=1,故双曲线的标准方程为y 2-x 29=1.5.过点P (3,27),Q (-62,7)的双曲线的标准方程为________________.答案y 225-x 275=1解析设双曲线的方程为mx 2+ny 2=1(mn <0).因为所求双曲线过点P (3,27),Q (-62,7),m +28n =1,m +49n =1,=-175,=125.故所求双曲线的标准方程为y 225-x 275=1.考点三双曲线的简单几何性质(多考向探究)考向1双曲线的实轴、虚轴、焦距例5(1)双曲线x 24-y 2=1的实轴长是()A .1B .2C .5D .4答案D解析由x 24-y 2=1,得a 2=4,解得a =2,所以2a =4.故双曲线x 24-y 2=1的实轴长是4.故选D.(2)已知双曲线C :y 2-x22=1,则该双曲线的虚轴长为________,焦距为________.答案2223解析双曲线C :y 2-x 22=1的虚半轴长b =2,半焦距c =1+2=3,所以该双曲线的虚轴长为22,焦距为2 3.【通性通法】求解与双曲线几何性质有关的问题时,要理清顶点、焦点、实轴长、虚轴长、焦距等基本量的内在联系.【巩固迁移】6.(2023·河北唐山一调)设4x 2+ky 2-4k =0表示双曲线,则该双曲线的虚轴长为()A .2kB .2kC .2-kD .-2k答案C解析由题意,得k ≠0,将4x 2+ky 2-4k =0整理,得x 2k +y 24=1,由题意,得k <0,故焦点在y 轴上,b 2=-k ,所以b =-k ,所以该双曲线的虚轴长为2-k ,故选C.7.(2024·河南郑州期末)双曲线x 26-y 22=1与x 22-y 26=1有相同的()A .离心率B .渐近线C .实轴长D .焦点答案D解析对于双曲线x 26-y 22=1,其焦点在x 轴上,a 1=6,b 1=2,c 1=22,离心率e 1=c1a 1=233,渐近线y =±b 1a 1x =±33x ,实轴长2a 1=26,焦点为(±22,0);对于双曲线x 22-y 26=1,其焦点在x 轴上,a 2=2,b 2=6,c 2=22,离心率e 2=c 2a 2=2,渐近线y =±b 2a 2x =±3x ,实轴长2a2=22,焦点为(±22,0).故选D.考向2双曲线的渐近线例6(1)(2023·河北衡水模拟)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的焦距为25,且实轴长为2,则双曲线C的渐近线方程为() A.y=±12x B.y=±2xC.y=±5x D.y=±52x 答案B解析由题意可知,2c=25,2a=2,所以c=5,a=1,所以b=c2-a2=2,则ba=2.故双曲线C的渐近线方程为y=±2x.(2)(2022·全国甲卷)若双曲线y2-x2m2=1(m>0)的渐近线与圆x2+y2-4y+3=0相切,则m=________.答案3 3解析双曲线y2-x2m2=1(m>0)的渐近线为y=±xm,即x±my=0,不妨取x+my=0,圆x2+y2-4y+3=0,即x2+(y-2)2=1,所以圆心为(0,2),半径r=1,依题意,圆心(0,2)到渐近线x+my=0的距离d=|2m|1+m2=1,解得m=33或m=-33(舍去).【通性通法】求双曲线渐近线方程的方法【巩固迁移】8.(2023·全国甲卷)已知双曲线x2a2-y2b2=1(a>0,b>0)的离心率为5,其中一条渐近线与圆(x -2)2+(y-3)2=1交于A,B两点,则|AB|=()A.15B.55C .255D .455答案D解析由e =5,得c 2a 2=a 2+b 2a2=1+b 2a 2=5,解得ba =2,所以双曲线的渐近线方程为y =±2x ,易知渐近线y =2x 与圆相交,则圆心(2,3)到渐近线y =2x 的距离d =|2×2-3|22+(-1)2=55,所以弦长|AB |=2r 2-d 2=21-15=455.故选D.9.已知双曲线x 2m +1-y 2m =1(m >0)的渐近线方程为x ±3y =0,则m =________.答案12解析由渐近线方程y =±b a x =±33x ,得b a =33,则b 2a 2=13,即m m +1=13,m =12.考向3双曲线的离心率例7(1)(2023·新课标Ⅰ卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A →⊥F 1B →,F 2A →=-23F 2B →,则C 的离心率为________.答案355解析解法一:依题意,设|AF 2|=2m (m >0),则|BF 2|=3m =|BF 1|,|AF 1|=2a +2m ,在Rt △ABF 1中,9m 2+(2a +2m )2=25m 2,则(a +3m )(a -m )=0,故a =m 或a =-3m (舍去),所以|AF 1|=4a ,|AF 2|=2a ,|BF 2|=|BF 1|=3a ,则|AB |=5a ,故cos ∠F 1AF 2=|AF 1||AB |=4a 5a =45,所以在△AF 1F 2中,cos ∠F 1AF 2=16a 2+4a 2-4c 22×4a ×2a=45,整理得5c 2=9a 2,故e =c a =355.解法二:依题意,得F 1(-c ,0),F 2(c ,0),令A (x 0,y 0),B (0,t ),因为F 2A →=-23F 2B →,所以(x 0-c ,y 0)=-23(-c ,t ),则x 0=53c ,y 0=-23t ,又F 1A →⊥F 1B →,所以F 1A →·F 1B →,c ,t )=83c 2-23t 2=0,则t 2=4c 2,又点A 在C 上,则259c 2a 2-49t 2b 2=1,整理得25c 29a 2-4t 29b 2=1,则25c 29a 2-16c 29b2=1,所以25c 2b 2-16c 2a 2=9a 2b 2,即25c 2(c 2-a 2)-16a 2c 2=9a 2(c 2-a 2),整理得25c 4-50a 2c 2+9a 4=0,则(5c 2-9a 2)(5c 2-a 2)=0,解得5c 2=9a 2或5c 2=a 2,又e >1,所以e =c a =355.解法三:由解法二得,t 2=4c 2,所以|AF 1|=64c 29+4t 29=64c 29+16c 29=45c3,|AF 2|=4c 29+4t 29=4c 29+16c 29=25c3,由双曲线的定义可得|AF 1|-|AF 2|=2a ,即45c 3-25c 3=2a ,即53c =a ,所以C 的离心率e =c a =35=355.(2)(2024·辽宁沈阳模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,双曲线的左顶点为A ,以F 1F 2为直径的圆交双曲线的一条渐近线于P ,Q 两点,其中点Q 在y 轴右侧,若|AQ |≥2|AP |,则该双曲线的离心率的取值范围是________.答案,213解析由题意,以F 1F 2为直径的圆的方程为x 2+y 2=c 2,如图,设双曲线的一条渐近线方程为y =b a x .=b a x ,2+y 2=c 2,=a ,=b =-a ,=-b .∴P (-a ,-b ),Q (a ,b ).又A 为双曲线的左顶点,则A (-a ,0).∴|AQ |=(a +a )2+b 2=4a 2+b 2,|AP |=[-a -(-a )]2+b 2=b ,|AQ |≥2|AP |,即4a 2+b 2≥2b ,解得4a 2≥3(c 2-a 2),∴e =c a ≤213.又e >1,故e ,213.,213.【通性通法】求双曲线离心率或其取值范围的方法直接法求a ,b ,c 的值,由c 2a 2=a 2+b 2a2=1+b 2a 2直接求e方程(不等式)法列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解【巩固迁移】10.(2024·九省联考)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过坐标原点的直线与C 交于A ,B 两点,|F 1B |=2|F 1A |,F 2A →·F 2B →=4a 2,则C 的离心率为()A .2B .2C .5D .7答案D解析由双曲线的对称性可知|F 1A |=|F 2B |,|F 1B |=|F 2A |,则四边形AF 1BF 2为平行四边形,令|F 1A |=|F 2B |=m ,则|F 1B |=|F 2A |=2m ,由双曲线的定义可知|F 2A |-|F 1A |=2a ,故有2m -m =2a ,即m =2a ,即|F 1A |=|F 2B |=m =2a ,|F 1B |=|F 2A |=4a ,F 2A →·F 2B →=|F 2A →||F 2B →|cos ∠AF 2B =2a ×4a cos ∠AF 2B =4a 2,则cos ∠AF 2B =12,即∠AF 2B =π3,故∠F 2BF 1=2π3,则cos ∠F 2BF 1=|F 1B |2+|F 2B |2-|F 1F 2|22|F 1B ||F 2B |=(4a )2+(2a )2-(2c )22×4a ×2a =-12,即20a 2-4c 216a 2=-12,即2016-4e 216=-12,则e 2=7,又e >1,故e =7.故选D.11.已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 是双曲线C 上在第一象限内的一点,若sin ∠PF 2F 1=3sin ∠PF 1F 2,则双曲线C 的离心率的取值范围为________.答案(1,2)解析在△PF 1F 2中,sin ∠PF 2F 1=3sin ∠PF 1F 2,由正弦定理,得|PF 1|=3|PF 2|,又点P 是双曲线C 上在第一象限内的一点,所以|PF 1|-|PF 2|=2a ,所以|PF 1|=3a ,|PF 2|=a ,在△PF 1F 2中,由|PF 1|+|PF 2|>|F 1F 2|,得3a +a >2c ,即2a >c ,所以e =ca <2,又e >1,所以1<e <2.故双曲线C 的离心率的取值范围为(1,2).考向4与双曲线几何性质有关的最值(范围)问题例8(1)(2023·湖北名校联考)已知F 1,F 2分别是双曲线C :x 24-y 221=1的左、右焦点,动点P在双曲线C 的右支上,则(|PF 1|-4)(|PF 2|-4)的最小值为()A .-4B .-3C .-2D .-1答案B解析由双曲线的定义可得|PF 1|-|PF 2|=4,其中|PF 2|≥3,将|PF 1|=|PF 2|+4代入(|PF 1|-4)(|PF 2|-4),得|PF 2|·(|PF 2|-4)=|PF 2|2-4|PF 2|=(|PF 2|-2)2-4≥-3.故选B.(2)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是________.答案-33,解析因为F 1(-3,0),F 2(3,0),x 202-y 20=1,所以MF 1→·MF 2→=(-3-x 0,-y 0)·(3-x 0,-y 0)=x 20+y 20-3<0,即3y 20-1<0,解得-33<y 0<33.故y 0-33,【通性通法】1.双曲线几何性质的综合应用涉及知识较宽,如双曲线定义、标准方程、对称性、渐近线、离心率等多方面的知识,在解决此类问题时要注意与平面几何知识的联系.2.与双曲线有关的取值范围问题的解题思路思路一若条件中存在不等关系,则借助此关系直接变换转化求解思路二若条件中没有不等关系,要善于发现隐含的不等关系或借助曲线中不等关系来解决【巩固迁移】12.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为103,双曲线上的点到焦点的最小距离为10-3,则双曲线上的点到点A (5,0)的最小距离为()A .1B .62C .2D .6答案B解析由已知,得c a =103,c -a =10-3,解得c =10,a =3,故b 2=c 2-a 2=1.所以双曲线的方程为x 29-y 2=1,设P (x ,y )是双曲线x 29-y 2=1上的点,则y 2=x 29-1,且x ≤-3或x ≥3,则|AP |=(x -5)2+y 2=10x29-10x +24所以当x =92时,|AP |min =32=62.故选B.课时作业一、单项选择题1.(2023·福建泉州模拟)已知双曲线C :x 2a 2-y 2b 21(a >0,b >0)的焦距为25,点P (2,1)在C的一条渐近线上,则C 的方程为()A .x 2-y24=1B .x 24-y 2=1C .3x 220-3y 25=1D .x 216-y 24=1答案B解析解法一:由已知2c =25,则c = 5.又b a =12,且a 2+b 2=c 2,所以a =2,b =1.则C 的方程为x 24-y 2=1.故选B.解法二:由已知2c =25,则c =5,对于C ,a 2+b 2=253≠5,所以排除C ;对于D ,a 2+b 2=20≠5,所以排除D ;又由点P (2,1)在C 的一条渐近线上,坐标代入方程检验可排除A.故选B.2.(2024·广东江门联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的斜率为22,则C 的离心率为()A .3B .6C .9D .12答案A解析由题意可知b a =22,则C 的离心率e =ca=a 2+b 2a 2=1+(22)2=3.故选A.3.(2023·扬州、盐城、南通联考)已知双曲线C 的离心率为3,F 1,F 2是C 的两个焦点,P 为C 上一点,|PF 1|=3|PF 2|,若△PF 1F 2的面积为2,则双曲线C 的实轴长为()A .1B .2C .3D .6答案B解析由题意知,|PF 1|-|PF 2|=2a ,所以|PF 2|=a ,|PF 1|=3a ,又离心率e =ca=3,|F 1F 2|=2c =23a ,所以cos ∠F 1PF 2=9a 2+a 2-12a 22·3a ·a =-2a 26a 2=-13,sin ∠F 1PF 2=223,所以S △PF 1F 2=12·a ·3a ·223=2a 2=2,所以a =1,实轴长2a =2.故选B.4.已知双曲线E :x 24-y 2m =1的一条渐近线方程为3x +2y =0,则下列说法正确的是()A .E 的焦点到渐近线的距离为2B .m =6C .E 的实轴长为6D .E 的离心率为132答案D解析依题意,得32=m2,解得m =9,故B 不正确;因为b =m =3,a =2,c =a 2+b 2=13,所以E 的焦点到渐近线的距离为31332+22=3,故A 不正确;因为a =2,所以E 的实轴长为2a =4,故C 不正确;E 的离心率为c a =132,故D 正确.故选D.5.已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 交于点P ,则点P 的轨迹是()A .椭圆B .双曲线C .抛物线D .圆答案B解析如图,连接ON ,由题意可得|ON |=1,且N 为MF 1的中点,又O 为F 1F 2的中点,所以|MF 2|=2.因为点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 交于点P ,由垂直平分线的性质可得|PM |=|PF 1|,所以||PF 2|-|PF 1||=||PF 2|-|PM ||=|MF 2|=2<|F 1F 2|,所以由双曲线的定义可得,点P 的轨迹是以F 1,F 2为焦点的双曲线.故选B.6.(2023·天津高考)双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.过F 2作其中一条渐近线的垂线,垂足为P .已知|PF 2|=2,直线PF 1的斜率为24,则双曲线的方程为()A .x 28-y 24=1B .x 24-y 28=1C .x 24-y 22=1D .x 22-y 24=1答案D解析解法一:不妨取渐近线y =b a x ,此时直线PF 2的方程为y =-a b (x -c ),与y =ba x 联立,=a 2c,=ab c ,即因为直线PF 2与渐近线y =ba x 垂直,所以PF 2的长度即为点F 2(c ,0)到直线y =b a x (即bx -ay =0)的距离,由点到直线的距离公式,得|PF 2|=bc b 2+a 2=bcc =b ,所以b =2.因为F 1(-c,0),且直线PF 1的斜率为24,所以abc a 2c +c =24,化简得ab a 2+c 2=24,又b =2,c 2=a 2+b 2,所以2a 2a 2+4=24,整理得a 2-22a +2=0,即(a -2)2=0,解得a = 2.所以双曲线的方程为x 22-y 24=1.故选D.解法二:因为过点F 2向其中一条渐近线作垂线,垂足为P ,且|PF 2|=2,所以b =2,再结合选项,排除B ,C ;若双曲线方程为x 28-y 24=1,则F 1(-23,0),F 2(23,0),渐近线方程为y =±22x ,不妨取渐近线y =22x ,则直线PF 2的方程为y =-2(x -23),与渐近线方程y =22x 联立,得则kPF 1=25,又直线PF 1的斜率为24,所以双曲线方程x 28-y 24=1不符合题意,排除A.故选D.7.(2023·山西吕梁二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线y =kx 与C 交于P ,Q 两点,PF 1→·QF 1→=0,且△PF 2Q 的面积为4a 2,则C 的离心率是()A .3B .5C .2D .3答案B解析如图,若P 在第一象限,因为PF 1→·QF 1→=0,所以PF 1⊥QF 1,由图形的对称性,知四边形PF 1QF 2为矩形,因为△PF 2Q 的面积为4a 2,所以|PF 1|·|PF 2|=8a 2,又因为|PF 1|-|PF 2|=2a ,所以|PF 1|=4a ,|PF 2|=2a ,在Rt △PF 1F 2中,(4a )2+(2a )2=(2c )2,解得e =ca=5.故选B.8.(2023·安徽蚌埠模拟)已知双曲线C :x 29-y 2=1,点F 1是C 的左焦点,若点P 为C 右支上的动点,设点P 到C 的一条渐近线的距离为d ,则d +|PF 1|的最小值为()A .6B .7C .8D .9答案B解析过P 作PH 垂直于双曲线的一条渐近线,垂足为H ,则|PH |=d ,连接P 与双曲线的另一个焦点F 2,如图所示.由双曲线的定义可知,d +|PF 1|=|PH |+|PF 2|+2a ,又双曲线方程为x 29-y 2=1,故a =3,b =1,c =10,所以点F 2的坐标为(10,0),双曲线的一条渐近线为y =13x ,故点F 2到渐近线的距离为103103=1,故|PH |+|PF 2|+2a ≥1+6=7.故选B.二、多项选择题9.已知双曲线C :x 2a 2-y 23=1(a >0)的左、右焦点分别为F 1,F 2,离心率为2,P 为C 上一点,则()A .双曲线C 的实轴长为2B .双曲线C 的一条渐近线方程为y =3x C .|PF 1|-|PF 2|=2D .双曲线C 的焦距为4答案ABD解析由双曲线方程,知b=3,离心率为e=ca=a2+3a=2,解得a=1,故双曲线C的标准方程为x2-y23=1,实半轴长为1,实轴长为2a=2,A正确;因为可求得双曲线的渐近线方程为y=±3x,故双曲线的一条渐近线方程为y=3x,B正确;由于P可能在C的不同分支上,则有||PF1|-|PF2||=2,C错误;焦距为2c=2a2+b2=4,D正确.故选ABD.10.已知椭圆C1:x216+y29=1与双曲线C2:x216-k+y29-k=1(9<k<16),下列关于两曲线的说法正确的是()A.C1的长轴长与C2的实轴长相等B.C1的短轴长与C2的虚轴长相等C.焦距相等D.离心率不相等答案CD解析由题意可知,椭圆C1的长轴长为2a1=8,短轴长为2b1=6,焦距为2c1=216-9=27,离心率为e1=c1a1=74,当9<k<16时,16-k>0,9-k<0,双曲线C2的焦点在x轴上,其实轴长为2a2=216-k,虚轴长为2b2=2k-9,焦距为2c2=216-k+k-9=27,离心率为e2=c2a2=716-k.故C1的长轴长与C2的实轴长不相等,C1的短轴长与C2的虚轴长不相等,C1与C2的焦距相等,离心率不相等.故选CD.三、填空题11.(2022·北京高考)已知双曲线y2+x2m=1的渐近线方程为y=±33x,则m=________.答案-3解析对于双曲线y2+x2m=1,m<0,即双曲线的标准方程为y2-x2-m=1,则a=1,b=-m,又双曲线y2+x2m=1的渐近线方程为y=±33x,所以ab=33,即1-m=33,解得m=-3.12.(2024·山东潍坊摸底)已知双曲线C的焦点分别为F1,F2,虚轴为B1B2.若四边形F1B1F2B2的一个内角为120°,则C的离心率为________.答案6 2解析因为|F1F2|=2c,|B1B2|=2b,c>b,由双曲线的对称性可得四边形F1B1F2B2为菱形,又∠F1B1F2=120°,所以|F1O|=3|B1O|,即c=3b,可得c2=3b2=3(c2-a2),整理得c2a2=32,即C 的离心率e =c a =62.13.(2024·福建厦门质检)已知双曲线C :x 29-y 27=1,F 1,F 2是其左、右焦点.圆E :x 2+y 2-4y +3=0,点P 为双曲线C 右支上的动点,点Q 为圆E 上的动点,则|PQ |+|PF 1|的最小值是________.答案5+25解析由题设知,F 1(-4,0),F 2(4,0),E (0,2),圆E 的半径r =1.由点P 为双曲线C 右支上的动点,知|PF 1|=|PF 2|+6,∴|PQ |+|PF 1|=|PQ |+|PF 2|+6,∴(|PQ |+|PF 1|)min =(|PQ |+|PF 2|)min +6=|F 2E |-r +6=25-1+6=5+25.14.(2023·T8联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,过F 2作渐近线y =b a x 的垂线,垂足为P ,若∠F 1PO =π6,则双曲线的离心率为________.答案213解析设∠POF 2=α,则tan α=b a ,又F 2P 垂直于渐近线y =ba x ,即bx -ay =0,∴|PF 2|=|bc |a 2+b 2=b ,而tan α=|PF 2||OP |=b a ,∴|OP |=a ,∴sin α=b c ,cos α=a c ,在△OF 1P 中,∠F 1PO =π6由正弦定理得a=csin π6,∴a b c ·32-a c ·12=2c ,∴a =3b -a ,∴2a =3b ,∴a =32b ,∴e =ca =a 2+b 2a2=213.四、解答题15.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =5,且过点M (-2,23).(1)求双曲线C 的标准方程;(2)求与双曲线C 有相同渐近线,且过点P (3,25)的双曲线的标准方程.解(1)因为离心率e =ca =a 2+b 2a=1+b 2a2=5,所以b 2=4a 2,又因为点M (-2,23)在双曲线C 上,所以4a 2-12b2=1,联立上述方程,解得a 2=1,b 2=4,所以双曲线C 的标准方程为x 2-y 24=1.(2)设所求双曲线的方程为x 2-y 24=λ(λ≠0),因为所求双曲线经过点P (3,25),则3-204=λ,即λ=-2,所以所求双曲线的方程为x 2-y 24=-2,其标准方程为y 28-x 22=1.16.已知双曲线x 212-y 28=1.(1)求证:双曲线上任意一点到两条渐近线的距离之积为定值;(2)求直线2x -y +1=0被两条渐近线截得的线段长.解令x 212-y 28=0,则双曲线的渐近线方程为y =±63x .(1)证明:设点P (x ,y )为双曲线上任意一点,且点P 到渐近线6x +3y =0与6x -3y =0的距离分别为d 1,d 2,则d 1d 2=|6x +3y |15·|6x -3y |15=|6x 2-9y 2|15=|2x 2-3y 2|5==245.即双曲线上任意一点到两条渐近线的距离之积为定值.(2)=63x ,x -y +1=0,=-6+610,=-1+65.=-63,x -y +1=0,=6-610,=-1+65.所以直线2x -y +1=0-6+610,所以直线2x -y +1=0被两条渐近线截得的线段长为==305.17.在①左顶点为(-3,0);②双曲线过点(32,4);③离心率e =53这三个条件中任选一个,补充在下面问题中,并解答.问题:已知双曲线与椭圆x 249+y 224=1共焦点,且________.(1)求双曲线的方程;(2)若点P 在双曲线上,F 1,F 2分别是双曲线的左、右焦点,且|PF 1|=8,求|PF 2|.注:如果选择多个条件分别解答,按第一个解答计分.解(1)因为双曲线与椭圆x 249+y 224=1共焦点,所以双曲线的焦点在x 轴上,且c =49-24=5.选条件①:设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由双曲线的左顶点为(-3,0),得a =3,所以b 2=c 2-a 2=25-9=16,所以双曲线的方程为x 29-y 216=1.选条件②:设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由双曲线过点(32,4),得18a 2-16b 2=1,又a 2=25-b 2,解得b 2=16,所以a 2=9,所以双曲线的方程为x 29-y 216=1.选条件③:设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由离心率e =53,得5a =53,解得a =3,所以b 2=c 2-a 2=25-9=16,所以双曲线的方程为x 29-y 216=1.(2)因为|PF 1|=8,||PF 1|-|PF 2||=2a =6,所以|PF 2|=2或|PF 2|=14.18.(多选)(2023·山西太原一模)已知双曲线C :x 24-y 25=1的左、右焦点分别为F 1,F 2,过点F 2的直线与双曲线C 的右支交于A ,B 两点,且AF 1⊥AB ,则下列结论正确的是()A .双曲线C 的渐近线方程为y =±52x B .若P 是双曲线C 上的动点,则满足|PF 2|=5的点P 有3个C .|AF 1|=2+14D .△ABF 1内切圆的半径为14-2答案ACD解析双曲线C :x 24-y 25=1中,实半轴长a =2,虚半轴长b =5,半焦距c =3,焦点F 1(-3,0),F 2(3,0).对于A ,双曲线C 的渐近线方程为y =±52x ,A 正确;对于B ,设点P (x 0,y 0),则y 20=54x 20-5,|PF 2|=(x 0-3)2+y 20=94x 20-6x 0+4=|32x 0-2|=5,解得x 0=-2或x 0=143,当x 0=-2时,P (-2,0),当x 0=143时,y 0有两个值,即符合条件的点P 有3个,B 错误;对于C ,由双曲线定义知|AF 1|-|AF 2|=4,而|F 1F 2|=6,且AF 1⊥AB ,则|AF 1|2+|AF 2|2=|F 1F 2|2=36,即|AF 1|+|AF 2|=2(|AF 1|2+|AF 2|2)-(|AF 1|-|AF 2|)2=214,因此|AF 1|=2+14,C 正确;对于D ,由双曲线的定义知|BF 1|-|BF 2|=4,因为AF 1⊥AB ,所以△ABF 1内切圆的半径r =|AF 1|+|AB |-|BF 1|2=|AF 1|+|AF 2|+|BF 2|-|BF 1|2=214-42=14-2,D 正确.故选ACD.19.(多选)(2023·河北石家庄模拟)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在C 的右支上,且不与C 的顶点重合,则下列命题中正确的是()A .若a =3,b =2,则C 的两条渐近线方程是y =±32xB .若点P 的坐标为(2,42),则C 的离心率大于3C .若PF 1⊥PF 2,则△F 1PF 2的面积等于b 2D .若C 为等轴双曲线,且|PF 1|=2|PF 2|,则cos ∠F 1PF 2=35答案BC解析当a =3,b =2时,双曲线的渐近线的斜率k =±b a =±23,A 错误;因为点P (2,42)在C 上,则4a 2-32b 2=1,得b 2a 2=b 248>8,所以e =1+b 2a2>3,B 正确;因为|PF 1|-|PF 2|=2a ,若PF 1⊥PF 2,则|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,即(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,即4a 2+2|PF 1|·|PF 2|=4c 2,得|PF 1|·|PF 2|=2(c 2-a 2)=2b 2,所以S △F 1PF 2=12|PF 1|·|PF 2|=b 2,C 正确;若C 为等轴双曲线,则a =b ,从而|F 1F 2|=2c =22a .若|PF 1|=2|PF 2|,则|PF 2|=2a ,|PF 1|=4a .在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=16a 2+4a 2-8a 22×4a ×2a =34,D错误.故选BC.20.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是双曲线的右支上一点.(1)求|PF 1|的最小值;(2)若右支上存在点P 满足|PF 1|=4|PF 2|,求双曲线的离心率的取值范围.解(1)设F 1(-c ,0),F 2(c ,0),P (x ,y )(x ≥a ),则|PF 1|=(x +c )2+y 2=(x +c )2+b 2a 2x 2-b 2=c 2a 2x 2+2cx +a 2==|c a x +a |=c a x +a ≥ca ·a +a =a +c .当P 在右顶点时,|PF 1|最小,所以|PF 1|的最小值为a +c .(2)设∠F 1PF 2=θ,θ∈(0,π].依题意,1|-|PF 2|=2a,1|=4|PF 2|,1|=8a 3,2|=2a 3.由余弦定理,得cos θ2×8a 3×2a 3=17a 2-9c 28a 2=178-98e 2,所以-1≤178-98e 2<1,解得1<e 2≤259,又e >1,所以1<e ≤53.。

高三数学双曲线知识点总结归纳

高三数学双曲线知识点总结归纳

高三数学双曲线知识点总结归纳双曲线是高中数学中重要的一章,它不仅在数学理论体系中具有重要作用,还在实际生活中有广泛的应用。

下面是对高三数学双曲线知识点的总结与归纳。

一、双曲线的定义和基本形态双曲线是平面上各点到两个定点的距离之差等于常数的轨迹。

双曲线由两个分离的支线组成,其基本形态可以分为两种类型:横轴双曲线和纵轴双曲线。

横轴双曲线的中心在横轴上,纵轴双曲线的中心在纵轴上。

二、双曲线的方程1. 横轴双曲线的方程(1)标准方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(2)近似方程:$y=\pm \frac{b}{a} \sqrt{x^2-a^2}$2. 纵轴双曲线的方程(1)标准方程:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(2)近似方程:$x=\pm \frac{a}{b} \sqrt{y^2-a^2}$三、双曲线的性质1. 焦点和准线:横轴双曲线有两个焦点和两条准线,纵轴双曲线也有两个焦点和两条准线。

2. 对称性:双曲线关于横轴、纵轴和原点对称。

3. 渐近线:横轴双曲线有两条渐近线,纵轴双曲线也有两条渐近线。

4. 离心率:双曲线的离心率定义为焦距与准线之间的比值,离心率大于1。

5. 直径:双曲线的直径是通过焦点的直线段,并且双曲线上的每一点都在某条直径上。

四、双曲线的图像与应用1. 横轴双曲线的图像横轴双曲线的图像呈现出两个分离的支线,它在物理学、电子学和光学中有广泛的应用,例如抛物面反射器、双折式天线等。

2. 纵轴双曲线的图像纵轴双曲线的图像同样由两个分离的支线构成,它在物理学、力学、天文学等领域有广泛的应用,例如行星运动的轨道、卫星发射轨道等。

五、双曲线的解析几何应用1. 双曲线的切线双曲线的切线过双曲线上的一点$P(x_0, y_0)$,切线方程为$\frac{xx_0}{a^2}-\frac{yy_0}{b^2}=1$。

2. 双曲线的渐近线横轴双曲线的渐近线方程为$y=\pm \frac{b}{a} x$,纵轴双曲线的渐近线方程为$x=\pm \frac{a}{b} y$。

双曲线(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

双曲线(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

专题9.4 双曲线(知识点讲解)【知识框架】【核心素养】1.考查双曲线的定义,求轨迹方程及焦点三角形,凸显数学运算、直观想象的核心素养.2.考查双曲线几何性质(范围、对称性、顶点、离心率、渐近线),结合几何量的计算,凸显逻辑推理、数学运算的核心素养.3.考查直线与双曲线的位置关系,凸显逻辑推理、数学运算、数学应用的核心素养.【知识点展示】(一)双曲线的定义及标准方程1.双曲线的定义满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离.2.双曲线的标准方程标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形(二)双曲线的几何性质 双曲线的几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形性质范围 x ≥a 或x ≤-a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性 对称轴:坐标轴 对称中心:原点 顶点 A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a ) 渐近线y =±b axy =±a bx离心率 e =ca,e ∈(1,+∞),其中c =a 2+b 2 实虚轴线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫作双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫作双曲线的实半轴长,b 叫作双曲线的虚半轴长.a 、b 、c 的关系c 2=a 2+b 2(c >a >0,c >b >0)(三)常用结论 1.等轴双曲线及性质(1)等轴双曲线:实轴长和虚轴长相等的双曲线叫做等轴双曲线,其标准方程可写作:x 2-y 2=λ(λ≠0). (2)等轴双曲线⇔离心率e =2⇔两条渐近线y =±x 相互垂直. 2.双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a . (3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线P A ,PB 斜率存在且不为0,则直线P A 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2·1tan θ2,其中θ为∠F 1PF 2.【常考题型剖析】题型一:双曲线的定义及其应用例1.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =234x -|OP |=( )A .222B 410C 7D 10【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413bc a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数234y x =-由()22210334y x x y x ⎧⎪⎨->-==⎪⎩,解得1333x y ⎧=⎪⎪⎨⎪=⎪⎩,即13271044OP =+= 故选:D.例2.(2017·上海·高考真题)设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =________ 【答案】11【详解】由双曲线的方程2221(0)9x y b b -=>,可得3a =,根据双曲线的定义可知1226PF PF a -=±=±,又因为15PF =,所以2||11PF =. 【总结提升】1.双曲线定义的主要应用(1)判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.2.用定义法求双曲线方程,应依据条件辨清是哪一支,还是全部曲线. 3.与双曲线两焦点有关的问题常利用定义求解.4.如果题设条件涉及动点到两定点的距离,求轨迹方程时可考虑能否应用定义求解. 题型二:双曲线的标准方程例3.(2021·北京高考真题)双曲线2222:1x y C a b -=过点2,3,且离心率为2,则该双曲线的标准方程为( ) A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得3b a =,再将点2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a -=,则双曲线的方程为222213x y a a-=,将点2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =因此,双曲线的方程为2213y x -=.故选:B例4. (2022·全国·高三专题练习)已知双曲线的上、下焦点分别为()10,3F ,()20,3F -,P 是双曲线上一点且124PF PF -=,则双曲线的标准方程为( ) A .22145x y -=B .22154x y -=C .22145y x -=D .22154y x -=【答案】C【分析】设双曲线的标准方程为()222210,0y x a b a b -=>>,由双曲线的定义知3c =,2a =,即可求出双曲线的标准方程.【详解】设双曲线的标准方程为()222210,0y x a b a b -=>>,半焦距为c ,则由题意可知3c =,24a =,即2a =,故222945b c a =-=-=,所以双曲线的标准方程为22145y x -=.故选:C .例5.【多选题】(2020·海南·高考真题)已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C n C .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=, 此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:ACD. 【规律方法】1.求双曲线方程的思路(1)如果已知双曲线的中心在原点,且确定了焦点在x 轴上或y 轴上,则设出相应形式的标准方程,然后根据条件确定关于a ,b ,c 的方程组,解出a 2,b 2,从而写出双曲线的标准方程(求得的方程可能是一个,也有可能是两个,注意合理取舍,但不要漏解). (2)当焦点位置不确定时,有两种方法来解决:一是分类讨论,注意考虑要全面;二是注意巧设双曲线:①双曲线过两点可设为221(0)mx ny mn -=>,②与22221x y a b -=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.2.利用待定系数法求双曲线标准方程的步骤如下:(1)定位置:根据条件判定双曲线的焦点在x 轴上还是在y 轴上,不能确定时应分类讨论.(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0);(3)寻关系:根据已知条件列出关于a 、b (或m 、n )的方程组;(4)得方程:解方程组,将a 、b 、c (或m 、n )的值代入所设方程即为所求. 3.双曲线方程的几种形式:(1)双曲线的一般方程:当ABC ≠0时,方程Ax 2+By 2=C可以变形为x 2C A +y 2C B=1,由此可以看出方程Ax 2+By 2=C 表示双曲线的充要条件是ABC ≠0,且A ,B 异号.此时称方程Ax 2+By 2=C 为双曲线的一般方程.利用一般方程求双曲线的标准方程时,可以将其设为Ax 2+By 2=1(AB <0),将其化为标准方程,即x 21A +y 21B=1.因此,当A >0时,表示焦点在x 轴上的双曲线;当B >0时,表示焦点在y 轴上的双曲线.(2)共焦点的双曲线系方程:与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为x 2a 2+λ-y 2b 2-λ=1(a >0,b >0);与双曲线y 2a 2-x 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为y 2a 2+λ-x 2b 2-λ=1(a >0,b >0).题型三:双曲线的实际应用例6.(2023·全国·高三专题练习)江西景德镇青花瓷始创于元代,到明清两代达到了顶峰,它蓝白相映怡然成趣,晶莹明快,美观隽永.现有某青花瓷花瓶的外形可看成是焦点在x 轴上的双曲线的一部分绕其虚轴旋转所形成的曲面,如图所示,若该花瓶的瓶身最小的直径是4,瓶口和底面的直径都是8,瓶高是6,则该双曲线的标准方程是( )A .221169x y -=B .2214x y -=C .22189x y -=D .22143x y -=【答案】D【分析】由已知得双曲线的焦点在x 轴上,设该双曲线的方程为()222210,0x y a b a b -=>>,代入建立方程组,求解即可得双曲线的标准方程.【详解】由题意可知该双曲线的焦点在x 轴上,实轴长为4,点()4,3在该双曲线上.设该双曲线的方程为()222210,0x y a b a b-=>>,则222224,431,a a b =⎧⎪⎨-=⎪⎩解得2a =,3b =,故该双曲线的标准方程是22143x y -=.故选:D.例7.(2021·长丰北城衡安学校高二月考(理))如图为陕西博物馆收藏的国宝——唐⋅金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯的主体部分可以近似看作是双曲线2222:x y C a b-=1(a >0,b >0)的右支与y 轴及平行于x 轴的两条直线围成的曲边四边形ABMN 绕y 轴旋转一周103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍,则杯身最细之处的周长为( )A .2B .3πC .3D .4π【分析】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m , 代入方程,即可解得23,3a a == 3,从而得解. 【详解】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m 代入双曲线方程可得 22222225134331,1m m a b a b -=-= , 即22222213251312,14m m a b a b-=-=,作差可得2273124a =,解得23,3a a ==,所以杯身最细处的周长为23π . 故选:C 【总结提升】解答实际应用问题时,要注意先将实际问题数学化,条件中有两定点,某点与这两定点的距离存在某种联系,解题时先画出图形,分析其关系,看是否与椭圆、双曲线的定义有关,再确定解题思路、步骤. 题型四 已知双曲线的方程,研究其几何性质例8.(2018·浙江·高考真题)双曲线221 3x y -=的焦点坐标是( )A .()2,0-,)2,0B .()2,0-,()2,0C .(0,2-,(2D .()0,2-,()0,2【分析】根据双曲线方程确定焦点位置,再根据222c a b =+求焦点坐标.【详解】因为双曲线方程为2213x y -=,所以焦点坐标可设为(,0)c ±,因为222314,2c a b c =+=+==,所以焦点坐标为(20),选B.例9.(2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________. 5【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,22543c a b ++,所以双曲线的右焦点为(3,0), 所以右焦点(3,0)到直线280x y +-=225512==+ 5例10.(2020·北京·高考真题)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________. 【答案】 ()3,0 3【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,6a =,3b =,则223c a b =+=,则双曲线C 的右焦点坐标为()3,0, 双曲线C 的渐近线方程为22y x =±,即20x y ±=, 所以,双曲线C 的焦点到其渐近线的距离为23312=+. 故答案为:()3,0;3.例11.(2021·全国·高考真题(理))已知双曲线22:1(0)x C y m m -=>30x my +=,则C 的焦距为_________. 【答案】4【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】由渐近线方程30x my +=化简得3y x m=-,即3b a m =,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.例12.(2021·全国·高考真题)若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】3y x =±【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程. 【详解】解:由题可知,离心率2ce a ==,即2c a =, 又22224a b c a +==,即223b a =,则3ba=, 故此双曲线的渐近线方程为3y x =±. 故答案为:3y x =±. 【总结提升】1.已知双曲线方程讨论其几何性质,应先将方程化为标准形式,找出对应的a 、b ,利用c 2=a 2+b 2求出c ,再按定义找出其焦点、焦距、实轴长、虚轴长、离心率、渐近线方程.2.画双曲线图形,要先画双曲线的两条渐近线(即以2a 、2b 为两邻边的矩形对角线)和两个顶点,然后根据双曲线的变化趋势,就可画出双曲线的草图.3.双曲线的标准方程中对a 、b 的要求只是a >0,b >0易误认为与椭圆标准方程中a ,b 的要求相同. 若a >b >0,则双曲线的离心率e ∈(1,2); 若a =b >0,则双曲线的离心率e =2; 若0<a <b ,则双曲线的离心率e > 2.4.注意区分双曲线中的a ,b ,c 大小关系与椭圆a 、b 、c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.5.等轴双曲线的离心率与渐近线关系双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系). 6.双曲线的焦点到渐近线的距离等于虚半轴长b 7.渐近线与离心率()222210,0x y a b a b -=>>的一条渐近线的斜率为2222221b b c a e a a a-===-可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.8.与双曲线有关的范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系,如借助双曲线上点的坐标范围,方程中Δ≥0等来解决.题型五 由双曲线的性质求双曲线的方程例11. (2022·天津·高考真题)已知抛物线21245,,y x F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=【答案】C【分析】由已知可得出c 的值,求出点A 的坐标,分析可得112AF F F =,由此可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线245y x =的准线方程为5x =-,则5c =,则()15,0F -、()25,0F ,不妨设点A 为第二象限内的点,联立b y x a x c ⎧=-⎪⎨⎪=-⎩,可得x c bc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a ,可得2ba=, 所以,22225ba c c ab ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得125a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C.例12.(2021·北京·高考真题)若双曲线2222:1x y C a b -=离心率为2,过点2,3,则该双曲线的方程为( )A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B【分析】分析可得3b a =,再将点()2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a =-=,则双曲线的方程为222213x y a a-=,将点()2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =,因此,双曲线的方程为2213y x -=.故选:B例13.(2018·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为( )A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【答案】A 【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±,不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得:22122bc b bc b d c a b --==+,22222bc b bc b d c a b++==+, 则12226bcd d b c+===,则23,9b b ==, 双曲线的离心率:2229112c b e a a a ==+=+=, 据此可得:23a =,则双曲线的方程为22139x y -=.本题选择A 选项. 【规律总结】1.由双曲线的几何性质求双曲线的标准方程,一般用待定系数法,同样需要经历“定位→定式→定量”三个步骤.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1(mn >0),从而直接求得.2.根据双曲线的渐近线方程可设出双曲线方程.渐近线为y =n m x 的双曲线方程可设为:x 2m 2-y 2n 2=λ(λ≠0);如果两条渐近线的方程为Ax ±By =0,那么双曲线的方程可设为A 2x 2-B 2y 2=m (m ≠0);与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).题型六 求双曲线的离心率(或范围)例13.(2019·全国·高考真题(文))设F 为双曲线C :22221x y a b -=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A 2B 3C .2 D 5【答案】A【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.2e ∴=,故选A .例14.(2021·湖北恩施土家族苗族自治州·高三开学考试)双曲线2222:1x y C a b -=(0a >,0b >)的左顶点为A ,右焦点为F ,过点A 的直线交双曲线C 于另一点B ,当BF AF ⊥时满足2AF BF >,则双曲线离心率e 的取值范围是( ) A .12e << B .312e <<C .322e << D .331e +<<【答案】B 【分析】设双曲线半焦距c ,再根据给定条件求出|BF |长,列出不等式即可得解. 【详解】设双曲线半焦距为c ,因BF AF ⊥,则由22221x c x ya b =⎧⎪⎨-=⎪⎩得2||||b y B a F ==,而AF a c =+, 于是得22b a c a +>⋅,即222c a a c a-+>⋅,整理得23a c >,从而有32c e a =<,又1e >,所以双曲线离心率e 的取值范围是312e <<. 故选:B例15.(2022·浙江·高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________. 【答案】364【分析】联立直线AB 和渐近线2:bl y x a=方程,可求出点B ,再根据||3||FB FA =可求得点A ,最后根据点A 在双曲线上,即可解出离心率.【详解】过F 且斜率为4ba 的直线:()4b AB y xc a =+,渐近线2:b l y x a=,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率36e 4=. 故答案为:364.例16.(2020·全国·高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y 2,则C 的离心率为_________. 【答案】3【分析】根据已知可得2ba=,结合双曲线中,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b -=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =,2213c be a a==+=.故答案为:3 1.在解析几何中,求“范围”问题,一般可从以下几个方面考虑:①与已知范围联系,通过求值域或解不等式来完成;②通过判别式Δ求解;③利用点在双曲线内部形成的不等关系求解;④利用解析式的结构特点,如a ,a ,|a |等非负性求解.2.求双曲线离心率的取值范围,关键是根据题目条件得到不等关系,并想办法转化为关于a ,b ,c 的不等关 系,结合c 2=a 2+b 2和ca =e 得到关于e 的不等式,然后求解.在建立不等式求e 时,经常用到的结论:双曲线上一点到相应焦点距离的最小值为c -a .双曲线的离心率常以双曲线的渐近线为载体进行命题,注意二者参数之间的转化.3.与双曲线离心率、渐近线有关问题的解题策略(1)双曲线的离心率e =c a是一个比值,故只需根据条件得到关于a ,b ,c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形成关于e 的关系式,并且需注意e >1.(2)双曲线()222210,0x y a b a b -=>>的渐近线是令22220x y a b-=,即得两渐近线方程x a ±y b =0.(3)渐近线的斜率也是一个比值,可类比离心率的求法解答.注意应用21c b e a a ⎛⎫==+ ⎪⎝⎭题型七:与双曲线有关的综合问题例17.(2022·江西·丰城九中高三开学考试(文))已知12,F F 分别为双曲线22:1412x y C -=的左、右焦点,E 为双曲线C 的右顶点.过2F 的直线与双曲线C 的右支交于,A B 两点(其中点A 在第一象限),设,M N 分别为1212,AF F BF F 的内心,则ME NE -的取值范围是( )A .4343,∞∞⎛⎫-⋃+ ⎪ ⎪⎝⎭⎝⎭ B .4343⎛ ⎝⎭C .3333⎛ ⎝⎭D .55⎛ ⎝⎭【答案】B【分析】由内心的性质,可知M ,N 的横坐标都是a ,得到MN ⊥x 轴,设直线AB 的倾斜角为θ,有22,22-∠=∠=EF M EF N πθθ,将ME NE -表示为θ的三角函数,结合正切函数的性质可求得范围.【详解】设1212,,AF AF F F 上的切点分别为H 、I 、J , 则1122||||,,===AH AI F H F J F J F I .由122AF AF a -=,得()()12||||2+-+=AH HF AI IF a , ∴122-=HF IF a ,即122-=JF JF a .设内心M 的横坐标为0x ,由JM x ⊥轴得点J 的横坐标也为0x ,则()()002c x c x a +--=, 得0x a =,则E 为直线JM 与x 轴的交点,即J 与E 重合. 同理可得12BF F △的内心在直线JM 上, 设直线AB 的领斜角为θ,则22,22-∠=∠=EF M EF N πθθ,||||()tan()tan22--=---ME NE c a c a πθθcos sin 2cos 222()()()sin tan sin cos 22⎛⎫ ⎪=-⋅-=-=-⎪ ⎪⎝⎭c a c a c a θθθθθθθ, 当2πθ=时,||||0ME NE -=; 当2πθ≠时,由题知,2,4,3===ba c a, 因为A ,B 两点在双曲线的右支上, ∴233ππθ<<,且2πθ≠,所以tan 3θ<-或tan 3θ>, ∴3133tan 3θ-<<且10tan θ≠, ∴44343||||,00,tan 33⎛⎫⎛⎫-=∈- ⎪ ⎪⎝⎭⎝⎭ME NE θ,综上所述,44343||||,tan 33⎛⎫-=∈- ⎪⎝⎭ME NE θ. 故选:B.例18.(2018·全国·高考真题(理))已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若OMN 为直角三角形,则|MN |=( ) A .32B .3C .3D .4【答案】B【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得33(3,3),(,)22M N -,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为33±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒, 可以得出直线MN 的方程为3(2)y x =-, 分别与两条渐近线33y x =和33y x =-联立, 求得33(3,3),(,)22M N -,所以2233(3)(3)322MN =-++=,故选B.例19.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______. 【答案】21+【分析】利用抛物线的性质,得到M 的坐标,再带入到双曲线方程中,即可求解. 【详解】由题意知: ,2,2pc p c -=-∴= ∴抛物线方程为:224,y px cx =-=-M 在抛物线上,所以(,2),M c c -M 在双曲线上,222241,c c a b ∴-=2224224,60c a c a c a b =-∴-+=2322e ∴=±,又()1,e ∈+∞,2 1.e ∴=+故答案为:21+例20.(2020·全国·高考真题(理))已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【分析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立2222222{1x cx y a b c b a =-==+,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223bc a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2. 故答案为:2.例21. (2022·全国·高考真题(理))若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =_________. 【答案】33【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离2211m d m==+,解得33m =或33m =-(舍去). 故答案为:33.例22. (2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>43F 且斜率为0k >的直线交C 的两支于,A B 两点.若||3||FA FB =,则k =________________. 【答案】33【分析】由题意设双曲线的方程为22223113x y a a -=,直线为1x y c k =-,即1433x y a k =-,联立方程,设()()1122,,,A x y B x y ,由||3||FA FB =,得123y y =,由根与系数的关系求解即可 【详解】因为22224316,33c a c a b a ==+=, 所以22313b a =,双曲线的方程为22223113x y a a -=,设过左焦点F 且斜率为0k >的直线为1x y c k =-,即1433x y a k =-, 与双曲线222231131433x y a a x y ak ⎧-=⎪⎪⎨⎪=-⎪⎩联立得2221310431693033y ay a k k ⎛⎫--+= ⎪⎝⎭, 设()()1122,,,A x y B x y ,则()()221212221043169,31333133ak a k y y y y k k +=⋅=--,因为||3||FA FB =, 所以123y y =,所以()()222222210431694,331333133ak a k y y k k ==--,消去2y 得()222221696433169163133a k a k k ⨯⨯⨯=-, 化简得2121133k =-,即213k =, 因为0k >, 所以33k =, 故答案为:33例23.(2022·广东·广州市真光中学高三开学考试)设1F ,2F 分别是双曲线2222:1(0,0)x ya b a bΓ-=>>的左、右两焦点,过点2F 的直线:0l x my t --=(,R m t ∈)与Γ的右支交于M ,N 两点,Γ过点(2,3)-,且它的7(1)求双曲线Γ的方程;(2)当121MF F F =时,求实数m 的值;(3)设点M 关于坐标原点O 的对称点为P ,当2212MF F N =时,求PMN 面积S 的值. 【答案】(1)2213y x -=; (2)1515m =±; (3)9354. 【分析】(1)根据点在双曲线上及两点距离列方程组求双曲线参数,即可得方程;(2)由点在直线上求得2t =,根据1F 到直线:20l x my --=与等腰三角形12F MF 底边2MF 上的高相等,列方程求参数m ;(3)设11(,)M x y ,22(,)N x y ,联立双曲线与直线方程,应用韦达定理得1221213m y y m +=-,122913y y m =--,由向量的数量关系可得2135m =,根据对称点、三角形面积公式1222OMN S S y y ==-求PMN 面积. (1)由Γ过点(2,3)-,且它的虚轴的端点与焦点的距离为7,所以()222224917a b b a b ⎧-=⎪⎨⎪++=⎩,即2213a b ⎧=⎨=⎩, 则所求的双曲线Γ的方程为2213y x -=. (2)因为直线:0l x my t --=过点2(2,0)F ,所以2t =,由121MF F F =得:等腰三角形12F MF 底边2MF 上的高的大小为22112()152MF MF --=, 又1F 到直线:20l x my --=的距离等于等腰三角形12F MF 底边上的高,则2202151m ---=+, 即2115m =,则1515m =±. (3)设11(,)M x y ,22(,)N x y ,由221320y x x my ⎧-=⎪⎨⎪--=⎩得:22(31)1290m y my -++=, 则1221213m y y m +=-,122913y y m=--,又2212MF F N =,即212y y =-, 则121213m y m -=-,2129213y m =-,即22122()13m m =-2913m-,则2135m =, 又M 关于坐标原点O 的对称点为P ,则2121212222()4OMN S S y y y y y y ==-=+-222221*********()4()1313134m m m m m +=--==---. 则所求的PMN 面积为9354. 【总结提升】 双曲线的综合问题常常涉及双曲线的离心率、渐近线、范围与性质,与圆、椭圆、抛物线、向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立联系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系求解.。

艺术生高考数学专题讲义考点43双曲线

艺术生高考数学专题讲义考点43双曲线

考点四十三双曲线知识梳理1.双曲线的观点把平面内到两定点 F1, F 2的距离之差的绝对值等于常数 (大于零且小于 |F1F2|)的点的会合叫作双曲线.定点 F1,F 2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距.用会合语言表示为:P= { M|||MF 1 |- |MF 2||= 2a} , |F1F 2|= 2c,此中 a, c为常数且 a>0 ,c>0.说明:定义中,到两定点的距离之差的绝对值小于两定点间距离特别重要.令平面内一点到两定点 F 1,F 2的距离的差的绝对值为2a(a 为常数 ),则只有当 2a<|F1F2|且 2a≠ 0 时,点的轨迹才是双曲线;若2a= |F 1F2|,则点的轨迹是以 F 1,F 2为端点的两条射线;若2a>|F1F2|,则点的轨迹不存在.2.双曲线的标准方程和几何性质x2y2y2x2标准方程a 2-b2=1a2-b2=1(a>0, b>0)(a>0, b>0)图形性范围对称性极点渐近线x≥ a 或 x≤- a, y∈R x∈R, y≤- a 或 y≥ a对称轴:坐标轴对称中心:原点A1(- a,0), A2(a,0)A1(0 ,- a), A2(0, a)b ay=± x y=± xa b质离心率实虚轴c22e=a, e∈ (1,+∞ ),此中 c= a + b线段 A1A2叫作双曲线的实轴,它的长 |A1A2|= 2a;线段 B1B2叫作双曲线的虚轴,它的长 |B1B2|= 2b;a 叫作双曲线的实半轴长,b叫作双曲线的虚半轴长a、 b、 cc2= a2+ b2(c>a>0, c>b>0)的关系说明:在双曲线的标准方程中,决定焦点地点的要素是x2或 y2的系数.若 x2系数为正,则焦点在 x 轴上,若 y2的系数为正,则焦点在y 轴上.3.双曲线与椭圆的差别(1) 定义表达式不一样:在椭圆中|PF 1|+ |PF 2|= 2a,而在双曲线中 ||PF 1|- |PF2 ||= 2a;(2) 离心率范围不一样:椭圆的离心率e ∈ (0, 1),而双曲线的离心率 e ∈ (1,+∞ ); (3) a , b , c 的关系不一样:在椭圆中 a 2=b 2+c 2,a > c ;而在双曲线中 c 2= a 2+ b 2, c >a .典例分析题型一 双曲线的定义和标准方程例 1 设双曲线 C 的两个焦点为 (- 2,0),( 2,0),一个极点是 (1,0),则 C 的方程为 ________. 答案 x 2- y 2= 1分析由题意可知,双曲线的焦点在x 轴上,且 c =2, a = 1,则 b 2= c 2- a 2= 1,所以双曲线 C 的方程为 x 2- y 2= 1.y 2 x 2 变式训练 与椭圆 C : 16+12=1 共焦点且过点 (1, 3)的双曲线的标准方程为 ________.答案y 2 - x 2= 12 2分析椭圆 y 2+ x 2= 1 的焦点坐标为 (0,- 2), (0,2),16 12223 -1= 1设双曲线的标准方程为y- x= 1(m>0, n>0),则 mn ,解得 m = n = 2.m nm + n = 422yx∴双曲线的标准方程为- =1.解题重点 求双曲线的标准方程的基本方法是定义法和待定系数法.在求解时, 注意巧设方程,能够减少议论以及计算的难度,一般来说:2222(1)x 2 y 2x 2 y 2与双曲线 a - b = 1 (a>0, b>0) 有共同渐近线的方程可表示为a -b = t (t ≠ 0) .2 2(2) 过已知两个点的双曲线方程可设为 x-y= 1 (mn>0),也可设为 Ax 2+ By 2= 1 (AB<0) ,这 m n 种形式在解题时更简易. 题型二双曲线的离心率22例 2 已知双曲线 x a 2- y3 = 1(a>0)的离心率为 2,则 a =________.答案 1分析由题, c = 2a. ∴ c 2= 4a 2,又 c 2= a 2+ 3,∴ 4a 2= a 2+ 3, a 2= 1,∵a>0,∴ a = 1.变式训练若双曲线 x 2 y 2=1 (a>0, b>0)的焦点到其渐近线的距离等于实轴长,则该双曲2- 2a b线的离心率为 ________.答案5分析22222由题意得 b =2a ,又 a + b = c ,∴ 5a = c .22 c∴e = a 2= 5,∴ e = 5. 解题重点1.注意双曲线中 a , b , c 的关系,在双曲线中c 2= a 2+ b 2, c >a .c 2 222ca + bb2. 注意离心率公式及其变式运用,e =aa 2 =a 2=1+a 2,e = c 2 2 = 1 2 .2bc - b1- c 2题型三双曲线的渐近线y 22例 3 设双曲线 C 经过点 (2, 2),且与 4 - x = 1 拥有同样渐近线,则 C 的方程为 ________; 渐近线方程为 ________.22答案x- y=1y = ±2x3 12分析设双曲线 C 的方程为y 2-x2=λ,将点 (2, 2)代入上式,得 λ=- 3,422∴C 的方程为 x - y=1,其渐近线方程为 y = ±2x.3 12已知双曲线 C :x22变式训练- y = 1 的离心率为 3,则 C 的渐近线方程为 ________.n 4- n答案y = ± 2x22=1x 轴上,∴n + 4- n= 3,分析由双曲线的方程 x - y知,双曲线的焦点在=( 3)2n4- nn∴n = 4,∴ a 2=4, b 2= 4-4= 8,进而双曲线的渐近线方程是 y =± 2x.3 3 3 32 222解题重点 1.已知双曲线方程 x2 y 2x2y 2a -b = 1,求渐近线时可直接将 1 换为 0,解方程 a - b = 0求出渐近线.2.双曲线的离心率与渐近线方程之间有着亲密的联系,两者之间能够互求.已知渐近线方程bc22 2 b 22a + b时,可得 a 的值,于是 e = a 2=a 2 = 1+ a ,所以可求出离心率e 的值;而已知离心率的值,也可求出渐近线的方程,即b= e 2- 1.但要注意,当双曲线的焦点所在的坐标轴不确a准时,上述两类问题都有两个解.当堂练习1.( 2015 广东理)已知双曲线x2y25,且其右焦点为 F 2(5,0),则双曲C:2- 2=1的离心率e=a b4线 C 的方程为 ________.x2y2答案16-9=1分析由于所求双曲线的右焦点为 F 2(5,0)且离心率为 e=c=5,所以 c= 5,a= 4, b2= c2-a4a2= 9,所以所求双曲线方程为x2- y2=1.1692.( 2015 安徽文)以下双曲线中,渐近线方程为y=±2x 的是 ________.①x2-y2222=1 ②x- y2= 1③ x2-y= 1 ④x- y2= 1 4422答案①2由双曲线渐近线方程的求法知;双曲线x2-y=1的渐近线方程为y=±2x,应选① .4x2y23. ( 2015 福建理)若双曲线 E:9-16=1 的左、右焦点分别为F1, F2,点 P 在双曲线 E 上,且 |PF1 |= 3,则 |PF 2|等于 ________.答案9分析由双曲线定义 ||PF 2|- |PF 1||= 2a,∵ |PF1|=3,∴ P 在左支上,∵ a= 3,∴ |PF 2|- |PF1|=6,∴ |PF2|= 9.x2y24.( 2015 山东文)过双曲线C:a2-b2= 1(a>0, b>0) 的右焦点作一条与其渐近线平行的直线,交 C 于点 P.若点 P 的横坐标为2a,则 C 的离心率为 ________.答案2+ 3分析把 x=2a 代入x2y2= 1;得 y=± 3b. 2- 2a b不如取 P(2a,- 3b).又∵双曲线右焦点F2的坐标为 (c,0),3b3b b∴kF 2P=.由题意,得= .c- 2a c-2a ac∴(2+3)a=c.∴双曲线 C 的离心率为 e=a= 2+ 3.2y25.( 2015 北京文)已知(2,0)是双曲线x -b2=1(b>0)的一个焦点,则b= ________.答案3分析由题意: c = 2, a = 1,由 c 2= a 2+ b 2.得 b 2= 4- 1= 3,所以 b = 3.课后作业一、 填空题2 21. ( 2015 天津文)已知双曲线 x y= 1(a > 0, b > 0 )的一个焦点为 F(2,0),且双曲线的 a 2- b 2 渐近线与圆 (x -2) 2+ y 2= 3 相切,则双曲线的方程为 ________.22y答案x -= 1x 2 y 22.( 2015 湖南文)若双曲线 a 2-b 2= 1的一条渐近线经过点 (3,- 4),则此双曲线的离心率为________.答案53分析由条件知 y =- b x 过点 (3,- 4) ,∴3b= 4,aa即 3b = 4a ,∴ 9b222 22225 = 16a,∴ 9c - 9a= 16a ,∴ 25a= 9c,∴ e = .33.( 2015 新课标 II 理)已知 A ,B 为双曲线 E 的左,右极点,点 M 在 E 上,△ ABM 为等腰三角形,且顶角为 120°,则 E 的离心率为 ________.答案 2分析如图,设双曲线 E 的方程为x 2 y 2 2- 2 = 1(a > 0,b >0),则 |AB|= 2a ,由双曲线的对称性,ab可设点 M(x 1, y 1)在第一象限内,过M 作 MN ⊥ x 轴于点 N(x 1,0),∵△ ABM 为等腰三角形,且∠ ABM = 120°,∴ |BM|= |AB|= 2a ,∠ MBN = 60°,∴ y 1=|MN|= |BM |sin ∠ MBN =2asin 60 =° 3a ,x 1= |OB|+ |BN|= a + 2acos 60 °= 2a.将点 M (x 1,222= b 2,∴ e = c=2+b 2x 2 y 2a 2y 1)的坐标代入 a - b = 1,可得 a aa = 2.4.已知中心在原点的双曲线 C 的右焦点为 F(3,0),离心率等于 3,则 C 的方程是 ________.2答案x 2 - y 2= 14 5分析由曲线 C 的右焦点为F(3,0),知 c = 3.由离心率 e = 3,知 c = 3,则 a = 2,2a 22 2故 b 2= c 2- a 2= 9- 4=5,所以双曲线C 的方程为x- y= 1.4 5x 2 y 255.已知双曲线 C :a 2- b 2= 1(a > 0, b > 0)的离心率为2 ,则 C 的渐近线方程为 ________.答案 1y = ± x2分析c5 2c 2 a 2+ b 2 522b 1 b 1 ∵ e = =2,∴ e = 2=2 =.∴ a =4b ,a = .∴渐近线方程为y = ± x = ± x.aaa42a2x 226.( 2015 新课标Ⅰ理)已知 M( x 0,y 0 )是双曲线 C : 2 - y = 1 上的一点, F 1,F 2 是 C 的两个 → →焦点,若 MF 1·MF 2<0 ,则 y 0 的取值范围是 ________.答案-3,333分析 由双曲线方程可求出 F 1,F 2 的坐标,再求出向量→→MF 1,MF 2,而后利用向量的数目积公式求解.由题意知 a = 2, b = 1, c = 3,∴ F 1(- 3, 0), F 2( 3, 0),→→∴MF 1= (- 3- x 0 ,- y 0) ,MF 2= ( 3- x 0,- y 0) .→ → 2∵MF 1·MF 2<0,∴ (- 3- x 0)( 3- x 0)+ y 0<0,即 x 20- 3+ y 20<0.2x 0222∵点 M(x 0,y 0)在双曲线上,∴- y 0= 1,即 x 0 =2+ 2y 0,2 23 3∴2+ 2y 0- 3+ y 0<0 ,∴- 3 <y 0< 3 .2 2x yA 1,7.( 2015 重庆文)设双曲线 a 2-b 2= 1(a > 0, b >0) 的右焦点是 F ,左、右极点分别是A 2,过 F 作 A 1A 2 的垂线与双曲线交于B ,C 两点,若 A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为 ________.答案±1x 2 y 2b 2分析双曲线 a 2- b 2= 1 的右焦点 F(c,0),左、右极点分别为 A 1(- a,0),A 2( a,0) ,易求 B c , a ,22c ,- b 2b bC ,则 kA 2a , kA 1a,又 A 12aC =B =B 与 AC 垂直,a - ca + cb 2 b 2则有 kA 1B ·kA 2C =- 1,即 a · a=- 1,a + c a - cb 4∴ a 2 2 2b= 1,∴ a = b ,即 a = b ,∴渐近线斜率 k = ± = ±1.c 2- a 2a1 8.( 2015 新课标 II 文)已知双曲线过点(4 , 3),且渐近线方程为 y = ± x ,则该双曲线的标2准方程为 ________.x 22答案4 - y = 112分析由双曲线渐近线方程为x2y = ± x ,可设该双曲线的标准方程为4 - y = λ(λ≠0),已知该2422x 22双曲线过点 (4, 3),所以 4 - ( 3) = λ,即 λ= 1,故所求双曲线的标准方程为 4 - y = 1.29. ( 2015 天津文)双曲线x- y 2= 1 的焦距是 ______,渐近线方程是 ________________ .2答案2 3y = ± 2x2分析2222 3,渐近线方程为2由双曲线方程得 a = 2, b = 1,∴ c= 3,∴焦距为y =±x.2x 2 y 210.( 2015 湖南理)设 F 是双曲线 C :a 2- b 2= 1 的一个焦点,若 C 上存在点 P ,使线段 PF的中点恰为其虚轴的一个端点,则 C 的离心率为 ________.答案5222分析不如设 F(c,0),则由条件知P(- c , ±2b) ,代入 x2- y 2= 1 得 c2= 5,∴ e = 5.abaF 是双曲线 C : x 2-y211.(2015 新课标Ⅰ文)已知 = 1 的右焦点, P 是 C 的左支上一点,8A(0,6 6) .当△ APF 周长最小时,该三角形的面积为 ________.答案 12 6分析设左焦点为 F 1, |PF|- |PF 1|= 2a =2,∴ |PF|=2+ |PF 1|,△ APF 的周长为 |AF|+ |AP|+ |PF|= |AF|+ |AP|+ 2+ |PF 1|,△ APF 周长最小即为 |AP|+ |PF 1|最小,当 A 、 P 、 F 1 在一条直线时最小,过AF 1 的直线方程为x + y = 1.- 3 6 6与 x 2-y 2= 1 联立,解得 P 点坐标为 (-2,26),此时 S = S AF FS FPF =12 6.811二、解答题x 2y 22212.已知椭圆 D :50+ 25=1 与圆 M : x + (y - 5) = 9,双曲线 G 与椭圆 D 有同样焦点,它 的两条渐进线恰巧与圆M 相切,求双曲线G 的方程.分析 椭圆 D 的两个焦点为 F 1(- 5,0), F 2 (5,0),∴双曲线中心在原点,焦点在x 轴上,且 c=5.22设双曲线 G 的方程为x2y2a -b = 1(a > 0, b > 0),∴渐近线方程为 bx ±ay = 0 且 a 2 + b 2= 25, 又圆心 M(0,5)到两条渐近线的距离为r =3.|5a|∴b 2+ a2=3,得a =3,b =4,22∴双曲线 G 的方程为 x- y=1.9 1613.已知双曲线对于两坐标轴对称,且与圆x 2+ y 2= 10 订交于点 P(3,- 1),若此圆过点 P的切线与双曲线的一条渐近线平行,求此双曲线的方程.分析 切点为 P(3,- 1) 的圆 x 2+ y 2= 10 的切线方程是 3x - y = 10. ∵双曲线的一条渐近线与此切线平行,且双曲线对于两坐标轴对称, ∴两渐近线方程为 3x ±y = 0.设所求双曲线方程为 9x 2- y 2= λ(λ≠ 0).∵点 P(3,- 1)在双曲线上,代入上式可得λ= 80,x 2 y 2∴所求的双曲线方程为80-80=1.9。

高考双曲线椭圆知识点

高考双曲线椭圆知识点

高考双曲线椭圆知识点高考是每个中国学生都必须面对的一场考试,而数学是高考中最为重要的一门科目之一。

在数学中,双曲线和椭圆是高考中重要的知识点。

本文将从双曲线和椭圆的定义、性质以及应用方面进行探讨。

首先,我们先来了解一下双曲线的基本概念。

双曲线是一类曲线,它在平面上可以被定义为满足一定条件的点的集合。

在笛卡尔坐标系中,双曲线的方程可以写为Ax^2 + By^2 = C,其中A、B、C为常数,A和B不能同时为0。

双曲线有两支,分别位于x轴的两侧,并且曲线与x轴的交点称为双曲线的顶点。

双曲线具有一些重要的性质。

首先,双曲线与x轴和y轴的关系是不对称的,也就是说,如果一点(x, y)在双曲线上,那么它的对称点(-x, y)也在双曲线上。

其次,双曲线的两支在无穷远处趋于与x轴平行的直线,这个直线称为双曲线的渐近线。

另外,双曲线还具备焦点和准线的概念。

焦点是双曲线上的一个特殊点,具有一定的几何性质,而准线是与双曲线有特殊关系的一条直线。

接下来,让我们转移到椭圆的知识点。

椭圆是平面上一类特殊的曲线,它的定义与双曲线有所不同。

在笛卡尔坐标系中,椭圆的方程为(x/a)^2 + (y/b)^2 = 1,其中a和b分别为椭圆的长轴和短轴。

椭圆的形状由长轴和短轴的长度所决定,当长轴的长度大于短轴的长度时,椭圆看起来更加扁平,反之则更加延长。

和双曲线一样,椭圆也具备一些重要的性质。

首先,椭圆与x轴和y轴对称,也就是说,如果一点(x, y)在椭圆上,那么它的对称点(-x, y)、(x, -y)、(-x, -y)也都在椭圆上。

其次,椭圆有两个焦点,它们与椭圆上的任意一点的距离之和是一个常数。

此外,椭圆的长轴和短轴的长度也决定了椭圆的离心率,离心率为0时,椭圆退化为一个圆。

不仅如此,双曲线和椭圆在现实生活中也有一些应用。

例如,在物理学中,双曲线和椭圆可以用来描述行星的轨道和天体的弹道。

此外,在工程中,双曲线和椭圆也常常用来设计桥梁和道路的曲线。

高中数学高考总复习---双曲线及其性质知识讲解及考点梳理

高中数学高考总复习---双曲线及其性质知识讲解及考点梳理


(4)渐近线:
.
考点四、有关双曲线的渐近线的问题 (1)已知双曲线方程求渐近线方程:
若双曲线方程为
渐近线方程
(2)已知渐近线方程求双曲线方程:
若渐近线方程为
双曲线可设为
2
(3)若双曲线与 ,焦点在 y 轴上)
(4)特别地当
有公共渐近线,可设为

,焦点在 轴上,
离心率
两渐近线互相垂直,分别为
,此时双曲线为
【解析】依题意设双曲线方程为
由已知得 又双曲线过点
, ,∴

3
故所求双曲线的方程为
.
【总结升华】先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程, 再利用待定系数法确定 、 .
举一反三: 【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.
(1)一渐近线方程为
,且双曲线过点
.
(2)虚轴长与实轴长的比为 【解析】
,焦距为 10.
(1)依题意知双曲线两渐近线的方程是
,故设双曲线方程为

∵点
在双曲线上,

,解得

∴所求双曲线方程为
.
(2)由已知设 依题意
,
,则
,解得 .
()
∴双曲线方程为

.
类型二:双曲线的焦点三角形
例 2.中心在原点,焦点在 x 轴上的一个椭圆与双曲线有共同焦点 和 ,且

当 的系数为正时,焦点在 轴上,双曲线的焦点坐标为

.
考点三、双曲线的简单几何性质
双曲线
的简单几何性质
(1)范围:
(2)焦点
,顶点

高考数学双曲线知识点

高考数学双曲线知识点

高考数学双曲线知识点高考是每一个学生都要经历的一道重要关卡,而其中的数学科目又是让很多学生头疼的一门必修课。

数学考试中最常见的几何图形之一便是双曲线,它是一种非常重要的知识点,而且在现实生活中也有着广泛的应用。

在本文中,我们将详细探讨高考数学中的双曲线知识点。

首先,我们来了解一下双曲线的定义。

双曲线是一种具有两个分离的曲线分支的平面曲线。

与椭圆和抛物线相比,它们的特点是曲线分支无限延伸,并且与对称轴有一个焦点和一个顶点。

数学上,我们通常以坐标轴和方程的形式描述和表示双曲线。

双曲线的标准方程有两种形式:水平方程与垂直方程。

水平方程的一般形式为(x-h)^2/a^2-(y-k)^2/b^2=1,其中(h,k)为顶点坐标,a为横轴长度的一半,b为纵轴长度的一半。

垂直方程的一般形式为(y-k)^2/a^2-(x-h)^2/b^2=1,其中(h,k)为顶点坐标,a为纵轴长度的一半,b为横轴长度的一半。

我们可以通过这两种方程形式来确定双曲线的位置和形状。

另外,双曲线还有几个重要的性质和特点。

首先,双曲线的中心是指曲线对称的中心点,它位于双曲线两个分支的交点处。

其次,双曲线的对称轴是指通过中心点的一条直线,它将双曲线分为两个对称的部分。

双曲线的焦点是指双曲线上离中心最近的点,焦距是指从中心到焦点的距离。

焦点和焦距是双曲线与椭圆和抛物线的重要区别之一。

最后,双曲线还有一个重要的性质是渐近线。

渐近线是指曲线在趋于无穷远时的趋势线,双曲线有两条渐近线,分别与双曲线的两个分支趋于平行。

在高考数学中,我们需要掌握双曲线的图像特点、方程的转化和曲线的性质运用等方面的知识。

同时,还需要能够应用双曲线解决实际问题。

举一个简单的例子,假设有一座桥,桥下为限高,而桥上的双曲线形状的拱桥正好能容纳卡车通过。

那么,我们就可以利用双曲线的性质,通过求解方程来确定双曲线的参数,从而确定桥下的限高。

双曲线作为数学中的一种几何图形,不仅在高考中经常出现,而且在现实生活中也有着广泛的应用。

高三数学双曲线知识精讲

高三数学双曲线知识精讲

高三数学第一轮复习:双曲线苏教版(文)【本讲教育信息】一、教学内容:双曲线高考要求:掌握双曲线的定义、标准方程和双曲线的简单几何性质。

二、知识要点1、双曲线的两种定义(1)平面内与两定点F 1,F 2的 常数(小于 )的点的轨迹叫做双曲线.注:①当2a =|F 1F 2|时,p 点的轨迹是 . ②2a >|F 1F 2|时,p 点轨迹不存在.(2)平面内动点P 到一个定点F 和一条定直线l (F 不在l 上)的距离的比是常数e ,当∈e 时动点P 的轨迹是双曲线.设P 到1F 的对应准线的距离为1d ,到2F 对应的准线的距离为2d ,则e d PF d PF 2211==2、双曲线的标准方程(1)标准方程:1b y a x 2222=-,焦点在 轴上;1bx a y 2222=-,焦点在 轴上.其中:a 0,b 0,=2a .(2)双曲线的标准方程的统一形式:)0nm (1ny mx 22<=+3、双曲线的几何性质(对0b ,0a ,1by a x 22>>=-进行讨论)(1)范围:∈x ,∈y .(2)对称性:对称轴方程为 ;对称中心为 .(3)顶点坐标为 ,焦点坐标为 ,实轴长为 ,虚轴长为 ,准线方程为 ,渐近线方程为 .(4)离心率e = ,且∈e ,e 越大,双曲线开口越 ,e 越小,双曲线开口越 ,焦准距P = .(5)焦半径公式,设F 1,F 2分别是双曲线的左、右焦点,若)y ,x (P 00是双曲线右支上任意一点,=1PF ,=2PF ,若)y ,x (P 00是双曲线左支上任意一点,=1PF ,=2PF .(6)具有相同渐近线x ab y ±=的双曲线系方程为(7) 的双曲线叫等轴双曲线,等轴双曲线的渐近线为 ,离心率为 .(8)1by a x 2222=-的共轭双曲线方程为 .【典型例题】例1、根据下列条件,写出双曲线的标准方程 (1)中心在原点,一个顶点是(0,6),且离心率是1.5. (2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2). (3)已知双曲线的渐近线方程为032=±yx ,且过点(2,-6),求双曲线的方程;(4)已知双曲线的右准线为x =4,右焦点为F (10,0),离心率为e =2,求双曲线的方程.解:(1)∵顶点为(0,6),设所求双曲线方程为1bx a y 2222=- ∴6=a又∵5.1=e ∴95.1b e a c =⨯=⨯=故所求的双曲线方程为145x 36y 22=- (2)令与双曲线x 2-2y 2=2有公共渐近线的双曲线为x 2-2y 2=k ∵ 双曲线过M (2,-2) ∴ 4-2×4=k 得k =-4∴ x 2-2y 2=-4即14x 2y 22=- (3)设2222,3,1492712x y y x λλ-=∴=-∴-=(42223(2)16x y =∴-+=例2、ABC ∆中,固定底边BC ,让顶点A 移动,已知4BC =,且A sin 21B sinC sin =-,求顶点A 的轨迹方程.答案:221(0)3y x x -=>例3、可以证明函数x bax y +=(b ≠0)的图象是双曲线,试问双曲线C :x 33x y +=的离心率e 等于 .答案:332(提示:22x 3)3x )(3x (x 331y -+=-=')解:列表如下:根据上表,可作出x33x y +=的草图如下:渐近线有两条,一条为y 轴,另一条可设为y =kx .由渐近线的意义知:设P (x ,y )为双曲线x33x y +=上任一点,则点P 到渐近线y =kx 的距离为 d =1k x33x kx 2++-=1k x3x )31k (2++-显然:01k x3x )31k (limd lim 2x x =+--=∞→∞→∴3331k ==即33a b =故双曲线的离心率332311)a b (1ab a ace 2222=+=+=+==.例4、直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B . (1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.解:(1)将y =kx +1代入2x 2-y 2=1后并整理得:(k 2-2)x 2+2kx +2=0 ①依题意有:⎪⎪⎪⎩⎪⎪⎪⎨⎧>->-->--=∆≠-02k 202k k 20)2k (8)k 2(02k 22222⇒-2<k <-2(2)设A (x 1,y 1),B (x 2,y 2),则由①得:x 1+x 2=2k 2k2-,x 1x 2=2k 22- ② 假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c ,0),则FA ⊥FB ,因此⋅=0即(x 1-c )(x 2-c )+y 1y 2=0 又y 1=kx 1+1,y 2=kx 2+1 ∴(k 2+1)x 1x 2+(k -c )(x 1+x 2)+c 2+1=0 ③把②及c =26代入③得:5k 2+62k -6=0解得:k =-566+∈(-2,-2) 或k =566-∉(-2,-2)(舍去) 因此当k =-566+时,符合题给要求.例5、在双曲线112y 13x 22-=-的一支上有不同的三点A (x 1,y 1),B (x 2,6),C (x 3,y 3)与焦点F (0,5)的距离成等差数列.(1)求y 1+y 3;(2)求证:线段AC 的垂直平分线经过某一定点,并求出这个定点的坐标.解:(1)依题意,A 、B 、C 均在双曲线的上支,则|AF|=ey 1-32, |BF|=6e -32, |CF|=ey 3-32∵|AF|,|BF|,|CF|成AP∴6e -32=232ey 32ey 31-+- 即y 1+y 3=12(2)∵A 、C 在双曲线上∴113x 12y 2121=-,113x 12y 2323=- 两式相减得:13x x )y y (13)x x (12x x y y 3131313131+=++=-- 于是AC 的垂直平分线方程为: y -6=-)2x x x (x x 133131+-+ 即y =-31x x 13+x +225故直线恒过定点(0,225)例6、一双曲线以y 轴为其右准线,它的右支过点M (1,2), 且它的虚半轴、实半轴、半焦距长依次构成一等差数列试求:(1)双曲线的离心率;(2)双曲线的右焦点F 的轨迹方程;(3)过点M ,F 的弦的另一端点Q 的轨迹方程 解:(1)依题意,2a=b+c , ∴b 2=(2a -c )2 = c 2-a 2, 5a 2-4ac=0,两边同除以a 2,得54e =; (2)设双曲线的右焦点F (x ,y ), 由双曲线的定义,点M 到右焦点的距离与点M 到准线的距离之比为e=45, ∴1)2y ()1x (22--+-=45, ∴F 的轨迹方程为(x -1)2+(y -2)2=1625 (3)设Q (x ,y ), 点Q 到右焦点的距离与点Q 到准线的距离之比为5/4, ∴|QF|=4x5, 又设点F (x 1,y 1), 则点F 分线段QA 的比为FM QF =4x 5:45= x , ∴x 1=x11x x +⨯+=x 1x 2+ , y 1=x 12x y +⨯+=x 1y x 2++ ,代入(x 1-1)2+(y 1-2)2=1625整理得:点Q 的轨迹方程为 9x 2-16y 2+82x+64y -55=0例7、若1F 、2F 为双曲线)0b ,0a (1b y a x 2222>>=-的左右焦点,O 为坐标原点,P 在双曲线左支,M 在右准线上,且满足OF 2=,)0|OM |(11>=λλ(1)求双曲线离心率;(2)若双曲线过点N (2,3),它的虚轴端点为1B ,2B (1B 在y 轴正半轴上)过2B作直线l 与双曲线交于A 、B 两点,当A B 1⊥B B 1时,求直线l 的方程。

高考数学复习考点知识讲解课件47 双曲线

高考数学复习考点知识讲解课件47 双曲线

解法二:当其中的一条渐近线方程y= 3 x中的x=2时,y=2 3 >3,又点(2,3)在第一
象限,所以双曲线的焦点在x轴上,设双曲线的标准方程是
x2 a2

y2 b2
=1(a>0,b>0),由题意
得aba42=-b932=,1,
解得ab= =1,3, 所以该双曲线的标准方程为x2-y32=1,故选C.
解法三:因为双曲线的渐近线方程为y=±
3 x,即
y 3
=±x,所以可设双曲线的方程
是x2-y32=λ(λ≠0),将点(2,3)代入,得λ=1,所以该双曲线的标准方程为x2-y32=1,故选
C.
— 22 —
(新教材) 高三总复习•数学
— 返回 —
3.经过点P(3,2 7),Q(-6 2,7)的双曲线的标准方程为______2_y5_2 -__7_x5_2 =__1___.
(2)与双曲线ax22-by22=1有相同渐近线时可设所求双曲线方程为ax22-by22=λ(λ≠0).
— 24 —
(新教材) 高三总复习•数学
— 返回 —
考点三 双曲线的简单几何性质——多维探究
角度1:双曲线的渐近线问题
【例2】
(1)(2022·杭州模拟)设F1,F2是双曲线C:
x2 a2

y2 b2
=1(a>0,b>0)的左、右焦
点,P是双曲线C右支上一点,若|PF1|+|PF2|=4a,且∠F1PF2=60°,则双曲线C的渐近
线方程是( C )
A. 3x±y=0 B.2x± 7y=0
C. 3x±2y=0 D.2x± 3y=0
(2)焦点在x轴上,焦距为10,且与双曲线y42-x2=1有相同渐近线的双曲线的标准方程

高考数学一轮总复习第九章平面解析几何第六节双曲线课件

高考数学一轮总复习第九章平面解析几何第六节双曲线课件

cm,则|AD|=(
A.12 10 cm
B.6 38 cm
C.38 cm
D.6 37 cm
)
答案 (1)B
(2)D
解析(1)由题可知 a2=3-m,b2=m,所以 c= 3.
1
因为|OP|=2|F1F2|,所以
PF1⊥PF2.
又∠PF1F2=30°,所以|PF1|=3,|PF2|= 3,
所以由双曲线的定义可知|PF1|-|PF2|=3- 3=2 3-,解得
3 3
m= 2 .故选
B.
(2)以双曲线的对称中心为坐标原点,建立平面直角坐标系xOy,如图所示.
因为双曲线的离心率为2,
2
所以可设双曲线的方程为 2

依题意可得 2a=30,则

2
=1(a>0).
2
3
2
a=15,即双曲线的方程为152
因为|AB|=36 cm,所以 A 的纵坐标为 18.
1 2
)
2.(多选)已知双曲线
2
C:12

A.实轴长是虚轴长的 2 倍
B.焦距为 8
C.离心率为 3
D.渐近线方程为 x± 3y=0
2
=1,下列对双曲线
4
C 的判断正确的是(
)
答案 BD
解析 由双曲线
2
C:12

2
=1,可得
4
a2=12,b2=4,则 c2=a2+b2=16,
所以 a=2 3,b=2,c=4.所以选项 A 不正确,选项 B 正确;
当2a>|F1F2|时,动点的轨迹不存在;
当2a=0时,动点的轨迹是线段F1F2的中垂线.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线的定义与性

要求层次
重难点
双曲线的定义及标准方
程 A 由定义和性质求双曲线的方程;由双曲线的标准方程探求几何性质
双曲线的简单几何性质
A
直线与双曲线的位置关系
要求层次
重难点
双曲线的定义与性

A 判别式和韦达定理的应用;直线与双曲线相交截得的弦长
直线与双曲线的位置关系
A
(一) 知识内容
1.双曲线的定义:平面内与两个定点1F ,2F 的距离的差的绝对值等于常数(小
于12||F F 且不等于零)的点的轨迹叫做双曲线.
这两个定点叫做双曲线的焦点.两焦点的距离叫做双曲线的焦距. 2.双曲线的标准方程:
①22
221(00)x y a b a b -=>>,,焦点坐标为(0)c -,
,(0)c ,,222c a b =+; ②22
221(00)y x a b a b -=>>,,焦点坐标为1(0)F c -,
,2(0)F c ,,222c a b =+; 3.双曲线的几何性质(用标准方程22
221(00)x y a b a b
-=>>,来研究)
: 知识内容
高考要求
模块框架
双曲线.知识框架
⑴范围:x a ≥或x a -≤;如图.
⑵对称性:以x 轴、y 轴为对称轴,以坐标原点为对称中心,这个对称中心又叫做双曲线的中心.
⑶顶点:双曲线与它的对称轴的两个交点叫做双曲线的顶点. ⑷实轴与虚轴:
两个顶点间的线段叫做双曲线的实轴.如图中,1A ,2A 为顶点,线段12A A 为双曲线的实轴. 在y 轴上作点1(0)B b -,,2(0)B b ,,线段12B B 叫做双曲线的虚轴.
⑸渐近线:直线b
y x a =±;
⑹离心率:c
e a
=叫做双曲线的离心率,1e >.
双曲线的离心率越大,它的开口就越开阔.
B 1
x=-a
x=a
P M
A 1
A 2
B 2
F 2
F 1O y x
<教师备案>1.渐近线的理解:
过双曲线上的一点()M x y ,(考虑对称性,不妨设M 是第一象限内的点)
作平行于y 轴的直线,设它与直线b
y x a
=相交于点P ,(见上页图)
则2
2||b b PM x x a a a =-2222()b x x a a x x a
=-=
+- 当x a >时,22x x a -随着x 的增大而增大,从而||PM 越来越接近于0.
这说明,当点M 以双曲线C 的顶点2A 开始在第一象限沿此双曲线移动并越来越远离点2A 时,点M 和直线b
y x a
=就越来越接近,而且
22b b x x a a a >-故双曲线始终在直线的下方,且与直线越来越接近,不会相交.
其它象限内的情况与此类似. 2.双曲线的开口大小:
渐近线的斜率的绝对值2221b c a e a -=-e 越大,b
a
也越大,双曲线的形状就从扁狭逐渐变得开阔.
3.画双曲线的草图时,一般都是先画出以2,2a b 为边长的矩形,它的对角线
恰为双曲线的渐近线,且双曲线的顶点在此矩形上,故可由此作出双曲线的较好的草图.
4.求双曲线的渐近线方程有一个比较容易的办法是直接令右边的常数为零,
方程所表示的两条直线就是所求的渐近线方程.对于双曲线22
221y x a b
-=,
它的渐近线方程即为22220y x a b -=,即直线a
y x b
=±.。

相关文档
最新文档