子集与推出关系

合集下载

1.6 子集与推出关系

1.6 子集与推出关系


即 A B 与 等价。
总结
1、集合间具有包含关系的充要条件是这些集合的 性质具有推出关系。
2、设具有性质p的对象组成集合A,具有性质q的对象 组成集合B,则: (1)若A B,则p是q的充分条件。
(2)若A B,则p是q的充分不必要条件。
(3)若A B,则p是q的必要条件。 (4)若A B,则p是q的必要不充分条件。 (5)若A = B,则p、q互为充要条件。
反之, A B则若 x A( x 5) 可以推得 x B( x 3)
即x>5可以推出x>3
二、建立子集与推出关系的联系
设A={a|a具有性质
},B={b|b具有性质 }
等价
则 A B 与
证明:(1)充分性 即证 ( A B) ( ) 如果x具有性质 ,那么 x A ,而 A B, x B 则x 具有性质 ,即 (2) 必要性 即证 ( ) ( A B) 若 x A ,则x具有性质 X具有性质 x B A B

三、例题与应用
1、用子集与推出关系说明 是 的什么条件:
(1) : x 1; : x 1
2
( 2)
: 正整数n被5整除, : 正整数n的个位数是5
2、设
: 1 x 3, : m 1 x 2m 4, m R
是 的充分条件,求m的取值范围。

四、学生练习
• P24 练习1.6
五、巩固提高
1、已知 P : x 2 或 x 10 , q : x 1 m 或 x 1 m 若非p是非q的必要非充分条件,求实数m的取值范围。

《子集与推出关系》课件

《子集与推出关系》课件

子集与推出关系的联系
子集是推出关系的一种特殊形式
子集是集合之间的包含关系,而推出关系是逻辑推理的一种形式,其中前提集 合的子集决定了结论的真假。
子集关系有助于理解推出关系
了解子集的概念和性质有助于深入理解推出关系的逻辑结构和推理规则。
子集与推出关系的区别
定义范围不同
子集是集合之间的包含关系,而推出关系是逻辑推理的形式。
推出关系在逻辑推理中的应用
推出关系的定义
01
如果从一组命题中,可以推断出另一个命题,则称该组命题是
前者的推出关系。
推出关系的性质
02
推出关系具有传递性、反身性和对称性。
推出关系在逻辑推理中的作用
03
推出关系是逻辑推理中的基本关系,可以用于进行推理、演绎
和归纳等逻辑推理过程。
04
子集与推出关系的联系与 区别
《子集与推出关系》ppt课件
目 录
• 子集的定义与性质 • 推出关系的定义与性质 • 子集与推出关系的应用 • 子集与推出关系的联系与区别
01
子集的定义与性质
子集的定义
子集的定义
如果集合A中的每一个元素都是集合B 中的元素,则称集合A是集合B的子集 。
符号表示
空集与任何集合的关系
空集是任何集合的子集,即∀B,空集 ⊆ B。
推出关系可以用来描 述因果关系、条件关 系等。
在数学中,推出关系 通常用箭头(→)表 示,例如A→B。
推出关系的性质
传递性
如果A→B且B→C,则A→C。
反身性
对于任何命题A,A→A总是成立。
反对称性
如果A→B且B→A,则A=B。
推出关系的表示方法
01
02

1.6子集与推出关系

1.6子集与推出关系

1.6子集与推出关系(导学案)组卷:姜汉明 审卷:周海英上课日期:________年____月____日; 班级_______学号____姓名__________ 学习目标:1、理解集合的包含关系与推出关系的等价性,并掌握用集合间的包含关系进行推理的方法;2、逐步形成逻辑思维能力及等价转化思想,了解集合知识的广泛应用性; 学习重点:集合间的包含关系与推出关系的理解与运用学习难点:子集与推出关系等价性学习过程:一、新知导学:1. 回顾:一般地,用α、β分别表示两件事,(1).如果α这件事成立,可以推出β这件事也成立,即α_____β,那么α叫做β的_____条件(2)如果β_____α,那么α叫做β的_____条件。

(3)如果既有α⇒β,又有β⇒α,就记作:α_____β,那么α叫做β的_____条件。

2.引例:用“⊆”,“⊇”,“⇒”,“⇐”填空:(1){x x 是奉贤人}________{x x 是上海人} 我是奉贤人 ________ 我是上海人(2)x>5 ________ x>3 {x|x>5} ________ {x|x>3}(3){x|x 2=1}_______{x|x=1} x 2=1 _______ x=13.问题思考从上述引例中,子集与推出关系有怎样的联系?规律:将符合具有性质α的元素的集合记为A ,将符合具有性质β元素的集合记为B ,若A ⊆B ,则α⇒β;反之,若α⇒β,则A ⊆B 。

4。

概念:(1)定义:子集与推出关系是指集合的包含关系与集合性质的推出关系。

设A 、B 是非空集合,A={}α具有性质a a , {}β具有性质b b B =,则βα⇒⊆与B A 等价(2) 一般地,证明:①充分性(“A ⊆B ”⇒“α⇒β” )②必要性(“α⇒β”⇒“A ⊆B ” )(3)进一步剖析引例中的条件关系。

二、新知探究:例1:利用集合与推出关系讨论α是β的什么条件?(1)A ⊆B ⇔α是β的____条件; (2)A ⊇B ⇔α是β的____条件; (3)A____B ⇔α是β的充分非必要条件; (4) A____B ⇔α是β的必要非充分条件;(5) A =B ⇔α是β的充要条件。

高一数学上册《子集与推出关系》教案、教学设计

高一数学上册《子集与推出关系》教案、教学设计
二、学情分析
在高一数学上册的教学过程中,学生对集合知识已有一定的了解,掌握了集合的基本概念和简单运算。然而,子集与推出关系作为集合知识的一个难点,对学生来说是一个新的挑战。在此阶段,学生具有较强的求知欲和好奇心,但逻辑思维能力、抽象思维能力尚在发展中,需要教师在教学中给予适当的引导和启发。
学生在学习本章节内容时,可能会在以下几个方面遇到困难:一是理解子集与推出关系的定义,特别是对于空集和非空集合的子集关系;二是运用集合运算解决实际问题时,可能会出现混淆和错误;三是将推出关系应用于集合问题中,学生可能难以把握逻辑推理的严谨性。
6.注重过程评价,关注学生个体发展。在教学过程中,关注学生的学习态度、思考过程和合作交流等方面,给予积极的评价,激发学生的学习积极性。
7.拓展知识视野,提高学生数学素养。结合子集与推出关系,引导学生了解相关的数学历史、数学文化等,拓展学生的知识视野,提高学生的数学素养。
8.及时反馈,调整教学策略。在教学过程中,关注学生的反馈信息,了解学生的学习状况,根据学生的需求调整教学策略,确保教学效果。
5.针对本章节的学习,请学生撰写一篇学习心得,内容可以包括:学习子集与推出关系的心得体会、在解决问题过程中遇到的困难,培养自主学习能力。
在完成作业过程中,学生可以参考课本、课堂笔记以及网络资源。但我鼓励学生独立思考,尽量自己解决问题。我会及时批改作业,给予反馈,帮助学生找到问题所在,提高学习效果。
4.通过对集合知识的综合运用,培养学生举一反三、触类旁通的能力,提高学生的数学素养。
(三)情感态度与价值观
1.培养学生对待数学学科的积极态度,激发学生学习数学的兴趣和热情,增强学生的自信心。
2.引导学生体验数学的逻辑美,培养学生对数学的敬畏之心,提高学生的数学审美能力。

1.2.2 子集与推出的关系(教案)-【中职专用】高一数学同步精品课堂(人教版2021·基础模块上册

1.2.2 子集与推出的关系(教案)-【中职专用】高一数学同步精品课堂(人教版2021·基础模块上册

1.2.2 子集与推出的关系(教案)-【中职专用】高一数学同步精品课堂(人教版2021·基础模块上册)学习目标:1. 知道什么是子集,什么是超集和相等集合;2. 理解并掌握子集的定义和特征;3. 知道什么是推出的关系,什么是真子集和假子集;4. 理解并掌握推出的关系的定义和特征。

导入:通过问学生几个问题引入本节课的主题:1. 如果一个集合A包含另一个集合B中的所有元素,我们如何描述它们之间的关系?2. 如果一个集合D包含集合C中的所有元素,但是还有另外一些元素不在集合C中,这两个集合之间的关系是什么?3. 集合A={1,2,3,4},集合B={2,3},那么集合B是集合A的什么?讲解:1. 子集子集是在一个集合中含有部分或全部元素的集合。

如果A集合中的每一个元素都在B集合中出现,我们会说集合A是集合B的子集。

简单来说,A子集B的定义是:如果集合A中所有的元素也都属于集合B,那么集合A就是集合B的子集。

举个例子,如果集合A = {1, 2, 3},而集合B = {1, 2, 3, 4, 5},那么集合A是集合B的子集。

写成符号的形式为:A ⊆ B。

在上面的例子中,B是A的超集,因为B包含了A中的每一个元素。

如果两个集合A和B有相同的元素,但是不是全部的,那么A和B不是相等集合。

2. 推出的关系如果B是A的子集,我们可以说“B被A推出”。

在这种情况下,我们还可以说B是真子集,因为B不等于A。

相反,如果A和B是相等集合,我们可以说A推出B,这时B被称为假子集。

例如,让A = {2, 4, 6},B = {2, 6}。

根据上面的定义,B是A的子集,因为B中的所有元素也都在A中。

因此,我们可以说B是由A推出的真子集。

再如,如果A = {1,2,3},B = {1,3},那么A是由B推出的真子集,因为A中的所有元素都属于集合B。

这里需要注意的是,在子集的情况下,B是A的子集,而不是A是B的子集。

与此相似,在推出的关系中,B是由A推出的真子集,而不是A是B推出的真子集。

子集与推出关系

子集与推出关系

Singlecolor’s PPT
当堂训练
2.设α : 2a 6 < x < 3a 1, β : 2 ≤ x < 3且α是β的必要条件, 求实数a的取值范围.
3.设α : x + ax + 1 = 0, β : x 3x + 2 = 0且α是β的充分
2 2ecolor’s PPT
设A = {a a具有性质α},B = {b b具有性质β } , 则A B与α β 等价,即" A B" "α β "
Singlecolor’s PPT
子集与推出关系、 子集与推出关系、条件之间的联系
设A = {a a具有性质α},B = {b b具有性质β } ,
集合关系 推出关系 条件
A B A B A= B A B
α β α β 且β α β α
α是β的充分条件 α是β的充要条件 α是β的必要条件
α β 且β α α是β的充分非必要条件
A B
β α且α β α是β的必要非充分条件
Singlecolor’s PPT
当堂训练
1.试用子集与推出关系来说明α是β的什么关系. (1)α :1 < x ≤ 3 β : 0 ≤ x < 4 (2)α : x2 = x β : x > 0 (3)α : x2 + 3x 10 = 0 β : x = 2 (4)α :(a 2)2 + (b + 1)2 = 0 β :(a 2)(b + 1) = 0 (5)α : 正整数n被2除余1 β : 正整数n被4除余1
子集与推出关系
Singlecolor’s PPT
知识要点 1.子集与推出关系的联系; 子集与推出关系的联系; 子集与推出关系的联系 2.子集与条件之间的联系; 子集与条件之间的联系; 子集与条件之间的联系

子集与推出关系与不等式的性质 - 学生版

子集与推出关系与不等式的性质 - 学生版

子集与推出关系与不等式的性质 基础知识记忆1、集合与推出关系等价。

与,则具有性质具有性质若βαβα⇒⊆==B A b b B a a A }|{},|{2、理解集合与推出关系应注意的几点问题上述问题实际上含有这样的意思,即范围小的可以推出范围大的,比如的意义一样。

与这个命题是正确的)它}5|{}3|{(52<⊆<<⇒<x x x x x x3、不等式的基本性质1)、a >b ⇔ ;2)、a=b ⇔ ; 3)、a <b ⇔ .4)、性质1(对称性)a >b ⇔b a ; 5)、性质2(传递性)a >b ,b >c ⇒a c ; 6)、性质3(加法法则)a >b ⇒a+c b+c ; 7)、性质4(乘法法则)a >b ,c >0⇒ac bc ; a >b ,c <0⇒ac bc.8)、性质5(同向可加性)a >b ,c >d ⇒a+c b+d ; 9)、性质6(同向可乘性)a >b >0,c >d >0⇒ac bd ; 10)、性质7(倒数法则)a >b >0⇒0<a 1 b1; 11)、性质8(乘方法则) ⇒n a >n b ,(n ∈N*);12)、性质9(开方法则)a >b >0⇒n b >n a ,(n ∈ ,且n > ).4、①判断两个实数a 与b 之间的大小关系,可以通过将它们的差与零相比较来确定,即a >b 的充分必要条件是a-b >0;a =b 的充分必要条件是a-b =0;a <b 的充分必要条件是a-b <0。

这种方法我们叫作差法。

②作商法:如果a>0,b>0并且b a >1,那么a>b; 如果a<0,b<0并且ba>1,那么a<b; 这种比较方法需有一定的前提条件,就是必须知道各代数式与0的大小关系. 下面结合体验题来体验一下这三种方法,在中学所学的范围内,大部分代数式的比较大小我们都可以用这三种方法来比较大小.5、子集与推出关系的各种表述形式:已知集合{}{}|,|A a a B b b αβ==具有性质具有性质 ①若,B A ⊆则α是β的充分条件; ②若,A B Ü则α是β的充分不必要条件; ③若,B A ⊇则α是β的必要条件; ④若,A B Ý则α是β的必要不充分条件; ⑤若A B =,则α是β的充要条件;⑥若A B B A ⊄⊄,则α是β的既不充分也不必要条件;6、推出关系具有传递性:若αβ⇒,βγ⇒,则αγ⇒,若αβ⇒,βα⇒,则αβ⇔,称α与β等价。

1.6-子集与推出关系

1.6-子集与推出关系

3、掌握证明充要条件的两个基本步骤;
目标与要求 准备与导入 探究与深化 练习与评价 回顾与小结 作业与拓展 资源与链接
〔作业与拓展一〕
(2-1)
1、填空:
已知集合A={a|a具有性质p},B={b|b具有性质q}
(1)若A B,则p是q的__________条件。
(2)若AB,则p是q的__________条件。
目标与要求 准备与导入 探究与深化 练习与评价 回顾与小结 作业与拓展 资源与链接
〔准备与导入二〕
子集与推出关系
(1-1)
研究集合的包含关系与集合性质的推出关系之间的联系
集合
A={x|x>5} B={x|x>3}
A {x | x2 1} B {x | x 1}
A {( x, y) | x.y 0} B {( x, y) | x 0, y 0}
集合之间 的关系 A B
AB
A B
集合性质的推出 关系
x 5 x 3
x2 1 x 1
x.y 0 x 0,且y 0
目标与要求 准备与导入 探究与深化 练习与评价 回顾与小结 作业与拓展 资源与链接
〔探究与深化一〕
(1-1)
已知:A={x|x具有性质α}, B={x|x具有性质β} 求证: A B与a b等价
〔作业与拓展二〕
(2-2)
4、如果命题P:m<-3,q:方程x²-x-m=0无实根, 那么p是q的什么条件?
目标与要求 准备与导入 探究与深化 练习与评价 回顾与小结 作业与拓展 资源与链接
以上有不当之处,请大家给与批评指正, 谢谢大家!
目标与要求 准备与导入 探究与深化 练习与评价 回顾与小结 作业与拓展 资源与链接

子集与推出的关系(课件)

子集与推出的关系(课件)

情感目标 通过本节课学习,使学生养成乐于学习、勇于探索的良好品质
核心素养
通过思考、讨论等活动,提升学生数学的直观想象、逻辑推理、数据分析的 核心素养
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢?? 问题情境:已知Q={x丨x是有理数},R={x丨x是 实数},容易判断Q是R的子集(右图)。
结论:由此可见,我们可以通过判断两个集合 之间的关系来判断他们特征性质之间的关系。
例如:设A={x丨x是山东省的县级行政区},
B={x丨x是中国的县级行政区},则,所以“x是
山东省的县级行政区”可以推出“x是中国的Fra bibliotek 级行政区”。
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
因为 A B ,
所以x是直角三角形 p(x);
所以 p(x)为x是三角形。
课堂小结
1.2.2 (第1课时)
/作业布置/
完成课本P26 -- A组1题,2题(1)(3) ;
B组1题。
世上无难事,只要肯登攀。
感谢观看
“如果x是有理数,则x是实数” 是真命题,即
x是有理数 x是实数。
反过来,如果上述命题是真命题,则有理数集 Q也一定是实数集R的子集。
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??

1.6 子集与推出关系

1.6 子集与推出关系

1.6子集与推出关系教学目标: 1、理解集合的包含关系与命题推出关系的等价性,初步掌握用集合间的包含关系进行推理的方法以及通过推出关系解决集合的包含关系的相关问题;2、初步形成逻辑思维能力及等价转化思想,进一步树立辩证唯物主义的观点。

教学重点:集合间的包含关系与命题的推出关系之间的联系。

教学难点:灵活运用集合间的包含关系进行推理,解决具体问题。

教学过程: 1、 情景引入1.什么是充分条件?什么是必要条件?什么是充要条件?(如果α⇒β,那么α叫做β的充分条件;如果β⇒α,那么α叫做β的必要条件;如果α⇔β,α叫做β的充要条件)2.引例:用“⊆”,“⊇”,“⇒”,“⇐”填空:(1){x x 是上海人}________{x x 是中国人}; 我是上海人 ________ 我是中国人 (2) {x|x>5} ________ {x|x>3} ; x>5 ________ x>3(3) {x|x 2=1}_______ {x|x=1} ; x 2=1 _______ x=1 ( (1) ⊆;⇒(2)⊆;⇒(3)⊇;⇐ ) 3.讨论从上述引例中,子集与推出关系有怎样的联系?(我们可以发现,将符合具有性质α的元素的集合记为A ,将符合具有性质β元素的集合记为B ,若A B ⊆,则αβ⇒;反之,若αβ⇒,则A B ⊆。

) 2、 概念形成1.定义:子集与推出关系是指集合的包含关系与集合性质的推出关系。

2.设{}α具有性质a a A =,{}β具有性质b b B =,则“B A ⊆”与“βα⇒”等价。

(证明略)3、 概念应用【属性】:高一(上),集合与命题,子集与推出关系,解答题,易,逻辑思维能力【题目】:试用子集与推出关系来说明α是β的什么条件。

(1)1:=x α,1:2=x β(2) :α正整数n 被5整除 , :β正整数n 的个位数是5【解答】:(1)充分非必要条件;(2)必要非充分条件说明:体会运用集合之间的包含关系来研究推出关系。

子集与推出关系

子集与推出关系

α 是β的充分非必要条件.
2)α : x为有理数
β:x为实数 充分非必要条件
3)α:正整数n被5整除,
Hale Waihona Puke β:正整数n的个位数字是5
3) 解:A={n| n=5k, k ∈N * },
B={n | n的个位数为5}, 而A= {n | n的个位数为5}∪ {n | n的个 位数 为0},显然可知:B⊆A,那么“正 整数n的个位数为5”是“正整数n被5整 除”的充分非必要条件,即“正整数n被 5整除”是“正整数n的个位数为5”的必 要非充分条件
• 基本练习:试用子集与推出关系来判断命题A是B 的什么条件?
(1)A:该平面图形是四边形
B:该平面图形为梯形 该平面图形为梯形 显然, ⊆ , 的充分非必要条件, 解:显然,B⊆A,则B为A的充分非必要条件,即 为 的充分非必要条件 A为B的必要非充分条件 为 的 (2)A:x=3 B:(x-3)(x-4)=0 : ( 解:A⊆B,则A为B的充分非必要条件 ⊆ , 为 的 (3) A: |x|<2, B: x >-3 解: A={x|-2<x<2}, B={x| x>-3} A⊆B,则A为B的充分非必要条件 ⊆ , 为 的 (4) A:x≠-1 B: |x| ≠1 解: A={x| x ≠-1}, B={x | x ≠±1} ± B⊆A,则B为A的充分非必要条件, ⊆ , 为 的充分非必要条件, 即A为B的必要非充分条件 为 的
变式联系,巩固新知识: 变式联系,巩固新知识: (1) 设α:2≤x<5, β:m-1 ≤ x≤4m+1,m ∈R : 充分条件, 且α为 β充分条件,求m的范围 为 充分条件 的范围 解:设A={x| 2 ≤x<5}, B={x| m-1 ≤x ≤4m+1} 由于α⇒ , 由于 ⇒β,则A⊆B 那么有: ⊆ 那么有: m-1 ≤2且5 ≤4m+1 ⇒1 ≤m ≤3 且

1.6子集和推出关系

1.6子集和推出关系

1.6子集与推出关系我们知道x>5是x>3的充分条件,如果把x>5和x>3分别看成构成集合A和集合B 的元素所具有的性质,记集合A={x|x>5},集合B={x|x>3},因为集合A的元素性质“x >5”可以推出集合B的元素性质“x>3”,于是,如果x∈A,即x>5,可推得x>3,那么x∈B,所以得到A⊆B,反之亦然.由此,可建立子集与推出关系的联系:设A、B是非空集合,A={a|a具有的性质α},B={b|b具有的性质β},则A⊆B与α⇒β等价.证明如下:(1)充分性:如果a1具有性质α,那么a1∈A,而A⊆B,所以a1∈B。

因此a1具有性质β,即α⇒β.(2)必要性:如果a1∈A,那么a1具有性质α,由α⇒β,可推得a1具有性质β,所以a1∈B,因此A⊆B.综上所述,A⊆B与α⇒β等价.子集与推出关系是指集合的包含关系和集合性质的推出关系.例1试用子集与推出关系来说明α是β的什么条件.(1)α:x=1,β:x2=1;(2)α:正整数n被5整除,β:正整数n的个位数是5.变式训练-1 试用子集与推出关系来说明α是β的什么条件.(1)α:x=0,β:x 3=x ;(2)α:x >1,β:x >3;(3)α:y 是正整数,β:y 是非零自然数;(4)α:x=3,β:|x-4|=1;(5)α:使得关于x 的方程(a+1)x 2+x-a=0,β:a=-21.例2设α:1≤x≤3,β:m+1≤x≤2m+4,m∈R,α是β的充分条件,求m的取值范围.变式训练-2设p:x≤2,q:x<a+2(a∈R),p是q成立的必要条件,求a的范围.思维误区点拨本节知识在理解与运用中常出现的错误是:对子集(真子集)、推出关系与充要条件之间的等价关系模糊不清.【例】设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件【错解】A【错解分析】由N⊆M,M N可知,a∈M是a∈N的必要不充分条件而非充分不必要条件,这样理解就很容易将题目解错,同学们在解题时要非常注意.【正解】B感知高考(2009·浙江)已知a、b是实数,则“a>0且b>0”是“a+b>0且ab>0”的()(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件【点拨】可以互相推出则为充分必要条件.课后练习1.试用子集与推出关系来说明α是β的什么条件.(1)α:x=1且y=2,β:x+y=3;(2)α:a+b>0,β:a>0,b>0;(3)α:xy>0,β:|x+y|=|x|+|y|;(4)α:某数是整数的31,β:某数与整数相差31.2.设α:1≤x <4,β:x <m ,α是β的充分条件,求实数m 的取值范围.3.设α:x 2-1=0,x ∈R ;β:x 2-2px+q=0,x ∈R ;α是β的必要不充分条件.试求p 、q 的值.4.已知集合A={x|x ≤1-a 或x ≥1+a},其中a >0,B={x|2x-1<3x+5且5x-2<3x+6}. 求证:A ∩B=∅的充要条件是a ≥7.5.求方程x2+(2m-1)x+m2=0(m∈R)有两个大于1的根的充要条件.。

沪教版高一数学上册《子集与推出关系》说课稿

沪教版高一数学上册《子集与推出关系》说课稿

沪教版高一数学上册《子集与推出关系》说课稿一、教材分析与教学目标1.1 教材分析《沪教版高一数学上册》是根据最新教育大纲编写的,该教材是针对高一学生的数学课程教材。

其中,本说课稿主要关注《子集与推出关系》章节,该章节是高一数学课程中的一个重要部分,它主要介绍了子集的概念、子集关系的性质以及集合之间的推出关系。

1.2 教学目标•理解子集的概念,能够用集合论语言描述子集关系;•掌握子集关系的性质,包括传递性、自反性和反对称性;•能够判断集合之间的推出关系,进行集合推出关系的证明。

二、教学重难点2.1 教学重点•理解子集的概念,能准确描述子集关系;•掌握子集关系的性质,包括传递性、自反性和反对称性。

2.2 教学难点•能够判断集合之间的推出关系,并进行证明。

三、教学过程与内容安排3.1 教学过程第一步:导入与引入•通过举例引入子集的概念,并提出问题,激发学生思考。

•引导学生思考什么是子集,如何用集合论语言描述子集关系。

第二步:概念解释与讲解•讲解子集的定义,将其与元素的概念进行对比,帮助学生理解。

•介绍子集关系的性质,包括传递性、自反性和反对称性。

第三步:例题讲解•分析并解答一些基础的例题,帮助学生掌握子集与推出关系的判断方法。

•强调使用子集关系性质进行推导和证明。

第四步:练习与巩固•分发练习题,让学生进行个人或小组练习。

•指导学生进行题目分析、解题思路的讨论。

第五步:总结与归纳•对本节课内容进行总结,强调重点知识点和难点。

•引导学生将所学知识运用到实际问题中,进行综合思考。

3.2 内容安排•第一小节:子集的定义与描述•第二小节:子集关系的性质•第三小节:集合推出关系的判断与证明•第四小节:巩固练习与讨论四、教学资源与工具4.1 教学资源•教材:《沪教版高一数学上册》•教具:黑板、白板、彩色粉笔、投影仪4.2 教学工具•Markdown文本格式•计算器(可选)五、教学评估与反馈5.1 教学评估•在课堂中抽查学生对子集和子集关系的理解;•针对例题和练习题进行评价,以检验学生对知识的掌握程度。

第13讲:充分、必要条件与子集推出关系

第13讲:充分、必要条件与子集推出关系
(6)已知 , ,
解:(1)设 , ,∵ A B, ∴ 是 的充分非必要条件。 (2)设 , ,∵ , ,A B, ∴ 是 的必要非充分条件。(3)必要非充分条件;(4) 是 的必要不充分条件
(5)既不充分也不必要条件
(6)因为 , 或 , ,
所以, 是 的充分非必要条件.
例4、已知p、q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么s,r,p分别是q的什么条件?
所以 的取值范围是 。
变式练习:
设 , 是 的充分条件,求 的范围。
解:设 ,
是 的充分条件,即 ,
画数轴分析可得 或 ,解得 或
所以 的取值范围是 或 。
例7、试用子集与推出关系判断 是β(甲是乙)的什么条件:
(1) : ; :
(2) : ; :
(3)甲: ,乙:
(4)设 ,甲: ,乙:
解:(1)设 , ,
∴A (B∪C).
但是,当B=N,C=R,A=Z时,
显然A (B∪C),但A B不成立,
综上所述:“A B” “A (B∪C)”,而
“A (B∪C)” “A B”.
即“A B”是“A (B∪C)”的充分条件(不必要).
【课后作业】充分与必要条件
A组
1. 或 的一个充分非必要条件是(B)
(A) (B) (C) (D)
(1)若 ,则 ,(2)若 ,则 .
易得出结论;命题(1)为真命题,命题(2)为假命题.
讨论:对于命题“若p,则q”,有时是真命题,有时是假命题.如何判断其真假的?
我们将由此推出关系,引入新的概念:
给出定义:命题“若p,则q” 为真命题,是指由p经过推理能推出q,也就是说,如果p成立,那么q一定成立.

高中数学—04—子集与推出关系—教师版

高中数学—04—子集与推出关系—教师版

子集与推出关系知识梳理1、子集与推出关系:设{}{}|,|A a a B b b αβ==具有性质具有性质,则 A B ⊆ 与 αβ⇒ 等价. 2、子集与推出关系的各种表述形式:已知集合{}{}|,|A a a B b b αβ==具有性质具有性质 (1)若A B ⊆,则α是β的充分条件; (2)若A B ⊂,则α是β的充分非必要条件; (3)若A B ⊇,则α是β的必要条件; (4)若A B ⊃,则α是β的必要非充分条件; (4)若A B =,则α是β的充要条件.3、推出关系具有传递性:若αβ⇒,βγ⇒,则αγ⇒,若αβ⇒,βα⇒,则αβ⇔,称α与β等价. 设{}|A a a α=具有性质,{}|B b b β=具有性质,则集合A 、B 之间的关系与α、β之间的关系,可用下表表示:例题解析一、子集与推出关系【例1】用“⊆”,“⊇”,“⇒”,“⇐”填空:(1)命题α:我是上海人 ;命题β:我是中国人,A ={x ︱x 是上海人}; B ={x ︱x 是中国人}.则命题α 命题β; A B .(2)A ={x ︱1x >};B ={x ︱3x >},命题α:1x >;命题β:3x >.则A B ;命题α 命题β. 【难度】★【答案】(1)⇒,⊆;(2)⊇,⇐.【例2】试用子集与推出关系判断α是β(甲是乙)的什么条件: (1)α:2>x ;β:2≥x ; (2)α:21x =;β:1x =;(3)甲:220x y +=,乙:0,0x y ==;(4)设{2},{6}A x x B x x =>=<,甲:x A x B ∈∈或,乙:B A x I ∈.【例3】试用子集与推出关系来说明α是β的什么条件.(1)1:=x α,1:2=x β(2):α正整数n 被5整除, :β正整数n 的个位数是5 【难度】★【答案】(1)充分非必要条件;(2)必要非充分条件【说明】体会运用集合之间的包含关系来研究推出关系.【例4】试用子集与推出关系来说明集合A 与B 的关系. (1){}12A x x =是的约数, {}36B x x =是的约数 (2){}1A x x =>,{}3B x x =>(3){}A x x =是矩形,{}B x x =是有一个角为直角的平行四边形【难度】★【答案】(1)A B ≠⊂ (2)A B ≠⊃ (3)A B =【说明】体会运用推出关系来研究集合之间的包含关系.【例5】利用子集与推出关系的等价性,写出下列语句的相关条件. (1)写出31x -<<的充分条件; (2)写出31x -<<的必要条件; (3)写出31x -<<的充要条件. 【难度】★ 【答案】答案不唯一【例6】(1)设,x y R ∈,若α:220x y +=,β:0xy =, 则α是β的 条件. (2)设,x y R ∈,若α:,x y 都不为零,β:0xy >,则α是β的 条件. (3)设α:3a b +=,β:1a =且2b =,则α是β的 条件. (4)设α:0≠x 且0≠y ,β:0≠+y x ,则α是β的 条件. 【难度】★★【答案】充分非必要,必要非充分,必要非充分,充分非必要【例7】(1)设α:三角形中有一个角是直角,β:三角形的三边满足222AB BC AC +=,则α是β 的 条件.(2)“该平面图形是四边形”是“该平面图形是梯形”的 条件. 【难度】★★【答案】必要非充分,必要非充分【巩固训练】1.“2x =”是“2320x x -+=”的 条件. 【难度】★【答案】充分非必要2.“2x ≥”是“2x >”的 条件. 【难度】★ 【答案】必要非充分3.k 除以4余1,β:k 除以2余1,则α是β的 条件. 【难度】★★ 【答案】充分非必要4.α:是整数的12的数,β:与整数相差12的数,则α是β的 条件. 【难度】★★【答案】必要非充分5.设α:x 是奇数,β:x 被4除余1,则α是β的 条件. 【难度】★★【答案】必要非充分6.“0xy <”的一个充要条件是( )A .0x >B .0y <C .,x y 异号D .0,0x y =>【难度】★★ 【答案】C7.设α:实数x 2=,β:4x =-或1x =,则α是β的 条件. 【难度】★【答案】充要8.下列各式中,α是β的必要非充分条件的是( ) (1)α:()()120x x -+=, β:2x =-(2)α:2b ac =,β:a b b c= (3)α:,a b 不都为偶数, β:a b +不为偶数 (4)α:1x =且2y =-, β:2xy =- A .(1)(2)(3) B .(1)(3)(4) C .(2)(4) D .(1)(3)【难度】★★ 【答案】A二、子集与推出关系与集合、命题、充分条件与必要条件等综合应用【例8】设集合{03},{02}M x x N x x =<≤=<≤ ,那么“a M ∈”是“a N ∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【难度】★ 【答案】B【例9】若命题α是命题β的充要条件,命题β是命题γ的必要非充分条件,则命题γ是命题α的______条件.【例10】给定两个命题p ,q .若非p 是q 的必要而不充分条件,则p 是非q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【难度】★★【答案】 A【提示】本题利用等价法来判断p 与非q 的关系,即利用了互为逆否命题的两个命题真假性相同这一原理. 【解析】利用等价转换的思想,根据题意可知,q ⇒非p ,但非p q ,那么其逆否命题p ⇒非q ,但非q p ,即p 是非q 的充分而不必要条件.【例11】设:13,:124,x m x m m R αβ≤≤+≤≤+∈,α是β的充分条件,求m 的范围. 【例12】设:23,:11,x x m x m m R αβ≤<≤->+∈或,α是β的充分条件,求m 的范围. 【难度】★★【答案】设{}|23A x x =≤<,{}|11,B x x m x m m R =≤->+∈或α是β的充分条件,即αβ⇒,A B ∴⊆画数轴分析可得13m -≥或12m +<,解得4m ≥或1m < 所以m 的取值范围是4m ≥或1m <.【例13】若1122,,,a b a b R ∈,且都不为零,则“1122a b a b =”是“110a x b +>与220a x b +>解集相同”的( ) A .充分非必要条件 B .必要非充分条件【例14】设2:60a a α+-=,β:10mb +=,若β是α的充分条件,求m 的值.【例15】设,m a R ∈,()()211f x x a x =+-+,()224g x mx ax =++,若“对一切实数x ,()0f x >”是“对一切实数x ,0g x >”的充分条件,求实数m 的取值范围.【巩固练习】1.设α:0(0)x a a <<>,β:102x a ≤-,若α是β的充分条件,求实数a 的取值范围.2.设{}2A x x =≥,{}B x x a =>,求满足B A ≠⊂的一个充分条件.【难度】★【答案】3a >(答案不唯一)3.设A 、B 、C 三个集合,A ⊂≠B 是A ⊂≠(B ∪C)的( ) A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件【难度】★★ 【答案】A【解析】∵A ⊂≠B 是B ⊆(B ∪C)∴A ⊂≠(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A ⊂≠(B ∪C),但A ⊂≠B 不成立,综上所述:“A ⊂≠B”⇒“A ⊂≠(B ∪C)”,而“A ⊂≠(B ∪C)”/⇒“A ⊂≠B”. 即“A ⊂≠B”是“A ⊂≠(B ∪C)”的充分条件(不必要). 4.已知α:集合{}{}24P x x Q x x a ≠=-<<⊂=>,β:{}2a x x ∈≤-,则α与β的推出关系是( )A .αβ⇒B .αβ⇔C .βα⇒D .αβ≠> 【难度】★★【答案】B5.已知命题:14x -≤≤,命题m x m -≤≤-13:β,且βα是的必要条件,求实数m 的取值范围. {}因为βα⇒, 所以B A ⊆. 16.如果,,a b c 都是实数,那么p :0ac <,是q :关于x 的方程20ax bx c ++=有一个正根和一个负根的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件 【难度】★★【答案】C7.设,x y R ∈,求证:||||||x y x y +=+成立的充要条件是0xy ≥. 【难度】★★★【解答】证明:充分性:如果0xy =,那么,①0,0x y =≠②0,0x y ≠= ③0,0x y ==,于是||||||x y x y +=+如果0xy >即0,0x y >>或0,0x y <<, 当0,0x y >>时,||||||x y x y x y +=+=+,当0,0x y <<时,||()()||||x y x y x y x y +=--=-+-=+, 总之,当0xy ≥时,||||||x y x y +=+. 必要性:由||||||x y x y +=+及,x y R ∈得22()(||||)x y x y +=+即222222||x xy y x xy y ++=++ 得||xy xy =所以0xy ≥故必要性成立,综上,原命题成立.反思总结1.在判断充分、必要等条件时,通常可以从两方面入手:方法一:直接用逻辑推理的方法进行推理;方法二:借助集合间的包含关系,利用集合思想解决数学中的条件问题.2.本节课,我们利用等价转化的思想把看似没有联系的子集、推出关系,通过集合间的包含关系联系了起来.设{}α具有性质a a A =,{}β具有性质b b B =,具体如下:(1)A B ⊆ ⇔α是β的充分条件; (2)A B ⊇ ⇔α是β的必要条件; (3)A B ≠⊂ ⇔α是β的充分非必要条件;(4)A B ≠⊃⇔α是β的必要非充分条件; (5)A B =⇔α是β的充要条件.课后练习1.若非空集合M N ⊂,则“a M ∈或a N ∈”是“a M N ∈⋂”的 条件. 【难度】★ 【答案】必要非充分2. 一个整数的末位数字是2,是这个数能被2整除的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件 【难度】★ 【答案】A3.p 是q 的充要条件的是:( )A .p :1a >,q :二元一次方程组11x y ax y +=⎧⎨+=⎩有唯一解B . p :两条对角线互相垂直平分,q :四边形是正方形C .p :325x +>,q :325x --<-D . p :两个三角形相似,q :两个三角形面积之比等于对应的高之比 【难度】★★ 【答案】C4.设U 为全集,A ,B 是集合,则“存在集合C 使得A⊆C ,B⊆∁U C”是“A∩B =∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件【难度】★★【答案】C【解析】如图可知,存在集合C ,使A⊆C ,B⊆∁U C ,则有A∩B =∅.若A∩B =∅,显然存在集合C ,满足A⊆C ,B⊆∁UC.故选C.5. (1)“()200ax bx c a ++=≠有实根”是“0ac <”的_____________;(2)“ABC A B C '''△≌△”是“ABC A B C '''△∽△”的_____________. 【难度】★★【答案】(1)必要不充分条件,(2)充分不必要条件6.已知A 是B 的充分条件,B 是C 的充要条件,A ⌝是E 的充分条件,D 是C 是必要条件,则D 是E ⌝的_____________条件. 【难度】★★【答案】必要不充分条件7.设A ,B 是有限集,定义:d (A ,B )=card(A ⊆B )-card(A ∩B ),其中card(A )表示有限集A 中元素的个数.命题⊆:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件;命题⊆:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C ).( )A .命题⊆和命题⊆都成立B .命题⊆和命题⊆都不成立C .命题⊆成立,命题⊆不成立D .命题⊆不成立,命题⊆成立 【难度】★★★【答案】A【解析】命题①显然正确.对于命题②:设d (A )=a ,d (B )=b ,d (C )=c ,则d (A ,C )≤|a +c |=|a -b +b -c |≤|a -b |+|b -c |≤d (A ,B )+d (B ,C ),所以命题②也成立.故选A.8. 判断下列集合A 与B 的关系.(1) A ={x | x 是12的约数},B ={x | x 是36的约数};(2) A ={x | x >3},B ={x | x >5};(3) A ={x | x 是矩形},B ={x | x 是有一个角为直角的平行四边形}.【难度】★★【解答】(1) 因为 x 是12的约数⇒ x 是36的约数,所以 A ⊆ B .(2) 因为 x >5 ⇒ x >3,所以 B ⊆ A .(3) 因为 x 是矩形 ⇔ x 是有一个角为直角的平行四边形,所以 A ⇔ B .9. 已知 A ={x | x 是等腰三角形},B ={x | p (x )},试确定一个集合B ,使A ⊆ B .【难度】★★【解答】因为A ⊆B ,则x 是等腰三角形⇒ x 具有性质p (x ),p (x ):x 是三角形,所以 B ={x | x 是三角形}.10.试用子集与推出的关系来说明α是β的什么条件.(1):1x α=且2y = ; :3x y β+=(2):0a b α+> ;:0,0a b β>> (3):0xy α> ; :x y x y β+=+【难度】★★【答案】(1)充分非必要条件;(2)必要非充分条件;(3)充分非必要条件11. 设:14x α≤<,:x m β<,α是β的充分条件,求实数m 的取值范围. 【难度】★★【解答】4m ≥12. 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?【解答】∴q p . 113.已知函数2)(bx ax x f -=(1)当0>b 时,若对任意R x ∈都有1)(≤x f 求证b a 2≤.(2)当0a >时,求证;对任意[]1)(,1,0≤∈x f x 的充要条件是b a b 21≤≤-.(1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩。

子集与推出关系.doc

子集与推出关系.doc

1.6子集与推出关系(导学案)组卷:姜汉明 审卷:周海英上课日期:________年____月____日; 班级_______学号____姓名__________ 学习目标:1、理解集合的包含关系与推出关系的等价性,并掌握用集合间的包含关系进行推理的方法;2、逐步形成逻辑思维能力及等价转化思想,了解集合知识的广泛应用性; 学习重点:集合间的包含关系与推出关系的理解与运用学习难点:子集与推出关系等价性学习过程:一、新知导学:1. 回顾:一般地,用α、β分别表示两件事,(1).如果α这件事成立,可以推出β这件事也成立,即α_____β,那么α叫做β的_____条件(2)如果β_____α,那么α叫做β的_____条件。

(3)如果既有α⇒β,又有β⇒α,就记作:α_____β,那么α叫做β的_____条件。

2.引例:用“⊆”,“⊇”,“⇒”,“⇐”填空:(1){x x 是奉贤人}________{x x 是上海人} 我是奉贤人 ________ 我是上海人(2)x>5 ________ x>3 {x|x>5} ________ {x|x>3}(3){x|x 2=1}_______{x|x=1} x 2=1 _______ x=13.问题思考从上述引例中,子集与推出关系有怎样的联系?规律:将符合具有性质α的元素的集合记为A ,将符合具有性质β元素的集合记为B ,若A ⊆B ,则α⇒β;反之,若α⇒β,则A ⊆B 。

4。

概念:(1)定义:子集与推出关系是指集合的包含关系与集合性质的推出关系。

设A 、B 是非空集合,A={}α具有性质a a , {}β具有性质b b B =,则βα⇒⊆与B A 等价(2) 一般地,证明:①充分性(“A ⊆B ”⇒“α⇒β” )②必要性(“α⇒β”⇒“A ⊆B ” )(3)进一步剖析引例中的条件关系。

二、新知探究:例1:利用集合与推出关系讨论α是β的什么条件?(1)A ⊆B ⇔α是β的____条件; (2)A ⊇B ⇔α是β的____条件; (3)A____B ⇔α是β的充分非必要条件; (4) A____B ⇔α是β的必要非充分条件; (5) A =B ⇔α是β的充要条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:1.6-子集与推出关系
教学目标:
1.理解集合包含关系与推出关系的等价性,掌握运用该等价关系进行推理的方法。

2.了解集合思想在分析问题、解决问题中的应用,进一步提高分析和概括能力以及
数学语言的表述能力。

3.通过理解集合关系与推出关系之间的内在联系,体会数学的和谐统一之美。

教学重点:子集与推出关系等价性的理解与应用
教学难点:子集与推出关系等价性的证明
教学过程:
引子:问题(1):已知命题α“x>4”与命题β“x>2”,请判断两者的推出关系。

学生很容易判断:命题α⇒命题β
问题(2):若集合A中的元素具有命题α的性质,即A={x︱x>4},集合B中的元素具有命题β的性质,即B={x︱x>4},请判断集合A、B之间的关系。

学生也很容易判断:A⊆ B
问题(3):集合A、B之间的关系“A⊆B”与命题α、β之间的关系“α⇒β”有内在的联系吗?
可以再研究一个:
(1)已知命题α“图形甲是正方形”与命题β“图形甲是菱形”,请判断两者的推出关系。

判断结果:命题α⇒命题β
(2)若集合A中的元素具有命题α的性质,即A={x︱x是正方形},集合B中的元素具有命题β的性质,即B={x︱x是菱形},请判断集合A、B之间的关系。

判断结果:A⊆B
归纳猜测:
设A={a︱a具有性质α},B={b︱b具有性质β},若α⇒β则A⊆B。

思考:逆命题“若A⊆B则α⇒β”是否成立?
举例:A={x︱x>5},你能否找到一个满足“A⊆B”条件的集合B?
学生应该比较容易找到的:如B={x︱x>3}
性质α:x>5;性质β:x>3
显然有:“x>5”⇒“x>3”即α⇒β
则A⊆B则α⇒β
思考:通过以上研究,对集合间关系和推出关系你能得出什么结论?
归纳猜测:子集与推出关系的等价性
设A={a︱a具有性质α},B={b︱b具有性质β},则A⊆B与α⇒β等价。

证明:(教师讲解)
(1) 充分性:[先证“A⊆B”⇒“α⇒β”,即证具有性质α一定具有性质β]
若x具有性质α,则x∈A
∵A⊆B ∴x∈B 得:x具有性质β则α⇒β
(2) 必要性:[再证“α⇒β”⇒“A⊆B”,即证x∈A则x∈B]
若x∈A,则x具有性质α
∵α⇒β∴x具有性质β得:x∈B 则A⊆B
由(1)(2)可知:A⊆B与α⇒β等价
反思:(1) 集合A、B与性质α、β对应关系如何?
(2) 证明等价性需要证明“充分性”和“必要性”。

(3) 若A⊇B、A=B、A⊂≠B、A⊃≠B,相应的α与β之间的推出关系如何?α是
β的什么条件?
归纳结论:设A={a︱a具有性质α},B={b︱b具有性质β},
(1)A⊆B与α⇒β等价,即α是β的充分条件
(2)A⊇B与α⇐β等价,即α是β的必要条件
(3)A=B与α⇔β等价,即α是β的充要条件
(4)A⊂≠B与α⇒β且α⇐/β等价,即α是β的充分不必要条件
(5)A⊃≠B与α⇐β且α⇒/β等价,即α是β的必要不充分条件
[例1] 试用子集与推出关系判断α是β的什么条件。

(1) α:x>2;β:x≥2
(2) α:x2=1;β:x=1
解:(1) 设A={x| x>2},B={x| x≥2}
∵A⊂≠B ∴α⇒β且α⇐/β
∴α是β的充分非必要条件
(2) 设A={x| x2=1}={-1,1},B={1}
∵A⊃≠B ∴α⇒/β且α⇐β
α是β的必要非充分条件
解题反思:判断α、β之间的充分条件、必要条件的依据是什么?
[例2]判断集合A={n︱n=5k,k∈N*}与B={ n︱n的个位数是5,n∈N*}之间的关系。

解:设α:正整数n 能被5整除;β:正整数n 的个位数是5
∵α⇒/β且α⇐β ∴ A ⊃≠B
解题反思:判断集合A 、B 之间关系的依据是什么?
[例3]设α:1≤x ≤3,β:m +1≤x ≤2m +4,m ∈R ,α是β的充分条件,求实数m 的范
围。

解:设A ={x|1≤x ≤3},B ={x|m +1≤x ≤2m +4,m ∈R }
∵α是β的充分条件,∴α⇒β 得A ⊆B
∴{m +12m +43≤1≥ 解得:-12
≤m ≤0 思考:若α是β的必要条件,如何求m 的范围?
课堂小结:(1) 子集与推出关系的等价性;(2) 应用时的注意点。

练习:《一课一练》P .29-1、2
作业:《练习册》P .9-习题1.6-A 组1~4,B 组1~2 (做在练习册上)。

相关文档
最新文档