SnAg系无铅焊料中金属间化合物的形成与控制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SnAg系无铅焊料中金属间化合物的形成与控制
中文摘要
微电子封装工艺中,起到热、电和机械连接作用的无铅焊料合金组织中金属间化合物的形态和分布直接影响着该合金的连接性能。本文以共晶配比附近的Sn—Ag 合金为研究对象,通过改变成分配比和凝固速率系统研究了其凝固过程中金属间化合物相(Ag。Sn)的析出规律。结合显微组织观察、热分析和热力学计算,从凝固过程两相竞争生长的角度揭示了块状金属间化合物Ag。Sn的形成机理。采
用高温时效模拟焊点的高温服役过程,阐明了在持续高温环境下合金组织中金属间化合物相的演化规律。最后探讨了第三组元及异相纳米ZrO:微粒的掺入对合金组织中金属间化合物的析出控制及强化机理。上述研究包括的主要内容和获得的结论是:通过改变冷却介质,系统研究了亚共晶、共晶和过共晶Sn-Ag合金在不同凝固速率下其组织中金属间化合物的形成规律。结果表明:只在缓冷过共晶合金凝固组织中有块状金属间化合物Ag。Sn的析出。在较快凝固速率下,三种合金组织均呈现亚共晶组织特征,即由初生13一Sn枝晶和由Ag。Sn相与B—Sn相共晶体所构成。这归因于非平衡条件下的动力学过冷使合金凝固过程按亚稳伪共晶反应进行。提高凝固速率对合金组织的影响为:一方面,符合经典共晶合金枝晶生长规律,其B-Sn枝晶得到细化,即:d=3.7t043(其中d为13-Sn枝晶二次枝晶间距,凝固速率在0.08.-一104 Ks。1的范围内)。另一方面,符合弥散强化原理,在共晶体区域中析出纳米Ag。Sn相提高了其显微硬度。在低速凝固速率下,发展了一种通过合金凝固时的名义热容曲线来确定固相体积转变过程,进而确定组织中块状金属间化合物体积分数的有效方法,结合定量金相分析和热力学计算,揭示了过共晶合金组织中块状金属间化合物Ag。Sn的形成机理,即:凝固时,合金熔体中的共晶Ag。Sn相因与初生Ag。Sn相有共同的晶体结构,会在小过冷度下依附于后者生长并成为块状金属间化合物Ag。Sn,并且该块状相的体积分数值随着合金凝固速率的提高而增大。
采用高温时效处理模拟焊点高温服役过程研究了Sn-3.5Ag合金在持续高温环境下的组织稳定性。结果表明:合金组织中金属间化合物Ag。Sn相的演化符合系统自由能最小原理。平衡凝固合金组织中Ag。Sn相趋于破裂和表面球化;而非平衡凝固合金组织中Ag。Sn相在初生B-Sn枝晶晶界的扩散推移作用下合并成为块状金属间化合物Ag。Sn。通过精确的热焓计算和精细的组织分析,揭示了非平衡凝固合金组织中纳米Ag。Sn相的生长驱动力源于其较高的表面能,使其处于热力学亚稳状态。但由于该纳米Ag。Sn相仅局部分布于共晶组织中,因此该合金在
室温下仍然结构稳定。
针对缓冷凝固Sn-Ag合金组织中块状金属间化合物Ag。Sn对焊接性能的不利影响,探讨了在该合金中加入少量第三组元Cu、In和Zn以及异相纳米ZrO。微粒来控制其形成的可行性。结果表明:在上述组元中只有Zn能影响合金凝固后组织中块状金属间化合物Ag。Sn的形成,这归因于Zn与Ag在低过冷度下形成的高温B,.AgZn相改变了焊料中的相析出次序,从而有效降低了其熔体过冷度。因此,在选择能控制Sn-Ag合金组织中块状Ag。Sn相形成的第三组元时,应考虑在凝固时能与Ag结合形成金属间化合物并在Ag。Sn相之前析出的组元。而异相纳米ZrO。微粒,因其具有较高的表面活性,可通过表面吸附效应来降低合金组织中金属间化合物Ag。Sn的表面能,并抑制其进一步生长,从而可有效避免块状金属间化合物Ag。Sn的形成,并使合金组织细化、力学性能提高。
关键词:无铅焊料,共晶合金,金属间化合物,凝固,高温时效,纳米相
II
ABSTRACT
The formation and distribution of Intermetallic Compounds(IMCs)in the
microstmcture of lead.free solders which acts as the thermal,electronic and mechanical connections,directly affect the soldering performance during micro—electronic packaging process.In the present paper,near eutectic composition Sn-Ag alloys were selected and the separation of IMCs in the solidification processes of them
Was systematically explored by changing the content of ingredient and the subsequent solidification rate of the alloy melt.The formation mechanism of bulk A93Sn IMCs in solidification Was clarified according to the competitive growth of two eutectic phases by
means of metallographic analysis,calorimetric measurements and thermodynamic
calculation.nle evolution of IMCs in the microstructure of the solders working under 11i曲.temperature environment was investigated by high—temperature aging treatment.As last,the governing of IMCs and the corresponding strengthening effect Was discussed in view of the addition of the third component and Zr02 nanoparticles in the solder.More
details were given as follows.
formation mechanism of IMCs in hypoeutectic,eutectic and Firstly,the
under different solidification rates Was systematically hypereutectic Sn—Ag alloys
solder.珏e results indicate that the investigated by changing the cooling medium of the
bulk A93Sn IMCs only formed in slowly-cooled hypereutectic alloy.All solidified alloys exhibit typical hypoeutectic features,that is,primary B-Sn dendrites and lamellar eutectic structure of(p-Sn+A93Sn),which could be explained by the actual
metastable pseudoeutectic reaction resulting from the kinetic undercooling in the condition of the non-equilibrium solidification.The influence of applied solidification rate on the alloy structure fits well to the prediction of classical theory of dendrite growth in eutectic system:the Secondary Dendrite Ann Spacing(d)of the p_Sn dendrites decreases with increasing the solidification rate and can be described by d=3.7f娶43.It is also found out that those A93Sn nanoparticles distributing in eutectic zone is benefit to improve the microhardness of alloy,which agrees well with the
prediction of Dispersion Strengthening Principle.
volume fractions of bulk A93Sn IMCs in
A new valid method.to determine the
formation the solidified microstructure of the solder,Was firstly developed from the
rate of solid phase from the measured apparent heat capacity data during the slow cooling process.The thus obtained fractions of bulk A93Sn IMCs in the hypereutectic
III