广东省2016届高三数学文一轮复习专题突破训练:立体几何
广东省14市2016届高三上学期期末考试数学文试题分类汇编:立体几何
![广东省14市2016届高三上学期期末考试数学文试题分类汇编:立体几何](https://img.taocdn.com/s3/m/a99153c0ad51f01dc381f114.png)
广东省14市2016届高三上学期期末考试数学文试题分类汇编立体几何一、选择题1、(潮州市2016届高三上学期期末)右图是一个几何体的正视图和侧视图,其俯视图是面积为82的矩形,则该几何体的体积是A、8B、42C、16D、16 32、(东莞市2016届高三上学期期末)已知一个几何体的三视图如图所示,图中小正方形的边长为1,则该几何体的体积为(A)103(B)4(C)6(D)103、(佛山市2016届高三教学质量检测(一)(期末))某一简单几何体的三视图如图2所示,该几何体的外接球的表面积是( )A. 13πB. 16πC. 25πD. 27π4、(广州市2016届高三1月模拟考试)一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的四分之一圆周和两条半径,则这个几何体的表面积为(A)312π(B)36π(C)34π(D)33π22322正视图侧视图俯视图图25、(惠州市2016届高三第三次调研)某几何体的三视图如图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为( ) (A )π42616++ (B )π32616++ (C )π42610++ (D )π32610++6、(揭阳市2016届高三上学期期末学业水平考试)已知棱长为2的正方体ABCD-A 1B 1C 1D 1的一个面A 1B 1C 1 D 1在一半球底面上,且A 、B 、C 、D 四个顶点都在此半球面上,则此半球的体积为(A) 46π (B) 26π (C) 163π (D) 86π7、(茂名市2016届高三第一次高考模拟)一个几何体的三视图如图所示,则该几何体的体积为( )A 、43 B 、23 C 、13D 、2 8、(清远市2016届高三上学期期末)一个几何体的三视图如图所示,正视图为直角三角形、侧视图为等边三角形,俯视图为直角梯形,则该几何体的体积等于( ) A .3 B .23 C . 33 D .439、(汕头市2016届高三上学期期末)某几何体的三视图如图2所示,则该几何体的外接球表面积为( )正视图俯视图侧视图2232311A.43πB.12πC.24πD.48π10、(汕尾市2016届高三上学期调研)一个几何体的三视图如图所示,该几何体的体积为( )11、(韶关市2016届高三上学期调研)如图,圆柱内有一个直三棱柱,三棱柱的底面在圆柱底面内,12,圆柱的底面直径与母线长相且底面是正三角形. 如果三棱柱的体积为3等,则圆柱的侧面积为12A.π14B.π16C.π18D.π12、(湛江市2016年普通高考测试(一))一个几何体的三视图如右图所示,则该几何体的表面积为A 、64+8πB 、48+12πC 、48+8πD 、48+12π13、(肇庆市2016届高三第二次统测(期末))若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正视图和俯视图如图2所示,则此几何体的表面积是 (A )24π (B )2482ππ+ (C )2442ππ+ (D )32π14、(珠海市2016届高三上学期期末)已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是 ( )A .2B .4C .6D .12侧视图正视图 俯视图2222第11题图1、A2、C3、C4、A5、C6、A7、B8、A9、B 10、A 11、C 12、A 13、C 14、B二、填空题1、(潮州市2016届高三上学期期末)已知一个长方体的长、宽、高分别是5,4,3,则该长方体的外接球的表面积等于__2、(东莞市2016届高三上学期期末)如图,等腰直角三角形ABC ,|AB |=2,AC L ,三角形ABC 绕直线L 旋转一周,得到的几何体的体积为3、(惠州市2016届高三第三次调研)已知三棱锥S ABC -所在顶点都在球O 的球面上,且SC ⊥平面ABC ,若1SC AB AC ===,120BAC ∠=︒,则球O 的表面积为 .4、(揭阳市2016届高三上学期期末学业水平考试)如图2,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则被截去部分的几何体的表面积为 .5、(汕尾市2016届高三上学期调研)若正方体的棱长为2,则该正方体外接球的表面积为6、(肇庆市2016届高三第二次统测(期末))已知各顶点都在一个球面上的正四棱柱的高为4,体积为16,则这个球的体积为 .1、π502、3、【答案】5π【解析】记底面三角形ABC 的外接圆为⊙O ′,半径为r,则22sin120BCr ==︒,所以记球的半径为R ,因为SC ⊥平面ABC ,则()2222145R r SC =+=+=,所以球O 的表面积为2254452S R πππ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭4、54183+5、12π6、86π三、解答题1、(潮州市2016届高三上学期期末)如图,四棱锥P -ABCD 的底面ABCD 是矩形,侧面PAB 是正三角形,AB =2,BC =2,PC =6,E ,H 分别为PA 、AB 中点。
高三数学一轮复习【立体几何】练习题
![高三数学一轮复习【立体几何】练习题](https://img.taocdn.com/s3/m/db13fa034b7302768e9951e79b89680203d86ba3.png)
高三数学一轮复习【立体几何】练习题1.空间中,用a,b,c表示三条不同的直线,γ表示平面,则下列说法正确的有()A.若a∥b,b∥c,则a∥cB.若a⊥γ,b⊥γ,则a∥bC.若a∥γ,b∥γ,则a∥bD.若a⊥b,b⊥c,则a⊥c答案AB解析根据空间平行直线的传递性可知A正确;由直线与平面垂直的性质定理知B正确;若a∥γ,b∥γ,则a,b可能平行、相交或异面,故C错误;若a⊥b,b⊥c,则a,c可能相交、平行或异面,故D错误.2.对于两条不同直线m,n和两个不同平面α,β,下列选项正确的为()A.若m⊥α,n⊥β,α⊥β,则m⊥nB.若m∥α,n∥β,α⊥β,则m⊥n或m∥nC.若m∥α,α∥β,则m∥β或m⊂βD.若m⊥α,m⊥n,则n∥α或n⊂α答案ACD解析对A,令m,n分别为直线m,n的方向向量,因为m⊥α,n⊥β,所以m⊥α,n⊥β,又α⊥β,所以m⊥n,即m⊥n,所以选项A正确;对B,如图所示,在正方体ABCD-A1B1C1D1中,令平面ABCD为平面α,平面ABB1A1为平面β,直线A1C1为m,直线C1D为n,满足α⊥β,m∥α,n∥β,但m与n既不平行也不垂直,所以选项B错误;对C,若m⊄β,过m作一平面γ分别与平面α和平面β相交,且交线分别为a,b,则m∥a,a∥b,所以m∥b,所以m∥β;若m⊂β,符合题意,所以选项C 正确;对D,若n⊂α,符合题意;若n⊄α,过直线n作一平面β与平面α相交,设交线为b,因为b⊂α,m⊥α,所以m⊥b,又m⊥n,且n,b在同一平面内,所以n∥b,所以n∥α,所以选项D正确.综上,选ACD.3.如图是一个正方体的平面展开图,则在该正方体中()A.AE∥CDB.CH∥BEC.DG⊥BHD.BG⊥DE答案BCD解析由正方体的平面展开图还原正方体如图,连接AH,DE,BG,BH,DG,HC.由图形可知,AE⊥CD,故A错误;因为HE∥BC,HE=BC,所以四边形BCHE为平行四边形,所以CH∥BE,故B正确;因为DG⊥HC,DG⊥BC,HC∩BC=C,HC,BC⊂平面BHC,所以DG⊥平面BHC,又BH⊂平面BHC,所以DG⊥BH,故C正确;因为BG∥AH,而DE⊥AH,所以BG⊥DE,故D正确.故选BCD.4.用一个平面截正方体,所得的截面不可能是()A.锐角三角形B.直角梯形C.有一个内角为75°的菱形D.正五边形答案BCD解析对于A,如图1,截面的形状可能是正三角形,故A可能;图1图2对于B,首先考虑平面截正方体得到的截面为梯形,且QR与AA1不平行,如图2所示,不妨假设PQ⊥QR,因为AA1⊥平面A1B1C1D1,PQ⊂平面A1B1C1D1,所以AA1⊥PQ,从而有PQ⊥平面A1ABB1,这是不可能的,故B不可能;对于C,当平面截正方体得到的截面为菱形(非正方形)时,只有如下情形,如图3,其中P,R为所在棱的中点,易知当菱形为PBRD1时,菱形中的锐角取得最小值,即∠PD1R最小.设正方体的棱长为2,则PD1=RD1=5,PR=22,则由余弦定理,得cos∠PD1R=PD21+RD21-PR22PD1·RD1=5+5-82×5×5=15<6-24=cos 75°,所以∠PD1R>75°,故C不可能;图3对于D,假设截面是正五边形,则截面中的截线必然分别在5个面内,由于正方体有6个面,分成两两平行的三对,故必然有一对平行面中有两条截线,而根据面面平行的性质可知这两条截线互相平行,但正五边形的边中是不可能有平行的边的,故截面的形状不可能是正五边形,故D不可能.综上所述,选BCD.5.已知正方体ABCD-A1B1C1D1的棱长为2,M为AA1的中点,平面α过点D1且与CM垂直,则()A.CM⊥BDB.BD∥平面αC.平面C1BD∥平面αD.平面α截正方体所得的截面图形的面积为9 2答案ABD解析如图,连接AC,则BD⊥AC.因为BD⊥AM,AM∩AC=A,AM,AC⊂平面AMC,所以BD⊥平面AMC,又CM⊂平面AMC,所以BD⊥CM,故A正确;取AD的中点E,连接D1E,DM,由平面几何知识可得D1E⊥DM,又CD⊥D1E,DM∩CD=D,DM,CD⊂平面CDM,所以D1E⊥平面CDM,又CM⊂平面CDM,所以D1E⊥CM.连接B1D1,过点E作EF∥BD,交AB于F,连接B1F,所以CM⊥EF,又D1E∩EF=E,D1E,EF⊂平面D1EFB1,所以CM⊥平面D1EFB1,所以平面α截正方体所得的截面图形即梯形D1EFB1.由EF∥BD,BD⊄平面α,EF⊂平面α,得BD∥平面α,故B正确;连接AB1,AD1,易知平面AB1D1∥平面C1BD,而平面AB1D1∩平面α=B1D1,所以平面C1BD与平面α不平行,故C不正确;截面图形为等腰梯形D1EFB1,EF=2,B1D1=22,D1E=B1F=5,所以截面图形的面积S=12×(2+22)×(5)2-⎝⎛⎭⎪⎫22-222=92,故D正确.6.在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M为线段AP的中点,则()A.CM与PN是异面直线B.CM>PNC.平面PAN⊥平面BDD1B1D.过P,A,C三点的正方体的截面一定是等腰梯形答案BCD解析对于选项A,如图,连接NC,PC,则A,N,C三点共线.又M为AP的中点,N为AC的中点,所以CM与PN共面,故A错误;对于选项B,因为P为线段A1D1上的动点(不包括两个端点),所以AC>AP.在△MAC中,CM2=AC2+AM2-2AC·AM cos∠MAC=AC2+14AP2-AC·AP·cos∠MAC.在△PAN中,PN2=AP2+AN2-2AP·AN cos∠PAN=AP2+1 4AC 2-AP ·AC cos ∠PAN ,则CM 2-PN 2=34(AC 2-AP 2)>0,所以CM >PN ,故B 正确;对于选项C ,在正方体ABCD-A 1B 1C 1D 1中,易知AC ⊥平面BDD 1B 1,即AN ⊥平面BDD 1B 1,又AN ⊂平面PAN ,所以平面PAN ⊥平面BDD 1B 1,故C 正确; 对于选项D ,连接A 1C 1,在平面A 1B 1C 1D 1内作PK ∥A 1C 1,交C 1D 1于K ,连接KC .在正方体中,A 1C 1∥AC ,所以PK ∥AC ,PK ,AC 共面,所以四边形PKCA 就是过P ,A ,C 三点的正方体的截面,AA 1=CC 1,A 1P =C 1K ,所以AP =CK ,即梯形PKCA 为等腰梯形,故D 正确.故选BCD.7.如图,在正四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是( )A.直线PB 1∥平面BC 1DB.三棱锥P-BC 1D 的体积为13C.三棱锥D 1-BC 1D 外接球的表面积为3π2D.直线PB 1与平面BCC 1B 1所成角的正弦值的最大值为53 答案 ABD解析 对于A 选项,连接B 1D 1,AB 1,根据正四棱柱的性质可知AD 1∥BC 1,BD ∥B 1D 1,因为BC 1⊄平面AB 1D 1,AD 1⊂平面AB 1D 1,所以BC 1∥平面AB 1D 1,同理得BD ∥平面AB 1D 1,又BC 1∩BD =B ,所以平面AB 1D 1∥平面BC 1D ,又PB 1⊂平面AB 1D 1,所以PB 1∥平面BC 1D ,所以A 选项正确;对于B 选项,易知AD 1∥平面BC 1D ,所以V P-BC 1D =V A-BC 1D =V C 1-ABD =13×12×1×1×2=13,所以B 选项正确;对于C 选项,三棱锥D 1-BC 1D 的外接球即正四棱柱ABCD-A 1B 1C 1D 1的外接球.设外接球的半径为R ,则4R 2=12+12+22=6,所以外接球的表面积为4πR 2=6π,所以C 选项错误;对于D 选项,过P 作PE ∥AB ,交BC 1于点E ,则PE ⊥平面BCC 1B 1,连接B 1E ,则∠PB 1E 即直线PB 1与平面BCC 1B 1所成的角,当B 1E 最小时,∠PB 1E 最大,此时B 1E ⊥BC 1,由等面积法得S △BB 1C 1=12BC 1·B 1E =12BB 1·B 1C 1,解得B 1E =25,在Rt △PB 1E 中,PE =AB =1,所以PB 1=12+⎝ ⎛⎭⎪⎫252=35,所以∠PB 1E 的正弦值的最大值为PE PB 1=53,所以D 选项正确.故选ABD.8.如图,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F ,G 分别为BC ,CC 1,BB 1的中点,则( )A.直线D1D与直线AF垂直B.直线A1G与平面AEF平行C.平面AEF截正方体ABCD-A1B1C1D1所得的截面的面积为9 2D.点A1和点D到平面AEF的距离相等答案BCD解析对于选项A,假设AF与D1D垂直,又D1D⊥AE,AE∩AF=A,AE,AF⊂平面AEF,所以D1D⊥平面AEF.因为EF⊂平面AEF,所以D1D⊥EF,这显然是错误的,所以假设不成立,故A错误;图1对于选项B,取B1C1的中点N,连接A1N,GN,如图1所示,易知A1N∥AE,又AE⊂平面AEF,A1N⊄平面AEF,所以A1N∥平面AEF.因为GN∥EF,EF⊂平面AEF,GN⊄平面AEF,所以GN∥平面AEF.又A1N,GN⊂平面A1GN,A1N∩GN=N,所以平面A1GN∥平面AEF.因为A1G⊂平面A1GN,所以A1G∥平面AEF,故B正确;对于选项C,连接AD1,FD1,如图2所示,因为AD1∥EF,所以四边形AD1FE 为平面AEF截正方体ABCD-A1B1C1D1所得的截面,又AD1=22+22=22,图2EF =12+12=2,D 1F =AE =12+22=5,所以四边形AD 1FE 为等腰梯形, 高为(5)2-⎝ ⎛⎭⎪⎫222=322,则S 梯形AD 1FE =12×(2+22)×322=92,故C 正确;对于选项D ,连接A 1D ,如图2所示,由选项C 可知A 1D 与平面AEF 相交且交点为A 1D 的中点,所以点A 1和点D 到平面AEF 的距离相等,故D 正确.综上,选BCD.9.已知棱长为a 的正方体ABCD-A 1B 1C 1D 1中,M 是B 1C 1的中点,点P 在正方体的表面上运动,且总满足MP ⊥MC ,则下列结论中正确的是( ) A.点P 的轨迹中包含AA 1的中点B.点P 在侧面AA 1D 1D 内的轨迹的长为5a4 C.MP 长度的最大值为21a4D.直线CC 1与直线MP 所成角的余弦值的最大值为55 答案 BCD解析 如图,取A 1D 1的中点E ,分别取A 1A ,B 1B 上靠近A 1,B 1的四等分点F ,G ,连接EM ,EF ,FG ,MG ,易知EM ∥FG 且EM =FG ,所以E ,M ,F ,G 四点共面.连接GC ,因为MG 2=⎝ ⎛⎭⎪⎫a 22+⎝ ⎛⎭⎪⎫a 42=5a 216,MC 2=⎝ ⎛⎭⎪⎫a 22+a 2=5a 24,GC 2=⎝ ⎛⎭⎪⎫3a 42+a 2=25a 216,因此MG 2+MC 2=GC 2,所以MG ⊥MC ,易知ME ⊥MC ,又MG ∩ME =M ,MG ,ME ⊂平面MEFG ,所以MC ⊥平面MEFG ,即点P 的轨迹为四边形MEFG (不含点M ),易知点P 在侧面AA 1D 1D 内的轨迹为EF ,且EF =MG =5a4,所以A 选项错误,B 选项正确;根据点P 的轨迹可知,当P 与F 重合时,MP 最长,易知FG ⊥平面BB 1C 1C ,则FG ⊥MG ,连接MF ,所以MF =a 2+5a 216=21a4,故C 选项正确;由于点P 的轨迹为四边形MEFG (不含点M ),所以直线CC 1与直线MP 所成的最小角就是直线CC 1与平面MEFG 所成的角,又向量CC 1→与平面MEFG 的法向量CM →的夹角等于∠C 1CM ,且sin ∠C 1CM =a25a 2=55,所以直线CC 1与平面MEFG 所成角的余弦值为55,即直线CC 1与直线MP 所成角的余弦值的最大值等于55,故D 选项正确.10.如图,长方体ABCD-A 1B 1C 1D 1中,AB =BC =1,AA 1=2,M 为AA 1的中点,过B 1M 作长方体的截面α交棱CC 1于N ,则( )A.截面α可能为六边形B.存在点N,使得BN⊥截面αC.若截面α为平行四边形,则1≤CN≤2D.当N与C重合时,截面图形的面积为36 4答案CD解析设N0为棱CC1的中点,当N从C1移动到C时,其过程中存在以下几种情况,如图1,当点N在线段C1N0上时,截面α为平行四边形;当点N在线段N0C上(不包括点N0,C)时,截面α为五边形;当点N与点C重合时,截面α为梯形.图1图2由以上分析可知,对于A,截面α不可能为六边形,所以A错误;对于B,假设BN⊥截面α,因为B1M⊂α,所以BN⊥B1M,所以必有点N,C重合,而BC与平面B1CQM不垂直,所以B错误;对于C,当截面α为平行四边形时,点N在线段C1N0上,则1≤CN≤2,所以C 正确;对于D,当点N与点C重合时,截面α为梯形,如图2,过M作MM′⊥B1C,垂足为M′.设梯形的高为h,B1M′=x,则在Rt△B1MM′中,由勾股定理,得h2=(2)2-x2,①同理h 2=⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫52-x 2,② 由①②,解得x =255,h =65,所以截面α的面积等于12×⎝⎛⎭⎪⎫5+52·h =12×352×65=364,所以D 正确. 综上可知,选CD.。
广东省届高三数学一轮复习专题突破训练三角函数文【含答案】
![广东省届高三数学一轮复习专题突破训练三角函数文【含答案】](https://img.taocdn.com/s3/m/f5f22004ff00bed5b9f31d42.png)
广东省2016届高三数学文一轮复习专题突破训练三角函数2016年广东省高考将采用全国卷,下面是近三年全国卷的高考试题及2015届广东省部分地区的模拟试题,供同学们在复习时参考。
一、选择、填空题1、(2015年全国I 卷)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈2、(2014年全国I 卷)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α3、(2014年全国I 卷)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③ 4、(2014年全国I 卷)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .5、(2013年全国I 卷)函数f(x)=(1-cos x )·sin x 在[-π,π]的图像大致为( )图1-26、(2013年全国I 卷) 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5 7、(2013年全国I 卷)设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=________. 8、(佛山市2015届高三二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(2)cos cos c b A a B -=,则A=( )A .12π B . 6π C . 4π D .3π 9、(广州市2015届高三一模)已知△ABC 的三边,,a b c 所对的角分别为,,A B C ,且sin sin 2B Aab =,则cos B 的值为 A.32 B. 12 C. 12- D. 32-10、(华南师大附中2015届高三三模)同时具有性质“①最小正周期是π;②图象关于直线3π=x 对称;③在]3,6[ππ-上是增函数”的一个函数是(***)A .)62sin(π+=x y B .)32cos(π+=x y C .)62sin(π-=x y D .)62cos(π-=x y 11、(惠州市2015届高三4月模拟)下列函数中周期为π且为偶函数的是 ( ) A .cos 22()y x π=- B .sin 22()y x π=+C .(sin 2)y x π=+D .(cos 2)y x π=- 12、(茂名市2015届高三二模)在ABC ∆中,角,,A B C 所对的边分别为a b c ,,,已知()sin sin sin sin a A B c C b B -=-,且2a c =,则sin A = .13、(梅州市2015届高三一模)已知,,a b c 分别是△ABC 三个内角A ,B ,C 所对的边,若1,3a b ==,A +C =2B ,则sinA =____14、(深圳市2015届高三二模)将函数π()sin(2)3f x x =+的图象向右平移ϕ个单位,得到的图象关于原点对称,则ϕ的 最小正值为 A .π6 B .π3 C .5π12 D .7π1215、(湛江市2015届高三二模)函数3sin 24y x π⎛⎫=+ ⎪⎝⎭的一条对称轴是( ) A .4x π= B .4x π=-C .8x π=D .8x π=-16、(珠海市2015届高三二模)将函数sin(2)3y x π=-的图像向右平移712π个单位,再将图像上每个点的横坐标扩大到原来的2倍,纵坐标不变,得到的图像对应的函数表达式是A .)65sin(π+=x y B .cos y x = C .)654sin(π+=x y D .x y 4cos = 17、(潮州市2015届高三上期末)已知函数()()sin f x x ωϕ=A +(0A >,0ω>,2πϕ<)的部分图象如图所示,则ϕ=( )A .6π B .3π C .6π- D .3π-18、(东莞市2015届高三期末)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知A =60º,C=45º,c =10,则a =( )A 、6B 、8C 、56D 、106319、(汕头市2015届高三期末)设函数()sin 26f x x π⎛⎫=+ ⎪⎝⎭,则下列结论正确的是( ) A .()f x 的图象关于直线3x π=对称B .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称C .()f x 的最小正周期为π,且在0,12π⎡⎤⎢⎥⎣⎦上为增函数D .把()f x 的图象向右平移12π个单位,得到一个偶函数的图象20、(深圳市2015届高三期末)在ABC ∆中,A ,B ,C 所对的边分别为c b a ,,,若A =060,3=a ,3=+c b ,则ABC ∆的面积为( )A.43 B 。
2016届高考数学大一轮总复习(,理科) 第八章 立体几何8.7
![2016届高考数学大一轮总复习(,理科) 第八章 立体几何8.7](https://img.taocdn.com/s3/m/7798feb0be1e650e53ea998e.png)
§8.7立体几何中的向量方法(二)——求空间角和距离1.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则l1与l2所成的角θa与b的夹角β范围(0,错误!][0,π]求法cos θ=|a·b||a||b|cos β=错误!2.设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin θ=|cos β|=错误!.3.求二面角的大小(1)如图①,AB,CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈错误!,错误!〉.(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos〈n1,n2>|,二面角的平面角大小是向量n1与n2的夹角(或其补角).4.利用空间向量求距离(供选用)(1)两点间的距离设点A(x1,y1,z1),点B(x2,y2,z2),则|AB|=|错误!|=错误!。
(2)点到平面的距离如图所示,已知AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离为|错误!|=错误!.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.(×)(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( ×)(3)两个平面的法向量所成的角是这两个平面所成的角.( ×) (4)两异面直线夹角的范围是(0,错误!],直线与平面所成角的范围是[0,错误!],二面角的范围是[0,π].(√)(5)直线l 的方向向量与平面α的法向量夹角为120°,则l 和α所成角为30°.( √ )(6)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ。
( × )1.如果平面的一条斜线与它在这个平面上的射影的方向向量分别是a =(1,0,1),b =(0,1,1),那么这条斜线与平面所成的角是( ) A.π2 B 。
届数学一轮复习第七章立体几何第三节空间图形的基本关系与公理课时规范练文含解析
![届数学一轮复习第七章立体几何第三节空间图形的基本关系与公理课时规范练文含解析](https://img.taocdn.com/s3/m/96d02faccd22bcd126fff705cc17552707225e0c.png)
第七章立体几何第三节空间图形的基本关系与公理课时规范练A组—-基础对点练1.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A.bαB.b∥αC.bα或b∥αD.b与α相交或bα或b∥α解析:b与α相交或bα或b∥α都可以.答案:D2.(2020·江西景德镇模拟)将图①中的等腰直角三角形ABC沿斜边BC上的中线折起得到空间四面体ABCD(如图②),则在空间四面体ABCD中,AD与BC的位置关系是()A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直解析:在题图①中,AD⊥BC,故在题图②中,AD⊥BD,AD⊥DC,又因为BD∩DC=D,所以AD⊥平面BCD,又BC平面BCD,D不在BC上,所以AD⊥BC,且AD与BC异面,故选C。
答案:C3.(2020·湖北荆州模拟)设α,β是两个不同的平面,a,b是两条不同的直线,则下列命题正确的是()A.若a⊥b,b⊥α,则a∥αB.若aα,bβ,α∥β,则a与b是异面直线C.若a⊥α,b⊥β,a⊥b,则α⊥βD.若α∩β=b,a∥b,则a∥α且a∥β解析:选项A,a可能在α内,故A错;选项B,a与b可能平行可能异面,故B错;选项D,a可能在α或β内,故D错.故选C.答案:C4.(2020·安徽安庆模拟)在正方体ABCD。
A1B1C1D1中,点P是线段BC1上任意一点,则下列结论中正确的是()A.AD1⊥DP B.AC1⊥DPC.AP⊥B1C D.A1P⊥B1C解析:在正方体ABCD。
A1B1C1D1中,∵B1C⊥BC1,B1C⊥AB,BC1∩AB=B,∴B1C⊥平面ABC1D1,∵点P是线段BC1上任意一点,∴AP平面ABC1D1,∴AP⊥B1C.故选C.答案:C5.(2020·河北模拟)若a,b是不同的直线,α,β是不同的平面,则下列命题中正确的是()A.若a∥α,b∥β,a⊥b,则α⊥βB.若a∥α,b∥β,a∥b,则α∥βC.若a⊥α,b⊥β,a∥b,则α∥βD.若a∥α,b⊥β,a⊥b,则α∥β解析:∵a∥b,a⊥α,∴b⊥α,又b⊥β,∴α∥β.故选C.答案:C6. (2020·广东东莞模拟)如图,在三棱柱ABC.A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面AB1E解析:因为CC1与B1E都在平面CC1B1B内,且CC1与B1E是相交直线,所以选项A错误.假设AC⊥平面ABB1A1,则AC⊥AB,即∠CAB=90°,从而可得∠C1A1B1=90°,这与题设“底面三角形A1B1C1是正三角形”矛盾,故假设错误,即选项B错误.因为点B1∉AE,直线B1C1交平面AEB1于点B1,所以AE,B1C1为异面直线;由题意可知△ABC是正三角形,又E是BC的中点,所以AE⊥BC,结合BC∥B1C1可得AE⊥B1C1,故选项C正确.因为直线AC交平面AB1E于点A,又AC∥A1C1,所以直线A1C1与平面AB1E相交,故选项D错误.综上,选C。
广东省2016届高三数学一轮复习专题突破训练平面向量理
![广东省2016届高三数学一轮复习专题突破训练平面向量理](https://img.taocdn.com/s3/m/258912b6e009581b6ad9eb2e.png)
广东省2016届高三数学理一轮复习专题突破训练平面向量2016年广东省高考将采用全国卷,下面是近三年全国卷的高考试题及2015届广东省部分地区的模拟试题,供同学们在复习时参考。
一、选择题1、(2015年全国I 卷)设D 为ABC 所在平面内一点3BC CD =,则( ) (A )1433AD AB AC =-+ (B)1433AD AB AC =- (C )4133AD AB AC =+ (D)4133AD AB AC =- 2、(佛山市2015届高三二模)已知向量a ()32, 0-=,b ()3, 1=,则向量a 在b 上的投影为( )A .3-B .3-C .3D .33、(惠州市2015届高三4月模拟)在ABC ∆中,2=AB ,3=AC ,3AB AC ⋅=,则=BC ( )A C 4、(茂名市2015届高三二模)在△ABC 中,54sin =A ,6=∙AC AB ,则△ABC 的面积为( ). A .3B .125C .6D .45、(深圳市2015届高三二模)平面向量(1,2)=-a ,(2,)x =-b ,若a // b ,则x 等于A .4B .4-C .1-D .2 6、(河北保定2015届高三11月模拟)在△ABC 中,若•=•=•,且||=||=||=2,则△ABC 的周长为( )A .B . 2C . 3D . 67、(冀州中学2015届高三上学期第一次月考)已知向量,a b 的夹角为45︒,且1a =,210a b -=,则b =( )(A (B )2 (C ) (D )8、(开封市2015()2,2,a b a b a ==-⊥,则,a b 的夹角是9、(洛阳市2015届高三上学期期中考试)已知向量=(2,0),向量=(2,2),向量=(cos α,sin α),则向量与向量的夹角范围为( ) A . [0,] B . [,] C . [,] D . [,]10、(潮州市2015届高三上期末)若向量()2,1a =-,()0,2b =,则以下向量中与a b +垂直的是( )A .()1,2-B .()1,2C .()2,1D .()0,2 11、(佛山市2015届高三上期末)已知两个单位向量12,e e 的夹角为45︒,且满足()121λ⊥-e e e ,则实数λ的值是( )A .1BCD .2 12、(广州市2015届高三上期末)设向量(,1)x =a ,(4,)x =b , 若,a b 方向相反, 则实数x 的值是A .0B .2±C .2D .2-13、(肇庆市2015届高三上期末)设a ,b 为非零向量,||2||a b =,两组向量4321,,,x x x x 和4321,,,y y y y 均由2个a 和2个b 排列而成. 若44332211y x y x y x y x ⋅+⋅+⋅+⋅所有可能取值中的最小值为2||4a ,则a 与b 的夹角为 A .32π B .2π C .3π D .6π二、填空题1、(2014年全国I 卷)已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 .2、(2013年全国I 卷)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t =_____.3、(广州市2015届高三二模)在边长为1的正方形ABCD 中,以A 为起点,其余顶点为终点的向量分别为1a ,2a ,3a ;以C 为起点,其余顶点为终点的向量分别为1c ,2c ,3c .若m 为()()i j s t +∙+a a c c 的最小值,其中{}{},1,2,3i j ⊆,{}{},1,2,3s t ⊆,则m = . 4、(惠州市2015届高三上期末)已知(1,2)a =,(0,1)b =,(,2)c k =-,若(2)a b c +⊥,则实数k =______5、(汕头市2015届高三上期末)下列关于向量c b a ,,的命题中,正确的有 。
2016届高三数学一轮总复习课件:第七章 立体几何7-4
![2016届高三数学一轮总复习课件:第七章 立体几何7-4](https://img.taocdn.com/s3/m/7946307f680203d8cf2f2492.png)
符号语言
l⊄α
a⊂α ⇒l∥α a∥l
第六页,编辑于星期五:二十点 十二分。
2.性质定理: 文字语言
如果一条直线和一个平 性 面平行,经过这条直线 质 的平面和这个平面相 定 交,那么这条直线就和 理 交线平行(简记线面平行
⇒线线平行).
图形语言
符号语言
a∥α
a⊂β ⇒a∥b α∩β=b
答案 平行
第十三页,编辑于星期五:二十点 十二分。
知识点二
平面与平面平行
4.设l为直线,α,β是两个不同的平面.下列命题中正确的是
() A.若l∥α,l∥β,则α∥β
B.若l⊥α,l⊥β,则α∥β
C.若l⊥α,l∥β,则α∥β
D.若α⊥β,l∥α,则l⊥β
第十四页,编辑于星期五:二十点 十二分。
解析 l∥α,l∥β,则α与β可能平行,也可能相交,故A项 错;由面面平行的判定定理可知B项正确;由l⊥α,l∥β可知α⊥ β,故C项错;由α⊥β,l∥α可知l与β可能平行,也可能相交,故 D项错.
第二十页,编辑于星期五:二十点 十二分。
问题3 证明面面平行有哪些常见的方法? (1)利用定义:即证两个平面没有公共点(不常用). (2)利用面面平行的判定定理(主要方法). (3)利用垂直于同一条直线的两平面平行(客观题可用). (4)利用平面平行的传递性,即两个平面同时平行于第三个平 面,则这两个平面平行(客观题可用).
第十九页,编辑于星期五:二十点 十二分。
问题2 证明线面平行有哪些常见的方法? (1)利用线面平行的定义(无公共点); (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α); (3)利用面面平行的性质(α∥β,a⊂α⇒a∥β); (4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).
广东省2016届高三数学一轮复习 专题突破训练 复数与框图 文
![广东省2016届高三数学一轮复习 专题突破训练 复数与框图 文](https://img.taocdn.com/s3/m/3db8fec319e8b8f67c1cb963.png)
广东省2016届高三数学文一轮复习专题突破训练复数与框图2016年广东省高考将采用全国卷,下面是近三年全国卷的高考试题及2015届广东省部分地区的模拟试题,供同学们在复习时参考。
一、复数1、(2015年全国I 卷)已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +(3)2、(2014年全国I 卷)设i iz ++=11,则=||z A.21 B. 22 C. 23 D. 2 3、(2013年全国I 卷)1+2i(1-i )2=( )A .-1-12iB .-1+12iC .1+12iD .1-12i4、(佛山市2015届高三二模)若复数z 满足(1)i z i -=,其中i 为虚数单位,则在复平面上复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5、(广州市2015届高三一模)已知i 为虚数单位,复数i z a b =+(),a b ∈R 的虚部b 记作Im ()z ,则Im 11i ⎛⎫=⎪+⎝⎭A .12-B .1-C .12D .16、(华南师大附中2015届高三三模)设i 为虚数单位,若复数()()2282i z m m m =+-+-是纯虚数,则实数m =(***)A .4-B .4-或2C .-2或4D .27、(潮州市2015届高三上期末)复数()()11z i i =+-在复平面内对应的点的坐标为( ) A .()1,0 B .()0,2 C .()0,1 D .()2,08、(东莞市2015届高三上期末)设复数z 满足2z i i =-,i 是虚数单位,则z =( ) A 、2-i B 、1+2i C 、-1+2i D 、-1-2i9、(江门市2015届高三上期末)已知 i 是虚数单位,若复数bi a Z +=(a ,R b ∈)在复平面内对应的点位于第四象限,则复数 i Z ⋅在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限10、(清远市2015届高三上期末)若a,b∈R,i是虚数单位,若(1+i)i=a+bi,则()A、a=1,b=1B、a=-1,b=1C、a=-1,b=-1D、a=1,b=-1二、框图1、(2015年全国I卷)执行右面的程序框图,如果输入的0.01t=,则输出的n=()(A)5(B)6(C)10(D)122、(2014年全国I卷)执行下图的程序框图,若输入的,,a b k分别为1,2,3,则输出的M=A.203B.165C.72D.1583、(2013年全国I卷)如图1-1所示的程序框图,如果输入的t∈[-1,3],则输出的s属于( )图1-1A.[-3,4]B.[-5,2]C .[-4,3]D .[-2,5]4、(佛山市2015届高三二模)某班有49位同学玩“数字接龙”游戏,具体规则按如图所示 的程序框图执行(其中a 为座位号),并以输出的值作为下一轮 输入的值。
高三数学一轮复习 第九章《立体几何》9-1精品
![高三数学一轮复习 第九章《立体几何》9-1精品](https://img.taocdn.com/s3/m/244c8a69a0116c175e0e487f.png)
• (4)能用向量方法解决线线、线面、面面的夹角的计算 问题,体会向量方法在研究几何问题中的作用.
精选版ppt
7
• ●命题趋势
• 1.空间几何体
• 空间几何体是立体几何初步的重要内容,高考非常重视 对这一部分的考查.一是在选择、填空题中有针对性地 考查空间几何体的概念、性质及主要几何量(角度、距 离、面积、体积)的计算等.二是在解答题中,以空间 几何体为载体考查线面位置关系的推理、论证及有关计 算.
精选版ppt
9
• 3.空间向量与立体几何(理)
• 高考试题中的立体几何解答题,包括部分选择、填空题, 大多都可以使用空间向量来解答.高考在注重对立体几 何中传统知识和方法考查的同时,加大了对空间向量的 考查.给考生展现综合利用所学知识解决实际问题的才 能提供更宽阔的舞台.
• 这一部分高考命题主要有以下几个方面:
精选版ppt
27
• 1°球面被经过球心的平面截得的圆叫做大圆. • 2°不过球心的截面截得的圆叫做球的小圆.
精选版ppt
28
• (3)球面距离:
• 1°定义:在球面上两点之间的最短距离,就是经过这
两点的 在这两点间的一段
的长度,这个弧
长叫做两大点圆的球面距离.
劣弧
• 2°地球上的经纬线
• 当把地球看作一个球时,经线是球面上从北极到南极的 半个大圆,纬线是与地轴垂直的平面与球面的交线,其
• ②棱锥的高、斜高和斜高在底面内的射影组成一个直角 三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成 一个直角三角形.
• 4.棱台的概念及性质
• (1)定义:棱锥被 的部分叫做棱台.
广东省广州市高考数学一轮复习模拟试题精选专题空间几何体
![广东省广州市高考数学一轮复习模拟试题精选专题空间几何体](https://img.taocdn.com/s3/m/aff94793f7ec4afe05a1df18.png)
空间几何体一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C 的中点.那么,正方体的过P 、Q 、R 的截面图形是( )A .三角形B .四边形C .五边形D .六边形 【答案】A2.在空间直角坐标系中, 点P(2,3,4)与Q (2, 3,- 4)两点的位置关系是( )A .关于x 轴对称B .关于xOy 平面对称C .关于坐标原点对称D .以上都不对 【答案】B3.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( ) A .7 B .6 C .5 D .3 【答案】A4.如图,是由4个相同小正方体组合而成的几何体,它的左视图是( )A .B .C .D .【答案】D5.如图,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G在线段MN 上,且2MG GN =,现用基向量,,OA OB OC 表示向量,设OG xOA yOB zOC =++,则x 、y 、z 的值分别是( )A . x =31,y =31,z =31B . x =31,y =31,z =61C . x =31,y =61,z =31D . x =61,y =31,z =31【答案】D6.点P 是等腰三角形ABC 所在平面外一点,ABC PA ABC PA ∆=⊥,在,平面8中,底边BC P AB BC 到,则点,56==的距离为( ) A .54B .3C .33D .32【答案】A 7.一个正方体的展开图如图所示,A 、B 、C 、D 为原正方体的顶点,则在原来的正方体中( )A .AB ∥CDB .AB 与CD 相交C .AB ⊥CD D .AB 与CD 所成的角为60°【答案】D8.下列说法正确的是( )A .圆台是直角梯形绕其一边旋转而成;B .圆锥是直角三角形绕其一边旋转而成;C .圆柱不是旋转体;D .圆台可以看作是平行底面的平面截一个圆锥而得到 【答案】D9.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A .若l m ⊥,m α⊂,则l α⊥B .若l α⊥,l m //,则m α⊥C .若l α//,m α⊂,则l m //D .若l α//,m α//,则l m //【答案】A10.如图,点P 、Q 、R 、S 分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ 与RS 是异面直线的一个图是( )【答案】C11.某几何体的三视图如图所示,则该几何体的体积是( )A .π34B .2C .π38D .π310 【答案】A12.已知平面α外的直线b 垂直于α内的二条直线,有以下结论:○1b 一定不垂直于α;○2b 可能垂直于平面α;○3b 一定不平行于平面α,其中正确的结论有( ) A .0个 B .1个 C .2个 D .3个 【答案】B二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在空间直角坐标系中,若点(1,2,1),A -点(3,1,4)B --,则||AB = .【答案】5214.一个几何体的三视图及部分数据如图所示,左视图为等腰三角形,俯视图为正方形,则这个几何体的体积等于 .【答案】1315.四棱锥ABCD P -的三视图如右图所示,四棱锥ABCD P -的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为22,则该球表面积为 .【答案】π1216.一个几何体的三视图如下图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为 .【答案】4三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.如图,已知平行四边形ABCD 中,2AD =,2CD =,45ADC ∠=︒,AE BC ⊥,垂足为E ,沿直线AE 将BAE ∆翻折成'B AE ∆,使得平面'B AE ⊥平面AECD .连接'B D ,P 是'B D 上的点.(I )当'B P PD =时,求证CP ⊥平面'AB D ;(Ⅱ)当'2B P PD =时,求二面角P AC D --的余弦值.【答案】(1)∵BC AE ⊥,平面⊥'AE B 平面AECD ,∴EC E B ⊥'. 如图建立空间直角坐标系.则)0,1,0(A ,)1,0,0(B ',)0,0,1(C , )0,1,2(D ,)0,0,0(E ,)21,21,1(P . )1,1,0(-='B A ,)0,0,2(=AD ,)21,21,0(=CP . ∵02121=+-='⋅B A CP ,0=⋅AD CP ,∴B A CP '⊥,AD CP ⊥.又A AB AD = ,∴⊥CP 平面AD B '.设面PAC 的法向量为),,(z y x n = ,则⎪⎩⎪⎨⎧=-=⋅=+-=⋅003334y x AC n z y x AP n.取1==y x ,3-=z ,则)3,1,1(-=n,又平面DAC 的法向量为)1,0,0(=m,∴||311cos ,11m n m n m n ⋅<>==.∴二面角D AC P --的余弦值311.18.如图所示,已知BCD ,AB 平面⊥M 、N 分别是AC 、AD 的中点,BC ⊥CD .(I )求证:MN ∥平面BCD ;(II )求证:平面B CD ⊥平面ABC ;(III )若AB =1,BC =3,求直线AC 与平面BCD 所成的角.【答案】 (1)因为,M N 分别是,AC AD 的中点,所以//MN CD . 又MN ⊄平面BCD 且CD ⊂平面BCD ,所以//MN 平面BCD . (2)因为AB ⊥平面BCD , CD ⊂平面BCD ,所以AB CD ⊥. 又CD BC AB BC B ⊥⋂=且,所以CD ⊥平面ABC . 又CD ⊂平面BCD ,所以平面BCD ⊥平面ABC .(3)因为AB ⊥平面BCD ,所以ACB ∠为直线AC 与平面BCD 所成的角. 在直角∆ABC 中,3AB=1,BC=,所以3tan 3AB ACB BC ∠==.所以30ACB ∠=. 故直线AC 与平面BCD 所成的角为30.19.如图,已知正三棱柱111ABC A B C -各棱长都为a ,P 为线段1A B 上的动点.(Ⅰ)试确定1:A P PB 的值,使得PC AB ⊥;(Ⅱ)若1:2:3A P PB =,求二面角P AC B --的大小;【答案】【法一】(Ⅰ)当PC AB ⊥时,作P 在AB 上的射影D . 连结CD .则AB ⊥平面PCD ,∴AB CD ⊥,∴D 是AB 的中点,又1//PD AA ,∴P 也是1A B 的中点,即1:1A P PB =. 反之当1:1A P PB =时,取AB 的中点D ',连接CD '、PD '.∵ABC ∆为正三角形,∴CD AB '⊥. 由于P 为1A B 的中点时,1//PD A A '∵1A A ⊥平面ABC ,∴PD '⊥平面ABC ,∴AB PC ⊥.(Ⅱ)当1:2:3A P PB =时,作P 在AB 上的射影D . 则PD ⊥底面ABC .作D 在AC 上的射影E ,连结PE ,则PE AC ⊥.∴DEP ∠为二面角P AC B --的平面角.又∵1//PD AA ,∴132BD BP DA PA ==,∴25AD a =.∴360DE AD sin =⋅=,又∵135PD AA =,∴35PD a =.∴3PDtan PED DE∠=,∴P AC B --的大小为60PED ∠=. 【法二】以A 为原点,AB 为x 轴,过A 点与AB 垂直的直线为y 轴,1AA 为z 轴,建立空间直角坐标系A xyz -,如图所示,设(),0,P x z ,则(),0,0B a 、()10,0,A a 、3,,022a a C ⎛⎫⎪ ⎪⎝⎭.(Ⅰ)由0CP AB ⋅=得()3,,,0,0022a a x z a ⎛⎫--⋅= ⎪ ⎪⎝⎭,即02a x a ⎛⎫-⋅= ⎪⎝⎭,∴12x a =,即P 为1A B 的中点,也即1:1A P PB =时,AB PC ⊥.(Ⅱ)当1:2:3A P PB =时,P 点的坐标是23,0,55a a ⎛⎫⎪⎝⎭. 取()3,3,2m =--.则()233,3,2,0,055a a m AP ⎛⎫⋅=--⋅= ⎪⎝⎭,()33,3,2,,0022a a m AC ⎛⎫⋅=--⋅= ⎪ ⎪⎝⎭.∴m 是平面PAC 的一个法向量.又平面ABC 的一个法向量为()0,0,1n =.1,2m n cos m n m n⋅〈〉==⋅,∴二面角P AC B --的大小是60.20.一个多面体的直观图和三视图如图所示:(I )求证:PA ⊥BD ;(II )连接AC 、BD 交于点O ,在线段PD 上是否存在一点Q ,使直线OQ 与平面ABCD 所成的角为30o ?若存在,求DQ DP的值;若不存在,说明理由.【答案】(I )由三视图可知P-ABCD 为四棱锥,底面ABCD 为正方形,且PA =PB =PC =PD , 连接AC 、BD 交于点O ,连接PO .因为BD ⊥AC ,BD ⊥PO ,所以BD ⊥平面PAC , 即BD ⊥PA .(II )由三视图可知,BC =2,PA =2,假设存在这样的点Q ,因为AC ⊥OQ ,AC ⊥OD ,所以∠DOQ 为直线OQ 与平面ABCD 所成的角 在△POD 中,PD =22,OD =2,则∠PDO =60o , 在△DQO 中,∠PDO =60o ,且∠QOD =30o .所以DP ⊥OQ .所以OD =2,QD =2. 所以14DQ DP =. 21.如图,在四梭锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD,AD =2,AB =1.点M 线段PD 的中点.(I )若PA =2,证明:平面ABM ⊥平面PCD ;(II )设BM 与平面PCD 所成的角为θ,当棱锥的高变化时,求sin θ的最大值.【答案】 (Ⅰ)∵PA ⊥平面ABCD ,AD PA ⊥∴.∵点M 为线段PD 的中点,PA= AD =2,AM PD ⊥∴. 又∵⊥AB 平面PAD ,AB PD ⊥∴. ⊥∴PD 平面ABM . 又⊂PD 平面PCD ,∴平面ABM ⊥平面PCD .(Ⅱ)设点B 到平面PCD 的距离为d . ∵AB ∥CD, ∴AB ∥平面PCD.∴点B 到平面PCD 的距离与点A 到平面PCD 的距离相等. 过点A 在平面PAD 内作AN ⊥PD 于N,平面ABM ⊥平面PCD ,⊥∴AN 平面PCD .所以AN 就是点A 到平面PCD 的距离. 设棱锥的高为x ,则=d 24x+在Rt △ABM 中,22AMAB BM +=4241)2(22222x AP AD PD AB +=++=+=. ∴sin =θ22422232124123244242x x x x xx x xBMd ++=++=++=.因为()222222322123212+=+≥++x x ,当且仅当2232x x=,即432=x 时,等号成立.故()222222432124sin 222-=+≤++=x x θ.22.如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD=DC=4,AD=2,E 为PC 的中点.(I )求证:AD ⊥PC ;(II )求三棱锥P-ADE 的体积;(III )在线段AC 上是否存在一点M ,使得PA//平面EDM ,若存在,求出AM 的长;若不存在,请说明理由.【答案】(I )因为PD ⊥平面ABCD. 所以PD ⊥AD.又因为ABCD 是矩形, 所以AD ⊥CD. 因为,D CD PD =⋂ 所以AD ⊥平面PCD.又因为⊂PC 平面PCD , 所以AD ⊥PC.(II )因为AD ⊥平面PCD ,V P-ADE =V A-PDE , 所以AD 是三棱锥A —PDE 的高. 因为E 为PC 的中点,且PD=DC=4,所以.444212121=⎪⎭⎫⎝⎛⨯⨯⨯==∆A PDC PDE S S 又AD=2, 所以.38423131=⨯⨯=⋅=∆-PDE PDE A S AD V (III )取AC 中点M ,连结EM 、DM ,因为E 为PC 的中点,M 是AC 的中点,所以EM//PA ,又因为EM ⊂平面EDM ,PA ⊄平面EDM , 所以PA//平面EDM. 所以.521==AC AM 即在AC 边上存在一点M ,使得PA//平面EDM ,AM 的长为5.。
高三数学第一轮复习立体几何的综合问题知识精讲
![高三数学第一轮复习立体几何的综合问题知识精讲](https://img.taocdn.com/s3/m/d07ac92a02020740be1e9b81.png)
高三数学第一轮复习:立体几何的综合问题【本讲主要内容】立体几何的综合问题立体几何知识的综合应用及立体几何与其它知识点的综合问题【知识掌握】【知识点精析】1. 立体几何的综合问题融直线和平面的位置关系于平面与几何体中,有计算也有论证。
解决这类问题需要系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质.深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角的概念,理解点到面的距离、异面直线的距离的概念.2. 立体几何横向可与向量、代数、三角、解析几何等综合.3. 应用性问题、探索性问题需综合运用所学知识去分析解决.【解题方法指导】例1. 如图所示,在正方体ABCD—A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为()解析:P到直线BC的距离等于P到B的距离,动点P的轨迹满足抛物线定义.故选C.例2. 如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD,(Ⅰ)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明不论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°.(Ⅰ)解:∵PB⊥面ABCD,∴BA是PA在面ABCD上的射影,又DA⊥AB ∴PA⊥DA∴∠PAB是面PAD与面ABCD所成的二面角的平面角∴∠PAB=60°,PB=AB·tan60°=3a ,∴ V 锥=3233·3·31a a a =(Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为等腰三角形,作AE ⊥PD ,垂足为E ,连结CE ,则△ADE ≌△CDE ,因为AE =CE ,∠CED =90o,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角. 设AC 与BD 交于点O ,连结EO ,则EO ⊥AC ,所以a AD AE OA a =<<=22,22a AE <, 在△AEC 中,02222cos 222222222<-=-=∙-+=∠AE a AE AE a AE EC AE AC EC AE CEA 所以面PAD 与面PCD 所成的二面角恒大于90o。
高三数学一轮复习立体几何知识点突破训练含答案解析
![高三数学一轮复习立体几何知识点突破训练含答案解析](https://img.taocdn.com/s3/m/4ed89a473a3567ec102de2bd960590c69ec3d8ff.png)
精品基础教育教学资料,仅供参考,需要可下载使用!第八章⎪⎪⎪立 体 几 何第一节空间几何体的三视图、直观图、表面积与体积突破点(一) 空间几何体的三视图和直观图基础联通 抓主干知识的“源”与“流” 1.空间几何体的结构特征 (1)多面体的结构特征 多面体 结构特征棱柱 有两个面平行,其余各面都是四边形且每相邻两个面的交线都平行且相等棱锥 有一个面是多边形,而其余各面都是有一个公共顶点的三角形 棱台棱锥被平行于底面的平面所截,截面和底面之间的部分叫做棱台几何体 旋转图形 旋转轴圆柱 矩形 矩形任一边所在的直线 圆锥 直角三角形 一条直角边所在的直线圆台 直角梯形或等腰梯形直角腰所在的直线或等腰梯形上下底中点的连线球半圆或圆直径所在的直线(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.考点贯通抓高考命题的“形”与“神”空间几何体的结构特征[例1](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2)下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点[解析](1)截面是任意的且都是圆面,则该几何体为球体.(2)A错,如图(1);B正确,如图(2),其中底面ABCD是矩形,PD⊥平面ABCD,可证明∠PAB,∠PCB,∠PDA,∠PDC都是直角,这样四个侧面都是直角三角形;C错,如图(3);D错,由棱台的定义知,其侧棱的延长线必相交于同一点.[答案](1)C(2)B[方法技巧]解决与空间几何体结构特征有关问题的三个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1(2)中的A,C两项易判断失误;(3)通过反例对结构特征进行辨析.空间几何体的三视图1.画三视图的规则长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()[解析](1)正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.[答案](1)B(2)B[方法技巧]三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图注意正视图、侧视图和俯视图的观察方向;注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.(3)由几何体的三视图还原几何体的形状要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A能力练通抓应用体验的“得”与“失”1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析:选B由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形时,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二](2017·南昌模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为( )A .1∶1B .2∶1C .2∶3D .3∶2解析:选A 根据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1.突破点(二) 空间几何体的表面积与体积基础联通 抓主干知识的“源”与“流” 1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r +r ′)l圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式名称 几何体表面积 体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底V =Sh 锥体 (棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3考点贯通 抓高考命题的“形”与“神”空间几何体的表面积[例1] (1)(2017·安徽江南十校联考)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为( )A .4π+16+4 3B .5π+16+4 3C .4π+16+2 3D .5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2[解析] (1)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为2×12×2×3=23;半圆柱的侧面积为π×4=4π,两个底面面积之和为2×12×π×12=π,所以几何体的表面积为5π+16+23,故选D.(2)根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+3.[答案] (1)D (2)B[方法技巧]求空间几何体表面积的常见类型及思路(1)求多面体的表面积,只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积.(2)求旋转体的表面积,可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系.(3)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积.空间几何体的体积柱体、锥体、台体体积间的关系[例2] (1)(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 (2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3D.5π2[解析] (1)通过三视图可还原几何体为如图所示的三棱锥P -ABC ,通过侧视图得高h =1,通过俯视图得底面积S =12×1×1=12,所以体积V =13Sh =13×12×1=16.(2)由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=13π6.[答案] (1)A (2)B [方法技巧]求空间几何体体积的常见类型及思路(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.能力练通 抓应用体验的“得”与“失”1.[考点二](2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π.故选C. 2.[考点二]已知一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3 cm 3 B .2π cm 3 C.7π3cm 3 D .3π cm 3解析:选C 该几何体为一个圆柱挖去半个球得到的几何体,其体积V =π×12×3-12×4π×133=7π3(cm 3).3.[考点一]某几何体的三视图如图所示,则它的表面积为( )A .125+20B .242+20C .44D .12 5解析:选A 由三视图得,这是一个正四棱台,且上、下底面的边长分别为2,4,则侧面梯形的高h = 22+⎝⎛⎭⎫4-222=5,所以该正四棱台的表面积S =(2+4)×52×4+22+42=125+20.4.[考点一]某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4-x )×3×1+π·⎝⎛⎭⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题1.球的表面积和体积是每年高考的热点,且多与三视图、多面体等综合命题,常以选择题、填空题的形式出现.解决此类问题时,一是要善于把空间问题平面化,把平面问题转化到直角三角形中处理;二是要将变化的模型转化到固定的长方体或正方体中.2.与球有关的组合体问题主要有两种,一种是内切问题,一种是外接问题.解题时要认真分析图形,明确切点和接点的位置,确定有关“元素”间的数量关系,并作出合适的截面图.考点贯通 抓高考命题的“形”与“神”多面体的内切球问题[例1] 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.[解析] 设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14, 即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26, 则S 1S 2=3a 2π6a 2=63π. [答案] 63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题处理与球有关外接问题的策略把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)(2017·抚顺模拟)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310(2)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4(3)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.[解析] (1)如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.(2)如图所示,设球半径为R ,底面中心为O ′且球心为O , ∵正四棱锥P -ABCD 中AB =2, ∴AO ′= 2. ∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4.(3)依题意可知,新的几何体的外接球也就是原正方体的外接球,球的直径就是正方体的体对角线,∴2R =23(R 为球的半径),∴R =3, ∴球的体积V =43πR 3=43π.[答案] (1)C (2)A (3)43π [方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.能力练通 抓应用体验的“得”与“失”1.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.2.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π,故选D. 3.[考点二](2016·太原模拟)如图,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′-BCD 的顶点在同一个球面上,则该球的表面积为( )A .3πB.32π C .4π D.34π 解析:选A 由图示可得BD =A ′C =2,BC =3,△DBC 与△A ′BC 都是以BC 为斜边的直角三角形,由此可得BC 中点到四个点A ′,B ,C ,D 的距离相等,即该三棱锥的外接球的直径为3,所以该外接球的表面积S =4π×⎝⎛⎭⎫322=3π. 4.[考点二]设一个球的表面积为S 1,它的内接正方体的表面积为S 2,则S 1S 2的值等于( )A.2πB.6πC.π6D.π2解析:选D 设球的半径为R ,其内接正方体的棱长为a ,则易知R 2=34a 2,即a =233R ,则S 1S 2=4πR 26×⎝⎛⎭⎫233R 2=π2.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得,l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(2016·全国丙卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2C .6πD.32π3解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. 3.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16 D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D. 4.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:选C 如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O -ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O -ABC 最大,为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.6.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V=14×13π·r 2·5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B. 7.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:选C 原毛坯的体积V =(π×32)×6=54π(cm 3),由三视图可知该零件为两个圆柱的组合体,其体积V ′=V 1+V 2=(π×22)×4+(π×32)×2=34π(cm 3),故所求比值为1-V ′V =1027.8.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8π B.8+8πC.16+16π D.8+16π解析:选A根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π,故选A.9.(2012·新课标全国卷)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26 B.36 C.23 D.22解析:选A由于三棱锥S-ABC与三棱锥O-ABC底面都是△ABC,O是SC的中点,因此三棱锥S-ABC的高是三棱锥O-ABC高的2倍,所以三棱锥S-ABC的体积也是三棱锥O-ABC体积的2倍.在三棱锥O-ABC中,其棱长都是1,如图所示,S△ABC=34×AB2=34,高OD=12-⎝⎛⎭⎫332=63,所以V S-ABC=2V O-ABC=2×13×34×63=26.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A错误,如图①是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B 错误,如图②,若△ABC 不是直角三角形,或△ABC 是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C 错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3B.62π3C.83π3D.104π3解析:选D 由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3. 3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.4.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .6+4 2解析:选C 由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2.所以其侧面积S =2×2+22×2=4+42,故选C.5.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=9π2,∴R =32,∴3a =3,∴a = 3.答案: 3[练常考题点——检验高考能力]一、选择题1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a2 B.3πa3πC.23πa 3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 3.一个几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.152D.132解析:选D 该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.4.已知正四面体的棱长为2,则其外接球的表面积为( ) A .8π B .12π C.32π D .3π 解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD 2,即R 2=⎝⎛⎭⎫233-R 2+⎝⎛⎭⎫632,解得R =32,所以外接球的表面积S =4πR 2=3π. 5.(2017·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:选C 还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高分别为22,22,4的长方体,则该长方体外接球的半径r =(22)2+(22)2+422=22,则所求外接球的表面积为4πr 2=32π.6.已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD 的四个侧面中面积的最大值是( )A .6B .8C .2 5D .3解析:选A 四棱锥如图所示,作PN ⊥平面ABCD ,交DC 于点N ,PC =PD =3,DN =2,则PN =32-22=5,AB =4,BC =2,BC ⊥CD ,故BC ⊥平面PDC ,即BC ⊥PC ,同理AD ⊥PD .设M 为AB 的中点,连接PM ,MN ,则PM =3,S △PDC =12×4×5=25,S △PBC =S△PAD=12×2×3=3,S △PAB =12×4×3=6,所以四棱锥P -ABCD 的四个侧面中面积的最大值是6.二、填空题7.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M -PBC 的体积为________.解析:∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13,即三棱锥P -MBC 的高h =D 1C 13=1.M 为线段B 1C 1上的点, ∴S △MBC =12×3×3=92,∴V M -PBC =V P -MBC =13×92×1=32. 答案:328.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.。
高考数学一轮复习 第七篇 立体几何与空间向量 专题7.3 直线、平面平行的判定及性质练习(含解析)-
![高考数学一轮复习 第七篇 立体几何与空间向量 专题7.3 直线、平面平行的判定及性质练习(含解析)-](https://img.taocdn.com/s3/m/5dee1e87d5d8d15abe23482fb4daa58da0111ca5.png)
专题7.0 直线、平面平行的判定及性质【考试要求】1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.【知识梳理】1.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理文字语言图形表示符号表示判定定理平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面a⊄α,b⊂α,a∥b⇒a∥α性质定理一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行a∥α,a⊂β,α∩β=b⇒a∥b2.平面与平面平行(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β性质定理两个平面平行,则其中一个平面内的直线平行于另一个平面α∥β,a⊂α⇒a∥β如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β,α∩γ=a,β∩γ=b⇒a∥b平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)两个平面平行,则其中任意一个平面内的直线与另一个平面平行.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.( )(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.( )(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( )(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( )【答案】(1)×(2)×(3)×(4)√【解析】(1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.(2)若a∥α,P∈α,则过点P且平行于a的直线只有一条,故(2)错误.(3)如果一个平面内的两条直线平行于另一个平面,则这两个平面平行或相交,故(3)错误.【教材衍化】2.(必修2P61A1(2)改编)下列说法中,与“直线a∥平面α”等价的是( )A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交【答案】 D【解析】因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交,故选D.3.(必修2P61A1(1)改编)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α【答案】 D【解析】根据线面平行的判定与性质定理知,选D.【真题体验】4.(2018·某某模拟)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.m∥α,n∥α,则m∥nB.m∥n,m∥α,则n∥αC.m⊥α,m⊥β,则α∥βD.α⊥γ,β⊥γ,则α∥β【答案】 C【解析】A中,m与n平行、相交或异面,A不正确;B中,n∥α或n⊂α,B不正确;根据线面垂直的性质,C正确;D中,α∥β或α与β相交,D错.5.(2019·某某月考)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线【答案】 A【解析】当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.6.(2019·十八中开学考试)如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH 的形状为________.【答案】平行四边形【解析】∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.【考点聚焦】考点一与线、面平行相关命题的判定【例1】 (1)在空间中,a,b,c是三条不同的直线,α,β是两个不同的平面,则下列命题中的真命题是( )A.若a⊥c,b⊥c,则a∥bB.若a⊂α,b⊂β,α⊥β,则a⊥bC.若a∥α,b∥β,α∥β,则a∥bD.若α∥β,a⊂α,则a∥β(2)(2019·聊城模拟)下列四个正方体中,A,B,C为所在棱的中点,则能得出平面ABC∥平面DEF的是( )【答案】(1)D (2)B【解析】(1)对于A,若a⊥c,b⊥c,则a与b可能平行、异面、相交,故A是假命题;对于B,设α∩β=m,若a,b均与m平行,则a∥b,故B是假命题;对于C,a,b可能平行、异面、相交,故C是假命题;对于D,若α∥β,a⊂α,则a与β没有公共点,则a∥β,故D是真命题.(2)在B中,如图,连接MN,PN,∵A,B,C为正方体所在棱的中点,∴AB∥MN,AC∥PN,∵MN∥DE,PN∥EF,∴AB∥DE,AC∥EF,∵AB∩AC=A,DE∩EF=E,AB,AC⊂平面ABC,DE,EF⊂平面DEF,∴平面ABC∥平面DEF.【规律方法】 1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.2.(1)结合题意构造或绘制图形,结合图形作出判断.(2)特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.【训练1】 (1)下列命题正确的是( )A.若两条直线和同一个平面平行,则这两条直线平行B.若一条直线与两个平面所成的角相等,则这两个平面平行C.若一条直线与两个相交平面都平行,则这条直线与这两个平面的交线平行D.若两个平面垂直于同一个平面,则这两个平面平行(2)在正方体ABCD -A 1B 1C 1D 1中,M ,N ,Q 分别是棱D 1C 1,A 1D 1,BC 的中点,点P 在BD 1上且BP =23BD 1,则下面说法正确的是________(填序号).①MN ∥平面APC ;②C 1Q ∥平面APC ;③A ,P ,M 三点共线;④平面MNQ ∥平面APC . 【答案】 (1)C (2)②③【解析】 (1)A 选项中两条直线可能平行也可能异面或相交;对于B 选项,如图,在正方体ABCD -A 1B 1C 1D 1中,平面ABB 1A 1和平面BCC 1B 1与B 1D 1所成的角相等,但这两个平面垂直;D 选项中两平面也可能相交.C 正确.(2)如图,对于①,连接MN ,AC ,则MN ∥AC ,连接AM ,,易得AM ,交于点P ,即MN ⊂平面APC ,所以MN∥平面APC 是错误的. 对于②,由①知M ,N 在平面APC 内,由题易知AN∥C 1Q ,且AN ⊂平面APC , C 1Q ⊄平面APC.所以C 1Q ∥平面APC 是正确的.对于③,由①知,A ,P ,M 三点共线是正确的.对于④,由①知MN ⊂平面APC ,又MN ⊂平面MNQ ,所以平面MNQ ∥平面APC 是错误的. 考点二 直线与平面平行的判定与性质 角度1 直线与平面平行的判定【例2-1】 (2019·东北三省四市模拟)在如图所示的几何体中,四边形ABCD 是正方形,PA ⊥平面ABCD ,E ,F 分别是线段AD ,PB 的中点,PA =AB =1.【答案】见解析【解析】(1)证明:EF ∥平面PDC ; (2)求点F 到平面PDC 的距离.(1)证明 取PC 的中点M ,连接DM ,MF ,∵M,F 分别是PC ,PB 的中点,∴MF∥CB,MF =12CB ,∵E 为DA 的中点,四边形ABCD 为正方形, ∴DE∥CB,DE =12CB ,∴MF∥DE,MF =DE ,∴四边形DEFM 为平行四边形, ∴EF∥DM,∵EF ⊄平面PDC ,DM ⊂平面PDC , ∴EF ∥平面PDC . (2)解 ∵EF ∥平面PDC ,∴点F 到平面PDC 的距离等于点E 到平面PDC 的距离.∵PA ⊥平面ABCD ,∴PA ⊥DA ,在Rt△PAD 中,PA =AD =1,∴DP = 2. ∵PA ⊥平面ABCD ,∴PA ⊥CB ,∵CB ⊥AB ,PA ∩AB =A ,∴CB ⊥平面PAB , ∴CB ⊥PB ,则PC =3,∴PD 2+DC 2=PC 2, ∴△PDC 为直角三角形, ∴S △PDC =12×1×2=22.连接EP ,EC ,易知V E -PDC =V C -PDE ,设E 到平面PDC 的距离为h , ∵CD ⊥AD ,CD ⊥PA ,AD ∩PA =A ,∴CD ⊥平面PAD , 则13×h ×22=13×1×12×12×1,∴h =24, ∴点F 到平面PDC 的距离为24. 角度2 直线与平面平行性质定理的应用【例2-2】 (2018·某某模拟)如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为2,E ,F 分别是棱DD 1,C 1D 1的中点.(1)求三棱锥B 1-A 1BE 的体积;(2)试判断直线B 1F 与平面A 1BE 是否平行,如果平行,请在平面A 1BE 上作出与B 1F 平行的直线,并说明理由. 【答案】见解析【解析】(1)如图所示,V B 1-A 1BE =V E -A 1B 1B =13S △A 1B 1B · DA =13×12×2×2×2=43.(2)B 1F ∥平面A 1BE .延长A 1E 交AD 延长线于点H ,连BH 交CD 于点G ,则BG 就是所求直线.证明如下: 因为BA 1∥平面CDD 1C 1,平面A 1BH ∩平面CDD 1C 1=GE ,所以A 1B ∥GE . 又A 1B ∥CD 1,所以GE ∥CD 1.又E 为DD 1的中点,则G 为CD 的中点. 故BG ∥B 1F ,BG 就是所求直线.【规律方法】 1.利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反.【训练2】 (2017·某某卷)如图,在三棱锥A -BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC . 【答案】见解析【解析】证明 (1)在平面ABD 内,AB⊥AD,EF⊥AD, 则AB∥EF.∵AB ⊂平面ABC ,EF ⊄平面ABC ,∴EF∥平面ABC.(2)∵BC⊥BD,平面ABD∩平面BCD=BD,平面ABD⊥平面BCD,BC⊂平面BCD,∴BC⊥平面ABD.∵AD⊂平面ABD,∴BC⊥AD.又AB⊥AD,BC,AB⊂平面ABC,BC∩AB=B,∴AD⊥平面ABC,又因为AC⊂平面ABC,∴AD⊥AC.考点三面面平行的判定与性质【例3】 (经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.【答案】见解析【解析】证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,则GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1平行且等于AB,∴A1G平行且等于EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【迁移探究1】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.【答案】见解析【解析】证明 如图所示,连接A 1C 交AC 1于点M , ∵四边形A 1ACC 1是平行四边形, ∴M 是A 1C 的中点,连接MD , ∵D 为BC 的中点, ∴A 1B∥DM. ∵A 1B ⊂平面A 1BD 1, DM ⊄平面A 1BD 1, ∴DM∥平面A 1BD 1,又由三棱柱的性质知,D 1C 1平行且等于BD , ∴四边形BDC 1D 1为平行四边形, ∴DC 1∥BD 1.又DC 1⊄平面A 1BD 1,BD 1⊂平面A1BD1, ∴DC 1∥平面A 1BD 1,又DC 1∩DM=D ,DC 1,DM ⊂平面AC1D , 因此平面A 1BD 1∥平面AC 1D .【迁移探究2】 在本例中,若将条件“E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点”变为“点D ,D 1分别是AC ,A 1C 1上的点,且平面BC 1D ∥平面AB 1D 1”,试求AD DC的值. 【答案】见解析【解析】连接A 1B 交AB 1于O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O ,所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB=1.又由题设A 1D 1D 1C 1=DC AD, ∴DC AD =1,即ADDC=1. 【规律方法】 1.判定面面平行的主要方法 (1)利用面面平行的判定定理.(2)线面垂直的性质(垂直于同一直线的两平面平行). 2.面面平行条件的应用(1)两平面平行,分析构造与之相交的第三个平面,交线平行. (2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.【提醒】 利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线. 【训练3】 (2019·某某二模)如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥CD ,AB ⊥AD ,AB =2CD =2AD =4,侧面PAB 是等腰直角三角形,PA =PB ,平面PAB ⊥平面ABCD ,点E ,F 分别是棱AB ,PB 上的点,平面CEF ∥平面PAD .(1)确定点E ,F 的位置,并说明理由; (2)求三棱锥F -DCE 的体积. 【答案】见解析【解析】(1)因为平面CEF ∥平面PAD ,平面CEF ∩平面ABCD =CE , 平面PAD ∩平面ABCD =AD , 所以CE ∥AD ,又AB ∥DC , 所以四边形AECD 是平行四边形, 所以DC =AE =12AB ,即点E 是AB 的中点.因为平面CEF ∥平面PAD ,平面CEF ∩平面PAB =EF ,平面PAD ∩平面PAB =PA , 所以EF ∥PA ,又点E 是AB 的中点, 所以点F 是PB 的中点.综上,E ,F 分别是AB ,PB 的中点.(2)连接PE ,由题意及(1)知PA =PB ,AE =EB ,所以PE ⊥AB ,又平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,所以PE ⊥平面ABCD . 又AB ∥CD ,AB ⊥AD ,所以V F -DEC =12V P -DEC =16S △DEC ×PE =16×12×2×2×2=23. 【反思与感悟】1.转化思想:三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.【易错防X 】1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.4.运用性质定理,要遵从由“高维”到“低维”,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.若直线l 不平行于平面α,且l ⊄α,则( )A.α内的所有直线与l 异面B.α内不存在与l 平行的直线C.α与直线l 至少有两个公共点D.α内的直线与l 都相交【答案】 B【解析】 因为l ⊄α,直线l 不平行于平面α,所以直线l 只能与平面α相交,于是直线l 与平面α只有一个公共点,所以平面α内不存在与l 平行的直线.2.(2019·某某双基测试)已知直线l ,m ,平面α,β,γ,则下列条件能推出l∥m 的是( )A.l ⊂α,m ⊂β,α∥β B .α∥β,α∩γ=l ,β∩γ=mC.l∥α,m⊂αD.l⊂α,α∩β=m【答案】 B【解析】选项A中,直线l,m也可能异面;选项B中,根据面面平行的性质定理,可推出l∥m,B正确;选项C中,直线l,m也可能异面;选项D中,直线l,m也可能相交.故选B.3.(2018·长郡中学质检)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB 的位置关系是( )A.异面B.平行C.相交D.以上均有可能【答案】 B【解析】在三棱柱ABC-A1B1C1中,AB∥A1B1,∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB.4.(2018·某某六校联考)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α【答案】 D【解析】对于选项A,若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a,使得a∥α,a∥β,所以选项A的内容是α∥β的一个必要条件;同理,选项B、C的内容也是α∥β的一个必要条件而不是充分条件;对于选项D,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件.故选D.5.(2019·某某模拟)若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( )A.0条B.1条C.2条D.1条或2条【答案】 C【解析】如图所示,四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH.∴CD∥平面EFGH,同理,AB∥平面EFGH,所以与平面α(面EFGH)平行的棱有2条.二、填空题6.(2018·某某模拟)如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=________.【答案】 2【解析】根据题意,因为EF∥平面AB1C,所以EF∥AC.又E是AD的中点,所以F是CD的中点.因为在Rt△DEF中,DE=DF=1,故EF= 2.7.如图,平面α∥平面β,△ABC,△A′B′C′分别在α,β内,线段AA′,BB′,CC′共点于O,O在α,β之间,若AB=2,AC=1,∠BAC=60°,OA∶OA′=3∶2,则△A′B′C′的面积为________.【答案】23 9【解析】相交直线AA′,BB′所在平面和两平行平面α,β相交于AB,A′B′,所以AB∥A′B′.同理BC∥B′C′,CA∥C′A′.所以△ABC与△A′B′C′的三内角相等,所以△ABC∽△A′B′C′,A′B′AB=OA ′OA =23.S △ABC =12×2×1×32=32,所以S △A ′B ′C ′=32×⎝ ⎛⎭⎪⎫232=32×49=239. 8.(2019·某某调研)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊂α,n ∥α,则m ∥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ;③若α∩β=n ,m ∥n ,m ∥α,则m ∥β;④若m ∥α,n ∥β,m ∥n ,则α∥β.其中是真命题的是________(填上正确命题的序号).【答案】 ②【解析】①m ∥n 或m ,n 异面,故①错误;易知②正确;③m ∥β或m ⊂β,故③错误;④α∥β或α与β相交,故④错误.三、解答题9.(2019·某某模拟)已知四棱锥P -ABCD 的底面ABCD 是平行四边形,侧面PAB ⊥平面ABCD ,E 是棱PA 的中点.(1)求证:PC ∥平面BDE ;(2)平面BDE 分此棱锥为两部分,求这两部分的体积比.【答案】见解析【解析】(1)证明 在平行四边形ABCD 中,连接AC ,设AC ,BD 的交点为O ,则O 是AC 的中点. 又E 是PA 的中点,连接EO ,则EO 是△PAC 的中位线,所以PC∥EO,又EO ⊂平面EBD ,PC ⊄平面EBD ,所以PC∥平面EBD.(2)解 设三棱锥E -ABD 的体积为V 1,高为h ,四棱锥P -ABCD 的体积为V ,则三棱锥E -ABD 的体积V 1=13×S △ABD ×h , 因为E 是PA 的中点,所以四棱锥P -ABCD 的高为2h ,所以四棱锥P -ABCD 的体积V =13×S 四边形ABCD ×2h =4×13S △ABD ×h =4V 1, 所以(V -V 1)∶V 1=3∶1,所以平面BDE 分此棱锥得到的两部分的体积比为3∶1或1∶3.10.如图,ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.【答案】见解析【解析】证明(1)连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.【能力提升题组】(建议用时:20分钟)11.(2019·某某模拟)过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有( )A.4条B.6条C.8条D.12条【答案】 B【解析】如图,H,G,F,I是相应线段的中点,故符合条件的直线只能出现在平面HGFI中,有FI,FG,GH,HI,HF,GI共6条直线.12.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【答案】 D【解析】A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故D项正确.13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.【答案】Q为CC1的中点【解析】如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,所以平面D1BQ∥平面PAO.故Q为CC1的中点时,有平面D1BQ∥平面PAO.14.(2018·某某六市三模)已知空间几何体ABCDE中,△BCD与△CDE均是边长为2的等边三角形,△ABC是腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积.【答案】见解析【解析】(1)如图所示,取DC的中点N,取BD的中点M,连接MN,则MN即为所求.证明:连接EM,EN,取BC的中点H,连接AH,∵△AB C是腰长为3的等腰三角形,H为BC的中点,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH⊂平面ABC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN∥AH,∵EN⊄平面ABC,AH⊂平面ABC,∴EN∥平面ABC.又M,N分别为BD,DC的中点,∴MN∥BC,∵MN⊄平面ABC,BC⊂平面ABC,∴MN∥平面ABC.又MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,∴平面EMN∥平面ABC,又EF⊂平面EMN,∴EF∥平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行.(2)连接DH,取CH的中点G,连接NG,则NG∥DH,由(1)可知EN∥平面ABC,∴点E到平面ABC的距离与点N到平面ABC的距离相等,又△BCD 是边长为2的等边三角形, ∴DH⊥BC, 又平面ABC⊥平面BCD ,平面ABC∩平面BCD =BC ,DH ⊂平面BCD ,∴DH ⊥平面ABC ,∴NG ⊥平面ABC ,易知DH =3,又N 为CD 中点,∴NG =32, 又AC =AB =3,BC =2,∴S △ABC =12·BC ·AH =12×2×32-12=22, ∴V E -ABC =V N -ABC =13·S △ABC ·NG =63. 【新高考创新预测】15.(【答案】不唯一型)如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件________时,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)【答案】 点M 在线段FH 上(或点M 与点H 重合)【解析】 连接HN ,FH ,FN ,则FH∥DD 1,HN∥BD,易知平面FHN∥平面B1BDD 1,只需M∈FH,则MN ⊂平面FHN ,∴MN∥平面B 1BDD 1.。
高考数学大一轮复习 高考专题突破四 高考中的立体几何问题 文 新人教版-新人教版高三全册数学试题
![高考数学大一轮复习 高考专题突破四 高考中的立体几何问题 文 新人教版-新人教版高三全册数学试题](https://img.taocdn.com/s3/m/18947cc19fc3d5bbfd0a79563c1ec5da50e2d6c8.png)
2018版高考数学大一轮复习高考专题突破四高考中的立体几何问题文新人教版1.正三棱柱ABC-A1B1C1中,D为BC中点,E为A1C1中点,则DE与平面A1B1BA的位置关系为( )A.相交 B.平行C.垂直相交 D.不确定答案 B解析如图取B1C1中点为F,连接EF,DF,DE,则EF∥A1B1,DF∥B1B,∴平面EFD∥平面A1B1BA,∴DE∥平面A1B1BA.2.设x、y、z是空间不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“x⊥z且y⊥z⇒x∥y”为真命题的是( )A.③④ B.①③ C.②③ D.①②答案 C解析由正方体模型可知①④为假命题;由线面垂直的性质定理可知②③为真命题.3.(2016·某某模拟)如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3π B.24+3π C .20+4π D.24+4π 答案 A解析 根据几何体的三视图可知,该几何体是一个正方体和一个半圆柱的组合体,其中正方体的棱长为2,半圆柱的底面半径为1,母线长为2,故该几何体的表面积为4×5+2×π+2×12π=20+3π.4.如图,在四棱锥V -ABCD 中,底面ABCD 为正方形,E 、F 分别为侧棱VC 、VB 上的点,且满足VC =3EC ,AF ∥平面BDE ,则VB FB=________.答案 2解析 连接AC 交BD 于点O ,连接EO ,取VE 的中点M ,连接AM ,MF ,∵VC =3EC ,∴VM =ME =EC , 又AO =CO ,∴AM ∥EO , 又EO ⊂平面BDE , ∴AM ∥平面BDE ,又AF ∥平面BDE ,AM ∩AF =A ,∴平面AMF ∥平面BDE ,又MF ⊂平面AMF ,∴MF ∥平面BDE , 又MF ⊂平面VBC ,平面VBC ∩平面BDE =BE , ∴MF ∥BE ,∴VF =FB ,∴VB FB=2.5.如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.若PA ⊥AC ,PA =6,BC =8,DF =5.则直线PA 与平面DEF 的位置关系是________;平面BDE 与平面ABC 的位置关系是________.(填“平行”或“垂直”)答案 平行 垂直解析 ①因为D ,E 分别为棱PC ,AC 的中点, 所以DE ∥PA .又因为PA ⊄平面DEF ,DE ⊂平面DEF , 所以直线PA ∥平面DEF .②因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8, 所以DE ∥PA ,DE =12PA =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE ⊥EF . 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC ,又DE ⊂平面BDE , 所以平面BDE ⊥平面ABC .题型一 求空间几何体的表面积与体积例1 (2016·全国甲卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4, 所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2, 故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H , 所以AC ⊥平面DHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC . 又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′ABCFE 的体积V =13×694×22=2322.思维升华 (1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.正三棱锥的高为1,底面边长为26,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积.解 (1)底面正三角形中心到一边的距离为13×32×26=2,则正棱锥侧面的斜高为12+22= 3.∴S 侧=3×12×26×3=9 2.∴S 表=S 侧+S 底=92+12×32×(26)2=92+6 3.(2)设正三棱锥P -ABC 的内切球球心为O ,连接OP ,OA ,OB ,OC ,而O 点到三棱锥的四个面的距离都为球的半径r .∴V P -ABC =V O -PAB +V O -PBC +V O -PAC +V O -ABC =13S 侧·r +13S △ABC ·r =13S 表·r =(32+23)r .又V P -ABC =13×12×32×(26)2×1=23,∴(32+23)r =23,得r =2332+23=2332-2318-12=6-2.∴S 内切球=4π(6-2)2=(40-166)π.V 内切球=43π(6-2)3=83(96-22)π.题型二 空间点、线、面的位置关系例2 (2016·某某模拟)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积.(1)证明 在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC . 因为AB ⊂平面ABC , 所以BB 1⊥AB .又因为AB ⊥BC ,BC ∩BB 1=B , 所以AB ⊥平面B 1BCC 1. 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.(2)证明 方法一 如图1,取AB 中点G ,连接EG ,FG . 因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .方法二 如图2,取AC 的中点H ,连接C 1H ,FH . 因为H ,F 分别是AC ,BC 的中点,所以HF ∥AB , 又因为E ,H 分别是A 1C 1,AC 的中点, 所以EC 1綊AH ,所以四边形EAHC 1为平行四边形, 所以C 1H ∥AE ,又C 1H ∩HF =H ,AE ∩AB =A , 所以平面ABE ∥平面C 1HF , 又C 1F ⊂平面C 1HF , 所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. 所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33. 思维升华 (1)①证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.②证明C 1F ∥平面ABE :(ⅰ)利用判定定理,关键是在平面ABE 中找(作)出直线EG ,且满足C 1F ∥EG .(ⅱ)利用面面平行的性质定理证明线面平行,则先要确定一个平面C 1HF 满足面面平行,实施线面平行与面面平行的转化.(2)计算几何体的体积时,能直接用公式时,关键是确定几何体的高,不能直接用公式时,注意进行体积的转化.如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.\求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA .证明 (1)由AS =AB ,AF ⊥SB 知F 为SB 中点, 则EF ∥AB ,FG ∥BC ,又EF ∩FG =F ,AB ∩BC =B , 因此平面EFG ∥平面ABC .(2)由平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =SB ,AF ⊂平面SAB ,AF ⊥SB , 所以AF ⊥平面SBC ,则AF ⊥BC .又BC ⊥AB ,AF ∩AB =A ,则BC ⊥平面SAB , 又SA ⊂平面SAB ,因此BC ⊥SA . 题型三 平面图形的翻折问题例3 (2015·某某)如图1,在直角梯形 ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中△A 1BE 的位置,得到四棱锥A 1-BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1-BCDE 的体积为362,求a 的值. (1)证明 在题图1中,连接EC , 因为AB =BC =12AD =a ,∠BAD =π2,AD ∥BC ,E 为AD 中点,所以BC 綊ED ,BC 綊AE ,所以四边形BCDE 为平行四边形,故有CD ∥BE , 所以四边形ABCE 为正方形,所以BE ⊥AC , 即在题图2中,BE ⊥A 1O ,BE ⊥OC ,且A 1O ∩OC =O , 从而BE ⊥平面A 1OC ,又CD ∥BE , 所以CD ⊥平面A 1OC .(2)解 由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE , 又由(1)知,A 1O ⊥BE , 所以A 1O ⊥平面BCDE , 即A 1O 是四棱锥A 1-BCDE 的高, 由题图1知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2, 从而四棱锥A 1-BCDE 的体积为V =13×S ×A 1O =13×a 2×22a =26a 3, 由26a 3=362,得a =6. 思维升华 平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.(2017·某某月考)如图(1),四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC=PC =2,作如图(2)折叠,折痕EF ∥DC .其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后,点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ; (2)求三棱锥M -CDE 的体积.(1)证明 因为PD ⊥平面ABCD ,AD ⊂平面ABCD , 所以PD ⊥AD .又因为ABCD 是矩形,CD ⊥AD ,PD 与CD 交于点D , 所以AD ⊥平面PCD .又CF ⊂平面PCD ,所以AD ⊥CF ,即MD ⊥CF . 又MF ⊥CF ,MD ∩MF =M ,所以CF ⊥平面MDF .(2)解 因为PD ⊥DC ,PC =2,CD =1,∠PCD =60°, 所以PD =3,由(1)知FD ⊥CF , 在直角三角形DCF 中,CF =12CD =12.如图,过点F 作FG ⊥CD 交CD 于点G ,得FG =FC sin 60°=12×32=34,所以DE =FG =34,故ME =PE =3-34=334, 所以MD =ME 2-DE 2=3342-342=62. S △CDE =12DE ·DC =12×34×1=38. 故V M -CDE =13MD ·S △CDE =13×62×38=216.题型四 立体几何中的存在性问题例4 (2016·某某双流中学月考)如图,在长方体ABCD -A 1B 1C 1D 1中,平面BMD 1N 与棱CC 1,AA 1分别交于点M ,N ,且M ,N 均为中点.(1)求证:AC ∥平面BMD 1N .(2)若AD =CD =2,DD 1=22,O 为AC 的中点.BD 1上是否存在动点F ,使得OF ⊥平面BMD 1N ?若存在,求出点F 的位置,并加以证明;若不存在,请说明理由. (1)证明 连接MN .因为M ,N 分别为CC 1,AA 1的中点,所以AN =12AA 1,CM =12CC 1.又因为AA 1∥CC 1,且AA 1=CC 1, 所以AN ∥CM ,且AN =CM ,所以四边形ACMN 为平行四边形,所以AC ∥MN . 因为MN ⊂平面BMD 1N ,AC ⊄平面BMD 1N , 所以AC ∥平面BMD 1N .(2)解 当点F 满足D 1F =3BF 时,OF ⊥平面BMD 1N ,证明如下: 连接BD ,则BD 经过点O ,取BD 1的中点G ,连接OF ,DG , 又D 1F =3BF ,所以OF 为三角形BDG 的中位线, 所以OF ∥DG .因为BD =22=DD 1,且G 为BD 1的中点, 所以BD 1⊥DG ,所以BD 1⊥OF .因为底面ABCD 为正方形,所以AC ⊥BD . 又DD 1⊥底面ABCD ,所以AC ⊥DD 1, 又BD ∩DD 1=D ,所以AC ⊥平面BDD 1, 又OF ⊂平面BDD 1,所以AC ⊥OF . 由(1)知AC ∥MN ,所以MN ⊥OF .又MN ,BD 1是平面四边形BMD 1N 的对角线,所以它们必相交, 所以OF ⊥平面BMD 1N .思维升华 对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC .(1)求证:D1C⊥AC1;(2)问在棱CD上是否存在点E,使D1E∥平面A1BD.若存在,确定点E位置;若不存在,说明理由.(1)证明在直四棱柱ABCD-A1B1C1D1中,连接C1D,∵DC=DD1,∴四边形DCC1D1是正方形,∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC∩DD1=D,∴AD⊥平面DCC1D1,又D1C⊂平面DCC1D1,∴AD⊥D1C.∵AD⊂平面ADC1,DC1⊂平面ADC1,且AD∩DC1=D,∴D1C⊥平面ADC1,又AC1⊂平面ADC1,∴D1C⊥AC1.(2)解假设存在点E,使D1E∥平面A1BD.连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,要使D 1E ∥平面A 1BD , 可使MN ∥D 1E ,又M 是AD 1的中点,则N 是AE 的中点. 又易知△ABN ≌△EDN ,∴AB =DE . 即E 是DC 的中点.综上所述,当E 是DC 的中点时, 可使D 1E ∥平面A 1BD .1.(2016·顺义区一模)如图所示,已知平面α∩平面β=l ,α⊥β.A ,B 是直线l 上的两点,C ,D 是平面β内的两点,且AD ⊥l ,CB ⊥l ,DA =4,AB =6,CB =8.P 是平面α上的一动点,且有∠APD =∠BPC ,则四棱锥P -ABCD 体积的最大值是( )A .48B .16C .24 3D .144 答案 C解析 由题意知,△PAD ,△PBC 是直角三角形, 又∠APD =∠BPC ,所以△PAD ∽△PBC . 因为DA =4,CB =8,所以PB =2PA . 作PM ⊥AB 于点M ,由题意知,PM ⊥β. 令AM =t (0<t <6),则PA 2-t 2=4PA 2-(6-t )2, 所以PA 2=12-4t .所以PM =12-4t -t 2,即为四棱锥P -ABCD 的高, 又底面ABCD 为直角梯形,S =12×(4+8)×6=36.所以V =13×36×12-4t -t 2=12-t +22+16≤12×12=24 3.2.(2016·某某赣中南五校第一次联考)已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,则n∥α答案 C解析对于A,若α⊥γ,α⊥β,则γ∥β或相交;对于B,若m∥n,m⊂α,n⊂β,则α∥β或相交;对于D,若m∥n,m∥α,则n∥α或n⊂α.故选C.3.(2016·某某模拟)如图,ABCD-A1B1C1D1为正方体,连接BD,AC1,B1D1,CD1,B1C,现有以下几个结论:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③CB1与BD为异面直线.其中所有正确结论的序号为________.答案①②③解析由题意可知,BD∥B1D1,又B1D1⊂平面CB1D1,BD⊄平面CB1D1,所以BD∥平面CB1D1,①正确;易知AC1⊥B1D1,AC1⊥B1C,又B1D1∩B1C=B1,所以AC1⊥平面CB1D1,②正确;由异面直线的定义可知③正确.4.如图梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E、F分别是AB、CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.在翻折过程中,可能成立的结论是________.(填写结论序号)答案②③解析因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,则①错误;设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD∶BC∶AB=2∶3∶4,可使条件满足,所以②正确;当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;因为点D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故答案为②③.5.如图,在正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点,当CFFD=______时,D1E⊥平面AB1F.答案 1解析如图,连接A1B,则A1B是D1E在平面ABB1A1内的射影.∵AB1⊥A1B,∴D1E⊥AB1,又∵D1E⊥平面AB1F⇒D1E⊥AF.连接DE,则DE是D1E在底面ABCD内的射影,∴D1E⊥AF⇒DE⊥AF.∵ABCD是正方形,E是BC的中点,∴当且仅当F是CD的中点时,DE⊥AF,即当点F 是CD 的中点时,D 1E ⊥平面AB 1F , ∴CF FD=1时,D 1E ⊥平面AB 1F .6.(2016·某某模拟)如图,梯形ABEF 中,AF ∥BE ,AB ⊥AF ,且AB =BC =AD =DF =2CE =2,沿DC 将梯形CDFE 折起,使得平面CDFE ⊥平面ABCD .(1)证明:AC ∥平面BEF ; (2)求三棱锥D -BEF 的体积.(1)证明 如图,取BF 的中点M ,设AC 与BD 交点为O ,连接MO ,ME .由题设知,CE 綊12DF ,MO 綊12DF ,∴CE 綊MO ,故四边形OCEM 为平行四边形, ∴EM ∥CO ,即EM ∥AC .又AC ⊄平面BEF ,EM ⊂平面BEF , ∴AC ∥平面BEF .(2)解 ∵平面CDFE ⊥平面ABCD ,平面CDFE ∩平面ABCD =DC ,BC ⊥DC , ∴BC ⊥平面DEF .∴三棱锥D -BEF 的体积为V D -BEF =V B -DEF =13S △DEF ·BC =13×12×2×2×2=43.7.(2016·某某牟平一中期末)如图,在四棱柱ABCD -A 1B 1C 1D 1中,AC ⊥B 1D ,BB 1⊥底面ABCD ,E ,F ,H 分别为AD ,CD ,DD 1的中点,EF 与BD 交于点G .(1)证明:平面ACD1⊥平面BB1D;(2)证明:GH∥平面ACD1.证明(1)∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1.又AC⊥B1D,BB1∩B1D=B1,∴AC⊥平面BB1D.∵AC⊂平面ACD1,∴平面ACD1⊥平面BB1D.(2)设AC∩BD=O,连接OD1.∵E,F分别为AD,CD的中点,EF∩OD=G,∴G为OD的中点.∵H为DD1的中点,∴HG∥OD1.∵GH⊄平面ACD1,OD1⊂平面ACD1,∴GH∥平面ACD1.8.(2016·东城区一模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,AB=2,∠BAD=60°,M是PD的中点.(1)求证:OM∥平面PAB;(2)求证:平面PBD ⊥平面PAC . (3)当三棱锥C -PBD 的体积等于32时,求PA 的长. (1)证明 因为在△PBD 中,O ,M 分别是BD ,PD 的中点, 所以OM ∥PB .又OM ⊄平面PAB ,PB ⊂平面PAB , 所以OM ∥平面PAB .(2)证明 因为底面ABCD 是菱形,所以BD ⊥AC . 因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA ⊥BD .又AC ∩PA =A ,所以BD ⊥平面PAC . 又BD ⊂平面PBD , 所以平面PBD ⊥平面PAC .(3)解 因为底面ABCD 是菱形,且AB =2, ∠BAD =60°, 所以S △BCD = 3.又V C -PBD =V P -BCD ,三棱锥P -BCD 的高为PA , 所以13×3×PA =32,解得PA =32.9.(2016·某某测试)如图,已知三棱柱ABC -A ′B ′C ′中,平面BCC ′B ′⊥底面ABC ,BB ′⊥AC ,底面ABC 是边长为2的等边三角形,AA ′=3,E ,F 分别在棱AA ′,CC ′上,且AE =C ′F =2.(1)求证:BB ′⊥底面ABC ;(2)在棱A ′B ′上找一点M ,使得C ′M ∥平面BEF ,并给出证明. (1)证明 如图,取BC 的中点O ,连接AO ,∵三角形ABC是等边三角形,∴AO⊥BC.∵平面BCC′B′⊥底面ABC,AO⊂平面ABC,平面BCC′B′∩平面ABC=BC,∴AO⊥平面BCC′B′.又BB′⊂平面BCC′B′,∴AO⊥BB′.又BB′⊥AC,AO∩AC=A,AO⊂平面ABC,AC⊂平面ABC,∴BB′⊥底面ABC.(2)解显然点M不是点A′,B′,若棱A′B′上存在一点M,使得C′M∥平面BEF,过点M作MN∥AA′交BE于N,连接FN,MC′,如图,∴MN∥C′F,即C′M和FN共面,又平面MNFC′∩平面BEF=FN,∴C′M∥FN,∴四边形C′MNF为平行四边形,∴MN=2,∴MN是梯形A′B′BE的中位线,M为A′B′的中点.故当M为A′B′的中点时,C′M∥平面BEF.。
2016届高考数学文自由复习步步高系列专题06立体几何(通用版)(原卷版)
![2016届高考数学文自由复习步步高系列专题06立体几何(通用版)(原卷版)](https://img.taocdn.com/s3/m/b07167e5da38376baf1fae3e.png)
2016年高考备考之考前十天自主复习第6天(文科)回顾一:空间几何体1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.2.空间几何体的三视图(1)三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影形成的平面图形.(2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样.(3)画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.看不到的线画虚线.3.直观图的斜二测画法空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.4.空间几何体的两组常用公式(1)柱体、锥体、台体的侧面积公式:①S 柱侧=ch (c 为底面周长,h 为高);②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高);④S 球表=4πR 2(R 为球的半径). (2)柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 台=13(S +SS ′+S ′)h (不要求记忆);④V 球=43πR 3.回顾二:空间中的平行于垂直1.线面平行与垂直的判定定理、性质定理2.提醒 使用有关平行、垂直的判定定理时,要注意其具备的条件,缺一不可. 3. 平行关系及垂直关系的转化示意图热点一:三视图与表面积、体积【典例】( 福建省龙岩市2016届高三教学质量检查数学文8)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的表面积是( )A B+C+D1【题型概述】这类题以三视图为载体,考查面积、体积的计算,尤其三视图及柱、锥与球的接切问题相结合是考试的重点和热点,这类题的解决方法一般为将三视图还原几何体,再利用几何体的表面积公式或体积公式计算,解决的关键是要熟悉常见几何体的三视图,尤其注意几何体的不同摆放位置三视图会发生变化.【跟踪练习1】(2016年浙江省杭州市严州中学高三三月阶段测试数学文10)一个简单几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是等腰直角三角形,则该几何体的体积为 ,表面积为.【跟踪练习2】(东北三省三校2016年高三第一次联合模拟考试文6)已知三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.热点二:证明或判断空间平行、垂直关系【典例】( 四川省遂宁市2016届高三第二次诊断考试数学文18)如图,四边形ABCD 为梯形,AB ∥CD ,PD ⊥平面ABCD , =ADC=90BAD ∠∠o ,22,DC AB a DA ===,E 为BC 中点.(1)求证:平面PBC ⊥平面PDE ;(2)线段PC 上是否存在一点F ,使P A //平面BDF ?若有,请找出具体位置,并进行证明;若无,请分析说明理由.【题型概述】空间中的平行关系在高考命题中主要与平面问题中的平行、简单几何体的结构特征等问题相结合,重点考查空间中直线与平面平行、平面与平面平行的判定及性质,解决该类题的关键是注意线线位置关系、线面位置关系、面面位置关系的转化. 【跟踪练习1】(江西省六校2016届高三3月联考数学文4)设α,β是空间两个平面,m, n 是空间两条直线,则下列选项不正确...的是( ) A .当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件 B .当m ⊂α时,“m β⊥”是“α⊥β”的充分不必要条件 C .当n ⊥α时,“n ⊥β”是“α∥β”的充要条件D .当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件【跟踪练习2】( 2014-2016江西省景德镇高三第二质检数学文19)在平行六面体1111ABCD A B C D -中,12AA AD AB ===,160A AD DAB ∠=∠=︒,O 是AD 的中点.(1)证明AD ⊥面1AOB ; (2)当平面ABCD ⊥平面11AA D D ,求11B CDD V -.1A【跟踪练习3】如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC; (2)求证:平面ABC⊥平面APC.P1.(2014——2016学年度上学期辽宁省丹东五校协作体高三期末考试文5)某几何体三视图如下,其中三角形的三边长与圆的直径均为2,则该几何体体积为().Aπ.B.C.Dπ2.等腰梯形ABCD,上底1CD=,腰AD CB==3AB=,以下底所在直线为x 轴,则由斜二测画法画出的直观图''''A B C D的面积为_______.3.(山东省潍坊市第一中学2014届高三1月期末考前模拟数学文7)设,m n 是两条不同直线,,αβ是两个不同的平面,下列命题正确的是(A )//,////,//m n m n αβαβ且则 (B ),m n αβαβ⊥⊥⊥且,则m n ⊥ (C ),,m n m n αβ⊥⊂⊥,则αβ⊥ (D ),,//,//m n m n ααββ⊂⊂,则//αβ 4.如图,四边形ABCD 为矩形,AD ⊥平面ABE,F 为CE 上的点,且BF ⊥平面ACE. (1)求证:AE ⊥平面BCE ;(2)设M 在线段AB 上,且满足AM=2MB,试在线段CE 上确定一点N,使得MN ∥平面DAE .5.已知直三棱柱ABC-A 1B 1C 1中,AC=BC,点D 是AB 的中点. (1)求证:BC 1∥平面CA 1D ; (2)求证:平面CA 1D ⊥平面AA 1B 1B ;6. (甘肃省兰州市2016年高三诊断考试文18)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,2AB =,1BC CD ==AB ∥CD ,顶点1D 在底面ABCD 内的射影恰为点C .(Ⅰ)求证:1AD BC ⊥;(Ⅱ)在AB 上是否存在点M ,使得1C M ∥平面11ADD A ?若存在,确定点M 的位置;若不存在,请说明理由.7. (吉林省长春市普通高中2016届高三质量监测(二)文19)如图,在四棱锥CD P -AB 中,PA ⊥平面CD AB ,D 2PA =AB =A =,四边形D AB ⊥A ,C//D B A 且C 4B =,点M为C P 中点.()1求证:平面D A M ⊥平面C PB ; ()2求点P 到平面D A M 的距离.。
届数学一轮复习第八章立体几何第五节直线与平面垂直的判定及其性质学案理含解析
![届数学一轮复习第八章立体几何第五节直线与平面垂直的判定及其性质学案理含解析](https://img.taocdn.com/s3/m/d6f8a8c9e109581b6bd97f19227916888486b9b2.png)
第五节直线与平面垂直的判定及其性质[最新考纲][考情分析][核心素养]1。
以立体几何的有关定义、公理和定理为出发点,认识和理解空间中线面垂直、面面垂直的有关性质与判定定理,并能够证明相关性质定理.2。
能运用线面垂直、面面垂直的判定定理及性质定理证明一些空间图形的垂直关系的简单命题。
1。
以空间几何体为载体,考查线线、线面、面面垂直的证明。
2。
利用垂直关系及垂直的性质进行适当的转化,处理综合问题.1.直观想象2.逻辑推理3。
数学运算‖知识梳理‖1.直线与平面垂直(1)直线与平面垂直的定义直线l与平面α1任意一条直线都垂直,就说直线l与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理文字语言图形语符号语言言判定定理一条直线与一个平面内的错误!两条相交直线都垂直,则该直线与此平面垂直错误!⇒l⊥α性质定理垂直于同一个平面的两条直线错误!平行错误!⇒a∥b►常用结论1.直线与平面垂直的定义常常逆用,即a⊥α,b⊂α⇒a⊥b. 2.若平行直线中一条垂直于平面,则另一条也垂直于该平面.3.垂直于同一条直线的两个平面平行.4.过一点有且只有一条直线与已知平面垂直.5.过一点有且只有一个平面与已知直线垂直.2.平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定一个平面过另一个平面的错误!垂线,则这两个平面垂直错误!⇒α⊥β理性质定理两个平面垂直,则一个平面内垂直于错误!交线的直线与另一个平面垂直错误!⇒l⊥α‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”).(1)直线l与平面α内无数条直线都垂直,则l⊥α.()(2)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.()答案:(1)×(2)×(3)×二、走进教材2.(必修2P66练习改编)已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置关系为()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交答案:C3.(必修2P67练习2改编)已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,有下列结论:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的是()A.①②③B.①②④C.②③④D.①②③④答案:A三、易错自纠4.如图,在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P-ABC中共有直角三角形的个数为()A.4 B.3C.2 D.1解析:选A由PA⊥平面ABC可得,△PAC,△PAB是直角三角形,且PA⊥BC.又∠ABC=90°,即AB⊥BC,所以△ABC是直角三角形,且BC⊥平面PAB,所以BC⊥PB,即△PBC为直角三角形,故四面体P-ABC中共有4个直角三角形.5.“直线a与平面M内的无数条直线都垂直"是“直线a与平面M垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B根据直线与平面垂直的定义知由“直线a与平面M 的无数条直线都垂直”不能推出“直线a与平面M垂直”,反之成立,所以是必要不充分条件.6.设a,b是夹角为30°的异面直线,则满足条件“a⊂α,b⊂β,且α⊥β”的平面α,β()A.不存在B.有且只有一对C.有且只有两对D.有无数对解析:选D过直线a的平面α有无数个,当平面α与直线b平行时,两直线的垂线与b确定的平面β⊥α,当平面α与b相交时,过交点作平面α的垂线与b确定的平面β⊥α,故选D.错误!【例1】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)因为PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD.因为AC⊥CD,PA∩AC=A,所以CD⊥平面PAC.又AE⊂平面PAC,所以CD⊥AE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省2016届高三数学文一轮复习专题突破训练立体几何2016年广东省高考将采用全国卷,下面是近三年全国卷的高考试题及2015届广东省部分地区的模拟试题,供同学们在复习时参考。
一、选择、填空题1、(2015年全国I卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()(A)14斛(B)22斛(C)36斛(D)66斛2、(2015年全国I卷)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为+,则r=( )1620π(A)1(B)2(C)4(D)83、(2014年全国I卷)如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱4、(2013年全国I卷)某几何体的三视图如图1-3所示,则该几何体的体积为()图1-3A.16+8πB.8+8πC.16+16πD.8+16π5、(佛山市2015届高三二模)已知a ,b ,c 均为直线,α,β为平面,下面关于直线与平面关系的命题:(1)任意给定一条直线与一个平面α,则平面α内必存在与a 垂直的直线;(2)a ∥β,β内必存在与a 相交的直线;(3)α∥β,a ⊂α,b ⊂β,必存在与a ,b 都垂直的直线;(4)α⊥β,c αβ= ,a ⊂α,b ⊂β,若a 不垂直c ,则a 不垂直b 。
其中真命题的个数为( )A .1B .2C . 3D .46、(广州市2015届高三一模)已知某锥体的正视图和侧视图如图2, 其体积为233,则该锥体的俯视图可以是7、(华南师大附中2015届高三三模)某三棱锥的三视图如下图所示,则该三棱锥的四个面中,面积最大的面的面积是(***)A .2B . 3C .7D .18、(惠州市2015届高三4月模拟)已知某几何体的三视图如上图所示,则该几何体的体积为 ( ) A .12 B .1 C .32D .39、(茂名市2015届高三二模)已知平面α⊥平面β,=l αβ ,点,A A l α∈∉,作直线AC l ⊥,现给出下列四个判断:(1)AC 与l 相交, (2)AC α⊥, (3)AC β⊥, (4)//AC β. 则可能..成立的个数为( ) A. 1 B . 2 C. 3 D. 410、(梅州市2015届高三一模)若某几何体的三视图如右图所示,则此几何体的体积等于A 、30B 、12C 、24D 、411、(深圳市2015届高三二模)已知直线l ,平面,,αβγ,则下列能推出//αβ的条件是 A.l α⊥,//l β B.//l α,//l β C.α⊥γ,γβ⊥ D.//αγ,//γβ12、(湛江市2015届高三二模)一个几何体的三视图如图,正视图和侧视图都是由一个半圆和一个边长为2的正方形组成,俯视图是一个圆,则这个几何体的表面积是( ) A .5π B .6π C .7π D .9π13、(深圳市2015届高三二模).某几何体的三视图如图3所示,其中俯视图为半径为2的四分之一个圆弧,则该几何体的体积为 .14、(珠海市2015届高三二模)l m 、是空间两条直线,αβ、是空间两个平面,则 A .m l //,l α⊂,m β⊂,则βα// B .l m ⊥,l α⊂,m β⊂,则αβ⊥ C .αβ⊥,α//l ,β//m ,则l m ⊥ D .l α⊥,m l //,m β⊂,则αβ⊥ 15、(潮州市2015届高三上期末)已知某几何体的三视图如图所示,则该几何体的体积是( )A .233π+ B .2323π+ C .23π+ D .232π+二、解答题1、(2015年全国I 卷)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠= ,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积.2、(2014年全国I 卷)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(I )证明:;1AB C B ⊥(II )若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.3、(2013年全国I 卷)如图1-5所示,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C =6,求三棱柱ABC -A 1B 1C 1的体积.图1-54、(佛山市2015届高三二模)如图4,平面ABCD ⊥平面PAB ,且四边形ABCD 为正方形,△PAB 为正三角形,M 为PD 的中点,E 为线段BC 上的动点.(1)若E 为BC 的中点,求证:AM ⊥平面PDE ; (2)若三棱锥A —PEM 的体积为33,求正方形ABCD 的边长.5、(广州市2015届高三一模)如图4,在边长为4的菱形ABCD 中,60DAB ︒∠=,点E ,F 分别是边CD ,CB 的中点,AC EF O = .沿EF 将△CEF 翻折到△PEF ,连接PA,PB,PD ,得到如图5的五棱锥P ABFED -,且10PB =. (1)求证:BD ⊥平面POA ; (2)求四棱锥P BFED -的体积.6、(华南师大附中2015届高三三模)如图,111111ABCDEF A B C D E F -是底面半径为1的圆柱的内接正六棱柱(底面是正六边形,侧棱垂直于底面),过FB 作圆柱的截面交下底面于11C E ,已知113FC =. (1)证明:四边形11BFE C 是平行四边形; (2)证明:1FB CB ⊥;(3)求三棱锥1A A BF -的体积.7、(惠州市2015届高三4月模拟)如图所示,在所有棱长都为2a 的三棱柱111ABC A B C -中,侧棱1AA ABC ⊥底面,D 点为棱AB 的中点. (1)求证:1AC ∥平面1CDB ;AD PC BEM图4A 1B 1C 1(2)求四棱锥111C ADB A-的体积.8、(茂名市2015届高三二模)右图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,//EC PD,且22PD AD EC===,N为线段PB的中点.(1)证明:NE PD⊥;(2)求四棱锥B CEPD-的体积.9、(梅州市2015届高三一模)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将△ADE折起,得到如图所示的四棱锥'A BCDE-,F是'A B的中点。
(1)求证:平面'A DE⊥平面BCDE;(2)求证:EF∥平面'A CD;(2)求四棱锥'A BCDE-体积的最大值时。
10、(深圳市2015届高三二模)如图5,ABC∆是边长为4的等边三角形,ABD∆是等腰直角三角形,AD BD⊥,平面ABC⊥平面ABD,且EC⊥平面ABC,2EC=.(1)证明://DE平面ABC;(2)证明:AD⊥BE.DE11、(湛江市2015届高三二模)在边长为4的正方形CD AB 中,E 、F 分别是C B 、CD 的中点,M 、N 分别是AB 、CF 的中点.将该正方形沿AE 、F A 、F E 折叠,使B 、C 、D 三点重合,构成一个三棱锥,如图所示. ()1证明://MN 平面F AE ;()2证明:AB ⊥平面F BE ; ()3求四棱锥F E -A NM 的体积.12、(珠海市2015届高三二模)如图为一多面体ABCDFE ,AB AD ⊥,//AB CD ,224CD AB AD ===,四边形BEFD 为平行四边形,BD DF =,3BDF π∠=,DF BC ⊥,(1) 求证:平面BCE ⊥平面BEFD . (2) 求点B 到面DCE 的距离.13、(清远市2015届高三期末)在等腰直角△BCP 中,BC=PC=4,∠BCP=90°,A 是边BP 的中点,现沿CA 把△ACP 折起,使PB=4,如图1所示.(1)在三棱锥P-ABC 中,求证:直线PA ⊥平面ABC ;(2)在三棱锥P-ABC 中,M 、N 、F 分别是PC 、BC 、AC 的中点,Q 为MN 上任取一点,求证:直线FQ ∥平面PAB ;FEDCBA第18题图14、(汕头市2015届高三期末)如图,已知F A ⊥平面CD AB ,四边形F ABE 为矩形,四边形CD AB 为直角梯形,D 90∠AB =,//CD AB ,D F CD 2A =A ==,4AB =.()1求证:F//A 平面C B E ;()2求证:C A ⊥平面C B E ; ()3求三棱锥CF E -B 的体积.15、(汕尾市2015届高三期末)如图(4),在三棱柱111ABC A B C -中,侧面1111,ABB A ACC A 均为正方形,1,AB AC ==90BAC ∠= ,点D 是棱11B C 的中点。
(1) 求证:1AD ⊥平面11BB C C ; (2) 求证://AB 平面1A DC ; (3)求三棱锥11C ACD -的体积V 。
参考答案一、选择、填空题 1、【答案】B【解析】试题分析:设圆锥底面半径为r ,则12384r ⨯⨯==163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 考点:本题主要考查圆锥的性质与圆锥的体积公式 2、【答案】B【解析】试题分析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B. 3、【答案】:B【解析】:根据所给三视图易知,对应的几何体是一个横放着的三棱柱. 选B4、A [解析] 该空间几何体的下半部分是一个底面半径为2,母线长为4的半圆柱,上半部分是一个底面边长为2、高为4的正四棱柱.这个空间几何体的体积是12×π×4×4+2×2×4=16+8π.5、B6、C7、C8、C 解析:由三视图易知,该几何体是底面积为32,高为3的三棱锥,由锥体的体积公式得1333322V =⨯⨯=9、D 10、C 11、D 12、C13、82π- 14、D 15、C二、解答题1、【答案】(I )见解析(II )3+25试题解析:(I )因为四边形ABCD 为菱形,所以AC ⊥BD ,因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED. 又AC ⊥平面AEC ,所以平面AEC ⊥平面BED (II )设AB=x ,在菱形ABCD 中,由∠ABC=120°,可得AG=GC=32x ,GB=GD=2x . 因为AE ⊥EC ,所以在Rt D AEC 中,可得EG=32x . 由BE ⊥平面ABCD ,知D EBG 为直角三角形,可得BE=22x . 由已知得,三棱锥E-ACD 的体积3116632243E ACD V AC GD BEx -=醋?=.故x =2从而可得AE=EC=ED=6.所以△EAC 的面积为3,D EAD 的面积与D ECD 的面积均为5. 故三棱锥E-ACD 的侧面积为3+25.考点:线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力2、【解析】:(I )连结1BC ,则O 为1BC 与1B C 的交点,因为侧面11BB C C 为菱形,所以1B C 1BC ⊥ ,又AO ⊥平面11BB C C ,故1B C AO ⊥ 1B C ⊥平面ABO ,由于AB ⊂平面ABO , 故1B C ⊥AB ………6分 (II )作OD ⊥BC,垂足为D,连结AD,作OH ⊥AD,垂足为H,由于BC ⊥AO,BC ⊥OD,故BC ⊥平面AOD,所以OH ⊥BC. 又OH ⊥AD,所以OH ⊥平面ABC.因为1,601==∠BC CBB ,所以△1CBB 为等边三角形,又BC=1,可得OD=34,由于1AB AC ⊥,所以11122OA B C ==,由 OH ·AD=OD ·OA,且2274AD OD OA =+=,得OH=2114又O 为B 1C 的中点,所以点B 1 到平面ABC 的距离为217,故三棱柱ABC-A 1B 1C 1 的高为217……………………….12 分3、解:(1)取AB 的中点O ,联结OC ,OA 1,A 1B ,因为CA =CB ,所以OC ⊥AB.由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB. 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C. 又A 1C 平面OA 1C ,故AB ⊥A 1C.(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以OC =OA 1= 3.又A 1C =6,则A 1C 2=OC 2+OA 21,故OA 1⊥OC.因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高. 又△ABC 的面积S △ABC =3,故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·OA 1=3. 4、H F EPODBA5、(1)证明:∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF . …………………………1分 ∵菱形ABCD 的对角线互相垂直,∴BD AC ⊥. …………………………2分 ∴EF AC ⊥. …………………………3分 ∴EF AO ⊥,EF PO ⊥. …………………………4分 ∵AO ⊂平面POA ,PO ⊂平面POA ,AO PO O = , ∴EF ⊥平面POA . …………………………5分 ∴BD ⊥平面POA . …………………………6分 (2)解:设AO BD H = ,连接BO , ∵60DAB ︒∠=,∴△ABD 为等边三角形. …………………………7分∴4BD =,2BH =,23HA =,3HO PO ==. ……………………8分 在R t △BHO 中,227BO BH HO =+=, …………………………9分在△PBO 中,22210+==BO PO PB , …………………………10分∴PO BO ⊥. …………………………11分 ∵PO EF ⊥,EF BO O = ,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED . …………………………12分梯形BFED 的面积为()1332S EF BD HO =+⋅=,………………………13分 ∴四棱锥P BFED -的体积11333333V S PO =⋅=⨯⨯=.………………14分6、7、解:(1)连结1BC ,设1BC 与1B C 交于点E ,…………1分则点E 是1BC 的中点,连结DE ,…………2分 因为D 点为AB 的中点,所以DE 是1ABC ∆的中位线,所以1AC ∥DE , ………………4分 因为DE ⊂平面1CDB ,1AC ⊄面1CDB ,………5分 所以1AC ∥平面1CDB . ………………6分 (2)取线段11A B 中点M ,连结1C M , ………………7分BCDA 1B 1C 1E∵ 1111C A C B =,点M 为线段11A B 中点, ∴ 1C M 11A B ⊥. ………………9分 又1A A ⊥平面ABC即1A A ⊥平面111C A B ,1C M ⊂平面111C A B∴ 1A A ⊥1C M , ………………11分 ∵ 1A A 11A B 1A =,∴ 1C M ⊥平面11ADB A ,则1C M 是四棱锥111C ADB A -的高 ………………12分1113C -ADB A 1(2a +a)2aV =3a =3a 32⨯⨯⨯. ………………14分8、解:(1)连结AC 与BD 交于点F ,则F 为BD 的中点,连结NF , ∵N 为线段PB 的中点,∴//,NF PD 且,21PD NF = …………………3分 又//EC PD 且PD EC 21=∴//NF EC 且.NF EC = ∴四边形NFCE 为平行四边形, ……………………5分∴//NE FC , 即//NE AC . …………………………………………………………6分 又∵PD ⊥平面ABCD , AC ⊂面ABCD , ∴AC PD ⊥,∵//NE AC , ∴NE PD ⊥, …………………………………………………………7分 (2)∵PD ⊥平面ABCD ,PD ⊂平面PDCE ,∴平面PDCE ⊥平面ABCD . …………………………………………………………9分 ∵BC CD ⊥,平面PDCE 平面ABCD CD =,BC ⊂平面ABCD ,∴BC ⊥平面.PDCE . ………………………………………………………………10分 ∴BC 是四棱锥B PDCE -的高. ……………………………………………………11分 ∵11()32322S PD EC DC =+⋅=⨯⨯=梯形PDCE……………………………………12分 ∴四棱锥B CEPD -的体积1132233B CEPD PDCE V S BC -=⋅=⨯⨯=梯形. ………14分 9、(1)证明: .,90AC BC ACB ⊥∴=∠E D ,分别为AB AC ,的中点,DE ∴∥,BC .DC DE ⊥∴ …………2分沿DE 将ADE ∆折起后, ,D A DE '⊥.,DC A DE D CD D A '⊥∴=⋂'平面,BCDE DE 平面⊂.'BCDE DC A 平面平面⊥∴ …………4分(2)证明:取C A '中点G ,连接GF DG ,. 则由中位线定理可得,DE ∥BC ,BC DE 21=, …………5分 同理GF ∥BC ,BC GF 21=. 所以DE ∥GF ,=DE GF ,从而四边形DEFG 是平行四边形, …………7分 EF ∴∥DG .又EF ⊄面CD A ',DG⊆平面CD A ',EF ∴∥平面CD A '. …………9分(3)在平面CD A '内作CD H A ⊥'于点H .由(1) ,'BCDE DC A 平面平面⊥,'CD BCDE DC A =⋂平面平面故⊥H A '底面BCDE ,即H A '就是四棱锥BCDE A -'的高. …………11分由AD H A ≤'知,点H 和D 重合时,四棱锥BCDE A -'的体积取最大值.…12分ABC ∆是等腰直角三角形, 90=∠ACB ,a AC 2=, ,21,2,a BC DE a BC a CD AD D A ======'∴ 得.21)2(2131313a a a a a D A S V BCDE BCDE A =⨯⨯+⨯='⋅=-' 所以四棱锥BCDE A -'的体积的最大值为.213a …………14分10、证明:(1)取AB 的中点O ,连结DO 、CO ,…………1分Q ABD ∆是等腰直角三角形,AD BD ⊥, ∴DO AB ⊥,122DO AB ==,………………2分 又Q 平面ABD ⊥平面ABC ,平面ABD I 平面ABC AB =,∴DO ⊥平面ABC ,………………………………3分由已知得EC ⊥平面ABC ,DCABEO∴//DO EC ,…………………………………………………………………………………4分又2EC DO ==,∴四边形DOCE 为平行四边形,……………………………………………………………5分 ∴//DE OC ,…………………………………………………………………………………6分而DE ⊄平面ABC ,OC ⊂平面ABC ,∴//DE 平面ABC .……………………………………………………………………………7分(2)Q O 为AB 的中点,ABC ∆为等边三角形,∴OC AB ⊥,…………………………………………………………………………………8分由(1)知DO ⊥平面ABC ,而OC ⊂平面ABC ,可得DO OC ⊥,………………………………………………………………………………9分Q DO AB O =I ,OC ∴⊥平面ABD ,…………………………………………………………………………10分而AD ⊂平面ABD ,∴OC AD ⊥,………………………………………………………………………………11分又Q //DE OC ,∴DE AD ⊥,………………………………………………………………………………12分而BD AD ⊥,DE BD D =I ,AD ∴⊥平面BDE ,…………………………………………………………………………13分又BE ⊂平面BDE ,∴AD ⊥BE .…………………………………………………………………………………14分【说明】本题主要考察空间点、线、面的位置关系,考查空间想象能力、运算能力和逻辑推理能力. 11、12、(Ⅰ)证明:取CD 中点G ,连接BG //AB CD ,224CD AB AD === ∴//AB GD ,2AB GD AD ===AB AD ⊥∴四边形ABGD 是正方形…………………………………………1分∴22BD =,GB CD ⊥,2BG GD GC === ∴22BC =,且045ADB BDC BCD ∠=∠=∠=……2分 ∴BD BC ⊥DF BC ⊥,BD DF D =∴BC ⊥平面BDFE …………………………………………4分 BC ⊂平面BCE∴平面BCE ⊥平面BEFD …………………………………………6分 (Ⅱ)解: 由(Ⅰ)知BC ⊥平面BDFE ,BDE BDE C S BC V .31=∴-,……7分由3BDF π∠=得32π=∠DBE ,且22==BE BD ,3232sin...21==∴πBE BD S DBE ……8分又22BC =,∴364.31==∴-BDE BDE C S BC V ……9分 HGFEDCBA设点B 到面DCE 的距离为h ,由等体积法……10分364..31.31===∴-h S S BC V DCE BDE BDE C ……11分 在中DCE ∆,易得:624===DE CE DC ,,∴60=D CE S ……13分10104=h ……14分 13、解:(1)在三棱锥P-ABC 中,依题意可知:AC PA ⊥ …………2分∵PA=AB=22,PB=4222PB PB PA =+∴,则AB PA ⊥ …………4分又ABAC A ⋂=,…………5分 ∴PA ⊥平面ABC …………6分(2)证法一:∵M 、N 、F 分别是PC 、BC 、AC 的中点,连FN 、MF ,得平面FMN ,……7分 ∴直线MN ∥直线PB ,…………8分 直线FN ∥直线AB ,…………9分 又∵直线MN ∩直线FN=N , 直线PB ∩直线AB=B ,…………11分 ∴平面PAB ∥平面MNF,…………12分(或者证明两相交线与面平行) 又∵FQ ⊂平面MNF , ∴直线FQ ∥平面平面PAB …………14分 证法二:连CQ 延长交PB 于K ,连AK ,…………7分 ∵M 、N 分别是PC 、BC 的中点,∴直线MN ∥直线PB 且MN=21PB ,…………9分 ∴Q 为CK 的中点,……10分 又∵F 是AC 的中点, 连AK ,∴直线FQ ∥直线AK ,…12分 ∵FQ ⊄平面PAB ,∴FQ ∥平面PAB ,…………14分 14、解:(1)因为四边形ABEF 为矩形,所以⊂BE BE AF ,//平面BCE ,⊄AF 平面BCE , 所以//AF 平面BCE .…… 3分 (2)过C 作AB CM ⊥,垂足为M , 因为,DC AD ⊥所以四边形ADCM 为矩形.所以2==MB AM ,又因为4,2==AB AD 所以22=AC ,2=CM ,22=BC所以222AB BC AC =+,所以BC AC ⊥;…… 5分因为AF ⊥平面ABCD ,,//BE AF 所以BE ⊥平面ABCD ,所以AC BE ⊥,……7分 又因为⊂BE 平面BCE ,⊂BC 平面BCE ,B BC BE =⋂EA BDFMC所以⊥AC 平面BCE . ……9分(3)因为AF ⊥平面ABCD ,所以CM AF ⊥,…… 10分又因为AB CM ⊥,⊂AF 平面ABEF ,⊂AB 平面ABEF ,A AB AF =⋂ 所以⊥CM 平面ABEF .…… 12分824261213131=⨯⨯⨯=⨯⨯⨯⨯=⨯==∆--CM EF BE CM S V V BEF BEF C BCF E …13分 3824261213131=⨯⨯⨯=⨯⨯⨯⨯=⨯=∆CM EF BE CM S BEF …14分 15、。