专题04 导数与切线(训练篇B)-用思维导图突破导数压轴题

合集下载

第10讲 利用导数研究函数的零点问题(学生版)2023年高考数学重难突破之导数、数列(全国通用)

第10讲 利用导数研究函数的零点问题(学生版)2023年高考数学重难突破之导数、数列(全国通用)

导数专题第10讲利用导数研究函数的零点问题思维导图-----知识梳理1、函数的零点(1)函数零点的定义:对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点.(2)三个等价关系方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点的横坐标⇔函数)(x f y =有零点.2、函数零点的判定如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是()0f x =的根.我们把这一结论称为函数零点存在性定理.注意:单调性+存在零点=唯一零点脑洞(常见考法):浮光掠影,抑或醍醐灌顶思维导图-----典型题型讲练题型一:证明唯一零点(根)问题思维导图-----方法梳理1.分类讨论思想与转化化归思想2.数形结合与单调性的综合应用:一个零点,则多为所求范围内的单调函数,或者“类二次函数”切线处(极值点处)3.注意“找点”难度,对于普通学生,可以用极限思维代替“找点思维”。

围观(典型例题):一叶障目,抑或胸有成竹例1.(2022·云南师大附中高三阶段练习(文))已知函数()ln f x x x ax =-.(1)讨论()f x 的单调性;(2)当1a ≤-时,设()()2sin g x f x x x x =-+,求证:()g x 在()0,2π上只有1个零点.套路(举一反三):手足无措,抑或从容不迫题型二:根据零点(根)情况求参数9②利用数形结合法研究函数的零点(根)问题套路(举一反三):手足无措,抑或从容不迫的取值范围.围观(典型例题):一叶障目,抑或胸有成竹围观(典型例题):一叶障目,抑或胸有成竹-有关上有两个零点,则实数。

导数思维导图及真题解析

导数思维导图及真题解析

一、思维导图二、疑难透析1、曲线“在点P处的切线”是以点P x0,y0为切点,这样的切线只有一条,切线方程为y−y0=f′x0x−x0。

2、“过点P的切线”,点P可能是切点,也可能不是切点。

点P x0,y0不是切点时的切线方程求解步骤:(1)设出切点坐标P′x1,f(x1);(2)写出过P′x1,f(x1)的切线方程y−f(x1)=f′x1x−x1;(3)将点P x0,y0代入切线方程求出x1;(4)将x1的值代入方程y−f(x1)=f′x1x−x1可得出过点P x0,y0的切线方程。

3、图像连续不断的函数在开区间a,b上不一定有最大值(或最小值)。

若图像连续不断的函数在开区间a,b内只有一个极值,则该极值就是最值。

4、用导数法求函数单调区间的一般步骤:求定义域求导数f'(x)求f'(x)=0在定义域内的根用求得的根划分定义域确定f'(x)在各个开区间内的符号确定单调区间5、用导数法证明函数在 a ,b 的单调性的一般步骤:6、解决函数极值问题的一般步骤:7、导数与极值关系f ′ x 0 =0只是可导函数f x 在x 0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f ′ x 0 在x 0两侧异号.另外,已知极值点求参数时要进行检验。

三、题型示例=(x −3)e x 的单调递增区间是(A.(−∞,2) B.(0,3) C.(1,4) D.(2,+∞) 【解析】(性质法)f ′ x =e x + x −3 e x =(x −2)e x ∵当f ′ x >0时,f x 单调递增求f'(x)确定f'(x)在(a ,b)内的符号得出结论:f'(x)>0,增函数;f'(x)<0,减函数求定义域求导数f'(x)解方程f'(x)=0判断根左右f'(x)的符号极值得方程f'(x)=0根的情况得关于参数的方程(不等式)参数值(范围)求极值用极值∴(x −2)e x >0 ∵e x >0 ∴x −2>0 即x >2 【答案】D2、若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+-- 的值( )A .'0()f xB .'02()f xC .'02()f x - D .0【解析】000000()()()()lim lim2[]2h h f x h f x h f x h f x h h h→→+--+--='0000()()2lim2()2h f x h f x h f x h→+--== 【答案】B3、曲线在处的切线方程为( ) A. B. C. D. 【解析】∵ ∴,∴切点坐标为 ∴切线方程为 【答案】B4、曲线y = x +1 x +2 (x +3)在点A (0,6)处的切线的斜率是( )A.9B.10C.11D.12【解析】求函数的导数先化简解析式再求导,连乘形式先展开化为多项式再求导;根式形式 先化为分数指数幂再求导;复杂形式先化为简单分式的和、差再求导。

高考数学压轴题专题复习:2 导数与函数、不等式(精讲篇)

高考数学压轴题专题复习:2 导数与函数、不等式(精讲篇)

用思维导图突破导数压轴题专题02 导数与函数、不等式导数与函数、不等式综合题是近年高考试题的一个热点,往往是在运用导数知识以后,由不等式提升试题难度。

证明不等式f x g x ≥()()一般是作h(x )f x g x =-()(),通过对h x ()求导,求出h x ()的最小值大于或大于0,;证明不等式f x g x <()()成立的方法类似。

如果要证明的不等式中含有参数,需要分类讨论,才能确定单调性,就要根据题设条件确定恰当的分类标准。

如果要求参数的范围,在得到相关不等式后可以分离变量,也可能需要构造新函数,找出参数满足的条件,才能求出参数的范围。

作差求导 判断单调 求出极值思路点拨第(1)题由或解出相应的x 的范围即可确定单调区间。

第(2)题记不等式左边为,证明指定区间上函数值非负,理想状态是在该区间单调,且最小值为0。

第(3)题利用第(2)结论,由,得 ,记,那么 ,由(2)可得由(2)'()0f x >'()0f x <()h x ()h x ()h x ππ2,2π42n x n n π∈++()ππ2,2π42n x n n π∈++()2n n y x π=-(,)42n y ππ∈知,,有两条路径:一条是通过分解、变形、代换、放缩等化归为熟悉的基本的函数单调性问题(解1-解3);另一条是把变量n 转化成x n ,构造函数,回归导数基本运算,借助研究定义域内函数单调性的变化,转化为最值问题(解4)。

思维导图如下:满分解答解(1)由已知,有()e (cos sin )xf 'x x x =-, 当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (2)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.函数定义域为,依题意及(Ⅰ),有()e (cos sin )xg x x x =-,从而()2e sin xg'x x =-.π()()()02n n n f y g y y +-≥,42ππ⎡⎤⎢⎥⎣⎦当,42x ππ⎛⎫∈⎪⎝⎭时,0()g'x <,故 ()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭. (3)思路一:借助前问巧带入,不等证明化函数观察到本问与第二问结构类似,范围类似,充分利用前问,对一个非基本问题通过分解、变形、代换、放缩等多种方式,化归为熟悉的基本的函数单调性问题,从而得到解答.解1 依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭,且22()cos cos(2)()n n y x n n n n n f y e y e x n e n N πππ--==-=∈.由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥即024ππ>≥>n y y .令函数()sin cos ()42m x x x x ππ=-<<,()cos sin 0m x x x '=+>,所以()m x 在,42ππ⎡⎤⎢⎥⎣⎦上为增函数,所以0)()(()04π≥>=n m m y y m ,故 ()()()()()()22222200000=2sin cos sin co e e e e e s en n n n n n y n n n n n n n f y y g y g y e m y m y m y y y x x -π-π-π-π-π-ππ--=-<⋅≤==-≤-所以,20022sin c s e o n n n x x x -πππ+-<-.解2 依题意,()()10n n u x f x =-=,即cos e 1n xn x =,即c eos nx n x -=,因为(2,2)42n x n n ππππ∈++,所以2(,)42n x n πππ-∈, 由(2)知(2)(2)(2)02n n n f x n g x n x n ππππ-+--+≥,所以[]22cos(2)cos(2)sin(2)(2)02n n x n x n n n n n e x n e x n x n x n πππππππ---+----+≥,所以cos (cos sin )(2)02n n n n x x x x n ππ+--+≥,因为(2,2)42n x n n ππππ∈++,所以cos sin n n x x <,又cos n x n e x -=, 上式可化为22sin cos nx n n ne x n x x ππ--+≤-,只需证200sin cos sin cos n x n n n e e x x x x π--<--, 因为2n x n π>,所以20nx n ee π--<<,下面只需证明00sin cos sin cos n n x x x x -≥-. 令()sin cos ()42m x x x x ππ=-<<,只需证明0(2)()n m x n m x π-≥,因为()cos sin 0m x x x '=+>,所以()m x 在(,)42ππ上单调递增 因为0n x x ≥,所以0nx x e e --≤,则0cos cos n x x ≤,则0cos(2)cos n x n x π-≤,因为cos x 在(,)42ππ内单调递减,所以0242n x x n πππ<≤-<, (或者:因为20(2)1()n n f x n ef x ππ--=≤=,且()f x 在(,)42ππ单调递增,所以0242n x x n πππ<≤-<),所以0(2)()n m x n m x π-≥所以原式得证.解3(前一部分与解法二相同,省略)只需证200sin cos sin cos n x n n n e e x x x x π--<-- 令函数1()(22)(sin cos )42=+<<+-x k x n x n e x x ππππ, 所以22sin ()(22)(sin cos )42x x k x n x n e x x ππππ-'=+<<+-,显然()0k x '<,则函数()k x 在(2,2)42n n ππππ++单调递减,只需证2001()(sin cos )n n k x e x x π<-,因为00222000(2)cos(2)cos 1()x n x n n n f x n e x n e x e e f x πππππ++=⋅+=⋅=≥=,其中0,(2,2)42n x x n n ππππ∈++, 且由(Ⅰ)知()f x 在(2,2)42n n ππππ++内单调递减,所以022242n n x n x n πππππ+<+≤<+,所以002001()(2)(sin cos )n x n k x k x n e x x ππ+≤+=-0220000(sin cos )sin cos n n x e e e x x x x ππ--=<--, 所以原式得证.(解3中不等式左侧也可以构造成1()n g x -,利用函数()n g x 解题,方法雷同,不再赘述)思路二:不等证明法若干,差值函数要优先仿照第二问的证明方法,但是本问难在变量不统一,既有n 又有n x ,需要将它们化成同一变量,通过自变量的改变,构造函数,回归导数基本运算,借助研究定义域内函数单调性的变化,转化为最值问题,达到证明不等式的目的.解4 记2n n y x n =-π,则,42n y ππ⎛⎫∈⎪⎝⎭, 因为()()10n n u x f x =-=,即cos 1e ,=n xn x . 所以2cos(21e)n y n n y n ππ++=,所以2e cos n y n n y π--=要证20022sin c s e o n n n x x x -πππ+-<-,只需证00co 2sin cos s π-<-n n n y e y y x x ,显然有1n n x x +>12(1)2n n y n y n ππ+++>+即,所以12(1)2n n y n y n e e ππ+--+-->,即1cos cos n n y y +<,因为42n y ππ⎛⎫∈⎪⎝⎭,,所以1n n y y +> 则{}n y 关于n 单调递增,所以0,)2n y x π⎡∈⎢⎣.(或者用第一问结论,进行如下证明:1112(1)2(1)11()cos n n n y y y n n n n f y e y e e e ππ+++--+-+++=⋅==,所以2()n n f y e π-=,因为21()1()n n f y e f y π-+=<,且()0n f y >,所以1()()n n f y f y +<,由(1)知,()f x 在,42ππ⎡⎤⎢⎥⎣⎦内单调递减,所以1n n y y +>, 所以{}n y 关于n 单调递增,所以0,)2n y x π⎡∈⎢⎣)记000cos ,)sin cos 2()2,x ππ=--⎡∈⎢-⎣x e x x x x x h x ,只需证0,)2()0x 时,π⎡∈⎢⎣<h x x ,因为00,42x y ππ⎛⎫=∈⎪⎝⎭,所以()000sin cos )0,14x x x π-=-∈,所以0000sin cos )2sin 0sin cos sin co (()s )xx e x x e xx x x h x x h x ->--'''==(-1,,所以()x h '在⎪⎭⎫⎢⎣⎡20π,x 内单调递增,所以00()()=10xh x h x e ''≥->,所以()x h 在⎪⎭⎫⎢⎣⎡20π,x 内单调递增,即()()=02h x h π<.所以原式得证.思路三:中学数学较难题,高等数学解悬疑以高等数学背景为指导,以函数图像为直观,充分考察了学生直观想象的数学核心素养.教学过程中我们可以适当给学生介绍拉格朗日中值定理、洛必达法则等高等数学内容,内容虽然超纲,但本质大都可以用高中生已有的知识来介绍清楚,可以试着在这些高观点和思想的指导下用高中阶段的知识完成解题.解5 构造函数)(221)()(n n x x x n x u x F --+--=ππ,(,2)2n x x n ππ∈+ ,则0)(=n x F ,0)22(=+ππn F ,1()()22nF x u x n x ππ-''=-+-,用思维导图突破导数压轴题 专题2 导数与不等式 精讲篇(13页)()()=()2sin 0'''''==-<x F x u x g x e x所以()F x '在(,2)2n x n ππ+单调递减,假设()0n F x '≤,则()0n F x '≤在)22,(ππ+n x n 内恒成立,则)()22(n x F n F <+ππ, 与()(2)02n F x F n ππ=+=矛盾,所以假设错误,所以()0n F x '>,假设(2)02F n ππ'+≥,则()0n F x '≥在 )22,(ππ+n x n 内恒成立,则)()22(n x F n F >+ππ,与()(2)02n F x F n ππ=+=矛盾, 所以假设错误,所以0)22('<+ππn F ,由零点存在性定理,在)22,(ππ+n x n 内存在ξ,使0)('=ξF ,即n x n u -+-=221)('ππξ.所以'122()n n x u ππξ+-=-, 要证明002cos sin 22x x e x n n n -<-+-πππ只需证)cos (sin )(002'x x e u n ->-πξ,因为'()()(cos sin )xu x g x e x x ==-在区间(,2)2ππ+n x n 内递减,所以''()()n u u x ξ<,即)cos (sin )cos (sin )(2'n n n n n xx x e x x e u n ->->-πξ,只需证明00cos sin cos sin x x x x n n -≥-:以下与解法二相同,省略.本题在命题上环环相扣,逻辑清晰,解法中灵活构造别具一格,呈现数学思维之美.考查学生的运算能力、直观意识,分类讨论,转化化归,数形结合思想,具有很好的区分度与选拔性.思路点拨(1)讨论()f x 的单调性,就是要比较)('x f 与0的大小。

《导数大题压轴题难点突破》(PDF)

《导数大题压轴题难点突破》(PDF)
16.设函数 f (x) 1 ex.
(Ⅰ)证明:当 x 1时, f (x) x ; x 1
(Ⅱ)当 x 0时, f (x) x 恒成立,求 a 的取值范围. ax 1
17.已知函数 f (x) (x 1)2 ex x(x 1).
(Ⅰ)试判断方程 f (x) 0 根的个数.
10.设函数 f (x) a ln x bx 2, a,b R
(Ⅰ)若函数 f (x) 在 x 1 处与直线 y 1 相切,①求实数 a, b 的值;②求函数 f (x) 在 2

1 e
,
e
的最大值;
(Ⅱ
)当 b 0 时,若不等式
f
(
x)

m

x
对所有的
a
f (x)min 0 .
9.设 f (x) 与 g(x) 的定义域的交集为 D,若 x D f (x) g(x) 恒成立,则有
f (x) g(x) min 0 .
10.若对 x1 I1 、 x2 I2 , f (x1) g(x2 ) 恒成立,则 f (x)min g(x)max . 若对 x1 I1 , x2 I2 ,使得 f (x1) g(x2 ) ,则 f (x)min g(x)min . 若对 x1 I1 , x2 I2 ,使得 f (x1) g(x2 ) ,则 f (x)max g(x)max .
4
高考数学 2018 届◆难点突破系列
题型二:导数与函数的切线问题
19.已知函数 f (x) x ln x, g(x) ax 3 1 x 2 . 2 3e
(Ⅰ)求 f (x) 的单调增区间和最小值;

高考数学热点必会题型第4讲 导数求切线及公切线归类(原卷版)

高考数学热点必会题型第4讲 导数求切线及公切线归类(原卷版)

高考数学热点必会题型第4讲 导数求切线及公切线归类 ——每天30分钟7天轻松掌握一、重点题型目录【题型】一、零点存在定理法判断函数零点所在区间 【题型】二、方程法判断函数零点个数 【题型】三、数形结合法判断函数零点个数 【题型】四、转化法判断函数零点个数 【题型】五、利用函数的零点或方程有根求参数 【题型】六、利用函数的交点或交点个数求参数 【题型】七、一元二次不等式恒成立问题 【题型】八、一元二次不等式能成立问题 二、题型讲解总结第一天学习及训练【题型】一、求曲线切线的斜率与倾斜角例1.(2023·全国·高三专题练习)函数()ln f x x x =+在1x =处的切线的斜率为( ) A .2B .-2C .0D .1例2.(2023·全国·高三专题练习)函数()f x 的导函数为()f x ',若已知()f x '的图像如图,则下列说法正确的是( )A .()f x 一定存在极大值点B .()f x 有两个极值点C .()f x 在(),a -∞单调递增D .()f x 在x =0处的切线与x 轴平行例3.(2023·全国·高三专题练习)若函数()()ln 2f x x x =+,则( ) A .()f x 的定义域是()0,∞+ B .()f x 有两个零点C .()f x 在点()()1,1f --处切线的斜率为1-D .()f x 在()0,∞+递增【题型】二、求在曲线上一点处的切线方程或斜率例4.(2023·上海·高三专题练习)2(5)3lim2,(3)32x f x f x →--==-,()f x 在(3,(3))f 处切线方程为( ) A .290x y ++= B .290x y +-= C .290x y -++=D .290x y -+-=例6.(2023·全国·高三专题练习)在平面直角坐标系xOy 中,抛物线2:2(0)C x py p =>的焦点为,F P 是C 上位于第一象限内的一点,若C 在点P 处的切线与x 轴交于M 点,与y 轴交于N 点,则与PF 相等的是( ) A .MNB .FNC .PMD .ON例7.(2023·江苏南京·高三阶段练习)已知双曲线C :224x y -=,曲线E :2y ax x b =++,记两条曲线过点()1,0的切线分别为1l ,2l ,且斜率均为正数,则( ) A .若=0a ,1b =,则C 与E 有一个交点B .若=1a ,=0b ,则C 与E 有一个交点C .若0a b ,则1l 与E 夹角的正切值为7-D .若==1a b ,则1l 与2l 例8.(2023·江苏·苏州中学高三阶段练习)已知函数()()e e x xf x x -=- ,则( )A .()f x 在()0,∞+单调递增B .()f x 有两个零点C .()=y f x 在点()()ln 2,ln 2f 处切线的 斜率为35ln 222+D .()f x 是奇函数第二天学习及训练【题型】三、利用导数求直线的倾斜角或倾斜角范围例9.(2023·全国·高三专题练习)已知()()2cos 0cos 2f x x f x π⎛⎫=-+ '⎪⎝⎭,则曲线()y f x =在点33,44f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为( )A B .C .D .-例10.(2023·全国·高三专题练习)已知点M 是曲线()22ln 5f x x x x =+-上一动点,当曲线在M 处的切线斜率取得最小值时,该切线的倾斜角为( ) A .4πB .3π C .23π D .34π 例11.(2022·江西省定南中学高二阶段练习(理))若()ln f x x x =,则()f x 图像上的点的切线的倾斜角α满足( ) A .一定为锐角B .一定为钝角C .可能为0︒D .可能为直角例12.(2022·全国·高三专题练习)已知函数()()ln 0sin 0x x f x x x ⎧-<=⎨≥⎩,,, ()020x kx x g x x >⎧=⎨≤⎩,,,若x 1、x 2、x 3,x 4是方程()()f x g x =仅有的4个解,且x 1<x 2<x 3<x 4,则( ) A .0<x 1x 2<1 B .x 1x 2>1 C .43πtan π2x ,⎛⎫∈ ⎪⎝⎭D .4πtan π2x ,⎛⎫∈ ⎪⎝⎭【题型】四、求在过一点的切线方程例13.(2023·全国·高三专题练习)过点()0,P b 作曲线e x y x =的切线,当240e b -<<时,切线的条数是( ) A .0B .1C .2D .3例14.(2023·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b <B .ln b a <C .ln b a <D .ln a b <例15.(2023·全国·高三专题练习)过曲线()3:C f x x ax b =-+外一点1,0A 作C 的切线恰有两条,则( ) A .a b =B .1a b -=C .1b a =+D .2a b =例16.(2023·江西·赣州市赣县第三中学高三期中(理))已知定义域为R 的奇函数()f x 满足:()()ln ,0121,1x x x f x f x x <≤⎧=⎨->⎩,若方程()12f x kx =-在[]1,2-上恰有三个根,则实数k 的取值范围是________.例17.(2023·全国·高三专题练习)若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是___________第三天学习及训练【题型】五、利用导数值求出参数值例18.(2023·上海·高三专题练习)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣B .)⎡⎣C .(,-∞D .(-∞例19.(2023·全国·高三专题练习)若曲线()ln a xf x x=在点(1,f (1))处的切线方程为1y x =-,则a =( ) A .1B .e2C .2D .e例20.(2023·全国·高三专题练习)首钢滑雪大跳台是冬奥史上第一座与工业旧址结合再利用的竞赛场馆,它的设计创造性地融入了敦煌壁画中飞天的元素,建筑外形优美流畅,飘逸灵动,被形象地称为雪飞天.中国选手谷爱凌和苏翊鸣分别在此摘得女子自由式滑雪大跳台和男子单板滑雪大跳台比赛的金牌.雪飞天的助滑道可以看成一个线段PQ 和一段圆弧QM 组成,如图所示.假设圆弧QM 所在圆的方程为22:(25)(2)162C x y ++-=,若某运动员在起跳点M 以倾斜角为45且与圆C 相切的直线方向起跳,起跳后的飞行轨迹是一个对称轴在y 轴上的抛物线的一部分,如下图所示,则该抛物线的轨迹方程为( )A .232(1)y x =--B .21364y x =-- C .232(1)x y =--D .2364x y =-+例21.(2023·全国·高三专题练习)已知奇函数()()()()220f x x x ax b a =-+≠在点()(),a f a处的切线方程为()y f a =,则b =( )A .1-或1B .C .2-或2D .例22.(2023·上海·高三专题练习)设函数()ln f x x x =,()1x g x x =+. (1)若直线12y x b =+是曲线()f x 的一条切线,求b 的值; (2)证明:①当01x <<时,()()()112g x f x x x ⋅>-; ②0x ∀>,()()2e-<g x f x .(e 是自然对数的底数,e 2.718≈) 【题型】六、已知切线的斜率求参数方程例23.(2023·江苏南京·高三阶段练习)已知函数()2e ,<1=e ,1x x x f x x -≥⎧⎨⎩若方程()0f x x a --=有三个不同的解,则a 的取值范围是( ) A .()0,1B .()1,e 1-C .()1,eD .()e 1,e -例24.(2023·江西·赣州市赣县第三中学高三期中(理))已知0a >,0b >,直线2e y x b-=+与曲线ln y x a =-相切,则11a b+的最小值是( ) A .16B .12C .8D .4例25.(2023·全国·高三专题练习)若函数()ln bf x a x x=-在点(1,f (1))处的切线的斜率为1,则22a b +的最小值为( )A .12B C D .34例26.(2023·全国·高三专题练习)已知点P 是曲线23ln y x x =-上任意的一点,则点P 到直线2230x y ++=的距离的最小值是( )A .74B .78C .2D例27.(2023·全国·高三专题练习)设函数()e 2xf x x =-,直线=+y ax b 是曲线()=y f x 的切线,则2a b +的最大值是__________第四天学习及训练【题型】七、两条切线平行、垂直、重合公切线问题例28.(2023·全国·高三专题练习)对于三次函数()f x ,若曲线()y f x =在点(0,0)处的切线与曲线()y xf x =在点(1,2)处点的切线重合,则(2)f '=()A .34-B .14-C .4-D .14例29.(2023·全国·高三专题练习)若直线l 与曲线e x y =和ln y x =都相切,则直线l 的条数有( ) A .0B .1C .2D .无数条例30.(2023·全国·高三专题练习)若直线l 与函数()e x f x =,()ln g x x =的图象分别相切于点()()11,A x f x ,()()22,B x g x ,则1212x x x x -+=( ) A .2-B .1-C .1D .2例31.(2023·全国·高三专题练习)已知函数()ln f x a x =,()e x g x b =,若直线()0y kx k =>与函数()f x ,()g x 的图象都相切,则1a b+的最小值为( )A .2B .2eC .2eD 例32.(2023·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是( ) A .(]0,2eB .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞例33.(2023·全国·高三专题练习)若函数()()22ln 12x axf x x -=++的图象上,不存在互相垂直的切线,则a 的值可以是( )A .-1B .3C .1D .2【题型】八、已知某点处的导数求参数或自变量例34.(2023·全国·高三专题练习)已知曲线()40y x x x=+<在点P 处的切线与直线310x y -+=垂直,则点P 的横坐标为( )A .1B .1-C .2D .2-例35.(2023·全国·高三专题练习)已知函数()sin f x m x b =+在6x π=处的切线方程为1y x =+,则实数b 的值为( )A .12B C .1 D 例36.(2023·全国·高三专题练习)若实数a ,b ,c ,d 满足ln ,1a b c d =+=,则()()22a cb d -+-的最小值为______.。

《导数大题压轴题难点突破》公众号:卷洞洞.pdf

《导数大题压轴题难点突破》公众号:卷洞洞.pdf

(x0 , y0 ) ,过点 P 作曲线的切线
l 与曲线有且只有一个公共点 P,则切线 l 的斜率 k = ______________.
22.已知函数 f (x) ex ax2 ex, a R.
(Ⅰ)若曲线 y f (x) 在点 (1, f (1)) 处的切线平行于 x 轴,求函数 f (x) 的单调区间; (Ⅱ)试确定 a 的取值范围,使得曲线 y f (x) 上存在唯一的点 P ,曲线在该点处的切线 与曲线只有一个公共点 P .
(x 0)
⑧ x 1 ln x 1 (x 1 ) x 1 (x 1)
x
2x
⑨ ln x 1 1
x
x
(x 0)
二、常考题型:
题型一:恒成立求参数的最值或取值范围问题
1.已知函数f (x) 1 ax e x在x 0处的切线方程为x y 1 0. 1 x
(Ⅰ)求 a 的值; (Ⅱ) 若f (x) 1, 求 x 的取值范围.
题型三:导数与函数的零点及零点关系问题
23.已知函数
f
(x)
ax sin
x
3 (a R),
且在[0, ]上的最
-3 大值 为 .
2
2
2
(Ⅰ)求函数 f (x) 的解析式;
(Ⅱ)判断函数 f (x) 在 (0, ) 内的零点个数,并加以证明.
24. 已知函数 f (x) = x - ae x (a Î R)有两个零点 x1, x2 ,且 x1 < x2 .
(Ⅱ)设
g
x
19 6
x
1 3
,是否存在实数
a
,对于任意的
x1
1,1
,存在
x2
0,
2

2021高考数学导数与函数零点用思维导图破解导数压轴大题

2021高考数学导数与函数零点用思维导图破解导数压轴大题

2021高考数学导数与函数零点用思维导图破解导数压轴大题用思维导图突破导数压轴题专题3 导数与函数零点函数()f x 零点x 0就是方程()f x =0的根x 0,也是函数()f x 图象与x 轴交点的横坐标x 0.这里函数与方程随时转化,互换角色,充分体现数形结合的思想.函数零点个数转化为方程根的个数,有时把方程()f x =0转化为函数y h x =()与y g x =(),再作函数的图象,从图象确定交点个数,即把求方程根的个数转化为两个函数图象交点的个数.如果连续函数在某个单调区间内两个端点函数值之积为负,则函数在该区间有且仅有一个零点.要求函数的单调区间有回到求其导数的路子上,即转化为前面熟悉的问题.函数零点方程根 求导定调需认真 端点异号那最好 如若不然做转化例1(2019年Ⅰ理第20题)已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.求函数f (x )的零点数:求导判断f (x )的单调性,适当选取区间,确定端点函数值异号形:a =g (x )或h (x )=q (x ) 判断相应函数单调性、值域,确定零点个数或范围结合具体问题运用分析法和相关性质确定端点(一般不唯一,见例2等)结合图象确定零点范围(见例3、例6),有时还需证明(见例1)思路点拨第(1)题:若1()cos 1f x x x '=-+在区间(1,)2π-的极大值点x 0,则在x 0左边,()f x '递增,在x 0右边()f x '递减.这需要考虑()f x ''在x 0左边为正,右边为负,也就是说x 0是()f x '的零点,从而()f x '在0(1,)x -上单调递增;在0(x ,)2π上()f x ''<0,可得()f x '单调递减. 第(2)结论等价于方程sinx=ln(1+x)有且仅有两个不等的实数根.在同一坐标系中分别作出图象可知一根为0,另一根介于(2]2π,之间.从图象可以看出当(1,0)x ∈-和(0,)2π时,sin ln(1)0x x -+>,即()0f x >;当[2,)x ∈+∞,()0f x <.这就需要考虑f ′(x )在(−1,0)、(0,π2]、(π2,2]、(2,+∞)单调性以及端点值的正负.由于x 0位于(0,x 0)和(x 0,π2),还有对这两个区间作相应讨论. 第(2)的思维导图:f '(x)-1yx0π2x 02y =ln(1+x )y =sin x-1yx0π2已知f (x )=sin x -ln(1+x )结论:f (x )有且仅有2个零点sinx=ln(1+x)有两个不等实数根当和时,f (x )>0;当 x ∈ሾ2,+∞)时,f (x )<0当 x ∈ሾ2,+∞)时, f (x )<0等价转化函数方程不等式三者联系很密切相互转化无痕迹根据需要作选择极值两边单调反一撇两撇找零点区分左右大和小增减正负是关键综上,f(x)有且仅有2个零点.思路点拨(1)直接进行求导,分类讨论.(2)由(1)知()f x 在上单调递减,在上单调递增, ()f x 有极小值,若()f x 有两个零点,则,且在该点左右两个区间再各找一个点,其函数值大于0即可,当然也可以把函数有两个零点问题转化为另外两个函数图象有两个交点. 满分解答(1)对函数进行求导可得. ①当时,恒成立,故而函数恒递减.②当时,,解得x >ln 1a ,所以函数在上单调递减,在上单调递增.(2)解1 由(1)知,当时,在上单调递减,故在上至多一个零点,不满足条件;当时,. 令,则,从而在上单调递增,而,故当时,;当时,;当时,.当时,,此时恒成立,从而无零点,不满足条件. 当时,,,此时仅有一个实根,不满足条件.当时,,,注意到,故在上有一个实根. 1,ln a ⎛⎫-∞ ⎪⎝⎭1ln ,a ⎛⎫+∞ ⎪⎝⎭11ln ln 1f a a a ⎛⎫=-+ ⎪⎝⎭()1ln 100a a a-+<>()()()()2'22111x x x xf x ae a e ae e =+--=-+0a ≤()()()'110x xf x ae e =-+≤0a >()()()1'110ln x xf x ae e x a =-+>⇒>1,ln a ⎛⎫-∞ ⎪⎝⎭1ln ,a ⎛⎫+∞ ⎪⎝⎭0a ≤()f x R ()f x R 0a >()min 1()ln 1ln f x f a a a=-=-+()11ln (0)g a a a a=-+>()2110g a a a'=+>()g a ()0,+∞()10g =01a <<()0g a <1a =()0g a =1a >()0g a >1a >()0g a >()0f x >()f x 1a =()0g a =min 1()1ln 0f x a a =-+=()0f x =01a <<()0g a <()min 1()ln 1ln 0f x f a a a=-=-+<22ln 0,(1)10a a a f e e e->-=++->()f x (1,ln )a --而 ,. 故在上有一个实根.又在上单调减,在单调增,故在上至多两个实根.注 怎么知道要算f (-1)>0、3ln(1)0⎛⎫->⎪⎝⎭f a ?事实上,()()[2]=+--x x f x e ae a x ,当x =-1时f (-1)>0;为了再找一点x ,使f (x )>0,因为()()22=+--x xf x ae a e x()=[2]+--x x e ae a x ,注意到0->x e x ,所以只要()21+-=x ae a ,解得3ln(1)=-x a.其实,还可以证f (-2)>0,03ln(1)>-x a 时,3ln(1)0⎛⎫-> ⎪⎝⎭f a . (2)解2 令()0f x =,即()220xxae a e x +--=,所以有22x x x e xa e e+=+.于是函数()f x 有两个零点,即y a =与()22x x x e xg x e e+=+的图象有两个交点.()g x 的导函数为()()()()2211'1xx xxe e x g x e e ++-=-+,当0x <时,()'0g x >;当0x >时,()'0g x <时,所以()g x 在(),0-∞上单调递增,在()0,+∞上单调递减,且()g x 在0x =处取得最大()01g =.当1a ≥时,y a =与()g x 至多有一个零点,不符合题意;当0a ≤时,由于当0x ≥时,()0g x >,而当0x <时,()g x 是单调递增,所以y a=与()g x 至多有一个交点,不符合题意;当01a <<时,一方面,由于()()20,01g a g a -<<=>,且()g x 在()2,0-上单调递增,所以y a =与()g x 在()2,0-上有且仅有一个交点.31ln 1ln ln a a a ⎛⎫->=- ⎪⎝⎭33ln 1ln 133ln(1)e e2ln 1a a f a a a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫-=⋅+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()33132ln 1a a a a ⎛⎫⎛⎫=-⋅-+--- ⎪ ⎪⎝⎭⎝⎭331ln 10a a ⎛⎫⎛⎫=---> ⎪ ⎪⎝⎭⎝⎭()f x 3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,()f x ()ln a -∞-,(ln ,)a -+∞()f x R思路点拨 第(1)题要证明不等式()1f x ≥,由于(0)=1f ,结论等价于当0x ≥时,()(0)f x f ≥,只要证明'()0f x >,接下来就是从已知入手证明'()0f x >,也可以把()1f x ≥转化为只要证明210x e x --≥,两边同时除以xe (注:这样构造下面的函数g(x)求导比较方便),不等式转化为2(1)10x x e -+-≤,构造新的函数2()(1)1x g x x e -=+-,只要证明()(0)g x g ≤.第(2)题要求()f x 的零点,如果直接对()f x 求导得'()2x f x e ax =-,要判断其符号就要对a 进行讨论,如果把()f x 转化为22()()x f x x e x a -=-,令2()x h x e x a -=-,则()f x 与()h x 在(0,)+∞零点个数相同,而'3(2)()xx eh x x-=中没有a ,讨论符号方便,运算量会减小.当然,也可把()f x 转化为2()1xx f x e ax e -=-()来解答.还可以用最常见的方法来思考:函数()f x 只有一个零点问题等价转化为方程2xe a x=只有一根问题,从而寻找两函数(y a =与 2()x e G x x =)的图像只有一个交点问题,于是,本小题有下面的3种解法. 满分解答解(1)解 1 因为2()x f x e ax =-,所以'()2x f x e x =-, 令'()2,()2x x g x e x g x e =-=-,由2=0x e -得ln 2x =.当''[0,ln 2),()0;(ln 2,),()0x g x x g x ∈<∈+∞>,所以()g x 在[0,ln 2)上单调递减,在(ln 2,)+∞上单调递增,所以()(ln 2)220,g x g ln ≥=->因此()f x 在[0,)+∞上递增,所以2()1(0)x f x e x f =-≥=.解2 设函数2()(+1)1x g x x e -=-,则'22()(21)(1)x x g x x x e x e --=--+=--, 当1x ≠时,'()0g x <,所以()g x 在[0,)+∞单调递减,从而有()(0)0g x g ≤=,即2(+1)10x x e --≤,整理得,21x e x -≥,故有()1f x ≥.(2)解1因为()f x 在(0,)+∞只有一个零点,由于22()x f x x e x a -=-(),则2()xh x e x a -=-在(0,)+∞只有一个零点,'3(2)()x x e h x x-=,当(0,2)x ∈时,'()0h x <,当(2,)x ∈+∞时,'()0h x >,所以()h x 在(0,2)上递减,在(2,)+∞上递增,所以()h x ≥2(2)4e h a =-.当24e a <时,()h x 在(0,)+∞无零点;当24e a =时,()h x 在(0,)+∞只有一个零点,满足题意;当24e a >时,由(1)可得:()20xg x e x =->,即22()x e h x a a x x=->-,当 20a x ->,此时22x a <<时,()0,h x >取1,x a =故()h x 在1(,2)a有一个零点.由(1)可得当0x >时,2x e x >,有32,3xx e >此时即3222()83()27xx e h x a a x a x x =->-=-,当2728x a >>时,()0,h x >取4,x a =则(4)0h a >,由零点存在定理知()h x 在(2,4)a 有一个零点,此时()f x 在(0,)+∞有两个零点,不合题意.综上所述:24e a =.解2因为()f x 在(0,)+∞只有一个零点,由于2()1xx f x e ax e -=-(),令2()1xh x ax e -=-在(0,)+∞只有一个零点,(i )当0a ≤时,()0h x >,()h x 没有零点; (ii )当0a >时,'(2)()xax x h x e -=; 当(0,2)x ∈时,'()0h x <;当(2,)+∞时,'()0h x >.所以()h x 在(0,2)单调递减,在(2,)+∞单调递增.故有24()(2)1ah x h e ≥=-. 当24e a <时,24()10,a h x e ≥->函数无零点,不合题意;当24e a =时,24()10,a h x e ≥-=函数只有一个零点,满足题意;当24e a >时,24()10,a h x e ≥-<由(0)1h =,所以()h x 在(0,2)有一个零点,由(1)得,当0x >时,2,xe x >所以33342241616161(4)11110()(2)a a a a a h a e e a a=-=->-=->,故有()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上所述,()f x 在(0,+∞)只有一个零点时,24e a =.解3 由()f x 在(0,)+∞只有一个零点可知方程20x e ax -=在(0,)+∞只有一个根,即 2xe a x=在(0,)+∞只有一个根,从而可得函数y a =与 2()x e G x x =的图像在(0,)+∞只有一个交点.'3(2)()x e x G x x-=,当(0,2)x ∈时,'()0G x <,当(2,)x ∈+∞时,'()0,G x >所以()G x 在(0,2)递减,在(2,)+∞递增;当0x →时,()G x →+∞,当x →+∞时,()G x →+∞,所以()f x 在(0,)+∞只有一个零点时,2(2)4e a G ==.思路点拨第(2)题解1是把零点问题转化为不等式问题,又转化为方程解的问题,但不是直接解方程,由于通过条件知道方程的解,就转化为验证是否是方程的解,有效回避解高次方程.解2是通过“两边夹”的方法得到c 的值,再验证其是唯一满足条件的值. 满分解答(1)()ax x x f 232'+=,令()0'=x f ,解得01=x ,322ax -=. 若0=a ,因()032'≥=x x f ,所以函数()x f 在R 上单调递增. 若0>a ,当32ax -<或0>x 时,()0'>x f ; 当032<<-x a 时,()0'<x f ,所以函数()x f 在⎪⎭⎫ ⎝⎛-∞-32,a 和()+∞,0上单调递增,在⎪⎭⎫⎝⎛-0,32a上单调递减.若0<a ,当32ax ->或0<x 时,()0'>x f ; 当320a x -<<时,()0'<x f ;所以函数()x f 在()0,∞-和⎪⎭⎫ ⎝⎛+∞-,32a 上单调递增,在⎪⎭⎫ ⎝⎛-32,0a 上单调递减. (2)解1 ()a c ax x x f -++=23,()ax x x f 232'+=,322ax -=. 由函数()x f 有三个不同的零点知0≠a 且()0320<⎪⎭⎫ ⎝⎛-⋅a f f ,即()02743<⎪⎪⎭⎫ ⎝⎛-+-a c a a c . 又因为a 的解集是()⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,2323,13, .31-=a ,12=a ,233=a 是()02743=⎪⎪⎭⎫ ⎝⎛-+-a c a a c 因为c a =一定是方程的一个根,若分别令31,,32c =-,则只要检验a 的其余两个值是否满足34027a c a +-=. (*) 当1=c 时,3a =-和32a =是(*)的根(32a =是重根);当3-=c 时,32a =和1a =不是(*)的根; 当23=c 时,3a =-和1a =不是(*)的根. 综上所述,1=c .解2 由(1)知,函数()x f 的两个极值为()b f =0,b a af +=⎪⎭⎫ ⎝⎛-327432,则函数()x f 有三个零点等价于()02743203<⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛-⋅b a b a f f ,从而30,40,27a a b >⎧⎪⎨-<<⎪⎩或30,40.27a b a <⎧⎪⎨<<-⎪⎩又a c b -=,所以当0>a 时,02743>+-c a a 或当0<a 时,02743<+-c a a . 设()c a a a g +-=3274,因为函数()x f 有三个零点时,a 的取值范围恰好是(),3-∞-331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,所以当(),3a ∈-∞-时,(g (),3a ∈-∞-时,()0<a g ,且当31,2a ⎛⎫∈ ⎪⎝⎭3,2⎛⎫+∞ ⎪⎝⎭时,()min 0g a >,()0g a >均恒成立,从而()013≤-=-c g ,且0123≥-=⎪⎭⎫ ⎝⎛c g ,因此1=c .此时,()a ax x x f -++=123()()[]ax a x x -+-++=1112,因函数有三个零点,则()0112=-+-+a x a x 有两个异于1-的不等实根, 所以()()2141a a ∆=---2a =+2a 30->,且()()2111320a a a ---+-=-≠,解得()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 综上1=c . 解3 由解1得函数()f x 有三个不同的零点知0a ≠等价于()34027a c a c a ⎛⎫-+-< ⎪⎝⎭,即43222727270424a ca a ca c --+->,其解集恰为()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 又不等式233102a a a +⋅-⋅->()()(),即4322727270424a a a a --+->的解集也是()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a ,故不等式43222727270424a ca a ca c --+->与不等式4322727270424a a a a --+->同解,比较系数可得1=c .思路点拨第(1)的①可直接求解,②可转换为恒成立问题;(2)由f (0)=2知0就是g(x )的零点,由条件知这是唯一零点.利用导数判断g(x )的单调性,则需唯一的极小值为0,由此得ab 的值. 满分解答①()122xxf x ⎛⎫=+ ⎪⎝⎭,由01a <<可得1222x x+=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =. ②由题意得221122622xx x x m ⎛⎫++- ⎪⎝⎭≥恒成立. 令122x x t =+,则由20x >可得2t ≥,此时226t mt --≥恒成立,即244t m t t t+=+≤恒成立.因为2t ≥时44t t +=≥,当且仅当2t =时等号成立,因此实数ab 的最大值为4.(2)解1()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x x x xa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 由01a <<,1b >可得1b a >,令()ln ln xb ah x a b ⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b aa xb ⎛⎫=-⎪⎝⎭时()00h x =,因此, 当()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <; 当()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;所以,()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22ax a a >=,0x b >,则()0g x >;当x >log b 2时,0x a >,log 22bx b b >=,则()0g x >;当1log 2a x <且10x x <时,()10g x >,则()g x 在()10,x x 有零点,当2log 2b x >且20x x >时,()20g x >,则()g x 在()02,x x 有零点,所以()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x ,可得()00g x =,由()00020g a b =+-=,因此00x =.因此ln log 0ln b aa b ⎛⎫-= ⎪⎝⎭,即ln 1ln ab -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.解2 因为函数2)()(-=x f x g 只有1个零点,而022)0()0(00=-+=-=b a f g , 所以0是函数)(x g 的唯一零点.由解1知道()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x . 下证00x =.若00x <,则0002x x <<,于是0()(0)02x g g <=,又log 2log 2log 2(log 2)220a a a a g ab a =+->-=,且函数()g x 在以2x 和log 2a 为端点的闭区间上的图象不间断,所以在02x 和log 2a 之间存在()g x 的零点,记为1x .因为01a <<,所以log 20a <,又002x <,所以10x <与“0是函数()g x 的唯一零点”矛盾.若00x >,同理可得,在02x 和log 2a 之间存在()g x 的非0的零点,矛盾. 因此,00x =.于是ln 1ln ab-=,故ln ln 0a b +=,所以1ab =.。

高考高中数学压轴题思维导图精华版

高考高中数学压轴题思维导图精华版
{
4、极坐标{
极点在焦点(焦点弦题型,焦点弦的 6 个性质)
极点在坐标原点(过原点的两条垂直直线题型)
5、过原点的两条直线(设斜率为k1 、k2 ),若与 {
k1 + k 2
有关,将方程转化为 k 的二次方程。
k1 · k 2
y−b
x −a
②距离,如(x − a) 2 + (y − b) 2
①斜率,如
④直线:x = x0 + tcosα,y = y0 + tsinα
t 表示到定点(x0 ,y0)的方向距离
{
{ (x0 ,y0)上方,t > 0;(x0 ,y0)下方,t < 0,
3
二、方法储备: 8、曲线系
①与直线 Ax + By + C = 0 垂直的直线系方程为 By − Ax + C2 = 0
分析通项,即令 =( /−1 )·(−1 /−2 )···(2 /1)·1 ,
从而证明每一项 < /−1。
(一般可用归纳法)
2、证明1 + 2 + … … + < ,变式:证明1 +2 +⋯ … + < 。
分析通项,即令 =( —−1 )+(−1—−2)+···+(2—1)+1,
2、对 f(x)求导,对于压轴题一般求一次导不行,再进行求二阶导数、三阶导数等等。
3、①若 f(x)min 在 x=b(b>a)处取得,一般不用洛必达法则,直接代入 b 即可。
0
②若 f(x)min 在 x=a 处取得,但 x∈ (, +∞),并且产生 型极限,这时候就利用洛必

导数专题:导数与曲线切线问题的6种常见考法(解析版)

导数专题:导数与曲线切线问题的6种常见考法(解析版)

导数专题:导数与曲线切线问题的6种常见考法一、求曲线“在”与“过”某点的切线1、求曲线“在”某点处的切线方程步骤第一步(求斜率):求出曲线在点()()00,x f x 处切线的斜率0()f x '第二步(写方程):用点斜式000()()()y f x f x x x '-=-第三步(变形式):将点斜式变成一般式。

2、求曲线“过”某点处的切线方程步骤(此类问题的点不一定是切点)第一步:设切点为()()00,Q x f x ;第二步:求出函数()y f x =在点0x 处的导数0()f x ';第三步:利用Q 在曲线上和0()PQ f x k '=,解出0x 及0()f x ';第四步:根据直线的点斜式方程,得切线方程为000()()()y f x f x x x '-=-.二、公切线问题研究曲线的公切线,一般是分别设出两切点,写出两切线方程,然后再使用这两个方程表示同一条直线,但要注意以下两个方面:(1)两个曲线有公切线,且切点是同一点;(2)两个曲线有公切线,但是切点不是同一点。

三、切线条数问题求曲线的切线条数一般是设出切点()(),t f t ,由已知条件整理出关于t 的方程,把切线问条数问题转化为关于t 的方程的实根个数问题。

四、已知切线求参数问题此类问题常见的考查形式有两种,一是判断符合条件的切线是否存在,二是根据切线满足条件求参数的值或范围。

常用的求解思路是把切线满足条件转化为关于斜率或切点的方程或函数,再根据方程的根的情况或函数性质去求解。

题型一“在”点求切线问题【例1】函数2()ln 2f x x x x =++在点()()1,1f 处的切线方程为()A.33y x =-B.3y x =C.31y x =+D.33y x =+【答案】B【解析】因为2()ln 2f x x x x =++,所以()1ln 2f x x x=++'()13f '∴=,又()13f =,∴曲线()y f x =在点()()1,1f 处的切线方程为33(1)y x -=-,即3y x =.故选:B.【变式1-1】已知函数()f x 满足()()3211f x x f x =-'⋅+.(1)求()1f '的值;(2)求()f x 的图象在2x =处的切线方程.【答案】(1)()11f '=;(2)8110x y --=【解析】(1)因为()()3211f x x f x =-'⋅+,则()()2321f x x f x ''=-,所以,()()1321f f ''=-,解得()11f '=.(2)由(1)可知()321f x x x =-+,则()232f x x x '=-,则()25f =,()28f '=,因此,()f x 的图象在2x =处的切线方程为()582y x -=-,即8110x y --=.【变式1-2】若曲线2y x ax b =++在点(0,)P b 处的切线方程为10x y -+=,则a ,b 的值分别为()A.1,1B.1-,1C.1,1-D.1-,1-【答案】A【解析】因为2y x a '=+,所以0|x y a='=曲线2y x ax b =++在点(0,)b 处的切线10x y -+=的斜率为1,1a ∴=,又切点(0,)b 在切线10x y -+=上,010b ∴-+=1b ∴=.故选:A.【变式1-3】已知函数()2ln f x a x x =+的图象在1x =处的切线方程为30x y b -+=,则a b +=()A.2-B.1-C.0D.1【答案】B【解析】因为()2ln f x a x x =+,所以()2af x x x'=+.又()f x 的图象在1x =处的切线方程为30x y b -+=,所以()123f a '=+=,解得1a =,则()2ln f x x x =+,所以()11f =,代入切线方程得310b -+=,解得2b =-,故1a b +=-.故选:B.题型二“过”点求切线问题【例2】(多选)已知曲线()()3211f x x =++,则曲线过点()0,3P 的切线方程为()A.630x y +-=B.630x y -+=C.5260x y -+=D.3260x y -+=【答案】BD【解析】设切点坐标为()()300,211x x ++,()()261f x x '=+,∴切线斜率为()()20061k f x x '==+切线方程为()()()2003012161y x x x x ⎤=+-++⎦-⎡⎣曲线过点()0,3P ,代入得()()()20030362111x x x ⎡⎤++⎣=--⎦+可化简为()()032001113x x x +-+=,即3020023x x -=-,解得00x =或032x =-则曲线过点()0,3P 的切线方程为630x y -+=或3260x y -+=故选:BD【变式2-1】过原点的直线,m n 与分别与曲线()e xf x =,()lng x x =相切,则直线,m n 斜率的乘积为()A.-1B.1C.eD.1e【答案】B【解析】设()(),f x g x 的切点分别为()()1122,e ,,ln xx x x ,由题意可得()e xf x '=,()1g x x'=,所以()f x 在1x x =处的切线为()111e e x xy x x -=-,()g x 在2x x =处的切线为()2221ln y x x x x -=-,又因为两条切线过原点,所以()()1112220e e 010ln 0x x x x x x ⎧-=-⎪⎨-=-⎪⎩,解得121e x x =⎧⎨=⎩,所以直线,m n 斜率的乘积为()()1121e 1ef xg x ''=⨯=,故选:B【变式2-2】设点P 是曲线e e e ex xx x y ---=+上任意一点,直线l 过点P 与曲线相切,则直线l 的倾斜角的取值范围为______.【答案】π0,4⎛⎤⎥⎦⎝【解析】设直线l 的倾斜角为α2e e e e 4(e e e e e e x x x x x x x x x x y y -------''=∴=+++=()0e e 1x x y -≥∴≤<'+2][]tan (0,1,0,ααπ∴∈∈π0,4α⎛⎤∴∈ ⎥⎦⎝【变式2-3】过点()1,0作曲线e x y =的两条切线,则这两条切线的斜率之和为______.【答案】2e 1-【解析】0x >时,e x y =,设切点()11,ex x ,则11e ,e x xy k==',切线()1111:e e x xl y x x -=-过()1,0,()111e e 1x x x ∴-=-,2112,e x k ∴==,0x ≤时,e x y -=,切点()22,e xx -,22e ,e x x y k --=-=-',切线()2222:ee x x l y x x ---=--过()1,0,()222e e 1x x x --∴-=--,220,1x k ∴==-,故212e 1k k +=-.故答案为:2e 1-.题型三切线的条数问题【例3】若过点()0,(0)b b >只可以作曲线e xxy =的一条切线,则b 的取值范围是__________.【答案】24,e ∞⎛⎫+⎪⎝⎭【解析】函数e x x y =的定义域为R ,则1e x x y -'=,设切点坐标为000,e x x x ⎛⎫ ⎪⎝⎭,则切线斜率为001e x x k -=,故切线方程为:()000001e e x x x x y x x --=-,又切线过点()0,(0)b b >,则()000200001e e e x x x x x x b x b --=-⇒=,设()2ex x h x =,则()()20e xx x h x -'==得,0x =或2x =,则当(),0x ∈-∞时,()0h x '<,函数()h x 单调递减,当()0,2x ∈时,()0h x '>,函数()h x 单调递增,当()2,x ∈+∞时,()0h x '<,函数()h x 单调递减,所以()()2400,2e h h ==,又x →-∞时,()h x →+∞,x →+∞时,()0h x →,所以02ex x b =有且只有一个根,且0b >,则24e b >,故b 的取值范围是24,e ∞⎛⎫+ ⎪⎝⎭.故答案为:24,e ∞⎛⎫+⎪⎝⎭.【变式3-1】若曲线(2)e x y x a =-有两条过坐标原点的切线,则实a 的取值范围为______.【答案】(,0)(8,)-∞⋃+∞【解析】设切点坐标为:00(,)x y ,(22)e x y x a '=+-,所以切线斜率为00(22)e x k x a =+-,即切线方程为0000(2)e (22)e ()x xy x a x a x x --=+--,又切线过坐标原点,所以00000(2)e (22)e (0)x x x a x a x --=+--,整理得20020x ax a -+=,又曲线有两条过坐标原点的切线,所以该方程有两个解,所以280a a ∆=->,解得(,0)(8,).a ∈-∞⋃+∞故答案为:(,0)(8,).-∞⋃+∞【变式3-2】已知过点(),0A a 可以作曲线()2e xy x =-的两条切线,则实数a 的取值范围是()A.()2,+∞B.()(),e 2,∞∞--⋃+C.()(),22,∞∞--⋃+D.()(),12,-∞-+∞【答案】C【解析】设切点是()00,P x y ,0R x ∈,即()0002e x y x =-,而()1exy x '=-故切线斜率()001e x k x =-,切线方程是()()()00002e 1e x xy x x x x --=--,又因为切线经过点(),0A a ,故()()()00002e 1e x xx x a x --=--,显然01x ≠,则()0000021111x a x x x x -=+=-+--,在01x ≠上有两个交点,令01x x =-,设()1,0h x x x x =+≠,则()222111x h x x x-=-=',令()0h x '=得11x =-,21x =,所以当(),1x ∈-∞-时,()0h x '>,()h x 单调递增,当()1,0x ∈-时,()0h x '<,()h x 单调递减,当()0,1x ∈时,()0h x '<,()h x 单调递减,当()1,x ∈+∞时,()0h x '>,()h x 单调递增,又()12h -=-,()12h =,且x →-∞时,()h x →-∞,0x -→时,()h x →-∞,0x +→时,()h x →+∞,x →+∞时,()h x →+∞,所以()a h x =有两个交点,则2a >或2a <-,故实数a 的取值范围是()(),22,∞∞--⋃+.故选:C.【变式3-3】已知函数()326f x x x =-,若过点()1,P t 可以作出三条直线与曲线()f x 相切,则t 的取值范围是()A.()5,4--B.()4,3--C.()3,2--D.()2,1--【答案】A【解析】设过点()1,P t 的切线与()f x 相切于点()32,6m m m -,()2312f x x x '=-,()2312f m m m '∴=-,则切线方程为:()()()3226312y m m m m x m --=--,又切线过点()1,P t ,()()()23232312162912t m m m m m m m m ∴=--+-=-+-,令()322912g m m m m =-+-,则问题等价于y t =与()g m 有三个不同的交点,()()()261812612g m m m m m '=-+-=---,∴当()(),12,m ∈-∞+∞时,()0g m '<;当()1,2m ∈时,()0g m '>;()g m ∴在()(),1,2,-∞+∞上单调递减,在()1,2上单调递增,又()15g =-,()24g =-,由此可得()g m 图象如下图所示,由图象可知:当()5,4t ∈--时,y t =与()g m 有三个不同的交点,即当()5,4t ∈--时,过点()1,P t 可以作出三条直线与曲线()f x 相切.故选:A.题型四两曲线的公切线问题【例4】若直线1:2l y kx b k ⎛⎫=+> ⎪⎝⎭与曲线1()e x f x -=和()ln(1)g x x =+均相切,则直线l 的方程为___.【答案】y x=【解析】设()f x ,()g x 上的切点分别为()111,ex A x -,()()22,ln 1B x x+,由()1e xf x -'=,()11g x x '=+,可得1121e 1x k x -==+,故()f x 在A 处的切线方程为()()1111111111ee e e 1x x x x y x x y x x -----=-⇒=+-,()g x 在B 处的切线方程为()()()222222211ln 1ln 1111x y x x x y x x x x x -+=-⇒=++-+++,由已知()()()111122121221e 1ln 11e 1ln 11x x x x x x x x x --⎧=⇒-=+⎪+⎪⎨⎪-=+-⎪+⎩,所以()()()22222222221ln 1ln 1ln 11111x x x x x x x x x x ⎛⎫+=+-⇒=+ ⎪++++⎝⎭,故20x =或()2ln 11x +=,而()222111ln 111e 1e 2x x x +=⇒+=⇒=<+,不合题意舍去,故20x =,此时直线l 的方程为y x =.故答案为:y x =.【变式4-1】已知函数()e xf x =与函数()lng x x b =+存在一条过原点的公共切线,则b =________.【答案】2【解析】设该公切线过函数()e xf x =、函数()lng x x b =+的切点分别为()11,ex x ,()22,ln b x x +.因为()e xf x '=,所以该公切线的方程为()1111111e e e e ex x x x x y x x x x =-+=+-同理可得,该公切线的方程也可以表示为()2222211ln ln 1y x x x b x x b x x =-++=⋅++-因为该公切线过原点,所以()112121e e 10ln 10x x xx x b ⎧=⎪⎪⎪-=⎨⎪+-=⎪⎪⎩,解得1211,e ,2x x b ===.故答案为:2【变式4-2】函数()bf x ax x =+的图象在点(1,3)处的切线也是抛物线213x y =的切线,则a b -=()A.1B.3C.6D.2【答案】C【解析】()bf x ax x =+,则2()b f x a x '=-,则在点(1,3)处的切线的斜率为12(1)1bk f a a b '==-=-,213x y =,则6y x '=,则在点(1,3)处的切线的斜率为26k =,函数()bf x ax x =+的图象在点(1,3)处的切线也是抛物线213x y =的切线,则12k k =,即6a b -=,故选:C.【变式4-3】若曲线e x y a =与曲线y ==a __________.【解析】令()e x f x a =,()g x ()e xf x a '=,()g x '=设()f x 与()g x 的公共点为()00,x y ,()f x 与()g x 在公动点处有相同的切线,()()()()0000f x g x f x g x '⎧=∴'⎪⎨=⎪⎩,即00e e x x a a ⎧=⎪⎨⎪=⎩=012x =,12e a ∴=a ==题型五切线平行、垂直问题【例5】若曲线ln x ay x+=在点()1,a 处的切线与直线:250l x y -+=垂直,则实数=a ().A.12B.1C.32D.2【答案】C 【解析】因为21ln x ay x --'=,所以曲线ln x ay x+=在点()1,a 处的切线的斜率为()111k f a ='=-,直线l 的斜率22k =,由切线与直线l 垂直知121k k =-,即()211a -=-,解得32a =.故选:C.【变式5-1】已知曲线y =y x =--24垂直的曲线的切线方程为_________.【答案】2250x y -+=【解析】设切点为(),m n ,因为y =y '=,因为曲线的切线与直线y x =--24垂直,()21-=-,解得25m =,又点(),m n在曲线y =25n ==,所以切点坐标为()25,25,所以曲线y =y x =--24垂直的切线方程为:()125252y x -=-,即2250x y -+=,故答案为:2250x y -+=.【变式5-2】若曲线s n e i =+x y x a 存在两条互相垂直的切线,则a 的取值范围是________.【答案】()(),00,∞-+∞U 【解析】由题知,令()e sin x f x a x =+,则()e cos xf x a x '=+.若函数曲线存在两条互相垂直的切线则可得1x ∃,2x ,()()121f x f x ''⋅=-.当0a =时,()21e 0,xx x f x '=>⇒∀,()()120f x f x ''>,与题目矛盾;当0a ≠时,由()e 0,xy =∈+∞,cos y a x a=≥-可得()f x '的值域是(),a -+∞故12,x x ∃,使得()()1,0f x a '∈-,()210,f x a ⎛⎫'∈ ⎪ ⎪⎝⎭,()()121f x f x ''⋅=-.故答案为:()(),00,∞-+∞U .【变式5-3】曲线33y x x =-+在点P 处的切线平行于直线21y x =-,则点P 的坐标为______.【答案】()1,3或()1,3-【解析】由已知得231y x '=-,令2y '=,则2312x -=,解得1x =或=1x -,所以()1,3P 或()1,3P -.经检验,点()1,3P 与()1,3P -均符合题意.故答案为:()1,3或()1,3-【变式5-4】若曲线()21ln 2f x x x ax =++存在与直线50x y -=平行的切线,则实数a 的最大值为______.【答案】3【解析】()()10f x x a x x=++>,因为曲线()21ln 2f x x x ax =++存在与直线50x y -=平行的切线,所以15x a x ++=在()0,∞+有解.即15a x x ⎛⎫=-+ ⎪⎝⎭在()0,∞+有解.设()15g x x x⎛⎫=-+ ⎪⎝⎭,()0,x ∈+∞,则()1553g x x x ⎛⎫=-+≤-= ⎪⎝⎭,当且仅当1x x=,即1x =时等号成立,即()3g x ≤.所以3a ≤,即a 的最大值为3.故答案为:3题型六与切线有关的最值问题【例6】若动点P 在直线1y x =+上,动点Q 在曲线22x y =-上,则|PQ |的最小值为()A.14B.4C.22D.18【答案】B【解析】设与直线1y x =+平行的直线l 的方程为y x m =+,∴当直线l 与曲线22x y =-相切,且点Q 为切点时,P ,Q 两点间的距离最小,设切点()00,Q x y ,22x y =-,所以212y x =-,y x ∴'=-,0011x x ∴-=⇒=-,012y ∴=-,∴点11,2Q ⎛⎫-- ⎪⎝⎭,∴直线l 的方程为12y x =+,,P Q ∴两点间距离的最小值为平行线12y x =+和1y x =+间的距离,,P Q ∴24=.故选:B .【变式6-1】在平面直角坐标系xOy 中,P 是曲线24x y =上的一个动点,则点P 到直线40x y ++=的距离的最小值是_____.【答案】2【解析】设直线0x y b ++=与214y x =相切,则切线的斜率为1-且12y x '=,令112y x '==-,则2x =-,即切点的横坐标为2-,将2x =-,代入214y x =,可得1y =,即切点坐标为()2,1-,所以点P 到直线40x y ++=的距离的最小值即为()2,1-到直线的距离,即2d =,故答案为:【变式6-2】已知P 为直线210x y +-=上的一个动点,Q 为曲线423242210x x y x x --++=上的一个动点,则线段PQ 长度的最小值为______.【解析】直线210x y +-=可化为:1122y x =-+.对于曲线423242210x x y x x --++=.当0x =时,代入10=不成立,所以0x ≠.所以423242210x x y x x --++=可化为22112122y x x x =-++,导数为31142y x x -'=-所以线段PQ 的最小值即为与1122y x =-+平行的直线与423242210x x y x x --++=相切时,两平行线间的距离.设切点(),Q m n .由题意可得:322111422112122m m n m m m ⎧--=-⎪⎪⎨⎪=-++⎪⎩,即32214112122m m n m m m ⎧=⎪⎪⎨⎪=-++⎪⎩,解得:234m n ⎧=⎪⎪⎨⎪=-⎪⎩或234m n ⎧=-⎪⎪⎨⎪=+⎪⎩.当Q ⎝⎭时,PQ当,324Q ⎛-+ ⎝⎭时,PQ =综上所述:线段PQ.【变式6-3】点P 是曲线2ln y x x =-上任意一点,且点P 到直线y x a =+的距离的a 的值是__________.【答案】2-【解析】由题设12y x x '=-且0x >,令0'>y ,即22x >;令0'<y ,即202x <<,所以函数2ln y x x =-在0,2⎛⎝⎭上单调递减,在,2⎫+∞⎪⎪⎝⎭上单调递增,且12|ln 022x y ->,如图所示,当P 为平行于y x a =+并与曲线2ln y x x =-相切直线的切点时,距离最近.令1y '=,可得12x =-(舍)或1x =,所以1|1x y ==,则曲线上切线斜率为1的切点为(1,1)P ,=2a =(舍去)或2-,故答案为:2-.。

(完整版)高考导数题型归纳,推荐文档

(完整版)高考导数题型归纳,推荐文档

高考压轴题:导数题型及解题方法
(自己总结供参考)
一.切线问题
题型1 求曲线在处的切线方程。

)(x f y =0x x =方法:为在处的切线的斜率。

)(0x f '0x x =题型2 过点的直线与曲线的相切问题。

),(b a )(x f y =方法:设曲线的切点,由求出,进而)(x f y =))(,(00x f x b x f x f a x -='-)()()(0000x 解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x.
(1)求曲线y=f (x )在点x=2处的切线方程;(答案:)
0169=--y x (2)若过点A 可作曲线的三条切线,求实数的取值范围、
)2)(,1(-≠m m A )(x f y =m (提示:设曲线上的切点();建立的等式关系。

将问题转化为关
)(x f y =)(,00x f x )(,00x f x 于的方程有三个不同实数根问题。

(答案:的范围是)
m x ,0m ()2,3--练习 1. 已知曲线x
x y 33
-=(1)求过点(1,-3)与曲线相切的直线方程。

答案:(或x x y 33-=03=+y x )
027415=--y x (2)证明:过点(-2,5)与曲线相切的直线有三条。

x x y 33
-=2.若直线与曲线相切,求的值. (答案:1)0122=--+e y x e x
ae y -=1a 题型3 求两个曲线、的公切线。

)(x f y =)(x g y =。

(无水印版本)高考导数压轴题---函数与导数核心考点

(无水印版本)高考导数压轴题---函数与导数核心考点

占"、,目录题型一切线型1.求在某处的切线方程2.求过某点的切线方程3.已知切线方程求参数题型二单调型1.主导函数需”二次求导”型2.主导函数为"一次函数”型3.主导函数为“二次函数”型4.已知函数单调性,求参数范围题型三极值最值型1.求函数的极值2.求函数的最值3.已知极值求参数4.已知最值求参数题型四零点型1.零点(交点,根)的个数问题2.零点存在性定理的应用3.极值点偏移问题题型五恒成立与存在性问题1.单变量型恒成立问题2.单变量型存在性问题3.双变量型的恒成立与存在性问题4.等式型恒成立与存在性问题题型六与不等式有关的证明问题1.单变量型不等式证明2. 含有e x与l n x的不等式证明技巧3.多元函数不等式的证明4.数列型不等式证明的构造方法— 题型一切线型 1求 在某处的切线方程3x2例 1. 【201 5 重庆理 20】求函数 f{x ) =e在点(1 , 八1))处的切线方程. 3x 2 6x - 3x2 3 3解 : 由 八x) = "e x" , 得f '(x)= e X , 切点为(1, -e ) ' 斜 率 为 f ' (l ) =- e3 3 3 3 l ) = - , 得 切点坐标为(1, - ), 由f '( l )= - , 得切线斜率为-; e e e e 切 线 方 程为y —3 3—1), 即 3x —ey = O .例 2 求 瓜 ) 1- = - (x e e 在点(l, 八1))处的切线方程.= x e (- + 2)X解: 由 八x) = e 干1+ 2) , 得f' (x) = x e 1 1 ( — 一 十一十2)由j {l ) = 3e, 得切点坐标为(l ,3e), 由f '( l )= 2e, 得切线斜率为 2e; 切线方程为y - 3e= 2e (x - I), 即 2ex - y + e= O1- x 例 3求 瓜 )= In — —在点(0, 八0))处的切线方程.l + x1- x 1 1 解: 由 j( x) = f n- = ln( l — x) — ln(l + x ), 得f '(x)= —一一-— 一一-I + x I x I + x由.f(O) = O , 得 切 点坐标为(0, 0), 由f '(0)= - 2, 得切线斜率为- 2;切线方程为y = —2.x, 即 2.x+ y = Ox 2例 4. 【 2 015 全 国新 课标 理 20 (1)】在直角坐标系 x oy 中, 曲 线 C: y =--4与直 线 I : y=kx 十a(a > O)交于M, N 两点,当 k= O 时 ,分别求 C 在点 M 与 N 处的切线方程解 由题意得 a 干 , 则 x = 士2-Fa , 即 M( - 2嘉 , a ) , N(2 嘉 , a ),畛) = , 得f '(x)=宁当 切 点 为M(- 2嘉 , a )时, 切线斜率为j 、'(- 2嘉)=-嘉 ,此时切线方程为:ax 十y+ a = O;当 切 点 为N(2嘉 , a)时, 切线斜率为! '(2-Fa) = 嘉 , 此时 切 线 方 程为: 寸; x —y - a = O ;由八— 1解 题模板- I 求在某处的切线方程(1) 写出八x) ;(2)求出/ '(x ) ;(3) 写出切点(x 。

高考导数压轴题-函数与导数核心考点(完美版)

高考导数压轴题-函数与导数核心考点(完美版)

题型二 单调型
1.主导函数需 “二次求导 ”型 I 不含参求单调区间

1.求函数
f
(x
)=
x(
ex

1)-
1 2x
2的单调区间
.
解: f(x)的定义域为 R f ′x()= ex(1+x)-1-x=(x+ 1)(ex+1)
令 f ′x()>0,得 x<- 1 或 x> 0;令 f ′x()<0,得- 1< x<0
所以切线方程为: y- 13x03+43=x02(x-x0),
由切线经过点
P(2,4),可得
4-
13x03+
4 3=
x02(2-
x0),整理得:
x03-
3x02+
4
= 0,解得 x0=- 1 或 x0=2
当 x0=- 1 时,切线方程为: x-y+ 2= 0;
当 x0=2 时,切线方程为: 4x-y-4=0. 例 2.求 f(x)=x3- 4x2+5x-4 过点 (2,- 2)的切线方程 . 解:设切点为 (x0,x03- 4x02+5x0-4),则切线斜率 f ′x(0)= 3x02-8x0+5,
点 P 在曲线上 切点
点 P 不在曲线上 不是切点
点 P 在曲线上 不确定是切点
O
P
O
O
P
P
Step1 设切点为 (x0,f(x0)),则切线斜率 f ′x(0),切线方程为:
y- f(x0)=f ′x(0)(x- x0)
Step2 因为切线过点 (a, b),所以 b-f(x0)= f ′x(0)(a-x0),解得 x0=x1 或 x0=x2
∵切线经过点 P(1,m), ∴ m- (x03-4x02+5x0-4)= (3x02- 8x0+ 5) (1-x0), 即:- 2x03+ 3x02-3-m=0,即 m=- 2x03+3x02-3 ∵过点 A(1, m)(m≠2可) 作 f(x)=x3- 3x 的三条切线, ∴方程 m=- 2x03+ 3x02-3,有三个不同的实数根 .

专题:导数的切线专题课件-2022-2023学年高二下学期数学人教A版(2019)选择性必修第二册

专题:导数的切线专题课件-2022-2023学年高二下学期数学人教A版(2019)选择性必修第二册
解析 设切点坐标为(x0,y0), ∵y=ln x+x+1,所以 y′=1x+1, ∴切线的斜率为x10+1=2,解得 x0=1, ∴y0=ln 1+1+1=2,即切点坐标为(1,2), ∴切线方程为y-2=2(x-1), 即2x-y=0.
例2 已知函数f(x)=x3-3x,过点A(0,16)作曲线y=f(x)的切线,求此切线方程.
例 8.若直线 l 与曲线 y=ex 及 y=-14x2 都相切,则直线 l 的方程为_y_=__x_+__1_.
解析 设直线 l 与曲线 y=ex 的切点为(x0,ex0),直线 l 与曲线 y=-14x2
的切点为x1,-x421,因为 y=ex 在点(x0,ex0)处的切线的斜率为
=ex0,
y=-x42在点x1,-x421处的切线的斜率为y′|x=x1=-x2|x=x1=-x21,则直线
例3 若经过点P(2,8)作曲线y=x3的切线,则切线方程为
()
A.12x-y-16=0
B.3x-y+2=0
C.12x-y+16=0或3x-y-2=0 D.12x-y-16=0或3x-y+2=0
解析 ①易知P点在曲线y=x3上,当P点为切点时,y′=3x2,k=12, 切线方程为12x-y-16=0. ②当 P 点不是切点时,设切点为 A(x0,y0),由定义可求得切线的斜率为 k=3x20.
解析 曲线方程为 y=x3-3x,点 A(0,16)不在曲线上, 设切点为 M(x0,y0),则 y0=x30-3x0, 因为 f′(x0)=3(x20-1),故切线方程为 y-y0=3(x20-1)(x-x0), 将 A(0,16)代入切线方程化简得 x30=-8,解得 x0=-2. 所以切点为 M(-2,-2),f′(-2)=9, 所以切线方程为 9x-y+16=0.

专题01 导数与函数的最(极)值(精讲篇)-用思维导图突破导数压轴题

专题01 导数与函数的最(极)值(精讲篇)-用思维导图突破导数压轴题

用思维导图突破导数压轴题解答数学题的“思维导图”:逛公园顺道看景,好风光驻足留影. 把条件翻成图式,关键处深挖搞清. 综合法由因导果,分析法执果索因. 两方法嫁接联姻,让难题无以遁形.这里把解题比作逛公园,沿路而行,顺道看景,既有活跃气氛,又有借景喻理之意,即理解题意后把已知条件“翻译”出来,如果能得到结论那是最好,如果不行就要转化,即从已知条件入手推出中间结论(可知),当中间结论能直接证明最终结论时,则解题成功.当中间结论不能直接证明最终结论时,可把最终结论等价转化为“需知”,再用中间结论证明“需知”从而达到解题目的.有时还要挖掘题目的隐含条件.从某种意义上说,解题就是“找关系”----找出已知与未知的联系,不断缩小以至消除二者之间的差距,从而达到解题目的.这个思维导图不仅是用来解答压轴题,其实,每个层次的学生都有相应的难题。

中等以下水平的学生高考基本不用做压轴题的,但他们做中档题会有困难,思维导图一样适用。

专题01 导数与函数的最(极)值问题利用导数求函数f (x )极值、最值的基本方法是先求f (x )的导数f 'x (),再求f 'x ()的零点i x ,i N ∈,根据f 'x ()在i x 两边的符号判断的单调性,最后确定i f x ()是极大值或极小值,再确定最值。

先求导数 再定零点 考查单调极值来了思路点拨第(1)只要直接计算即可。

第(2)题先求出()f x 和()f x '的含参数零点(用a 、b 表示),再根据零点均在集合{3-,1,3}中确定a 、b 的值。

第(3)题求出()f x '的零点12,x x (设12x x <),根据单调性确定极大值为321111()(1)=-++f x x b x bx ,这里含有两个变量,最容易想到的方法就是转化为一元变量,但恒等变形能力要求较高,也可以挖掘隐含条件利用基本不等式整体消元。

第(3)解题思维导图如下:.(2)a b ≠,b c =,设2()()()f x x a x b =--, 令2()()()0f x x a x b =--=,解得x a =,或x b =.又2()()2()()()(32)f x x b x a x b x b x b a '=-+--=---,令()0f x '=,解得x b =,或23a bx +=. 因为()f x 和()f x '的零点均在集合{3A =-,1,3}中,所以3a =-,1b =,则2615333a b A +-+==-∉,舍去; 1a =,3b =-,则2231333a b A +-==-∉,舍去; 3a =-,3b =,则263133a b A +-+==-∉,舍去; 3a =,3b =-,则263133a b A +-==∈; 3a =,1b =,则2617333a b A ++==∉,舍去; 1a =,3b =,则2533a b A +=∉,舍去.因此3a =,3b =-,213a bA +=∈,从而2()(3)(3)f x x x =-+,()3[(3)](1)f x x x '=---, 令()0f 'x =,得3x =-或1x =.列表如下:从而可知,()f x 的单调递增区间为(−∞,−3]和[1,+∞),单调递减区间为[−3,1],由此可知当1x =时,函数()f x 取得极小值,2(1)2432f =-⨯=-.(3)证明:0a =,01b <„,1c =,()()(1)f x x x b x =--,则2()()(1)(1)()3(22)f x x b x x x x x b x b x b '=--+-+-=-++.因为△22214(1)124444()332b b b b b =+-=-+=-+…,所以()0f x '=有两实根12,x x ,设12x x <,则()f x 单调递增区间为(−∞,1x ]和[2x ,+∞),单调递减区间为12[,]x x ,于是()f x 取得极大值为1111()()(1)M f x x x b x ==--。

专题04 导数与切线(训练篇A)-用思维导图突破导数压轴题

专题04 导数与切线(训练篇A)-用思维导图突破导数压轴题

专题04 导数与切线(训练篇A )-用思维导图突破解导数压轴题《挑战压轴题•高中数学•精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者特级教师文卫星A 组1.(2016·全国Ⅱ,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解 ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ,()ln 1y x =+的切线为:22221ln(1)11x y x x x x =++-++, ∴()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩解得 112=x ,212=-x ,∴1ln 11ln 2=+=-b x 。

2.(2015年陕西,理15)设曲线x e y =在点)1,0(处的切线与曲线)0(1>=x xy 上点P 处的切线垂直,则P 的坐标为 .解析:设),(00y x P ,由导数的几何意义知,曲线xe y =在点)1,0(处的切线斜率11=k ,曲线)0(1>=x xy 上点P 处的切线斜率2021x k -=,因为两切线垂直,所以121-=k k ,即1120-=-x ,又00>x ,所以1,100==y x ,所以)1,1(P . 3. 2016年新课标Ⅲ,文16理15)已知为偶函数,当时,,则曲线在点处的切线方程是_________. ()f x 0x <()ln()3f x x x =-+()y f x =()13-,解 当0x <时,()ln()3f x x x =-+,/1()3f x x=+,故/(1)2f -=.又因偶函数的导函数为奇函数,故(1)(1)2f f ''=--=-.又(1)(1)3f f =-=-,故曲线()y f x =在点(1,3)-处的切线方程是.4.(东城2020一模)已知函数321()3()3f x x x ax a =--∈R . (Ⅱ)若()f x 在1x =-时,有极值,求a 的值;(Ⅱ)在直线1x =上是否存在点P ,使得过点P 至少有两条直线与曲线()y f x =相切?若存在,求出P 点坐标;若不存在,说明理由.解 (Ⅰ) 因为 321()33f x x x ax =-+,所以 ()223f x x x a '=-+. 由()f x 在1x =-时,有极值得 ()11230f a '-=++= ,解得 1a =- . 经检验,1a =-时,()f x 有极值.综上,1a =-.(Ⅱ)不妨设在直线1x =上存在一点(1,)P b ,设过点P 与()y f x =相切的直线为l ,切点为00(,)x y ,则切线l 方程为32200000013(23)()3y x x ax x x a x x -+-=-+-. 又直线l 过(1,)P b ,有32200000013(23)(1)3b x x ax x x a x -+-=-+-,即3200022+2303x x x a b --+=. 设322()2233g x x x x a b =-+-+,22'()2422(1)0g x x x x =-+=-≥. 所以()g x 在区间(,)-∞+∞上单调递增,所以()0g x =至多有一个解.所以过点P 与()y f x =相切的直线至多有一条,故在直线1x =上不存在点P ,使得过P 至少有两条直线与曲线()y f x =相切.5.(2015届海淀二模)已知函数f (x )=1−lnx x 2.(1)求函数f(x)的零点及单调区间; (2)求证:曲线y =lnx x存在斜率为6的切线,且切点的纵坐标y 0<−1.21y x =--解:(Ⅰ)令,得, 故的零点为.().令 ,解得 .当变化时,,的变化情况如下表:所以 的单调递减区间为,单调递增区间为.(Ⅱ)令.则. 因为 ,,且由(Ⅰ)得,在内是减函数,所以 存在唯一的,使得.当时,,所以 曲线存在以为切点,斜率为6的切线.由得:,所以 . 6. (2020,1,朝阳区高三期末)已知函数f (x )=(sin x +a )ln x ,a ∈R . (Ⅱ)若a =0,(Ⅱ)求曲线y =f (x )在点(π2,f (π2))处的切线方程;(Ⅱ)求函数f (x )在区间(1,π)内的极大值的个数. (Ⅱ)若f (x )在(π2 ,π)内单调递减,求实数a 的取值范围.解:(Ⅱ)(Ⅱ)因为()sin ln f x x x =,所以sin ()cos ln x f x x x x '=+,2()2f π'=π. 又因为()ln 22f ππ=,所以曲线()y f x =在点(,())22f ππ处的切线方程为2ln ()22y x ππ-=-π,化简得2ln 02x y π-π-π+π=.()0f x =e x =()f x e 22231()(1ln )22ln 3'()()x x xx x f x x x -⋅--⋅-==0x >'()0f x =32e x =x '()f x ()f x ()f x 32(0,e )32(e ,)+∞ln ()x g x x=2211ln 1ln '()()x xx x g x f x x x ⋅-⋅-===11()44ln 244622f =+>+⨯=(e)0f =()f x (0,e)01(,e)2x ∈00'()()6g x f x ==[e,)x ∈+∞()0f x ≤ln xy x=00(,())x g x 00201ln '()6x g x x -==200ln 16x x =-20000000ln 161()6x x g x x x x x -===-(Ⅱ)当(1,)2x π∈时,()0f x '>,()f x 单调递增,此时()f x 无极大值. 当(,)2x π∈π时,设()()g x f x '=,则22cos sin ()sin ln 0x xg x x x x x'=-+-<,所以()f x '在(,)2ππ内单调递减. 又因为2()02f π'=>π, ()ln 0f 'π=-π<,所以在(,)2ππ内存在唯一的0(,)2x π∈π,使得0()0f x '=.当x 变化时,()f x ',()f x 的变化如下表所以()f x 在0(1,)x 内单调递增,在0(,)x π内单调递减,此时()f x 有唯一极大值. 综上所述,()f x 在(1,)π内的极大值的个数为1.(Ⅱ) 由题可知sin ()cos ln x a f x x x x +'=+,其中(,)2x π∈π. 当1a ≤-时,()0f x '<,故()f x 在(,)2ππ内单调递减;下面设1a >-.对于(,)2x π∀∈π,2ln ln lne 2x <π<=,且cos 0x <,所以cos ln 2cos x x x >.所以当(,)2x π∈π时,sin sin 2cos ()2cos x a x a x x f x x x x +++'>+=. 设()sin 2cos h x x x x a =++,[,2x π∈π],则()cos 2cos 2sin 3cos 2sin 0h x x x x x x x x '=+-=-<.所以()h x 在[,2ππ]上单调递减,又()102h a π=+>, ()2h a π=-π+.当20a -π+≥时,即2a ≥π时,()0h π≥,对(,)2x π∀∈π,()0h x >,所以()0f x '>,()f x 在(,)2ππ内单调递增,不符合题意.当20a -π+<时,即12a -<<π时,()02h π>,()0h π<,所以1(,)2x π∃∈π,使1()0h x =。

【冲刺必刷】专题01 导数与函数的最(极)值(精讲篇)-用思维导图突破导数压轴题

【冲刺必刷】专题01 导数与函数的最(极)值(精讲篇)-用思维导图突破导数压轴题

用思维导图突破导数压轴题《挑战压轴题•高中数学•精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者上海市特级教师文卫星解答数学题的“思维导图”:逛公园顺道看景,好风光驻足留影.把条件翻成图式,关键处深挖搞清. 综合法由因导果,分析法执果索因. 两方法嫁接联姻,让难题无以遁形.这里把解题比作逛公园,沿路而行,顺道看景,既有活跃气氛,又有借景喻理之意,即理解题意后把已知条件“翻译”出来,如果能得到结论那是最好,如果不行就要转化,即从已知条件入手推出中间结论(可知),当中间结论能直接证明最终结论时,则解题成功.当中间结论不能直接证明最终结论时,可把最终结论等价转化为“需知”,再用中间结论证明“需知”从而达到解题目的.有时还要挖掘题目的隐含条件.从某种意义上说,解题就是“找关系”----找出已知与未知的联系,不断缩小以至消除二者之间的差距,从而达到解题目的.这个思维导图不仅是用来解答压轴题,其实,每个层次的学生都有相应的难题。

中等以下水平的学生高考基本不用做压轴题的,但他们做中档题会有困难,思维导图一样适用。

专题01 导数与函数的最(极)值问题利用导数求函数f(x)极值、最值的基本方法是先求f(x)的导数f 'x (),再求f 'x ()的零点i x ,i N ∈,根据f 'x ()在i x 两边的符号判断的单调性,最后确定i f x ()是极大值或极小值,再确定最值。

先求导数再定零点 考查单调 极值来了否已知条件隐含条件中间结论(可知)已知条件的等价转化待求(证)的结论结论的等价转化(需知)能否能引例(2019江苏卷第19题)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数.(1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值;(3)若0a =,01b <„,1c =,且()f x 的极大值为M ,求证:427M „.思路点拨第(1)只要直接计算即可。

专题03 导数与函数零点(训练篇A)-用思维导图突破导数压轴题

专题03 导数与函数零点(训练篇A)-用思维导图突破导数压轴题

专题03 导数与函数零点(训练篇A )-用思维导图突破解导数压轴题《挑战压轴题•高中数学•精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者特级教师文卫星1.(2019年浙江第9题)设a ,b R ∈,函数32,0,()11(1),0.32x x f x x a x ax x <⎧⎪=⎨-++⎪⎩…若函数()y f x ax b =--恰有3个零点,则( )A .1a <-,0b <B .1a <-,0b >C .1a >-,0b >D .1a >-,0b <思路点拨当0x <时,()y f x ax b =--是一次函数,最多有一个零点;当0x …时,()y f x =-ax b -可转化为函数g (x )=f (x )-ax 与直线y =b 恰有三个交点,根据g (x )的单调性可得a 、b 范围. 满分解答解1 原题可转化为函数()()g x f x ax =-与直线y b =,恰有三个交点.32(1),0()11(1),032a x x g x x a x x -<⎧⎪=⎨-+≥⎪⎩, 当0x ≥时,()[(1)]g x x x a '=-+,3(0)(1)0,(0)0,()1)61(g g a g g a a +''=+=+=-=. 若1a ≤-,此时10a +≤,函数()g x 在()0,+∞单调递增,函数()()g x f x ax =-与直线y b =不可能有三个交点;若1a >-,此时10a +>,函数()g x 在()0,1a +单调递减,在()1,a ++∞单调递增,函数()()g x f x ax =-与直线y b =有三个交点,须3(1)6(1)(0)0g a a g b +-<<+==,且10a ->.综上,正确答案为D.解2 原题可转化为()y f x =与y ax b =+,恰有三个交点.当0a =时,32,0()11,032x x f x x x x <⎧⎪=⎨-≥⎪⎩,其图象如图所示,此时直线y b =与函数的图象有三个交点,需满足1(1)06f b =-<<.排除A 、B 、C .正确答案为D .2.(2017年新课标3理第11题)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = ( )(A )12-(B )13 (C )12 (D )1 解1令2(2)x g x x =-,11()()x x h x a e e--+=+,很显然,()g x 的图像关于直线1x =对称,函数()xxy a e e -=+的图像关于y 轴对称,而()h x 的图象可看作是由()xxy a e e -=+的图象向右平移1个单位得到,所以()h x 的图像也关于直线1x =对称,即1x =为()f x 的对称轴,由题意知()f x 有唯一的零点,所以零点只能为1x =,即(1)120f a =-+=,解得:12a =. 解2 函数()f x 的零点满足2112e e x x x x a --+-=-+(), 设11()eex x g x --+=+,则()21111111e 1()eeee ex x x x x x g x ---+----'=-=-=. 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增; 当1x =时,函数()g x 取得最小值,为(1)2g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-.若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当(1)(1)ag h -=时,函数()h x 和()ag x -有一个交点,即21a -⨯=-,解得12a =.故选C. 3. (2020沈阳一模)已知函数1()()1x f x lnx a x -=-+. (1)讨论函数()f x 的单调性;Oxy1(2)若函数1()()1x f x lnx a x -=-+有三个零点,求实数a 的取值范围. 解(1)()f x 定义域为(0,)+∞,22212(22)1()(1)(1)a x a x f x x x x x +-+'=-=++,令2()(22)1g x x a x =+-+.当1a „时,因为(0,)∈+∞x ,(0)10g =>,对称轴010x a =-„,所以()0>g x ,即()0f x '>,所以()f x 单调递增;当12a <„时,因为对称轴010x a =->,△2480a a =-„,()0g x …,即()0f x '…,所以()f x 单调递增;当2a >时,△2480a a =->,()0g x =在(0,)+∞内有两不等实根,1x a =-±设11x a =--21x a =-+当1(0,)x x ∈时,()0g x >,即()0f x '>,()f x 单调递增; 当1(x x ∈,2)x 时,()0g x <,即()0f x '<,()f x 单调递减; 当2(x x ∈,)+∞时,()0g x >,即()0f x '>,()f x 单调递增. 综上,当2a „时,()f x 单调递增区间为(0,)+∞.当2a >时,()f x单调递增区间为(0,1a -和(1)a -++∞,()f x 单调递减区间为(11a a --.(2)由(1)得,当2a „时,()f x 在(0,)+∞单调递增,所以()f x 至多有一个零点. 当2a >时,因为12<x x ,121x x =,所以1201<<<x x ,容易观察1是()f x 的一个零点,由()f x 的单调性知1()0f x >,2()0f x <.令0(0,1)ax e -=∈,则0112()()()0111a a a aa a a e e ae f x lne a a e e e ----------=-=--=<+++,所以当(0,1)x ∈时存在0x 使得0()0f x <,又1()0f x >且()f x 在1(0,)x 上递增,()f x 在0(x ,1)x 内必有一个零点.令0(1,)ax e '=∈+∞,则12()()011a aa a e af e a a e e -=-=>++,所以当(1,)x ∈+∞时,存在0x '使得0()0f x '>,又2()0f x <且()f x 在2(x ,)+∞上递增,()f x 在2(x ,0)x '内必有一个零点, 所求实数a 的取值范围是(2,)+∞.4.(2016,北京,文20)设函数. (Ⅰ)求曲线在点处的切线方程;32()f x x ax bx c =+++()y f x =(0,(0))f(Ⅰ)设,若函数有三个不同零点,求的取值范围; (Ⅰ)求证:是有三个不同零点的必要而不充分条件.解 (Ⅰ)由32()f x x ax bx c =+++得2()32f x x ax b =++,.因为(0)=f c ,(0)=f b ,,所以()y f x =在点(0,(0))f 处的切线方程为y bx c =+. (Ⅰ)当4a b ==时,32()44f x x x x c =+++,所以2()384f x x x =++,. 令()=0f x ,解得=2x -或2=3x -.()f x 与()f x ,在区间,-∞+∞()上的情况如下:所以,当0c >且32027c -<时,存在1x ∈(-4,-2),223x ∈(-2,-),323x ∈(-,0),使得123()=()=()=0f x f x f x .由()f x 单调性知,当且仅当3227c ∈(0,)时,函数32()44f x x x x c =+++有三个不同的零点.(III )当2=4120a b -<V 时,2()320f x x ax b =++>,,此时()f x 在R 上单调递增,不可能有3个不同零点;当2=412=0a b ∆-时,2()32f x x ax b =++,只有一个零点,记作0x ,则当0x x ∈∞(-,)时,()0f x >,,()f x 在0x ∞(-,)上单调递增;当0+x x ∈∞(,)时()0f x >,,()f x 在0+x ∞(,)上单调递增.所以()f x 不可能有三个不同零点.综上,若()f x 有三个不同零点,必有2=4120a b ∆->,230a b ->是()f x 有三个不同零点的必要条件.4==a b ()f x c 230a b ->()fx又4a b ==,0c =时,230a b ->,但322()44=(2)f x x x x x x =+++只有两个不同零点,230a b ->不是()f x 有三个不同零点的充分条件.综上,230a b ->是()f x 有三个不同零点的必要而不充分条件.5.(朝阳区2017届高三上学期期末)设函数,,.(1)当时,求函数在点处的切线方程; (2)若函数有两个零点,试求的取值范围; (3)证明.解 (1)函数的定义域是,.当时,,.所以函数在点处的切线方程为, 即.(2)函数的定义域为,由已知得. ①当时,函数只有一个零点;②当,因为,当时,;当时,,所以函数在上单调递减,在上单调递增.又,,因为,所以,所以,所以取,显然且.所以,,由零点存在性定理及函数的单调性知,函数有两个零点.③当时,由,得,或.(ⅰ) 当,则.2()ln(1)1f x x ax x =-+++2()(1)e x g x x ax =-+R a ∈1a =()f x (2,(2))f ()g x a ()()f x g x ≤()f x (1,)+∞(221)()1x ax a f x x -+'=-1a =()f x (2)426f a '=+=(2)437f a =+=(2,(2))f 76(2)y x -=-65y x =-R ()(e 2)xg x x a '=+0a =()(1)e xg x x =-0a >e 20xa +>(,0)x ∈-∞()0g x '<(0,)x ∈+∞()0g x '>()g x (,0)-∞(0,)+∞(0)1g =-(1)g a =0x <10,1xx e -<<(1)1xe x x ->-2()1g x ax x >+-0x =00x <0()0g x >(0)(1)0g g <0()(0)0g x g <0a <()(e 2)0xg x x a '=+=0x =ln(2)x a =-12a <-ln(2)0a ->当变化时,变化情况如下表:注意到,所以函数至多有一个零点,不符合题意.(ⅱ) 当,则,在单调递增,函数至多有一个零点,不符合题意. 若,则. 当变化时,变化情况如下表:注意到当时,,,所以函数至多有一个零点,不符合题意.综上,的取值范围是(3)证明:.设,其定义域为,则证明即可.因为,取,则,且.又因为,所以函数在上单增,所以有唯一的实根,且. x (),()g x g x '(0)1g =-()g x 12a =-ln(2)0a -=()g x (,)-∞+∞()g x 12a >-ln(2)0a -≤x (),()g x g x '0,0x a <<2()(1)e 0xg x x ax =-+<(0)1g =-()g x a (0,).+∞()()(1)e ln(1)1xg x f x x x x -=-----()(1)e ln(1)1xh x x x x =-----(1,)+∞()0h x ≥1()e (e )11x x x h x x x x x '=-=---311e x -=+1311()(e e )0x h x x '=-<(2)0h '>21()(1)e 0(1)xh x x x ''=++>-()h x '(1,)+∞()0h x '=0(1,2)x ∈001e 1xx =-当时,;当时,,所以函数的最小值为. 所以,所以6. (2015山东,文20)设函数()()ln f x x a x =+,2()x x g x e=,已知曲线)(x f y =在点))1(,1(f 处的切线与直线02=-y x 平行.(1)求a 的值;(2)是否存在自然数k ,使得方程)()(x g x f =在)1,(+k k 内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数)}(),(min{)(x g x f x m =(},min{q p 表示q p ,中的较小值),求)(x m 的最大值.解 (1)由题意知,曲线)(x f y =在点))1(,1(f 处的切线斜率为2.所以12f '=(),又()ln 1af x x x¢=++,所以1=a . (2)1=k 时,方程)()(x g x f =在)2,1(内存在唯一的根.设2()()()(1ln x x h x f x g x x x e=-=+-).当]1,0(∈x 时,0)(<x h ,又01148ln 42ln 3)2(22=->-=-=e e h . 所以存在)2,1(0∈x ,使得0)(0=x h ,因为1(2)()ln 1x x x h x x x e-¢=+++, 所以当)2,1(∈x 时,1()10h x e¢>->,),2(+∞∈x 时,()0h x ¢>, 所以当),1(+∞∈x 时,)(x h 单调递增.所以1=k ,使得方程)()(x g x f =在)1,(+k k 内存在唯一的根.(3)由(2)知方程)()(x g x f =在)2,1(内存在唯一的根0x ,且),0(0x x ∈时,)()(x g x f <,01x x <<()0h x '<0x x >()0h x '>()h x 0()h x 00000()()(1)e ln(1)1xh x h x x x x ≥=-----00110x x =+--=()().f x g x ≤()+∞∈,0x x 时,)()(x g x f >,所以⎪⎩⎪⎨⎧+∞∈∈+=),(,],0(,ln )1()(020x x ex x x x x x m x当),0(0x x ∈时,若0)(],1,0(≤∈x m x ;若),1(0x x ∈,由1()ln 10m x x x¢=++>,可知)()(00x m x m ≤<. 故)()(0x m x m ≤. 当),(0+∞∈x x 时,由(2)()xx x m x e-¢=可知 当)2,(0x x ∈时,()0m x ¢>,()m x 单调递增; 当),2(+∞∈x 时,()0m x ¢<,()m x 单调递减;由此可知24)2()(em x m =≤,且)2()(0m x m ≤. 综上可知函数)(x m 的最小值为24e . 注 第(2)中用()f x 表示'()g x 是为了利用(1)的结论.求最值的基本方法是求导--判断导函数符号--确定单调区间—求最值(值域).7.已知函数()cos 1f x ax x =-在π0,6⎡⎤⎢⎥⎣⎦1-.(1)求a 的值;(2)证明:函数()f x 在区间π0,2⎛⎫⎪⎝⎭上有且仅有2个零点.分析 (1)求导后利用0,6x π⎡⎤∈⎢⎥⎣⎦可得导函数的正负与原函数的单调性,再利用最大值为1-进行求解即可.(2)求导分析单调性后,根据零点存在定理求解()0,,42f f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的正负即可.解(1)()()/cos sin fx a x x x =-,因为0,6x π⎡⎤∈⎢⎥⎣⎦,所以cos sin 0x x >≥,又10x >≥,所以1cos sin x x x ⋅>,即cos sin 0x x x ->.当0a >时,()/0fx >,所以()f x 在区间π0,6⎡⎤⎢⎥⎣⎦上递增,所以()max 116626f x f a ππ⎛⎫==⋅⋅-=- ⎪⎝⎭,解得2a =.当0a <时,()/0f x <,所以()f x 在区间π0,6⎡⎤⎢⎥⎣⎦上递减,所以()()max 01f x f ==-,不合题意.当0a =,()1f x =-,不合题意. 综上,2a =.(2)设()cos sin g x x x x =-,则()/2sin cos 002gx x x x x π⎛⎫=--<<<⎪⎝⎭, 所以()g x 在0,2π⎛⎫⎪⎝⎭上单调递减,又()010,022g g ππ⎛⎫=>=-<⎪⎝⎭, 所以存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()00g x =.当00x x <<时,()0g x >,即()()/20f x g x =>,所以()()00,f x x 在上单调递增;当02x x π<<时,()0g x <,即()()/20f x g x =<,所以()()00,f x x 在上单调递减又()010,10,10442f f f ππ⎛⎫⎛⎫=-<=->=-< ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在π0,4⎛⎫ ⎪⎝⎭与ππ,42⎛⎫⎪⎝⎭上各有一个零点, 综上,函数()f x 在区间0,2π⎛⎫⎪⎝⎭上有且仅有两个零点.8.(2016年新课标Ⅰ,文、理21合一)已知函数有两个零点.(1)讨论的单调性;()()()221x f x x e a x =-+-()f x(2)求的取值范围;(3)设是的两个零点,证明:. 解 (1)'()(2)(1)xf x e a x =+-, (Ⅰ)若0a ≥时,令()0f x '=,则1x =;令()0f x '>,则1x >;令()0f x '<,则1x <,此时()f x 的单调递增区间为(1)+∞,,递减区间为(1)-∞,;(Ⅰ)设0a <时,令()0f x '=时,则ln(2)x a =-或1x =, ①若ln(2)1a -=,即2e a =-时,此时()(1)()0xf x x e e '=--≥恒成立,此时()f x 在R 上为增函数;②若ln(2)1a -<,即02ea -<<时,令()0f x '>,则ln(2)x a <-或1x >; 令()0f x '<,则ln(2)1a x -<<,此时()f x 的单调递减区间(1)+∞,,递增区间为(ln(2)1)a -,,(ln(2))a -∞-,;③若ln(2)1a ->,即2ea <-时,令()0f x '>,则1x <或ln(2)x a >-; 令()0f x '<,则1ln(2)x a <<-,此时()f x 的单调递增区间为(ln(2))a -+∞,, (1)-∞,,递减区间为(1ln(2))a -,. 综上,当0a ≥时,此时()f x 的单调递减区间为(1)-∞,,递增区间为(1)+∞,;当02ea -<<时,()f x 的单调递增区间为(ln(2))(1)a -∞-+∞,,,递减区间为(ln(2)1)a -,;当2e a =-时,()f x 在R 上为增函数;当2ea <-时,()f x 的单调递增区间为(1)-∞,,(ln(2))a -+∞,,递减区间为(1ln(2))a -,.(2)()()()121xf x x e a x '=-+-()()12xx e a =-+,当0a =时,()()2xf x x e =-,()f x 只有唯一的零点,不合题意;当0a >时,则当(),1x ∈-∞时,()0f x '<;当()1,x ∈+∞时,()0f x '>,所以()f x 在(),1-∞上单调递减,在()1,+∞上单调递增,又()()20,10f a f e =>=-<,取b 满足a 12,x x ()f x 122x x +<0b <且ln2a b <,则()()()22321022b f b b a b a b b ⎛⎫>-+-=-> ⎪⎝⎭,故()f x 存在两个零点.(为了证明在1,-∞()内也有一个零点,设0b <,只要证明0f b >(),需要设0b ln x <,则be <00ln x ex =,因为0b <,所以02b b e b x >-(-2)(),从而21bf b a b b e -+()=()(-2)2012a b b x >-+-()()20022ab ab a bx x =-++-.令02x a =,则02ax =.) 当0a <,由()0f x '=得1x =或()ln 2x a =-. 若2ea ≥-,则()ln 21a -≤,故当()1,x ∈+∞时,()0f x '>,()f x 在()1,+∞上单调递增;又当1x ≤时,()0f x <,所以()f x 不存在两个零点.(比较()ln 2a -和1的大小,确定以下a 的分类标准. 令()ln 21a -<,则2e a >-.) 若2ea <-,则()ln 21a ->,故当()()1,ln 2x a ∈-时,()0f x '<;当()()ln 2,x a ∈-+∞时,()0f x '>.因此,()f x 在()()1,ln 2a -上单调递减;在()()ln 2,a -+∞单调递增,又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,函数()f x 有两个零点时,a 的取值范围是()0,+∞;(3)解1 不妨设12x x <,由(Ⅰ)知,()()()122,1,1,,2,1x x x ∈-∞∈+∞-∈-∞,()f x 在(),1-∞上单调递减,所以122x x +<等价于()()122f x f x >-,即()()222f x f x >-.由于()()22222221x f x x ea x --=-+-,而()()()2222221x f x x e a x =-+-,所以()()()222222222x x f x f x x e x e ---=---.令()()22x x g x xe x e -=---,则()()()21x x g x x e e -'=--,所以当1x >时,()0g x '<,而()10g =,故当1x >时,()()10g x g <=.从而()()222f x f x >-,故122x x +<.解 2 不妨设12x x <,由题意知12()()0f x f x ==.要证不等式成立,只需证当121x x <<时,原不等式成立即可.令()()()11F x f x f x =--+,则11()()xx F x x ee -+'=-.当0x >时,()'0F x <所以()()00F x F <=,即()()11f x f x -<+. 令11x x =-,则()()()()21111f x f x f x ==--()()()11112f x f x <+-=-, 即()()212f x f x <-,而()21,21,x x -∈+∞,且()f x 在()1+∞,上递增,故212x x <-,即122x x +<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题04 导数与切线(训练篇B )-用思维导图突破解导数压轴题《挑战压轴题•高中数学•精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者特级教师文卫星1. 设曲线xe y =在点)1,0(处的切线与曲线)0(1>=x xy 上点P 处的切线垂直,则P 的坐标为 .解 设),(00y x P ,由导数的几何意义知,曲线xe y =在点)1,0(处的切线斜率11=k ,曲线)0(1>=x xy 上点P 处的切线斜率2021x k -=,因为两切线垂直,所以121-=k k ,即1120-=-x ,又00>x ,所以1,100==y x ,所以)1,1(P . 2.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.解 由f (x )=x 3+ax +14,得f ′(x )=3x 2+a ,f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎨⎧-ln x 0-14=ax 0, ①a =-1x 0. ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-e -34.3. 如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解 由题图可知切线过点(0,2),(3,1),则曲线y =f (x )在x =3处的切线的斜率为-13,即f ′(3)=-13,又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),所以g ′(3)=1+3×⎝⎛⎭⎫-13=0.故选B 。

4. 已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2). (1)由题意,得{ f 0=b =0,f ′0=-a a +2=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞.5.已知函数.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线的切线.解(1)f (x )的定义域为(0,1)(1,+∞). 因为,所以在(0,1),(1,+∞)单调递增. 因为f (e )=,,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又,,故f (x )在(0,1)有唯一零点.综上,f (x )有且仅有两个零点.(2)因为,故点B (–ln x 0,)在曲线y =e x 上. ()11ln x f x x x -=-+e x y =U 212()0(1)f 'x x x =+>-()f x e 110e 1+-<-22222e 1e 3(e )20e 1e 1f +-=-=>--1101x <<1111111()ln ()01x f x f x x x +=-+=-=-11x 0ln 01e x x -=01x由题设知,即,故直线AB 的斜率.曲线y =e x 在点处切线的斜率是,曲线在点处切线的斜率也是,所以曲线在点处的切线也是曲线y =e x 的切线.6. 设函数,曲线在点处的切线方程为.(Ⅰ)求,的值;(Ⅰ)求的单调区间. 解 (Ⅰ)因为()a xf x xebx -=+,所以()(1)a x f x x e b -'=-+.依题设,(2)22(2)1f e f e =+⎧⎨'=-⎩,即2222221a a e b e e b e --⎧+=+⎪⎨-+=-⎪⎩,解得2,a b e ==; (Ⅰ)由(Ⅰ)知2()xf x xe ex -=+,由211x x f x e x e --'=-+()()即20xe ->知,()f x '与11x x e--+同号.令11x g x x e -=-+(),则1()1x g x e-'=-+,所以,当,x ∈∞(-1)时,()0g x '<,()g x 在区间∞(-,1)上单调递减;当+x ∈∞(1,)时,()0g x '>,()g x 在区间+∞(1,)上单调递增.故=g (1)1是()g x 在区间+∞∞(-,)上的最小值,从而()0g x >,+x ∈∞∞(-,). 综上可知,()0f x '>,+x ∈∞∞(-,).故f(x)的单调递增区间为()+-∞∞,. 7. 设1a >,函数()=f x 2(1)xx e a +-.0()0f x =0001ln 1x x x +=-0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----001(ln ,)B x x -01x ln y x =00(,ln )A x x 01x ln y x =00(,ln )A x x a xf (x )xebx -=+()=y f x (2,(2))f 14y (e )x =-+a b ()f x(1)求)(x f 的单调区间;(2)证明:在上仅有一个零点;(3)若曲线在点处的切线与轴平行,且在点处的切线与直线平行(是坐标原点),证明:. 解 (1)依题意()=f x '2(1)xx e '+2(1)x ++2()(1)xxe x e '⋅=+0≥,所以 在上是单调增函数.(2)因1a >,所以(0)10f a =-<()=f a 2(1)aa e a +-210a a >+->,∴在(0,)a 上有零点;又由(1)知)(x f 在上是单调函数,故)(x f 在上仅有一个零点. (3)由(1)知,令()=0f x '得=1x -,又(1)=f -2a e -,即2(1,)P a e --,即2OP k a e =-.又()=f m '2(1)mm e +,所以22(1)mm e a e+=-. 令()1m g m e m =--,则()=g m '2(1)mm e +,所以由()>0g m '得>0m ,由()<0g m '得<0m ,所以函数()g m 在(,0)-∞上单调递减,在(0,)+∞上单调递增.所以函数min ()(0)0g m g ==,即()0g m ≥在R 上恒成立,所以1xe m ≥+,所以22(1)m a m e e-=+3(1)m ≥+1m ≥+.故. 8. 已知函数1()e x f x =,()ln g x x =,其中e 为自然对数的底数.(1)求函数()()y f x g x =在x =1处的切线方程;(2)若存在12x x ,()12x x ≠,使得[]1221()()()()g x g x f x f x λ-=-成立,其中λ为常数,求证:e λ>;(3)若对任意的(]01x ∈,,不等式()()(1)f x g x a x -≤恒成立,求实数a 的取值范围.)(x f (),-∞+∞()y f x =P x (,)M m n OP O 123--≤ea m ()f x (),-∞+∞()f x (),-∞+∞(),-∞+∞123--≤ea m解 (1)因为ln ()()e x xy f x g x ==,所以()211e ln e ln e e x x x x x xx x y ⋅-⋅-'==,故11e x y ='=,所以函数()()y f x g x =在x =1处的切线方程为1(1)ey x =-,即e 10x y --=.(2)由已知等式[]1221()()()()g x g x f x f x λ-=-得1122()()()()g x f x g x f x λλ+=+.记()()()ln ex p x g x f x x λλ=+=+,则e ()e xx x p x x λ-'=. 假设e λ≤.①若λ≤0,则()0p x '>,所以()p x 在()0+∞,上为单调增函数. 又12()()p x p x =,所以12x x =,与12x x ≠矛盾. ②若0e λ<≤,记()e x r x x λ=-,则()e x r x λ'=-. 令()0r x '=,解得0ln x λ=.当0x x >时,()0r x '>,()r x 在()0x +∞,上为单调增函数; 当00x x <<时,()0r x '<,()r x 在()00x ,上为单调减函数,所以0()()=1ln )0r x r x λλ-≥(≥,所以()0p x '≥,所以()p x 在()0+∞,上为单调增函数. 又12()()p x p x =,所以12x x =,与12x x ≠矛盾.综合①②,假设不成立,所以e λ>. (3)由()()(1)f x g x a x -≤得ln e (1)x x a x --≤0.记ln e (1)x F x x a x --()=,0x <≤1,则()211e e e x x xF x ax x a x x '-=-()=. 当1e a ≤时,因为211e exx ≥,e 0x x >,所以0F x '()≥,所以F x ()在(]0+∞,上为单调增函数,所以(1)F x F ()≤=0。

相关文档
最新文档