计算方法第2章习题 - 参考答案

合集下载

第2章习题与思考答案-大学计算机—计算思维视角-刘添华-清华大学出版社

第2章习题与思考答案-大学计算机—计算思维视角-刘添华-清华大学出版社

第2章习题与思考1.举例说明什么是进位计数制。

答:参考2.2.1计算机中的数制。

2.假定某台计算机的机器数占8位,试写出十进制数-67的原码、反码和补码。

答:-67原码:01000011 反码:10111100 补码:101111013.如果一个有符号数占n位二进制位,那么它的最大值是多少?答:一个有符号数占n位二进制位,那么它的最大值是2n-1-1例如:一个有符号数占8位二进制位,则表示的最大值为01111111,即27-1=1274.对于8位补码,如果[X]补=01111111,则[X]补+[1]补=10000000=[-128]补,解释原因。

答:参考2.3.2 整数的表示。

5.试述计算机系统中为什么用二进制计数和编码。

答:参考2.1.2 0和1的历史溯源。

6.什么是ASCII码?查一下“D”、“d”、“3”和空格的ASCII码值答:ASCII码的定义参考2.4.1 西文与符号的编码。

“D”的ASCII码为:01000100即十进制中的68“d”的ASCII码为:01100100即十进制中的100“3”的ASCII码为:00110011即十进制中的517.简述视频和图像的区别。

答:视频是活动的图像,是由一系列的帧组成,每个帧是一幅静止的图片,并且每幅图像都是使用位图文件形式表示。

正如像素是一幅数字图像的最小单元一样,帧是视频的最小和最基本的单元。

当以一定的速率将一幅幅图像投射到屏幕上时,由于人眼的视觉暂留效应,视觉就会产生动态画面的感觉。

图像是由大量的不同颜色的点来表示信息的。

计算机绘制的数字图像有两大类:一类为位图,另一类为矢量图。

前者是以点阵形式描述图像的,后者是以数学方法描述的一种由几何元素组成的图像。

8.利用“画图”程序,观察.bmp和.jpg文件的大小区别。

答:参考2.5.3扩展阅读常用的音频、图像、视频文件格式BMP是英文Bitmap(位图)的简写,它是Windows操作系统中的标准图像文件格式,能够被多种Windows应用程序所支持。

计算方法——第二章——课后习题答案刘师少

计算方法——第二章——课后习题答案刘师少

2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过31021-⨯至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10.2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过0.5×10-4的根要二分多少次?证明 令f (x )=1-x -sin x ,∵ f (0)=1>0,f (1)=-sin1<0∴ f (x )=1-x -sin x =0在[0,1]有根.又f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间[0,1]内有唯一实根.给定误差限ε=0.5×10-4,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 7287.1312lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14.2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式:(1)211x x +=,迭代公式2111kk x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。

计算方法各习题及参考答案

计算方法各习题及参考答案

第二章数值分析已知多项式p(x) X1 X3 X2 X 1通过下列点:p(x)试构造一多项式q(x)通过下列点:表中p2(X)的某一个函数值有错误,试找出并校正它•答案:函数值表中P2( 1)错误,应有P2(1)O •利用差分的性质证明12 22n2 n(n 1)(2n1)/6 ・当用等距节点的分段二次插值多项式在区间[1,1]近似函数e x时,使用多少个节点能够保证误差不超过1 1062答案:需要个插值节点・设被插值函数f(x)C4[a,b] 出(叫x)是f(x)矢于等距节点baa Xo X1 Xn b的分段三次艾尔米特插值多项式,步长h •试估计n22I I f (x) H3(h)(x) I I .答案:| |f(x) H3(h) (x) | | M4 hl384第三章函数逼近求f(x) sin x, x [0, 0. 1]在空间span{l, x, x2} ±最佳平方逼近多项式,并给岀平方误差.答案:f (x) sin x的二次最佳平方逼近多项式为-52 sin x p2(x) 0. 832 440 7 10-5 1.000 999 lx 0. 024 985 lx2,二次最佳平方逼近的平方误差为0. 12 2 -12_ (sin x) p2 (x)) dx 0. 989 310 7 10~12・确定参数a, b和c ,使得积分[ax2 bx c 1 ] dx取最小值.l(a,b,c)求多项式f (x) 2x' x3 5x2 1在[1, 1]上的3 次最佳一致逼近多项式p(x) •8 10 a , b 0, c 33答案:f(X)的最佳一致逼近多项式为P(X) ; 7;4用幕级数缩合方法,求f (x) e s ( 1 x 1)上的3次近似多项式p6,3 ( x),并估计I f (x) P6,3(X)I ・答案:23 pe,3 ( x) 0. 994 574 65 0. 997 39583x 0. 542 968 75x2 0. 177 083 33x3,:f (x) P6,3 (x) | | 0. 006 572 327 7J求f (x) e s ( 1 x 1)上的关于权函数(x)的三次最佳平方逼近多1 X"项式S3 ( X),并估计误差I f(X)S3(X)〔2 和I I f(X)S3 (x) I •咎23、口Ss(x) 0. 994 571 0. 997 308x 0. 542 99lx2 0. 177 347 x3,丨丨 f (x) Ss(x) | 12 0. 006 894 83 , | | f (x) Ss( x) | | 0. 006 442 575 ・第四章数值积分与数值微分用梯形公式、辛浦生公式和柯特斯公式分别计算积分x n dx (n 1, 2, 3, 4),并与精确值比较答案:计算结果如下表所示式具有的代数术青度.版权文档,请勿用做商业用途h(1 ) h f (x) dx Aif ( h) Ao f (0) Ai f (h)X1(2 ) if (x) dx [f ( 1) 2f (xi) 3f (x?)]乜11 h 2(3) o f (x)dx 2h[ f (0) f (h)] h2[ f (0) f (h)]答案:(1)具有三次代数精确度(2)具有二次代数精确度(3)具有三次代数精确度. a h xi xo ,确定求积公式X12 31 (x xo) f (x) dx h2EAf (xo) Bf (xi) ] h3[Cf (xo) Df (xi) ] R[f]X中的待定参数A, B, C, D ,使得该求积公式的代数精确度尽量高,并给出余项表达式.2/103)取7个节点处的函数值.用变步长的复化梯形公式和变步长的复化辛浦生公式计算 】山心砥•要求积分13 1610 3和10 6・版权文档,请勿用做商业用途 22 Ts 0. 946满足精度要求;使用复化辛浦生公式时,2 0J 田上述i 公武推导帶修忑项韵営化梯形求积公式K2 其中余域(x)dx= [占(xd 予 CxoH , &b).为 T N h [f po) 2f (xi) 2f (X2) 2f (XN 1) f (XN )],Xi xo in, (i 0, 1, 2, , N), Nh XN XO •$ x 9、用龙贝格方法计算椭圆 / y 2 1的周长,使结果具有五位有效数字. o 4 答案:1 41 9. 6884 .验证高斯型求积公 e f (x) dx Ao f (xo) Ai f (xi)的系数及节点分别为式f<4)()h 6,其中答案:A 3 , B 7 , C 30 20 1440 P2(x)是以 0, h, 口2h •为插值上的二次插值多项式,用3h0 f ( x)dx 的数值积分公式Ih,并用台劳展开法证明:P2 (x)导岀计算积分h 4 f (0) 0(h 5) • 8Ih 0 P2(X )dx°4给定积分Ih[ f(0) 3f (2h)]'sin x dx(2) (3)答5运用复化梯形公式#算上述积分值,使其截断误差不 聲萝改用复化辛浦生公式计算时,截断误差是多少?亠 10 “ •2取同样的求积节 要求的截断误差不超过106,若用复化辛浦生公式,应取多少个节点处的函数值? (1)只需n 7.5,取 9个节点,I 0. 946 ba 4 ⑷"41 6h 1 f ⑷()2) |Rn[f]| |2880 2880 4 5(V 0. 271 10 6 用事后误差估计法时,截断误不超过答案:使用复化梯形公式时,I S4 0. 946 083满足精度要求. f (1) (x) dx插值公式推导带有导数值的求积公式(b i2a )[f (b) f (a)] R[f],其中 确定高斯型求积公式0 xf (x) dx Aof (xo) Aif (xi)闻 xo , xi 及系数Ao,Ai.答案:xo 0. 289 949xi 0. 821 162 , Ao 0. 277 556, Ai 0. 389 111. 利用埃尔米特 b%ba[f(R f 山)]Ao 2: 2S Ao 2: 21x 0 2 2, Xi 2 2 . 第五章解线性方程组的直接法1 11用按列选主元的高斯若当消去法求矩 A 的逆矩阵’其中A21 01 1 0答案:用追赶法求解三对角方程组21 X11 131X22111X3221x4欣X4 2, X3L X2 1, XI 0 .第六章解线性代数方程组的迭代法X! 8X2 7X! 9X2 8作简单调整,使得用高斯一赛得尔迭代法求解时对任9x1 X2 X3 7 意初始向量都收敛,并取初始向量X (O ) [0 0 0]T使(k 1)k ()3||x (k bx k ()|| 10.3版权文档,请勿用做商业用途答案:近似解为X” [1.0000 1. 0000 1. 0000] T . 6 . 2讨论松弛因子1. 25时,用方法求解方程组1020X150101x231243x3170103x4答案: xi 2、X3 2X 21,Xi 1.411XI6 1 4. 25 2. 75X20. 512. 753. 5 X31. 25 答 xi 2X2X3用平方根法(分解法)求解方程组3用矩阵的直接三角分解法解方程组4x1 3x2 16 3xi 4x2 X3 20X2 4x312〔121,证明用雅可比迭代法解此方程组发散,而高斯-赛得尔迭代法收敛・12 1 123 0 2 X1bi6・4 设有方程组0 21X2b 2讨论用雅可比方法和咼斯一赛得尔方21 2 X3b3法解此方程组的收敛性•如果收敛,比较哪种方法收敛较 版权文档,请勿用做商业用途为6 . 3给定线性方程组Ax b,其中答案:雅可比方法收敛,高斯一赛得尔方法收敛,且较快.6. 5设矩阵A 非奇异.求证:方程组Ax b 的解总能通过高斯一赛得尔方法得到. …Aaij n n 为对称正定矩阵,对角阵D diag (an, a22 , , ann)・求证:高斯u 一赛得尔方法求解方程组D 2 AD 2x b 时对任意初始向量都收 敛.第七章非线性方程求根例7. 4对方程3x 2 e s 0确定迭代函数(x)及区间[a, b ],使对xo [a, b ],迭代过程 XR i (x), k 0, 1, 2,均收敛,并求解.要求 xk 1 xk | 10x X? 0.458960903 •在[3, 4]上,将原方程改写为e x 3 x 2 ,取对数得性条件,则迭代序列xki In(3 xk 2 ), k 0, 1,2,在[3, 4]中有惟一解.取x 0 3.5 , x xie 3.733067511 •例7 . 6对于迭代函数(x) x c(x 2 3),试讨论:的收敛性・若收敛,则取 x (0)[0 0 0]T迭代求解,使 ||x (I )x (k)1104-X1 1.50001,X2 答案:方程组的近似解3.33333,X32.16667 •答案:若取(X )e 2 ,则在[1,0]中满足收敛性条件,因此迭代法e 2k , k 0,1,2,在(1,0)中有惟一解•取 X0 0. 5, 3取(X )9 e"i,在[0 ,上1满足收敛性条件, 迭代序列1Xk 1 k 1 03k 0, 1, 2,在[0,1]中有惟一解.取 xo 0. 5,X X140.910001967x 2 ) (x)・满足收敛x In (3(1)当c为何值时,x kl (x k)产生的序列{x k}收敛于3;(2)c取何值时收敛最快?顿法收敛,证明牛顿迭代序列{Xk }有下列极限矢系:l k im xk i 2xk xk i第八章矩阵特征值用乘幕法求矩阵A 的按模最大的特征值与对应的特征向量,已矢口 5 5 0 A 0 5. 5 1,要求 x (k)| 10 6,这里 严表示|的第k 次近似值.3 1答案:1 5 ,对应的特征向量为[5,0,0] T :2 5 ,对应的特征向量为[5, 10, T 5 ・]1 1 0>彳 2的按模最小的特征12例7设不动点迭代xki (x)的迭代函数(x)具有二阶连续导数,/是(x)的不动1 1 5取C,力別If 鼻(X 丿旳个动点3 '妥吞| XkiXkl 1U- •3) 223(1 ) c (,0)时矗代收敛•答案: 31c 时收敛最快• O 、 233)分别取c 1,123,并取xo1.5,计算结果如下表7• 7所示yk点,且(X*) 1,证明迭代式(xk ) , Zk (xk )(yk x k )2 , k 0, 1, 2,二阶收敛于x"・版Xk 1 Xk Zk 2yk Xk权文档,请勿用做商业用途 例设(x) x p(x) f (x) q(x)f 2),试确定函数p(x)和q(x),使求解f (x) 0且以(x)为迭代函数的迭代法至少三阶收 敛.案:p(x) f X (x )・ q(x) ;[f f (W]3例7设f (x)在[a, b]上有高阶导数,x* (a, b)是 f(x) 0的m(m 2)重根,且牛知A 的按模较大的特征 值用反幕法求矩阵A的近似值为15,用p 5的原点平移法计算1及其对应的特征向量.版权文档,请勿用做商业用途 答案:0 A 的按模最小的特征值为3 0. 238442812212第九章 微分方程初值问题的数值解法用反复迭代(反复校正)的欧拉预估一校正法求解初值问题y © 0] 0<x 0.2 5 ,要求取步长h 0. 1,每步迭代误差不超过10 5 .答案:Y y(0. 1) yi y 】⑷ 0. 904 762 , y(0. 2) y 2 y?⑷ 0.818 594267 一x y , 0<x 0. 4用二阶中点格式和二阶休恩格式求初值问题"“ “嗜厲汀⑹1长h 0.2,运算过程中保留五位小数). 计算得用平面旋转变换和反射变换将向量X [23 0 5] T 变为与 ei [1 0 0 0]T 平行的向量.2/ 38 3/ 385/ 38答案: T3/ 13 2/ 13 0 00 1 010/ 49415/ 4940 13/4940. 324 442 840 0. 486 664 262 0 0. 811107 1040. 486 664 2620.812 176 0480 0.298 039 922H10.811 107 104 0. 298 039 922 00.530 266 798然后用QR 方法求A 的全部特征值.4 4 5答案:取5 2. 234375即有2位有效数字. 532若A 6 4 4 ,试把A 化为相似的上阵, 值, 21n 0 时,Ki 1.000 00, K2 1. 200 00, y(0. 2) yi=l. 240 00n 1 时,Ki 1. 737 60, 用二阶休恩格式, K 2 2. 298 72, 取初值yo 1计算得y(0. 4) y 2 =1. 699 740 1 5. 1248854 ,对应的特征向量为(8) _设方阵A 的特征值都是实数,且满足 n)时, [0.242 4310, 1 , 0. 320 011 7],为求1而作原1 2 n,点平移'试证:当平移量P 2,(2幕法收敛最快•用二分法求三对角对〈方 A的最小特征 使它至少具有2位有212 答案:用二阶中点格式,取初值yo 1n 0 时,Ki 1.000 00, Ka 1.266 67, y(0.2) yi=1.240 00n 1时,Ki 1.737 60, Ka 2.499 18, y(0.4) y 2 =1.701 76用如下四步四阶阿达姆斯显格式 y n 1 y n h(55f n 59 fn 137fn2 9fn 3)/24求初值问题y x y, y(0) 1在[0,0.5]上的数值解•取步长h 0.1 小数点后保留8位•答 y(0.4) y 40.583 640 216 ‘ y(0.5) y 51.797 421 984 ・ 为使二阶中点公式ym yn hf(Xn h 2h,yn h f(Xn, yn)),求解初值问题2 n nh 的大小应受到的限制条件・hf (Xn,yn)用如下反复迭代的欧拉预估T&榴式 yn (k 11) yn h[f(Xn,y n ) f(Xn1,y n (k)1)]'k 0,1,2,; n 0,1,2,求解初值问题心讪•小时,如何选择步长h ,使上述格式矢于k 的迭y(0) 1代收敛•2答案:h 时上述格式尖于K 的迭代是收敛的・e求系数a,b,c,d ,使求解初值问题y f (x, y), y(xo) a 的如下隐式二步法 yn2aynh(bfn2Cfmdfn)的误差阶尽可能高,并指出其阶数•高'为五阶。

计算方法与实习答案1-2

计算方法与实习答案1-2

绪论
习题1——10:设 f ( x) = 8 x 5 − 0.4 x 4 + 4 x 3 − 9 x + 1 用秦九韶法求f(3)。 解:
8 − 0.4
24 8 23.6

0
−9
1
x=3
70.8 74.8
224.4 224.4
673.2 664.2
1992.6 1993.6
∴ f(3)=1993.6
第一章 绪论 练习
1.《计算方法》课程主要研究以计算 机为工具的 数值 分析方法 ,并评价 该算法的计算误差。 2.近似值作四则运算后的绝对误差限 公式为 ε ( x1 − x2 ) ≤ ε ( x1 ) + ε ( x2 ) ,近似值 1.0341的相对误差限不大于 1 ×10−2 , 则它至少有三位有效数字。 4
ln(103 ) ∴k ≥ ln(2) ≥ 9.965
2 2 2
∴需二分10次 需二分 次
方程求根——二分法
习题2——2:用二分法求方程2e-x-sinx=0在区 间[0,1]内的1个实根,要求3位有效数字。
解:1)判断是否在该区间有且仅有一个根 f(0)=2>0,f(1)=2/e-sin1≈-0.1<0, f’(x)=-2e-x-cosx,f’=-3,-2/e-cos1<0 2)判断二分次数 由(b-a)/2k+1=1/2k+1≤1/2*10-3,解得k≥3ln10/ln2≥9.965, 所以需要二分10次,才能满足精度要求。
∴ x≈2.981
方程求根
f (xk )(xk − xk −1) xk +1 = xk − f (xk ) − f (xk −1)
习题2——11:用割线法求方程x3-2x-5=0的根,要 求精确到4位有效数字,取x0=2, x1=2.2。

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

计算方法-习题第一、二章答案.doc

计算方法-习题第一、二章答案.doc

第一章 误差1 问3.142,3.141,722分别作为π的近似值各具有几位有效数字?分析 利用有效数字的概念可直接得出。

解 π=3.141 592 65…记x 1=3.142,x 2=3.141,x 3=722.由π- x 1=3.141 59…-3.142=-0.000 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。

由π- x 2=3.141 59…-3.141=-0.000 59…知2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。

由π-722=3.141 59 …-3.142 85…=-0.001 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。

2 已知近似数x*有两位有效数字,试求其相对误差限。

分析 本题显然应利用有效数字与相对误差的关系。

解 利用有效数字与相对误差的关系。

这里n=2,a 1是1到9之间的数字。

%5101211021|*||*||)(|1211*=⨯⨯≤⨯≤-=+-+-n ra x x x x ε3 已知近似数的相对误差限为0.3%,问x*至少有几位有效数字?分析 本题利用有效数字与相对误差的关系。

解 a 1是1到9间的数字。

1112*10)1(2110)19(21102110003%3.0)(--⨯+≤⨯+⨯=⨯<=a x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。

4 计算sin1.2,问要取几位有效数字才能保证相对误差限不大于0.01%。

分析 本题应利用有效数字与相对误差的关系。

解 设取n 位有效数字,由sin1.2=0.93…,故a 1=9。

411*10%01.01021|*||*||)(-+-=≤⨯≤-=n ra x x x x ε解不等式411101021-+-≤⨯n a 知取n=4即可满足要求。

第二章习题答案

第二章习题答案

第二章财务管理的价值观念参考答案一、练习复利终值的计算和利率的确定方法1.资料:某人存入银行40 000元,年利率为6%,每半年复利一次。

2.要求:(1)此笔存款达到80 000元的存款期限。

(2)如果要求在第3年年末存款本息达到60 000元,存款利率应达到多少?(1)80000=40000×(F/P,3%,n),即(F/P,3%,n)=2当 n=23时,(F/P,3%,23)=1.9736;当n=24时,(F/P,3%,24)=2.0328 插值法,n=23.45半年,也即约11.7年。

(2)40000×(F /P,i,6)=60000,即(F /P,i,6)=1.5 当 i=6%时,(F/P,i,6)=1.4185;当i=7%时,(F/P,i,6)=1.5007 插值法,i=6.99%。

所以存款利率必须达到半年利率为6.99%。

二、练习复利终值的计算和年金的确定方法1. 资料:某企业借入资金50 000元,期限为5年,年利率为12%。

2. 要求:(1)若半年计息一次,到期一次性偿还本息,应还多少?(2)若每年等额偿还本息,每年应还多少?(1)50000×(F/P,6%,10)=50000×1.7908=98540 元(2)50000×(F/P,12%,5)=A×(F/A,12%,5)即A=(50000×1.7623)÷6.3528=13870.26元三、练习年金现值的计算方法1.资料:某人现在存入银行一笔现金,计划9年后每年年末从银行提取现金5 000元,连续提取10年。

2. 要求:在利率为4%的情况下,现在应存入银行多少元?P=5000×(P/A,4%,10)×(P/F,4%,9)=28493.59元或p=5000×(P/A,4%,19)-5000×(P/A,4%,9)=28493 元四、练习年金的计算方法1.资料:拟购一房产,三种付款方法:(1)从现在起,每年初付9.5万,连续付15次。

【精选习题】人教版七年级数学上册单元试题:第2章整式的加减(含答案).doc

【精选习题】人教版七年级数学上册单元试题:第2章整式的加减(含答案).doc

人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和 2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+ 3. 如果213n m xy -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-2 4.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项B. 单项式32x y -的系数是-1C. 52n m 不是整式 D.2235x y xy -+是二次三项式5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式 6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( ) A.2a b + B.23a b + C.22a b + D.3a b + 9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 . 14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____. 16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n -是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 . 三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分) 1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( )A . 6B . -6C . 12D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b-c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A,∴A=2(a2b+ab2)+(a2b-2ab2)-ab2=3a2b-ab2,(5分)∴捂住的多项式为3a2b-ab2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(-4)=-8.(9分)人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a ―b )]=___.16.的结果是___.17.小颖在计算a +N 时,误将“+”看成“―”,结果得3a ,则a +N =___. 18.数学家发明了一个魔术盒,当任意实数对...(a ,b )进入其中时,•会得到一个新的实数:a 2+b +1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( )A.-2x2y与xy2B.x2y与x2zC.3mn与4nmD.-0.5ab与abc2.已知苹果的单价为a元/千克,香蕉的单价为b元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________. 12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 的取值无关,求y 的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y 9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12. 原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值. 解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A =5x 2-5x +3,B =x 2-x -1, 所以2A -B=2(5x 2-5x +3)-(x 2-x -1) =10x 2-10x +6-x 2+x +1 =9x 2-9x +7.18.解:(1)8x +6y +5(20―x ―y)=(3x +y +100)吨. 答:这20辆汽人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

第2章部分习题答案讲义.

第2章部分习题答案讲义.

【解】:
阶码采用双符号位, 尾数采用单符号位, 则有
y=11 100, 1.011100
x=00 011, 0.110100 (1) 求阶码和
[Ex]补+ [Ey]补= 00 011+ 11 100= 11 111, 其数值为 -1.
第12页
第二章
习题解答
(2)乘法运算(直接并行补码阵列) ( 0) 1 × ( 1) 0 ( 0) 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0
第13页第二章习题解答2乘法运算直接并行补码阵列第14页第二章习题解答11000101100003规格化当前计算结果不是规格化数向左规格化阶码减1即111101000101100004舍入处理1111010001105溢出判断阶码运算无溢出故结果无溢出
第二章
习题解答
7.若浮点数 x 的IEEE754标准32位存储格式为(8FEFC000 )16, 求其浮点数的十进制值。 【解】: 将x展开成二进制:
(1) 1 1 0 0 1 0 0 1 0 1 1 故 [x×y]补=1. 1001001011 所以 x×y=-0. 0110110101
注意位数对齐
第 8页
第二章
习题解答
22. 已知x和y,用原码阵列除法器计算x÷y。 (1)x=0.10011 y=-0.11011 被除数/余数 【解】: [x]原=0.10011 01001100000 +[-y’]补 100101 [y]原=1.11011 11100000000 商的符号位为: + [y’]补 011011 xf⊕yf=0⊕1=1 令 0010110000 x’=1001100000 y’=11011, +[-y’]补 100101 其中x’和y’分别为[x]原和 [y]原 111011000 + [y’]补 011011 的数值部分: 01000100 [x’]补=01001100000 +[-y’]补 100101 [y’]补=011011 0001110 + [-y’]补 100101 [-y’]补=100101

第二章习题

第二章习题

第二章习题答案2-1 298K 时有摩尔分数为0.4的甲醇水溶液,如果往大量的此水溶液中加1mol 水,溶液的体积增加了17.35ml;如果往大量的此水溶液中加1mol 甲醇,溶液的体积增加39.01ml 。

试计算将0.4mol 的甲醇和0.6mol 的水混合时此溶液的体积,以及此混合过程中体积的变化。

已知298K 时甲醇的密度为0.7911g/ml ,水的密度为0.9971g/ml 。

(注:题目中把甲醇和水的密度单位写错为g/dm 3,并且答案中将溶液的体积变化单位弄错为dm 3)解: 设甲醇用“A ”代表,水用“B ”表示 已知:x A =0.4时,有偏摩尔量V A =⎪⎭⎫⎝⎛∂∂A n V A n p T ≠,,=39.01ml/molV B =17.35ml/mol显然将0.4mol 甲醇和0.6mol 水混合后,x A=0.4, 混合后体积V=V A n A +V B n B=39.016.035.174.0⨯+⨯ =26.01ml加入前甲醇的体积V 甲=甲甲ρm =ml 7911.0324.0⨯=16.18ml加入前水的体积V 水= =水水ρm ml 9971.0186.0⨯=10.83ml∴ 混合前后体积的变化)[])(水甲83.1018.16-01.26+=+-=∆V V V V ml =-1ml 2-4 D-果糖C 6H 12O 6(B)溶于水(A )中形成某溶液,质量分数w B=0.095,此溶液在20℃时的密度ρ=1.0365㎏﹒dm -3。

试计算此溶液中D-果糖的摩尔分数,物质的量和质量摩尔浓度。

解:x B =O H B B n n n 2+=O H B n n 20104.0018.0)095.01(018.0095.0)1(=⨯-⨯=-B B water B w M M wc B =V n B =ρ/1/B B M w =018.0095.00365.1⨯=B B M W ρmol·dm -3=0.547 mol·dm -3)095.01(18.0095.0)1(-⨯=-==B B B A B B w M w m n b mol·kg -1=0.583 mol·kg -1 2-8在413.15K 时,纯C 6H 5Cl 和纯C 6H 5Br 的蒸汽压分别为125.238kPa 和66.104kPa,假定两液体组成理想溶液。

计算方法答案王能超

计算方法答案王能超

计算方法答案王能超【篇一:计算方法习题集及实验指导书】s=txt>计算机科学与技术系檀明2008-02-10课程性质及目的要求(一)课程性质自计算机问世以来,科学计算一直是计算机应用的一个重要领域,数值计算方法是解决各种复杂的科学计算问题的理论与技术的基础。

《计算方法》课程讨论用于科学计算中的一些最基本、最常用的算法,不但具有数学的抽象性与严密的科学性的特点,而且具有应用的高度技术性的特点。

它对于培养从事计算机应用的科技人才有着重要的作用,是计算机应用专业(本科段)的一门重要的技术基础课程。

(二)目的要求通过本课程的学习和上机实验,了解用计算机解决科学计算问题的方法特点,掌握计算方法中的一些基本概念、基本公式和相应的算法流程,提高根据算法描述设计高级语言程序并进行验证的技能。

在学习过程中,应注重理解和应用,在搞清基本原理和基本概念的基础上,通过习题、编程和上机等环节,巩固和加深已学的内容,掌握重要的算法及其应用。

注重理论与算法的学习和应用相结合,强调编程及上机计算的技能培养,是本课程不同于一般数学课程的重要特点。

(三)学习方法指导1.循序渐进逐章学习本课程从第二章开始,每章都讨论一个大类的算法。

虽然各算法是相对独立的,但是也存在相互联系与前后继承的关系。

前面的概念和算法学好了,后面的内容也就容易学,越学越感到容易。

前面的内容没有学好,后面就会感到难学,甚至会出现越来越感到困难、失去学习信心的情况。

2.稳扎稳打融会贯通学习要扎实、要讲求实效。

每一个重要的概念和公式,都会搞清楚,做到融会贯通。

只有这样,才能取得学习的学习效果。

3.多学练勤做习题教材及本习题集中的每一章都附有适量的习题,可以帮助考生巩固和加深理解所学的知识,提高解题能力。

因此,在学习过程中,应当适合习题进行思考,应当尽可能多做习题,遇到某些不会做的题,应三思之后再请老师给予提示。

4.抓住特点前后联系本课程只讲了五大类算法。

每类算法都是针对一类特定的计算问题,都有其自身的特点。

计算方法_习题第一、二章答案

计算方法_习题第一、二章答案

第一章 误差1 问3.142,3.141,722分别作为π的近似值各具有几位有效数字?分析 利用有效数字的概念可直接得出。

解 π=3.141 592 65…记x 1=3.142,x 2=3.141,x 3=722.由π- x 1=3.141 59…-3.142=-0.000 40…知3411110||1022x π--⨯<-≤⨯ 因而x 1具有4位有效数字。

由π- x 2=3.141 59…-3.141=-0.000 59…知2231021||1021--⨯≤-<⨯x π因而x 2具有3位有效数字。

由π-722=3.141 59 …-3.142 85…=-0.001 26…知231021|722|1021--⨯≤-<⨯π因而x 3具有3位有效数字。

2 已知近似数x*有两位有效数字,试求其相对误差限。

分析 本题显然应利用有效数字与相对误差的关系。

解 利用有效数字与相对误差的关系。

这里n=2,a 1是1到9之间的数字。

%5101101|*||)(|1211*=⨯≤⨯≤-=+-+-n rx x x ε3 已知近似数的相对误差限为0.3%,问x*至少有几位有效数字?分析 本题利用有效数字与相对误差的关系。

解 a 1是1到9间的数字。

1112*10110113%3.0)(--⨯≤⨯=<=x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。

4 计算sin1.2,问要取几位有效数字才能保证相对误差限不大于0.01%。

分析 本题应利用有效数字与相对误差的关系。

解 设取n 位有效数字,由sin1.2=0.93…,故a 1=9。

411*10%01.01021|*||*||)(-+-=≤⨯≤-=n r a x x x x ε解不等式411101021-+-≤⨯n a 知取n=4即可满足要求。

5 计算76017591-,视已知数为精确值,用4位浮点数计算。

计算方法_课后习题答案

计算方法_课后习题答案

L3 x 的最高次项系数是 6,试确定 y1 。
解: l0 (x)

x x1 x0 x1

x x2 x0 x2

x x3 x0 x3

x 0.5 0 0.5
x 1 0 1
x2 02
= x3

7 2
x2

7 2
x 1
l1 ( x)

x x0 x1 x0
(2 2e1 4e0.5 )x2 (4e0.5 e1 3)x 1
2)根据Lagrange余项定理,其误差为
| R2 (x) ||
f
(3) ( 3!
)
21
(
x)
||
1 6
e
x(
x

1)(
x

0.5)
|
1 max | x(x 1)(x 0.5) |, (0,1) 6 0x1
x2 02
x4= 04
x3
7x2 14x 8 8
l1 ( x)

x x0 x1 x0

x x2 x1 x2

x x3 x1 x3

x0 1 0

x2 1 2
x4 1 4
=
x3
6x2 3
8x
l2 (x)

x x0 x2 x0

i j
而当 k 1时有
n
x jl j
j0
x

n

n
j0 i0 i j
x xi x j xi


x
j

计算方法教程(第2版)习题答案

计算方法教程(第2版)习题答案

《计算方法教程(第二版)》习题答案第一章 习题答案1、浮点数系),,,(U L t F β共有 1)1()1(21++---L U t ββ 个数。

3、a .4097b .62211101110.0,211101000.0⨯⨯c .6211111101.0⨯4、设实数R x ∈,则按β进制可表达为:,1,,,3,2,011)11221(+=<≤<≤⨯++++++±=t t j jd d lt t d t t d dd x βββββββ按四舍五入的原则,当它进入浮点数系),,,(U L t F β时,若β211<+t d ,则 l tt d dd x fl ββββ⨯++±=)221()(若 β211≥+t d ,则 l tt d d d x fl ββββ⨯+++±=)1221()(对第一种情况:t l lt l t t d x fl x -++=⨯≤⨯+=-βββββ21)21(1)()(11对第二种情况:t l ltl t t d x fl x -++=⨯≤⨯--=-ββββββ21)21(1)(11 就是说总有: tl x fl x -≤-β21)( 另一方面,浮点数要求 β<≤11d , 故有l x ββ1≥,将此两者相除,便得t x x fl x -≤-121)(β 5、a . 5960.1 b . 5962.1 后一种准确6、最后一个计算式:00025509.0原因:避免相近数相减,避免大数相乘,减少运算次数7、a .]!3)2(!2)2(2[2132 +++=x x x yb .)21)(1(22x x x y ++=c .)11(222-++=x x x yd . +-+-=!2)2(!6)2(!4)2(!2)2(2642x x x x ye .222qp p q y ++=8、01786.098.5521==x x9、 m )10(m f - 1 233406.0- 3 20757.0- 5 8.07 710计算宜采用:])!42151()!32141()!22131[()(2432+⨯-+⨯-+⨯--=x x x f第二章 习题答案1、a .T x )2,1,3(= b .T x )1,2,1,2(--= c .无法解2、a .与 b .同上, c .T T x )2188.1,3125.0,2188.1,5312.0()39,10,39,17(321---≈---=7、a .⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---14112111473123247212122123211231321213122 b . ⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛----333211212110211221213231532223522121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛-=111211212130213221219、T x )3415.46,3659.85,1220.95,1220.95,3659.85,3415.46(1= T x )8293.26,3171.7,4390.2,4390.2,3171.7,8293.26(2= 10、T LDL 分解:)015.0,579.3,9.1,10(diag D =⎪⎪⎪⎪⎪⎭⎫⎝⎛=16030.07895.05.018947.07.019.01L Cholesky 分解⎪⎪⎪⎪⎪⎭⎫⎝⎛=1225.01408.10833.15811.18918.12333.12136.23784.18460.21623.3G 解:)1,1,2,2(--=x 12、16,12,1612111===∞A A A611,4083.1,61122212===∞A A A2)(940)()(12111===∞A Cond A Cond A Cond524)(748)()(22221===∞A C o n d A C o n d A C o n d⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=--180.0000180.0000- 30.0000 180.0000- 192.0000 36.0000- 30.0000 36.0000- 9.0000,0.0139 0.1111- 0.0694- 0.1111- 0.0556 0.1111- 0.0694- 0.1111- 0.0139 1211A A1151.372,1666.0212211==--A A15、 1A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代不收敛; 2A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代不收敛; 3A :对应 Seidel Gauss - 迭代收敛,Jacobi 迭代收敛;第三章 习题答案1、Lagrange 插值多项式:)80.466.5)(20.366.5)(70.266.5)(00.166.5()80.4)(20.3)(70.2)(00.1(7.51)66.580.4)(20.380.4)(70.280.4)(00.180.4()66.5)(20.3)(70.2)(00.1(3.38)66.520.3)(80.420.3)(70.220.3)(00.120.3()66.5)(80.4)(70.2)(00.1(0.22)66.570.2)(80.470.2)(20.370.2)(00.170.2()66.5)(80.4)(20.3)(00.1(8.17)66.500.1)(80.400.1)(20.300.1)(70.200.1()66.5)(80.4)(20.3)(70.2(2.14)(4--------⨯+--------⨯+--------⨯+--------⨯+--------⨯=x x x x x x x x x x x x x x x x x x x x x L Newton 插值多项式:)80.4)(20.3)(70.2)(00.1(21444779.0)20.3)(70.2)(00.1(527480131.0)70.2)(00.1(855614973.2)00.1(117647059.22.14)(4----+------+-+=x x x x x x x x x x x N2、设)(x y y =,其反函数是以y 为自变量的函数)(y x x =,对)(y x 作插值多项式:)1744.0)(1081.0)(4016.0)(7001.0(01253.0)1081.0)(4016.0)(7001.0(01531.0)4016.0)(7001.0(009640.0)7001.0(3350.01000.0)(----+---+--+--=y y y y y y y y y y y N 3376.0)0(=N 是0)(=x y 在]4.0,3.0[中的近似根。

计算方法第2章习题 - 参考答案

计算方法第2章习题 - 参考答案

2.1 证明方程043=-+x x 在区间[1,2]内有且仅有一个根。

如果用二分法求它具有五位有效数字的根,试问需对分多少次?(不必求根) 14,10log 4,10210211021212||2451*11=≥>⨯=⨯=<=---++K k a b k n m k k ε 2.2 用二分法求方程0134=+-x x 在[0.3, 0.4]内的一个根, 精度要求21021-⨯=ε。

k a b x f(x)0 0.300 0.350 0.325 0.0361 0.325 0.350 0.337 0.0002 0.337 0.350 0.344 -0.0173 0.337 0.344 0.341 -0.0084 0.337 0.341 0.339 -0.004x=0.3392.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求210-=ε2.3-1 x=0.645 2.3-2x=1.78 2.3-3x=1.13 2.3-4 x=0.9182.4 考虑方程032=-x e x ,将其改写为3xe x ±=,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附近的两个根(取精度要求310-=ε) (1) 910840.0,0.13*0===x x e x x, k x g(x)0 0.951890 0.9292651 0.929265 0.9188122 0.918812 0.9140223 0.914022 0.9118364 0.911836 0.9108405 0.910840 0.910386(2) 459075.0,5.03-*0-=-==x x e x x, k x g(x)0 -0.449641 -0.4611061 -0.461106 -0.4584712 -0.458471 -0.4590753 -0.459075 -0.4589362.5 为求方程0123=--x x 在5.1=x 附近的一个根,建立下列形式的迭代公式:(1) 2121111kk x x x x +=⇒+=+,; )7.1,3.1(,7.1)(3.1∈≤≤x x g)7.1,3.1(,191.0/2)(3∈<≤='x x x g ,收敛,1.489(2) 3212311k k x x x x +=⇒+=+,;)2,1(,2)(1∈≤≤x x g)2,1(,1)1(61)(3/22∈<+='x x x x g ,收敛,1.465 (3) 111112-=⇒-=+k k x x x x , )6.1,4.1(,107.1)1(21)(2/3∈>≥-='x x x g ,发散 2.6 考虑用迭代法求解下列方程: (1) )2(312x e x x +-=- 0.608 (2) x x -=50.467 (3) 27475.1--+=x x x 6 2.7 用迭代法的思想,给出求22222+++++ 的迭代公式,并证明:222222lim =+++++∞→nn 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 证明方程043
=-+x x 在区间[1,2]内有且仅有一个根。

如果用二分法求它具有五
位有效数字的根,试问需对分多少次?(不必求根) 14
,10log 4,10210211021212||2451*1
1=≥>⨯=⨯=<=---++K k a b k n m k k ε 2.2 用二分法求方程0134=+-x x 在[0.3, 0.4]内的一个根, 精度要求2102
1-⨯=ε。

k a b x f(x)
0 0.300 0.350 0.325 0.036
1 0.325 0.350 0.337 0.000
2 0.337 0.350 0.344 -0.017
3 0.337 0.34
4 0.341 -0.008
4 0.337 0.341 0.339 -0.004
x=0.339
2.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求
210-=ε
2.3-1 x=0.645 2.3-2
x=1.78 2.3-3
x=1.13 2.3-4 x=0.918
2.4 考虑方程032=-x e x ,将其改写为3
x
e x ±=,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附近的两个根(取精度要求3
10-=ε) (1) 910840.0,0.13
*0===x x e x x
, k x g(x)
0 0.951890 0.929265
1 0.929265 0.918812
2 0.918812 0.914022
3 0.914022 0.911836
4 0.911836 0.910840
5 0.910840 0.910386
(2) 459075.0,5.03
-*0-=-==x x e x x
, k x g(x)
0 -0.449641 -0.461106
1 -0.461106 -0.458471
2 -0.458471 -0.459075
3 -0.459075 -0.458936
2.5 为求方程0123=--x x 在5.1=x 附近的一个根,建立下列形式的迭代公式:
(1) 2121111k
k x x x x +=⇒+=+,; )7.1,3.1(,7.1)(3.1∈≤≤x x g
)7.1,3.1(,191.0/2)(3∈<≤='x x x g ,收敛,1.489
(2) 3212311k k x x x x +=⇒+=+,;
)2,1(,2)(1∈≤≤x x g
)2,1(,1)1(61)(3
/22∈<+='x x x x g ,收敛,1.465 (3) 1
11112-=⇒-=+k k x x x x , )6.1,4.1(,107.1)1(21)(2
/3∈>≥-='x x x g ,发散 2.6 考虑用迭代法求解下列方程: (1) )2(3
12x e x x +-=- 0.608 (2) x x -=5
0.467 (3) 2
7475.1--+=x x x 6 2.7 用迭代法的思想,给出求22222+++++ 的迭代公式,并证明:
222222lim =+++++∞→
n
n 。

⎪⎩⎪⎨⎧>+==+02021k x k x k k
2.8能否用简单迭代法求解下列方程,如果不能,请给出收敛的迭代公式
(1) )sin (cos 4
1x x x +=; )5.0,0(,5.0339.0)(25.00∈≤≤≤≤x x g
)5.0,0(,125.0sin cos 4
1)(∈<≤-='x x x x g ,0.315182 (2) x x 24-=
1773.22ln 2)2(2>=='g ,发散
收敛的迭代公式为)4(log 2x x -=,1.386167
2.9 已知)(x x ϕ=在区间[a,b ]内有一个根,且当a<x<b 时,1)(>≥'k x ϕ。

试问如
何将)(x x ϕ=化为收敛的迭代公式。

按Newton 公式推导:1
)()()(1)()()(-'-'=-'--=x x x x x x x x x g ϕϕϕϕϕ 按斯蒂芬森公式推导:x
x x x x x x g +---=)(2))(())(()(2
ϕϕϕϕ 2.10 用Steffensen 加速迭代法求方程13-=x x 在[1,1.5]内的根
X=1.324718
2.11 试用Newton 法求方程032=-x e x 的根, 分别取初始点0.4,0.1,5.00-=x , 精度
要求为310-=ε。

X=-0.458962,0.910008,3.733079
2.12 选择适当的初始点, 试用Newton 法求出满足精度要求为310-=ε的解。

(1) )2(312x e x x +-=
-, x=0.608989… (2) 0cos 102=+x x , x=1.96887…
2.13 导出计算)0(1
>a a 的Newton 迭代公式,使公式中即无开方又无除法运算
)3(5.02
1)(2)(,1)(3323
2ax x x x a x x g x x f x a x f -=--=='-
=
132132)(0)
,()(31)()
,(2313)()()(3)(,)(33332232232
3<<⎪⎭⎫ ⎝⎛-='<+∞∈=⋅⋅≥⎪⎭⎫ ⎝⎛++=+∞∈⎪⎭⎫ ⎝⎛+=--='-=='-=x a x g a x g a x
a x x x a x x x g a x x a x x a x x x f x f x x g x x f a x x f。

相关文档
最新文档