重庆大学线性代数Ⅱ本科模拟试题(A卷)

合集下载

线性代数试题线性代数试卷及答案大全(173页大合集)

线性代数试题线性代数试卷及答案大全(173页大合集)
由 ,得 的特征值 ,
属于 对应的特征向量为 ,单位化: ,
属于 对应的特征向量为 ,单位化: ,
取 ,则有 。
八、(本题8分)证明:由
得 的特征值 ,

故 的最大特征值是 。
试卷2
闭卷考试时间:100分钟
一、填空题(本题15分,每小题3分)
1、若n阶行列式零元素的个数超过n(n-1)个,则行列式为。
三、(本题8分)解:从第一行开始,每行乘 后逐次往下一行加,再按最后一行展开得:
原式= 。
四、(本题12分)解:由 ,得: ,
可逆,故 ;
由于 , 。
五、(本题14分)解:(1)令 , ,
则 线性无关,故 是向量组 的一个极大无关组;
(2)由于4个3维向量 线性相关,
若 线性无关,则 可由 线性表示,与题设矛盾;
A:矩阵A必没有零行
B:矩阵A不一定是阶梯形矩阵
C:矩阵A必有零行
D:矩阵A的非零行中第一个不等于零的元素都是1
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵(A b)的秩都等于3,A是3×4矩阵,则▁▁▁。【A】
A:方程组有无穷多解
B:无法确定方程组是否有解
C:方程组有唯一解
D:方程组无解
试卷1
4、若 阶实方阵 , 为 阶单位矩阵,则( )。
(A) (B)
(C) (D)无法比较 与 的大小
5、设 , , , ,其中 为任意常数,则下列向量组线性相关的为( )。
(A) ( B) (C) (D)
三、(10分)计算 阶行列式 , 的主对角线上的元素都为 ,其余位置元素都为 ,且 。
四、(10分)设3阶矩阵 、 满足关系: ,且 ,求矩阵 。
B:Ax=0的基础解系中的解向量的个数不可能为n-r

大学数学线性代数期末复习模拟测试试卷(含答案)

大学数学线性代数期末复习模拟测试试卷(含答案)

线性代数期末模拟测试试卷(含答案)班别 姓名 成绩一、选择题1.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t2.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-53.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关4.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x5.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( )A.4,221==λλB.4,221-=-=λλC.4,221=-=λλD.4,221-==λλ二、填空题.答题要求:将正确答案填写在横线上6.三阶行列式ij a 的展开式中,321123a a a 前面的符号应是 。

7.设123221,343A ⎛⎫⎪= ⎪ ⎪⎝⎭ij A 为A 中元ij a 的代数余子式,则111213A A A ++= 。

8.设n 阶矩阵A 的秩1)(-<n A r ,则A 的伴随矩阵A *的元素之和∑∑===n i nj ij A 11。

9.三阶初等矩阵()1,2E 的伴随矩阵为 。

10.若非齐次线性方程组AX B =有唯一解,则其导出组0AX =解的情况是 。

11.若向量组11121233,a b a b a b αβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭线性相关,则向量组112222,a b a b αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭的线性关系是 。

大学物理、数学本科《线性代数》考试题及答案(八套)试卷

大学物理、数学本科《线性代数》考试题及答案(八套)试卷

XXX学年第一学期期末考试试卷本科《线性代数》考试题及答案(H)本科试卷课程代码:适用班级:计算机科学与技术命题教师:任课教师:第一套试卷一、判断是非(每小题2分,共16分)。

1 若行列式等于零,则其中必有两行对应元素成比例。

2 线性无关的向量组的任意部分组必线性无关。

3 等价的两个向量组必含有相同个数的向量。

4 两个矩阵的乘积不满足交换律和消去律。

5 非齐次线性方程组有解的充要条件是其系数矩阵与增广矩阵的秩相等。

6 正交矩阵必是可逆矩阵。

7 相似矩阵的秩一定相等。

注:两个矩阵相似或合同,则两个矩阵一定等价。

因而,他们有相同的秩。

8 在可逆的线性变换下,二次型的标准型一定是唯一的。

二、填空题(每小题2分,共16分)。

1 排列6152734的逆序数是________________。

2 若矩阵A 可逆,则=-1*)(A ___________。

3 设=⎪⎪⎪⎭⎫ ⎝⎛=A A 则),654(321——————。

4 若向量____________),0,1,1,0(),0,1,0,1(='==βαβα则。

5 若三阶实对称矩阵A 的特征值为-1,2,3,则A -1的特征值为______。

6 对于四阶矩阵A ,。

则__________2,1==A A7 若四阶矩阵:。

则且___________),,,,(,2),,,,(432214321=+===B B A A ααααααααα 8 若向量组)(,,,(),,,(5,4,0)02121321-==-=αααt 线性无关,则t=————————。

三、计算下列行列式(12分)。

1 29930030119920020199100101=D22222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c cb b b b a a a a四、(8分)设:B A A AB B A ''-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=及求2,101121121101010101。

线性代数2007答案

线性代数2007答案

重庆大学线性代数(Ⅱ)课程试卷2006~2007学年 第2学期一、 填空题(3分/每小题,共30分) ⒈517924的逆序数为 7 ;⒉ A 为3阶方阵,且A =-2,A =123A A A ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则312123A A A A -= 6 ;⒊若向量⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=t 876β相互正交,则t =__-11______;⒋ A 为3阶方阵,且A =2,则()=+-*122A A 16729;5.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212的秩为 2 ;6.齐次线性方程021=+++n x x x 的基础解系的向量个数是 N-1 ;7. A 为4阶方阵,B 为7阶方阵,且2,3A B ==-则=BO OA -6 ;8. 已知123,,ααα 线性无关,则133221,,αααααα+++线性 无关 ;9.非齐次线性方程组m n A x β⨯=有解的充分必要条件为)()(β A R A R =;10.当λ为 大于5 取值范围时, 二次型2332223121213216242),,(x x x x x x x x x x x x f λ+++++= 为正定.二、 简答题(4分/每小题,共8分)⒈若n 阶方阵A 有O A =2,问是否O A =成立?为什么?不成立(2分),可取多个反例(2分) ⒉,A B 为n 阶方阵且相似,问,A B 是否等价?为什么?成立(2分),因为,A B 为n 阶方阵且相似,则存在C ,使得B AC C =-1,而C 可逆,则可表示初等方阵的乘积,于是,A B 等价(2分)。

三、 计算题(一)(8分/每小题,共24分)1. 计算四阶行列式.5021*********321---=D 解504173012107222.1730012107022204321.5021011321014321=-------=-------=---=D有过程但结果错误得一半的分数。

重庆大学线性代数本科模拟试题答案

重庆大学线性代数本科模拟试题答案

重庆大学线性代数课程试题(A 卷)答案一、1. 16; 2. n2; 3. r = n , r<n ; 4. -17; 5. - 2; 6. 11<<-t . 二、1. 分别是A B A k B A B ==-=,,(4分).2. 不相似(2分)。

否则,存在可逆阵C 使C -1AC=B,即A=B,矛盾(2分).3. B A +一定为正定阵 因为0,00,,>>≠∈∀x B x x A x x R x ,B A T T n 有所以为正定阵 从而0)(>+x B A x T ,所以B A +一定为正定阵 三、1.是,⎪⎪⎩⎪⎪⎨⎧+=是奇数;,,是偶数,n n n n S 212dim2.(1) 121||||2+=e f ; (2)))(41()(2是任意实数b e x b x g +-=.3.(1))20(-,,零维1,秩2. (2)⎥⎦⎤⎢⎣⎡-110110;(3)⎥⎦⎤⎢⎣⎡-200310; (4)}{132e e e ,,,)}11()11{(,-,,.4.由X A E AX +=+2化简得))(()(E A E A X E A +-=-,E A E A --=-故,1可逆,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=201030102E A X 。

四、1.解:方程组的系数得列式)2()1(2+-=λλD (1) 当21,0-≠≠≠λλ及即D 时,方程组有惟一解; 2)1(,21,212321++=+=++-=λλλλλx x x(2) 当1=λ时,原方程组的三个方程成为1321=++x x x其系数矩阵的秩与增广矩阵的秩相等均为1,所以方程组有无穷多解, 其解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00110101132321x x x x x (32,x x 为任意实数) 或写为3211x x x --=(32,x x 为任意实数) (3) 当2-=λ时,3)~(2)(=≠=A R A R ,此时原方程无解。

线性代数试题A答案[大全5篇]

线性代数试题A答案[大全5篇]

线性代数试题A答案[大全5篇]第一篇:线性代数试题A答案2006-2007学年第二学期线性代数试题A卷参考答案及评分标准一.填空题(本题满分12分,每小题3分)⎛1-20 0 -25 -111、1;2、-3;3、A=00 3 1 00-3⎝0⎫⎪0⎪2⎪;4、2 ⎪3⎪1⎪⎪3⎭二、选择题(本题满分12分,每小题3分,.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.C;2.C;3.A;4、B 三.计算行列式(本题满分6分)解 1 10Dn=001-110010Λ00-111000-11=100010100200Λ03ΛΛ1Λ00Λ0100Λ00n3-1ΛΛ011ΛΛΛΛΛΛΛΛΛΛΛΛ分Λn-1=n3分解2 10Dn=001-110010Λ00-111000=Dn-1+13分-1ΛΛ011ΛΛΛΛΛΛΛΛ-11=n3分四.(本题满分12分)解:⑴ 由等式A+B=AB,得A+B-AB+E=E,即(A-E)(B-E)=E3分因此矩阵A-E可逆,而且(A-E)=B-E.2分-1⑵ 由⑴知,A-E=(B-E),即A=(B-E)+E-1-1A=(B-E)+E或A=B(B-E)-12分-1⎛0-10-30100⎛⎫⎛⎫⎪⎪1=200⎪+010⎪=-3 001⎪001⎪0⎝⎭⎝⎭⎝⎛1 1=-3 0 ⎝1210⎫0⎪⎪0⎪ 2分⎪2⎪⎪⎭1200⎫0⎪100⎫⎪⎛⎪0⎪+010⎪3分⎪⎪1⎪⎝001⎭⎪⎭五.(本题满分14分)解:110⎤⎡1⎡11⎢01⎥⎢0221⎥→⎢A=⎢⎢0-1a-3-2b⎥⎢0⎢⎥⎢321a-1⎣⎦⎣01110⎤1221⎥⎥4分0a-10b+1⎥⎥00a-10⎦所以,⑴ 当a≠1时,rA=r(A)=4,此时线性方程组有唯一解.2分⑵ 当a=1,b≠-1时,r(A)=2,rA=3,此时线性方程组无解.2分⑶ 当a=1,b=-1时,rA=r(A)=2,此时线性方程组有无穷多组解.2分此时,原线性方程组化为()()()⎧x1+x2+x3+x4=0 ⎨⎩x2+2x3+2x4=1因此,原线性方程组的通解为⎧x1=x3+x4-1⎪x=-2x-2x+1⎪234 ⎨x=x3⎪3⎪x4⎩x4=或者写为⎡x1⎤⎡1⎤⎡1⎤⎡-1⎤⎢x⎥⎢-2⎥⎢-2⎥⎢1⎥2⎢⎥=k⎢⎥+k⎢⎥+⎢⎥4分⎢x3⎥1⎢1⎥2⎢0⎥⎢0⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣0⎦⎣1⎦⎣0⎦⎣x3⎦六.(本题满分12分)3-λ解 A-λE=-101202-λ1=(2-λ)(3-λ),2分03-λ所以得特征值λ1=2,λ2=λ3=32分⎛101⎫⎪对λ1=2,解方程组(A-2E)x=0,由A-2E=-101⎪,得特征向量001⎪⎝⎭⎛0⎫⎪ξ1=1⎪0⎪⎝⎭⎛0⎫⎪所以对应λ1=2的全部特征向量为c1 1⎪,c1≠03分0⎪⎝⎭⎛0 1对λ2=λ3=3,解方程组(A-3E)x=0,由A-3E=-0⎝01⎫1⎛10⎪r 1-1⎪−−→0 0100⎪0 ⎭⎝00⎫⎪⎪,⎪⎭⎛1⎫⎛1⎫⎪⎪得特征向量ξ2=-1⎪,全部特征向量为c2 -1⎪,c2≠03分0⎪0⎪⎝⎭⎝⎭A没有三个线性无关的特征向量,所以不能对角化.2分七.(本题满分12分)⎛1λ解:f的矩阵为A=λ4 -12⎝-1⎫⎪2⎪.…………2分 4⎪⎭因此,二次型f为正定二次型.⇔矩阵A为正定矩阵.⇔矩阵A的各阶顺序主子式全大于零.…………2分而矩阵A的各阶顺序主子式分别为D1=1>0,D2=1λ=4-λ2,…………2分λ41D3=A=λλ-12=-4(λ-1)(λ+2).…………2分 44-12所以,二次型f 为正定二次型.⇔D2=4-λ2>0,且D3=-4(λ-1)(λ+2)>0由 D2=4-λ2>0,得-2<λ<2 .由 D3=-4(λ-1)(λ+2)>0,得-2<λ<1 .因此,得-2<λ<1 .即,二次型f为正定二次型.⇔-2<λ<1…………4分八.(本题满分8分)已知三维向量空间的一组基为α1=(1,1,0),α2=(1,0,1),α3=(0,1,1)求向量β=(2,0,0)在上述基下的坐标.解:设向量β在基(α1,α2,α3)下的坐标为(x1,x2,x3),则有x1α1+x2α2+x3α3=β,2分写成线性方程组的形式,有⎛1⎫⎛1⎫⎛0⎫⎛2⎫⎪⎪⎪⎪x1 1⎪+x2 0⎪+x3 1⎪=0⎪2分 0⎪1⎪1⎪0⎪⎝⎭⎝⎭⎝⎭⎝⎭即⎧x1+x2=2⎪⎨x1+x3=0,⎪x+x=03⎩2得唯一解x1=1,x2=1,x3=-1,3分,1,-1).1分因此所求坐标为(1九.(本题满分12分)证法1:记A=(α1,α2,Λ,αm),B=(α1,α2,Λ,αm,β),显然r(A)≤r(B).1°因为α1,α2,Λ,αm线性无关,知r(A)=m1分2°因为α1,α2,Λ,αm,β线性相关,知r(B)<m+1 1分因此r(B)=m,1分Ax=(α1,α2,Λ,αm)x=b有解且唯一。

线性代数a期末考试题及答案

线性代数a期末考试题及答案

线性代数a期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 对角矩阵D. 奇异矩阵答案:B2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行的最大数目D. 矩阵中非零列的最大数目答案:C3. 如果一个矩阵A的行列式为0,则:A. A是可逆的B. A是不可逆的C. A是正定的D. A是负定的答案:B4. 以下哪个选项不是线性方程组解的性质?A. 唯一性B. 存在性C. 零解D. 非零解答案:D二、填空题(每题5分,共20分)1. 矩阵的________是矩阵中所有元素的和。

答案:迹2. 如果一个向量组线性无关,则该向量组的________等于向量的个数。

答案:秩3. 对于一个n阶方阵A,如果存在一个非零向量x使得Ax=0,则称x为矩阵A的________。

答案:零空间4. 一个矩阵的________是指矩阵中所有行向量或列向量的最大线性无关组的个数。

答案:秩三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的行列式。

答案:\[ \text{det}(A) = 1*4 - 2*3 = 4 - 6 = -2 \]2. 设A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],B=\[\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}\],求AB。

答案:\[ AB = \begin{pmatrix} 1*2 + 2*1 & 1*0 + 2*3 \\ 3*2 +4*1 & 3*0 + 4*3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix} \]3. 已知矩阵A=\[\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\],求A的特征值。

《线性代数》期末考试题及详细答案(本科A、B试卷)

《线性代数》期末考试题及详细答案(本科A、B试卷)

XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科A 、B 试卷)A 卷一、填空题 (将正确答案填在题中横线上。

每小题2分,共10分)。

1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。

2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。

3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。

4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。

5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。

二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,每小题2分,共20分)。

1、若方程13213602214x x xx -+-=---成立,则x 是:课程代码: 适用班级:命题教师:任课教师:(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为: (A )()332233A B+3AB +B A B A +=+; B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B ; 3、设A 为可逆n 阶方阵,则()**A=?(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵:(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是:(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。

重庆市2024届高三下学期高考数学模拟试题(二模)含答案

重庆市2024届高三下学期高考数学模拟试题(二模)含答案

重庆市2024届高三下学期高考数学模拟试题(二模)注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.─、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.等差数列满足,,则( ){}n a 134a a +=48a =3a =A .4B .5C .6D .72.已知集合,,若,则a 的取值范{}2230A x x x =-->()(){}20B x x a x =-+<A B =R 围为( )A .B .()3,+∞[)3,+∞C .D .()1,3-(),1-∞-3.2023年10月4日,在杭州亚运会跳水男子10米台决赛中,中国选手杨昊夺得金牌.中国跳水队包揽杭州亚运会跳水项目全部10枚金牌.跳水比赛的评分规则如下,7位裁判同时给分,去掉两个最高分,去掉两个最低分,剩下的3个分数求和再乘以难度系数,就是该选手本轮的得分,下表就是杨昊比赛中的第一轮得分表,则( )1号裁判2号裁判3号裁判4号裁判5号裁判6号裁判7号裁判难度系数本轮得分a 9.59.010.09.510.010.0 3.292.80A .这7个数据的众数只能是10.0B .这7个数据的中位数只能是9.0C .a 可能是10.0D .a 可能是9.54.已知双曲线的方程为,则不因m 的变化而变化的是( )()2255R,0mx my m m -=∈≠A .顶点坐标B .渐近线方程C .焦距D .离心率5.已知角θ满足,则( )1tan 2024tan θθ+=sin 2θ=A .B .C .D .15061101212024140486.已知球O 的半径为2cm ,平面α截球O 产生半径为1cm 的圆面,A ,B ,C ,D 均在圆O '面的圆周上,且为正四棱锥,则该棱锥的体积为( )O 'O ABCD -A .B .C .D .33cm 3323cm 333cm 323cm 7.已知函数,其中是锐角的两个内角,则下列结论一定正确的是()sin x f x x =,A B ABC ( )A .B .()()sin sin f A f B >()()cos cos f A f B >C .D .()()cos sin f A f B >()()sin cos f A f B >8.设,,,则( )2024log 2023a =2023log 2022b =0.2024log 0.2023c =A .B .c<a<b b<c<aC .D .b a c<<a b c <<二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错得0分.9.已知z 为复数,,则( )2122i z =-z =A .B .2iz =+2i z =-C .D .2iz =-+2i z =--10.已知定义在R 上的奇函数满足:,则( )()f x ()()()21f x f x f +=+-A .B .()10f =13022f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .D .()()4f x f x +=-()12f x f ⎛⎫≥ ⎪⎝⎭11.记数列的前n 项和为,则下列说法错误的是( ){}n a n S14.已知函数()(1sin cos 02f x a x x a =+>距离为,若,25π+x ∀∈R ()()0f x f x ≥四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在中,内角A ,B ,C 所对的边分别为ABC .2π2cos sin cos 12222A B B b b a ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦(1)求角A 的大小;(1)证明:;2PM BM =(1)求椭圆C 的方程;4MF NF +(2)设集合.元素个数为2的集合M 为的子集,(){}{}7127,,,|0,1,1,2,,7i U a a a a i =⋅⋅⋅∈=⋅⋅⋅7U 且满足对于任意,都存在唯一的使得,则称M 为“的优集”.证明:7A U ∈B M ∈()3d AB ≤7U “的优集”M 存在,且M 中两不同点的“距离”是7.7U1.B【分析】设等差数列的公差为,根据题意,列出方程组,求得的值,即可求解.{}n a d 1,a d 【详解】设等差数列的公差为,因为,,{}n a d 134a a +=48a =可得,解得,所以.1112438a a d a d ++=⎧⎨+=⎩11,3a d =-=31235a =-+⨯=故选:B.2.A【分析】根据不等式的解法,求得或,分类讨论求得集合,结合{|1A x x =<-3}x >B ,利用集合的运算,即可求解.A B =R 【详解】由不等式,解得或,所以或,2230x x -->1x <-3x >{|1A x x =<-3}x >又由不等式,()()20x a x -+<当时,不等式解集为空集,不满足,不符合题意,舍去;2a =-A B =R 当时,解得,即,2a <-2a x <<-{|2}B x a x =<<-此时不满足,不符合题意,舍去;A B =R 当时,解得,即,2a >-2x a -<<{|2}B x x a =-<<要使得,则满足,A B =R 3a >综上可得,实数的取值范围为.a (3,)+∞故选:A.3.D【分析】根据评分规则,结合众数、中位数的定义进行求解即可.【详解】当时,由题意可知:,符合题意,此时众数为09.5a ≤≤()109.59.5 3.292.8++⨯=10或(此时),中位数为9.5,因此选项AB 不正确,D 正确;9.59.5a =当时,由题意可知:,舍去,因此选项C 不正9.510a <≤()109.5 3.292.89.5a a ++⨯=⇒=确,故选:D4.B【分析】根据题意,分与讨论,结合双曲线的标准方程代入计算,即可判断.0m >0m <【详解】将双曲线方程化为标准式可得,22115x y m m -=当时,双曲线表示焦点在轴的双曲线,0m >22115x y m m -=x 且,222156,,a b c m m m ===此时顶点坐标为,渐近线方程为,1,0m ⎛⎫± ⎪ ⎪⎝⎭5y x =±焦距,离心率;262c m =221156b e a =+=+=当时,双曲线表示焦点在轴的双曲线,0m <22115x y m m -=y 且,222516,,a b c m m m =-=-=-此时顶点坐标为,渐近线方程为,5,0m ⎛⎫±- ⎪ ⎪⎝⎭5y x =±焦距,离心率;262c m =-221301155b e a =+=+=综上可得,不因m 的变化而变化的是渐近线方程.故选:B5.B【分析】切化弦,得到,利用正弦二倍角公式求出答案.4s 2in 1cos 20θθ=【详解】,221sin cos sin cos 1tan 2024tan cos sin sin cos sin cos θθθθθθθθθθθθ++=+===故,4s 2in 1cos 20θθ=则.21sin 22sin cos 20241012θθθ===故选:B6.B【分析】画出图形根据球的半径和截面圆的半径即可求出,根据四棱锥的体积公式求出OO '体积。

重庆大学高数(下)期末试题二(含答案)

重庆大学高数(下)期末试题二(含答案)

重庆大学《高等数学(工学类)》课程试卷第1页共1页重庆大学《高等数学(工学类)》课程试卷A卷B卷20 —20 学年第学期开课学院: 数统学院课程号: 考试日期:考试方式:开卷闭卷 其他考试时间: 120 分题号一二三四五六七八九十总分得分一、选择题(每小题3分,共18分)1. 设向量a与三轴正向夹角依次为,,,αβγ则当cos0β=时有().(A) a⊥xoy面(B) a//xoz面(C) a⊥yoz面(D) a xoz⊥面知识点:向量与坐标的位置关系,难度等级:1.答案: (B)分析:cos0,β=,2πβ=a垂直于y轴,a//xoz面.2. 若某个三阶常系数线性齐次微分方程的通解为212323,y C C x C x=++其中123,,C C C为独立的任意常数,则该方程为().(A)0y y'''+=(B) 30yy'''+'=(C)0y y'''-=(D) 0y'''=知识点:通过微分方程的通解求微分方程,难度等级:2.答案: (D)分析:由通解中的三个独立解21,,x x知,方程对应的特征方程的特征根为1230.λλλ===因此对应的特征方程是30.λ=于是对应的微分方程应是0.y'''=故应选(D).3. 设D由14122≤+≤yx确定.若1221,DI dx yσ=+⎰⎰222(),DI x y dσ=+⎰⎰223ln(),DI x y dσ=+⎰⎰则1,I2,I3I之间的大小顺序为().(A)321III<<(B)231III<<(C)132III<<(D)123III<<知识点:二重积分比较大小,难度等级:1.答案:(D)分析:积分区域D由22114x y≤+≤确定.在D内,2222221ln(),x y x yx y+<+<+故321.I I I<<只有D符合.4.设曲线L是由(,0)A a到(0,0)O的上半圆周22,x y ax+=则曲线积分命题人:组题人:审题人:命题时间:教务处制学院专业、班年级学号姓名考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密考试提示1.严禁随身携带通讯工具等电子设备参加考试;2.考试作弊,留校察看,毕业当年不授学位;请人代考、替他人考试、两次及以上作弊等,属严重作弊,开除学籍.(sin )(cos )().xx Ley my dx e y m dy -+-=⎰(A)0 (B)22m a π (C)28m a π (D)24m a π知识点:对坐标的曲线积分,格林公式,难度等级:2. 答案:(B)分析:补充直线段1:0(:0),L y x a =→则1L L +为封闭曲线在上使用格林公式可得12,2L L Dm mdxdy a π+==⎰⎰⎰而10.L =⎰选B.5. 已知向量23,a m n =+则垂直于a 且同时垂直于y 轴的单位向量().e =(A))i j k ++ (B))i j k -+ (C))2i k ±- (D)()2i k ±+知识点:向量垂直,单位向量,难度等级:1. 答案:(C) 分析:向量111010i j ki k =-+垂直于a 且同时垂直于y 轴,其模为6. 设∑为球面2222,x y z R ++=则22()().84x y I dS ∑=+=⎰⎰(A)24R π (B)545R π (C)24R π (D)R π4知识点:对面积的曲面积分,对称性,难度等级:2. 答案:(C)分析: 由于积分曲面关于三个坐标面对称,且满足轮换,故有2222224114()4.333x dS x y z dS R R R ππ∑∑=++=⋅=⎰⎰⎰⎰利用上述结论所求I 为23.8x dS ∑⎰⎰故选C.二、填空题(每小题3分,共18分)7. 幂级数21!n nn n x n ∞=∑的收敛半径为__________.知识点:幂级数收敛半径,难度等级:1. 答案分析:1`22222(1)(1)(1)!lim lim 1!n n n n n n n n n xn n x ex x n n x n ++→∞→∞+++==<⇒< 8. 由原点向平面引垂线,垂足的坐标是),,(c b a ,此平面的方程为__________.知识点:平面方程,难度等级:1.答案:23120.x y z -+-=分析:该平面的法向量为22350,x y z -+-=且过点22350,x y z -+-=则其平面的方程23120.x y z -+-=9. 设L 为椭圆221,34x y +=其周长记为,a 则求22(243)Lxy x y ds ++⎰__________.=知识点:对坐标的曲线积分,难度等级:1. 答案:12.a10. 设区域D 为222,x y R +≤则()DR y dxdy +⎰⎰__________.=知识点:二重积分的计算,对称性,难度等级:2. 答案:3.R π分析:所求几何体为一圆柱体被一平面劈开剩下部分,由几何形状知其为圆柱体体积一半,可得结果.或直接由被积函数奇偶分开,及积分区域对称立得. 11.3222(2cos )(12sin 3)__________,Lxy y x dx y x x y dy -+-+=⎰其中为抛物线22x y π=上由到的一段弧.知识点:对坐标的曲线积分,积分与路径无关,难度等级:2答案:2.4π解: 322cos ,P xy y x =-2212sin 3,Q y x x y =-+262cos .Q P xy y x x y∂∂⇒=-=∂∂ 3222(2cos )(12sin 3)L xy y x dx y x x y dy ⇒-+-+⎰与积分路径无关.⇒取L 为由(0,0),(,0),(,1)22ππ组成的折线,则2132222203(2cos )(12sin 3)0(12).44L xy y x dx y x x y dy y y dy ππ-+-+=+-+=⎰⎰12. 设∑为曲面2221x y z ++=的外侧,则333I x dydz y dzdx z dxdy∑=++⎰⎰__________.=知识点:对坐标的曲面积分,球坐标,难度等级:3. 答案:12.5π分析: 由高斯公式,2122240123()3sin .5I x y z dV d d r dr ππθϕϕΩ=++==⎰⎰⎰⎰⎰⎰三、计算题(每小题6分,共24分)13. 求初值问题2(2)|1x ydy x y dxy ==+⎧⎨=⎩的解.知识点:齐次微分方程的初值问题,求解,难度等级:1. 分析:所给方程为齐次微分方程,作代换yu x=化为可分离变量的微分方程. 解:将方程改写为2.dy x y dx y+= 这是齐次方程.令,y xu =则.dy du u x dx dx=+ 代入上式得L (0,0))1,2(π21.du u xdx u+=+ 这是变量分离方程,且有(2)1(2).22y u ==积分得21ln |2|ln |1|0.33x u u C +-+++= 代入初值可解得32ln .2C =--故原方程的特解为213ln |2|ln |1|2ln 0.332y y x x x +-++--=14. 求级数11(4)!n n ∞=∑的和. 知识点:级数和,难度等级:3分析:利用级数之和,幂级数的逐项求导解: 0,.!nx n x e x R n ∞==∈∑(1),.!n nx n x e x R n ∞-=-⇒=∈∑20,.(2)!2n x xn x e e x R n -∞=+⇒=∈∑又 20(1)cos ,.(2)!n nn x x x R n ∞=-=∈∑ 40cos 2,.(4)!2x xn n e e x x x R n -∞=++⇒=∈∑ 111cos112.(4)!2n e e n -∞=++⇒=∑ 15. 计算222()L ydx xdy x y -+⎰,其中L 为圆周22(1)2,x y -+=L 的方向为逆时针方向.知识点:对坐标的曲线积分,积分与路径无关,取特殊路径;难度等级:3.分析:先注意积分与路径无关,后根据分母特点取特殊路径积分.解:当(,)(0,0)x y ≠时,22222.2()P x y Qy x y x∂-∂==∂+∂作小圆222:,C x y ε+=取逆时针方向,则222222222112.2()2()22L C Cx y ydx xdy ydx xdy ydx xdy dxdy x y x y επεε+≤--==-=-=-++⎰⎰⎰⎰⎰16. 求力(,,)F y z x =沿有向闭曲线L 所作的功,其中L 为平面1x y z ++=被三个坐标面所截成的三角形的整个边界,从z 轴正向看去,顺时针方向.知识点:变力没曲线作功,难度等级:2.分析: 曲线积分的边界已为闭,用斯克斯公式,或化为平面曲线积分用格林公式.解: 用斯托克斯公式,取∑为平面1x y z ++=的下侧被L 所围的部分,∑1,1,1).--- 力F 所做的功为LW ydx zdy xdz =++⎰x y y z ∑---=∂∂∂∂⎰⎰3.2===⎰⎰四、解答题(每小题6分,共12分)17.设(),u yxf z =其中()f z 二阶可导,(,)z z x y =由方程2ln 10x y z +-+=所确定,求22.ux∂∂知识点:方程组的二阶偏导数,难度等级:2. 分析:()u yxf z =对x 求二阶偏导数得22,ux ∂∂但其中会包含z 对x 的二阶偏导数22zx ∂∂.2ln 10x y z +-+=两边对x两次求偏导数,可求出22zx∂∂.解:()(),u z yf z xyf z x x∂∂'=+∂∂ 222222()()()(),u z z zyf z xyf z xyf z x x x x∂∂∂∂''''=++∂∂∂∂221,1,z z x zz zz x x∂==∂∂∂==∂∂2222()()().uyzf z xyz f z xyzf z x∂''''=++∂ 18. 计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.知识点:高斯公式,球面坐标,极坐标,难度等级3. 分析: 补充辅助面用高斯公式,再用球面坐标.解: 设222:,0x y a S z ⎧+≤⎨=⎩取下侧,则∑与S 围成的区域为,ΩS 在xoy 面的投影区域为.D 于是323232()()()SI x az dydz y ax dzdx z ay dxdy ∑+=+++++⎰⎰323232()()()Sx az dydz y ax dzdx z ay dxdy -+++++⎰⎰22223()Dx y z dv ay dxdy Ω=+++⎰⎰⎰⎰⎰222222203sin sin a a d d r r dr a d r rdr πππθϕϕθθ=⋅+⋅⎰⎰⎰⎰⎰555615429.20a a a πππ=+=五、 证明题(每小题6分,共12分)19. 证明:()()0()()().ay am a x m a x dy e f x dx a x e f x dx --=-⎰⎰⎰知识点:二重积分交换积分次序,难度等级:1分析: 将二次积分化为定积分,注意到被积函数不含变量,y 先对y 积分,故将积分区域D 由y 型区域化为x 型区域计算可得证明结果证明: 积分区域为,0,{()0|},D x y y a x y =≤≤≤≤并且D 又可表示为,0,{(}.)|D x y x a x y a =≤≤≤≤ 所以()()()0()()()().ay a a am a x m a x m a x xdy e f x dx dx e f x dy a x e f x dx ---==-⎰⎰⎰⎰⎰20. 设在半平面0x >内有力3()kF xi yj ρ=-+构成力场,其中k 为常数,ρ=证明:在此力场中场力所作的功与所取路径无关. 知识点:变力沿曲线作功,难度等级:1 分析: 验证积分与路径无关. 证明 场力所作的功2232,()Lxdx ydyW k x y +=-+⎰其中L 为力场内任一闭曲线段.223222523;()()Q y xyx x x y x y ⎡⎤∂∂==-⎢⎥∂∂++⎣⎦ 223222523.()()P x xy y y x y x y ⎡⎤∂∂==-⎢⎥∂∂++⎣⎦ 可见,,P Qy x∂∂=∂∂且,P Q 在半平面0x >内有连续偏导数,所以0.W =即场力作用与路径无关.六、应用题 (每小题8分,共16分)21. 已知年复利为0.05,现存a 万元,第一年取出19万元,第二年取出28万元,…,第n 年取出109n +万元,问a 至少为多少时,可以一直取下去?知识点:幂级数的和函数,难度等级:2解:设n A 为用于第n 年提取(109)n +万元的贴现值,则(1)(109).n n A r n -=++ 故1111110919102009.(1)(1)(1)(1)n n n n nn n n n n n n nA A r r r r ∞∞∞∞∞=====+===+=+++++∑∑∑∑∑设1(),(1,1),n n S x nx x ∞==∈-∑ 则21()()(),(1,1).1(1)n n x x S x x x x x x x ∞=''===∈---∑所以11()()4201 1.05S S r ==+万元,故20094203980A =+⨯=万元,即至少应存入3980万元.22.按照牛顿冷却定律:物体在空气中冷却的速度与物体温度和空气温度之差成正比.已知空气温度为30,︒物体在15分钟内从100︒冷却到70︒时,求物体冷却到40︒时所需要的时间?知识点:微分方程数学模型,难度等级:2分析:根据冷却定律建立微分方程初值问题并求解. 解:设在时间t 时,物体的温度为.T C ︒ 根据冷却定律列出方程(30).dTk T dt=-- 分离变量,并积分得,30dTkdt T =-- ln(30)ln .T kt c -=-+故有0.3kt T ce -=+由初始条件:015|100,|70.t t T T ==== 代入可解得1770,ln ,154c k ==即有 17(ln )154.3070t T e-=+当40T =时,由上式可解得15ln 7527ln 4t ==(分).。

重庆大学高数(下)期末试题11(含答案)

重庆大学高数(下)期末试题11(含答案)

重庆大学《高等数学(工学类)》课程试卷A卷B卷20 — 20 学年 第 学期开课学院: 数统学院 课程号:考试日期:考试方式:开卷闭卷 其他考试时间: 120 分一、 选择题(每小题3分,共18分)1. 设,yu xy x =+则22u x ∂=∂__________.答案:32.y x难度等级:1;知识点:偏导数.2. 已知级数1nn n a x ∞=∑满足11lim ,3n n na a +→∞=且lim 2,n n n ab →∞=则级数1n n n b x ∞=∑的收敛半径为__________.答案:3.难度等级:2;知识点:幂级数分析:1111111limlim 2, 3.233n n n n n n n n n n b b a a R b a a b +++→∞→∞+==⨯⨯== 3. 若曲线上任一点(,)x y 处的切线斜率等于(1),yx-+且过点(2,1),则该曲线方程是__________.答案:14.2y x x =-+难度等级:2;知识点:一阶线性微分方程4. 设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)__________.Lxy y dx x x dy -+-=⎰答案:18.π-难度等级:2;知识点:格林公式分析:利用格林公式可化为被积函数为2-的二重积分,而积分区域面积为9,π故得.5. 设()f t 具有连续导数, (0)0,(0)1,f f '=={}2222(,,)|,x y z x y z t Ω=++≤则1lim40I f d t t V π==⎰⎰⎰+Ω→__________. 答案:1.命题人:组题人:审题人:命题时间:教务处制学院专业、班年级学号姓名考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密难度等级:2;知识点:三重积分6. 求以向量23a m n =+和4b m n =-为边的平行四边形的面积为 ,其中,m n 是互相垂直的单位向量. 答案:11.难度等级:2;知识点:向量代数.分析:为了便于计算,令,m i n j ==,则23a i j =+,4b i j =-,230(0,0,11),140i j ka b ⨯==--平行四边形的面积为20011a b ⨯=+=二、填空题(每小题3分,共18分)7. 设非零向量,,a b c 满足条件0a b c ++=,则a b ⨯().=(A) c b ⨯ (B) b c ⨯ (C) a c ⨯ (D) b a ⨯ 答案:(B).难度等级:1;知识点:向量代数分析:在0a b c ++=的两边左乘以b得到()0,b a b c b ⨯++=⨯0,b a b b b c ⨯+⨯+⨯=即0.a b b c -⨯+⨯=于是.a b b c ⨯=⨯8. 设函数z f x y =(,)在点(,)x y 00处沿任何方向有方向导数,则z f x y =(,)在点(,)x y 00处().(A)偏导数存在(B)可微 (C)偏导数不一定存在 (D)偏导数连续 答案:(C).难度等级:2;知识点:偏导数与方向导数分析:函数z =(0,0)处沿任何方向的方向导数均为1,但偏导数不存在,所以应选(C).9. 微分方程22x y y '''=的通解是().(A)1221ln(1)C x y x C C -=--+ (B) 1211ln(1)C x x y C C C -=--+ (C)12211ln(1)C x x y C C C -=-+ (D) 12211ln(1)C x x y C C C -=--+ 答案: (D).难度等级:2;知识点:可降阶微分方程分析:方程为二阶非线性方程.令,u y '=则方程降为一阶方程22,x u u '=这是变量可分离方程.分离变量得22,du dxu x=积分得111.C u x =+将u y '=代入并积分可得12211,ln(1)C x x y C C C -=--+故应选(D).10.曲线2,x t y z t ===在点(4,8,16)处的法平面方程为().(A) 8132x y z --=- (B) 8140x y z ++= (C)x-y+8z=124 (D) 8116x y z +-=答案:(B).难度等级:1;知识点:多元微分学在几何上的应用 分析:法平面的法向量就是曲线的切向量,为(1,1,8),n =所以法平面方程为:(4)(8)8(16)0.x y z -+-+-=即 8140.x y z ++= 与(A)、(B)、(C)、(D)比较后知,应选B).11. 设有一分布非均匀的曲面,∑其面密度为(,,),x y z ρ则曲面∑对x 轴的转动惯量为().(A)xdS ∑⎰⎰ (B)(,,)x x y z dS ρ∑⎰⎰(C)2x dS ∑⎰⎰ (D)22()(,,)y z x y z dS ρ∑+⎰⎰答案:(D).难度等级:1;知识点:曲面积分的应用分析:A,C 明显不对,B 被积函数不对,D 是转动惯量. 12. 设流速场{0,0,1},v =则流过球面2222x y z R ++=的流量值为().(A)0 (B)24R π (C)334R π (D)1 答案:(A).难度等级:2;知识点:第二型曲面积分的应用.分析:通量00.dxdy dV ∑ΩΦ===⎰⎰⎰⎰⎰三、 计算题(每小题6分,共24分)13. 求微分方程3dy y dx x y =+的通解. 难度等级:2;知识点:一阶线性微分方程.分析 方程为一阶非线性方程,需变形为一阶线性方程求解.解 方程改写为21dx x y dy y-=, 这是关于()x x y =的一阶线性非齐次方程,故通解为2()dydyyyx ey edy C -⎰⎰=+⎰ 21()2y y C =+即32y x Cy =+.14. 设(,)z z x y =由方程(,)0f y x yz -=所确定,其中f 具有二阶连续偏导数,求22zx∂∂.难度等级:2;知识点:隐函数的高阶偏导数. 分析 由方程(,,)0F x y z =所确定的隐函数的偏导数xzFz x F ∂=-∂,求出zx∂∂后再对x 求偏导数即可得22z x ∂∂.解11221f f z x yf y f -∂=-=∂ 21112221221222()()1z zf yf f f yf f z x x x y f ∂∂-+--+∂∂∂=⋅∂ 211121221232222f f f f fyf yf yf=-+-15.将函数()ln(f x x =+展成关于x 的幂级数. 难度等级:2;知识点:函数展开成幂级数分析:有对数,反三角函数需要求导后展开,然后逐项积分解:()f x '====0(21)!!(1).(2)!!n nn n x n ∞=-=-∑20(21)!!(),.(2)!!n n n f x x x R n ∞=-'⇒==∈∑ 21(21)!!()(1),.(2)!!21n knn n x f x dx x R n n +∞=-'⇒=-∈+∑⎰21(21)!!()(1),.(21)(2)!!nn n n f x x x R n n ∞+=-⇒=-∈+∑16. 计算2232(()(2),xz dydz x y z dzdx xy y z dxdy ∑+-++⎰⎰其中∑为上半球体0z ≤≤表面的外侧.难度等级:2;知识点:高斯公式分析:题设曲面为封闭曲面,利用高斯公式,再用球面坐标化为三次积分.解: 2232(()(2)xz dydz x y z dzdx xy y z dxdy ∑+-++⎰⎰222()x y z dxdydz Ω=++⎰⎰⎰222205sin 2.5ad d r r dra ππθϕϕπ=⋅=⎰⎰⎰四、解答题(每小题6分,共12分)17. 设),(y x z z =是由0182106222=+--+-z yz y xy x 确定的函数,求函数),(y x z z =的极值点和极值.难度等级:3;知识点:多元函数极值解:方程0182106222=+--+-z yz y xy x 两边分别对,x y 求偏导数得到26220,(1)6202220.(2)x x y y x y yz zz x y z yz zz ---=⎧⎪⎨-+---=⎪⎩令00x yz z =⎧⎪⎨=⎪⎩得260,62020x y x y z -=⎧⎨-+-=⎩即3.x yz y =⎧⎨=⎩ 代入方程0182106222=+--+-z yz y xy x 得 3.y =±因此有两个驻点(9,3),(9,3).--相应的函数值为3, 3.-方程(1),(2)两边再次分别对,x y 求偏导数得到22222()20(3)622220(4)20422()20.(5)xx x xxx xy y x xy y yy y yy yz z zz z yz z z zz z yz z zz ⎧---=⎪⎪-----=⎨⎪----=⎪⎩将9,3,3,0,0x y x y z z z =====代入(3),(4),(5)得到21150,,,0.623xx xy yy A z B z C z AC B ==>==-==->故点(9,3)是(,)z z x y =的极小值点,极小值(9,3) 3.z = 同样将9,3,3,0,0x y x y z z z =-=-=-==代入(3),(4),(5)得到 21150,,,0.623xx xy yy A z B z C z AC B ==-<====--> 故点(9,3)--是(,)z z x y =的极大值点,极大值(9,3) 3.z --=-18. 计算23,ydx xzdy yz dz Γ-+⎰其中Γ为圆周222, 2.x y z z +==若从z 轴的正向看去,这圆周是取逆时针方向.难度等级:2,知识点:斯托克斯公式,曲面积分的概念,二重积分的性质分析:曲线的参数方程不易写出,积分路径为闭,用斯托克斯公式化为对面积的曲面积分.解:取∑为平面2z =被Γ所围成的部分的上侧,∑的法线向量为(0,0,1),n =其方向余弦为(cos ,cos ,cos )(0,0,1).αβγ=于是23ydx xzdy yz dz Γ-+⎰2cos cos cos 3(3)dS x y z yxzyzz dSαβγ∑∑∂∂∂=∂∂∂-=--⎰⎰⎰⎰ 2245520.x y dSdxdy π∑+≤=-=-=-⎰⎰⎰⎰五、证明题(每小题6分,共12分)19. 证明下列第二类曲线积分的估计式: .L xdx ydy LM +≤⎰其中L 为积分路径L 的弧长,M 为函数22y x +在L 上最大值.难度等级:3;知识点:第二类曲线积分分析:将题设积分转化为对弧长的积分,再进行估值,并注意将被积函数表成向量的点积.证明:设路径L 上的单位切向量为(cos ,sin ).αα利用两类曲线积分的联系可得(cos sin )LL xdx ydyx y dsαα+=+⎰⎰cos sin {,}{cos ,sin }LLx y ds x y dsαααα≤+=⋅⎰⎰.LMdsML =≤=⎰⎰20. 设函数)(0x f 在),(+∞-∞内连续,10()(),1,2,.xn n f x f t dt n -==⎰证明:(1)1001()()(),1,2,;(1)!xn n f x f t x t dt n n -=-=-⎰ (2)对于区间),(+∞-∞内的任意固定的,x 级数()∑∞=1n n x f 绝对收敛.难度等级:3;知识点:无穷级数 证明:(1)由函数)(0x f 在),(+∞-∞内连续,1011000()(),1,2,()();(0)lim ()0,,(0)0(2).xn n nn xk x f x f t dt n f x f x f f t dt f k --→=='=⎧⎪⇒⎨===≥⎪⎩⎰⎰11()()(1)!xn f t x t dt n -⇒--⎰ 1101()()(1)!xn x t df t n -=--⎰ 1110102101(()()()())(1)!1()()(2)!xn x n xn x t f t f t d x t n f t x t dt n ---=----=--⎰⎰().n f x ==(2) 函数0()f t 在t x ≤上连续,⇒存在0()0,,()().M x t x f t M x >∀≤≤由(1),1001001()()()(1)!1()()()(1)!xn n xn n f x f t x t dt n f x f t x t dt n --=--⇒=--⎰⎰10()()()().(1)!!n xn n M x x M x f x x t dt n n -⇒≤-=-⎰ 由于0()!nn M x x n ∞=∑收敛,故级数()∑∞=1n n x f 绝对收敛.六、应用题 (每小题8分,共16分)21. 设均匀柱体密度为,ρ占有闭区域222,,{()|,0,}x y z x y R z h Ω=+≤≤≤ 求它对于位于点00,0(),)(M a a h >处单位质量的质点的引力. 分析:由空间物体引力公式和对称性,利用直角坐标计算即可 解:由柱体的对称性可知, 沿x 轴与y 轴方向的分力互相抵消, 故0,x y F F ==而 2223/2[()]z z aF G dv x y z a ρΩ-=++-⎰⎰⎰2222223/20()[()]hx y R dxdyG z a dzx y z a ρ+≤=-++-⎰⎰⎰ 2223/2000()[()]hRrdrG z a dz d r z a πρθ=-+-⎰⎰⎰012()[hG z a dz a z πρ=--⎰2[G h πρ=-22. 按P.F.Verhulst 人口增长规律:当人口数充分大时,大致按有机增长规律随时间成正比例增长(设比例系数为a ).如考虑到疾病和其它原因,有一个与人口数的平方成反比的的负增长率(设比例系数为b ).已知0t =时,人口数为0,x 求在时刻t 时的人口数(),x t 并问当t →∞时人口数如何?难度等级:3;知识点:常微分方程模型,可分离变量的微分方程的初值问题.分析:只需将二阶导数表示出来就可证之. 解:据题意可得如下初始值问题200.t dx ax bxdtx x =⎧=-⎪⎨⎪=⎩ 将方程分离变量,积分得020,xt x dxdt ax bx =-⎰⎰ 即有 00()1ln.()x a bx t ax a bx -=-解出x 得000.atatax e x a bx bx e=-+ 而且,当t →∞时,.a x b→。

重庆理工大学线性代数理工类_A卷_2010年5月

重庆理工大学线性代数理工类_A卷_2010年5月

10、二次型 f ( x1 , x2 , x3 ) = 2 x12 − x22 + x32 的正惯性指数是 ( A. 0 B. 1 C.2
重庆理工大学考试试题卷
2009~2010 学年第二学期
班级 学号 姓名 考试科目 线性代数(理工类) A卷 闭卷 共 2 页
·················· 密············ ·················· ············封············ ············线················ ················ 学生答题不得超过此线
重庆理工大学考试答题卷
2009~2010 学年第二学期
班级 学号 姓名 考试科目 线性代数(理工类) A卷 闭卷 共 2 页
·················· 密············ ·················· ············封············ ············线················ ················ 学生答题不得超过此线
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分)
⎛ 0 0 1 ⎞⎛ 1 2 ⎞ ⎟⎛ 1 2 ⎞ ⎟⎜ ⎜ ⎟ =_______。 11、 ⎜ 0 1 0 ⎟⎜ − 1 1 ⎟⎜ ⎜ ⎟ ⎜ 1 0 0 ⎟⎜ 2 3 ⎟⎝ 0 1 ⎠ ⎠ ⎠⎝ ⎝
0⎞ ⎛1 0 ⎟ ⎜ 12、设矩阵 A = ⎜ 0 − 2 0 ⎟ ,则 A−1 = ⎜ 0 0 − 1⎟ ⎠ ⎝
12、 17、 18、
13、 19、 20、
三.、计算题。 (每小题 8 分,共 48 分)
21、 22、
23、

大学线性代数练习试题及标准答案

大学线性代数练习试题及标准答案

大学线性代数练习试题及答案————————————————————————————————作者:————————————————————————————————日期:23第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a a a a 11122122=m ,aa a a 13112321=n ,则行列式aa a a a a 111213212223++等于( )A. m+nB. -(m+n)C. n -mD. m -n2.设矩阵A =100020003⎛⎝ ⎫⎭⎪⎪⎪,则A -1等于( )A. 13000120001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B. 10001200013⎛⎝ ⎫⎭⎪⎪⎪⎪⎪⎪ C. 130********⎛⎝⎫⎭⎪⎪⎪⎪⎪D. 12000130001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪ 3.设矩阵A =312101214---⎛⎝ ⎫⎭⎪⎪⎪,A *是A 的伴随矩阵,则A *中位于(1,2)的元素是( )A. –6B. 6C. 2D. –2 4.设A 是方阵,如有矩阵关系式AB =AC ,则必有( ) A. A =0 B. B ≠C 时A =0 C. A ≠0时B =C D. |A |≠0时B =C 5.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( ) A. 1 B. 2 C. 3 D. 46.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( )A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs +βs )=0C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs (αs -βs )=0D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =0 7.设矩阵A 的秩为r ,则A 中( ) A.所有r -1阶子式都不为0 B.所有r -1阶子式全为0 C.至少有一个r 阶子式不等于0 D.所有r 阶子式都不为08.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ) A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b 的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b 的一个解9.设n 阶方阵A 不可逆,则必有( )4A.秩(A )<nB.秩(A )=n -1C.A=0D.方程组Ax=0只有零解 10.设A 是一个n(≥3)阶方阵,下列陈述中正确的是( )A.如存在数λ和向量α使A α=λα,则α是A 的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE -A )α=0,则λ是A 的特征值C.A 的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A 的3个互不相同的特征值,α1,α2,α3依次是A 的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A 的特征方程的3重根,A 的属于λ0的线性无关的特征向量的个数为k ,则必有( ) A. k ≤3 B. k<3 C. k=3 D. k>3 12.设A 是正交矩阵,则下列结论错误的是( ) A.|A|2必为1 B.|A |必为1 C.A -1=A T D.A 的行(列)向量组是正交单位向量组 13.设A 是实对称矩阵,C 是实可逆矩阵,B =C T AC .则( ) A.A 与B 相似 B. A 与B 不等价C. A 与B 有相同的特征值D. A 与B 合同14.下列矩阵中是正定矩阵的为( ) A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪D.111120102⎛⎝ ⎫⎭⎪⎪⎪ 第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

线性代数考试练习题带答案大全(二)

线性代数考试练习题带答案大全(二)

线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。

(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。

二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。

9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。

线性代数A卷 本科(48学时)答案 (1)

线性代数A卷 本科(48学时)答案 (1)

a3
1 证明:由 A A 4 E O 可得 A( A E ) 4 E ,且 A [ ( A E )] E ,…………3 分 4
2
an
an

1 A ( A E ) 1 0 ,所以 A 0 ,则 A 为可逆矩阵 4
(a1
1 )a2 a3 .....an ..........2分 a k 2 k
根据实际情况可得 0
1 k 3 1 ( k 3 0 )……………………….…….2 分 0
x1 600 x5 , x 2 200 x5 , x3 400, x 4 500 x5
x5 500 …4

A E
1 ( A 2 E ) 1 0 ,所以 A E 0 故 A E 可逆………1 分 2 1 1 E )[ ( A 2 E )] E ,故 ( A E ) 1 ( A 2 E ) ……….1 分 2 2
又因为 ( A
1 0 1 ,求 X . 2、设 A 1 2 0 ,且 AX E A 2 X (期中 E 为 3 阶单位矩阵) 1 0 1
0 1 k1 1 k 2 0 ( k1 , k 2 不同时为零)………………3 分 1 0
② 解 ( A E ) x 0 ,得属于 3 1 的特征向量为:
1 0 0 1 0
得 分
1 1 0 0 0
0 0 800 1 0 1 1 0 300 r 0 0 1 1 500 0 0 1 600 0 1 0 0 400 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

重庆大学《高等数学 Ⅱ-2》重修试题A0812月(答案)

重庆大学《高等数学 Ⅱ-2》重修试题A0812月(答案)

重庆大学高等数学Ⅱ-2(重修)课程试卷A卷B卷2009 ~2010 学年 第二学期开课学院: 数理学院 课程号: 考试日期2010年6月考试方式:开卷闭卷 其他 考试时间:120 分一、 填空题(每空3分,共15分)⒈过点M (1,2,-3)且平行于直线31135yx z --==的直线方程为123135x y z --+==。

2.已知22ln()z x y =,则(1,1)dz=22dx dy +。

⒊级数112n n ∞=∑的和为1 。

4.设积分区域D 是由曲线2,,1y x y x y ===围成的区域,则 2Ddxdy =⎰⎰1/2。

⒌已知二阶常系数线性齐次微分方程的两个解分别为312,1x y e y ==,则该微分方程为30y y '''-=。

二、 计算题(共18分)⒈(9分)设yx z e =,求z z x y∂∂∂∂和及dz .解:21()yx y z z dz dx dy dx dy x y x xe ∂∂=+=-+∂∂.2.(9分)求函数u xyz =在点(1,1,2)处沿从点(1,1,2)到点(2,4,3)的方向导数。

uuuyz xz xy x yz ∂∂∂===∂∂∂(1,1,2)(1,1,2)(1,1,2)221u u u xyz∂∂∂===∂∂∂{}1,3,1191l l ==++=cos cos cos αβγ===cos cos cos 221u u u ul x y xαβγ∂∂∂∂=++∂∂∂∂=+=三、 计算题(共18分)1.(9分)求旋转抛物面22z x y =+在点15(1,,)24-处的法线方程和切平面方程.解:抛物面2222z x y =+的法向量为(2,2,1)n x y =--,在点15(1,,)24-处(2,1,1)n =-,命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名公平竞争、诚实守信、严肃考纪、拒绝作弊封线密法线方程为 15124211y z x --+==-. 切平面方程:84410x y z -++=。

重庆大学(2011级软件学院)A

重庆大学(2011级软件学院)A

重庆大学《数值计算》课程试卷2012 ~2013 学年 第1学期开课学院:数统学院 课程号: 10009220考试日期: 2013.1考试方式:考试时间120 分钟一、 填空题(3分/每空,共30分)1、精确值461972.2*=x ,近似值462047.2=x ,则x 有位有效数字。

2、对于(n+1)个的节点的Gauss 型求积公式,其代数精度为 。

3、若)(x f 在),(b a 上有连续的二阶导数,则梯形求积公式的截断误差为4、已知矩阵 A=210356421⎛⎫ ⎪- ⎪ ⎪-⎝⎭,则 A ∞= 。

5.)1(>>x 改变为 使得到的结果更有效。

6、解非线性方程0)(=x f 的牛顿迭代法,在单实根附近具有 阶收敛。

7、若线性方程组b Ax =的系数矩阵A 为严格对角占优阵,则雅可比迭代法____ _8、迭代过程(k=1,2,…)收敛的充要条件是。

9、三次Lagrange 差值多项式的差值基函数2()l x = 。

10、数值计算过程中需要注意 从而减少误差的积累效应。

二、(12分)证明线性代数方程组123123123422422233x x x x x x x x x -+=⎧⎪-+-=-⎨⎪--+=⎩ ,Gauss-Seidel 迭代收敛,并取初值()1,1,1T 进行迭代,求迭代3次后的值(3)x 。

三、(命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名公平竞争、诚实守信、严肃考纪、拒绝作弊封线密四.(10分)用经典的四阶R-K方法求初值问题'(0)1y x yy⎧=-⎨=⎩的解在x=0.2处的值,取步长h=0.1五.(12分) 已知:13===,416=(1)构造差商表;(2六.(12分)用逐次分半的复化梯形法公式计算积分⎰+=10212dxxI要求精确至3位有效数。

七.(12分) 确定下列公式的待定参数,使其代数精度尽可能的高,并指明求积公式的代数精度1012113 ()()()()424 f x dx A f A f A f≈++⎰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆大学线性代数Ⅱ本科模拟试题(A 卷)
一、填空题(每小题3分,共18分)
1.43512132a a a a a k i 是5阶行列式中带负号的项,则i = , k = .
2.设i A A A A i 的第为设阶方阵为,4,3-=个列向量,),,(321A A A A =,则行列式=+12135,2,3A A A A .
3.设A n A A 阶方阵分别为1,-*的伴随阵和逆矩阵,则=-*1A A .
4.矩阵
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=303000003012100210A 对应的实二次型 =),,,(4321x x x x f . 5.设
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53342
111
a A ,且2,6321===λλλ的特征值为A , 如果A 有三个线性无关的特征向量,则=a .
n 阶方阵A 具有n 个不同的特征值是A 与对角阵相似的 条件.
二、简答题(每小题4分,共12分)
1.举反例说明等式2222)(B AB A B A ++=+是错误的,并指出B A ,满足什么条件时此式成立.
2.若方阵
A 可逆,A 的特征值是否一定不为零?为什么?
3. 方阵相似吗?为什么?
和方阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=01110110B A 三、计算题(一)(每小题8分,共32分)
1.计算行列式的值:5678
90
1201140
010300
02000
1000. 2.设矩阵.
,,101020
101
2X X A E AX X A 求矩阵满足矩阵+=+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= 3.设有向量组),14,7,0,3(),2,1,3,0(),4,2,1,1(:321==-=ααα A )0,2,1,1(4-=α ,)6,5,1,2(5=α ,求A 组的一个最大线性无关组。

4.设矩阵
.,00113002320010182000310001-⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=A A 求
四、计算题(二)(每小题12分,共24分)
1.讨论λ取何值时,方程组
⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x
有惟一解、无穷多解及无解,并在有解的情况下求出解。

2.设矩阵B A 与相似,且
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=b B a A 00020002,33242
111
(1) 求b a ,之值;
(2) 求可逆矩阵B AP P P =-1,使. 五.证明题(每小题7分,共14分)
1.设n 阶方阵A 可逆,证明*A 也可逆,且.1)(1A A A =
-*. 2.设向量s αααβ ,,,21⋅⋅⋅可由向量组
线性表示。

证明:该表示法惟一的充分必要条件是向量组s ααα ,,,21
⋅⋅⋅线性无关.。

相关文档
最新文档