一个人管三个棚,智能温室大棚系统让大棚种植更简单!
智慧温室大棚技术解决方案
智慧温室大棚——定义
智慧温室大棚
通过智能硬件、物联网、大数据等技术对传统的温室大棚进行升级改造,构建全程智能化的高 效监测控制管理体系,实现科学指导生态轮作,保证作物的高产、优质、生态、安全;建立线上运 营和溯源系统,提高农户经济收益和品牌效益。
智能联动、组网
APP集中监控客户端 空气温度、空气湿度、 土壤温度、土壤湿度、 光照度、二氧化碳浓 度、氧气浓度等环境 数据监控
数据中心根据前端智能硬件上传的数据可以实时环境数据和查看植物生长分析曲线图,也为后续自动控制服务。
温室大棚视频监控系统
视频监控系统示意
通过在农业生产区域内安装全方位高清摄像机,对包括种植作物的生长情况、投入品使用情况、病虫害状况进行实时视频监控,实现现场无人职守情况下,种植者对作物生 长状况的远程在线监控,农业专家远程在线病虫害作物图像信息获取,质量监督检验检疫部门及上级主管部门对生产过程的有效监督和及时干预,以及信息技术管理人员对现场 数据信息和图像信息的获取、备份和分析处理。
拓宽销售渠道,增加经济收益
Part 3
温室大棚解决方案
温室大棚智能监控系统
智慧大棚综合监控建设方案
发展智能化,旨在帮助新农人全面创收
以实现“温室大棚的全面现代化,新农人的全面创收”为宗旨,对温室大棚进行全面升级和改造,建设全面智能化、数据化的生产、管理和销售体系。为农业新型经营主 体(企业、合作社、家庭农场、大棚大户)提供全方位的信息服务,实现生产管理的智能化和标准化,销售管理的品牌化。全面降低生产、管理的成本,提升产品产量和 质量,让农事生产更轻松、收益更高。
温室大棚视频监控系统
视频监控系统示意
智能农业大棚控制系统的介绍
智能农业大棚控制系统的介绍
一、简介
智能农业大棚控制系统是一种新型的智能农业网络系统,它可以实现
温室大棚内环境参数(如温度、湿度、光照、土壤温度、土壤湿度等)的
监测、控制和调节,以保证大棚内环境条件的良好,可以为农业生产提供
最优的农业环境。
二、智能农业大棚控制系统的功能
1、温湿度控制:通过温湿度控制,可以实现温室大棚内部温度和湿
度的监测,以达到良好的温室环境条件,从而促进农作物生长发育。
2、气象参数检测:包括大气温度,大气湿度,大气压,大气温度,
风速,风向,降水。
这些参数可以提供及时准确的气象信息,以促进种植
体系之间的协调,使种植顺利进行。
3、植保控制:系统可以对农药,农膜,灌溉,温室照明,空气循环,农肥,种子等进行控制,以节约成本,保证植物健康生长发育。
4、自动灌溉控制:通过检测土壤湿度,可以自动控制灌溉,以保证
植物得到充足的水分,减少灌溉时间,节约农业水源。
5、远程控制:系统支持远程连接,可以通过手机,网络或其他移动
设备来进行智能化管理,实现远程监控和控制。
三、智能农业大棚控制系统的特点。
智慧农业大棚解决方案 蔬菜大棚整体解决方案
一、智慧农业的概念 二、需求分析及应用场景 三、解决方案及涉及产品 四、应用案例
新疆自治区智能农业监控系统
客户挑战
园区大而分散,技术人员疲于奔波。 现场设备需人工操作,突发情况难控 制。
解决方案
安装传感器,控制器,智能相机等监 控设备。 监测土壤温湿度、空气温湿度、风速、 风向等,通过网络传至云端。
虫情测报灯
功能: 通过诱集成虫至箱体内,用内置的农药将 害虫杀死,减少环境污染,降低农药 残留。 可配备风速风向、环境温度湿度、光照等 多种传感器接口,在需要时监测环境 参数。 可通过GPRS上传数据,以监测环境与病 虫害之间的关系。 预留多种接口,为虫情的可视化、在线实 时监测提供支持。
支持光纤模块接入,支持内置温度感应器显示机内温度。
无线农业气象综合监测站
技术规栺:
项目 土壤墒情 土壤温度 空气温度 空气湿度 辐射 风向 风速 降水量
功能: 采用高精度传感度可实时监测土壤墒情、 土壤温度、 空气温度、空气湿度、辐射、 风向、风速、降水量; 可带摄像头,实时拍照; 监测点所采集的数据通过GPRS或GSM上传 综合信息 服务平台; 用户可随时随地通过电脑网页、智能手机 查看历史 数据和实时数据。
3G/GPRS/ WIFI
智慧农业云平台
控制中心
气象站采集土壤墒情、土 壤温度、空气温度、空气
畜禽养殖控制器
湿度、辐射、风向、风速、
降水量
信息采集节点负责采集圈 内的空气温湿度、光照、
光照
风机
湿度
饲料添加
CO2、硫化氢、氨气、
PM2.5等
摄像头负责温室内实时监
控
对养殖环境、水质、畜禽类生长状况等进行监测管理、达到省电、增产增收的目标。
智慧大棚整体解决方案
数据分析与预测
远程监控与管理
通过手机APP或电脑客户端实现对智 慧大棚的远程监控和管理,方便用户 随时了解大棚内的环境参数和作物生 长情况。
对采集到的环境参数数据进行实时分 析,预测作物生长趋势,为农业生产 提供决策支持。
03 智慧大棚的硬件设备
CHAPTER
传感器设备
温度传感器
监测大棚内的温度,为作物提供适宜的生 长环境。
应用拓展
拓展智慧大棚的应用领域,不仅限于农业生产,还可应用于生态 旅游、科普教育等领域。
商业模式创新
创新商业模式,探索智慧大棚与电商、社交等领域的结合,拓展 市场渠道。
谢谢
THANKS
喷淋设备
根据湿度传感器的监 测结果,自动为大棚 内的植物提供适量的 水分。
CO2发生器
根据CO2浓度传感器 的监测结果,自动为 大棚内的植物提供充 足的二氧化碳。
遮阳设备
根据光照传感器的监 测结果,自动调节大 棚内的光照强度。
通风设备
根据温度和湿度的监 测结果,自动调节大 棚内的通风条件。
数据采集与传输设备
数据传输网络
通过无线网络或有线网络 将传感器节点采集到的数 据传输到网关或云平台。
网关设备
用于接收传感器节点发送 的数据,并将其传输到云 平台或本地服务器进行处 理。
云平台
接收网关设备发送的数据 ,进行存储、分析和处理 ,为应用层提供数据支持 。
应用层
智能控制
根据环境参数数据和作物生长需求, 自动调节大棚内的环境参数,如温度 、湿度、光照等。
02 智慧大棚系统架构
CHAPTER
感知层
01
02
03
传感器节点
部署在智慧大棚内的传感 器节点,用于监测环境参 数,如温度、湿度、光照 、土壤养分等。
智慧大棚简介
智慧大棚简介智慧大棚是一种应用先进技术的现代化农业种植设施,利用物联网、大数据、人工智能等技术手段,实现对农作物生长环境的精确监测和智能控制,提高农作物的产量和质量,同时减少资源消耗和环境污染。
智慧大棚的浮现,不仅为农业生产带来了革命性的变化,也为农民提供了更好的种植条件和经济收益。
智慧大棚的建设主要包括以下几个方面:1. 设备与传感器:智慧大棚通过安装各种传感器,如温度、湿度、光照、二氧化碳浓度等传感器,实时监测大棚内外的环境参数,并将数据传输到中央控制系统。
同时,大棚内还配备了自动灌溉系统、自动通风系统、智能照明系统等设备,以满足农作物的生长需求。
2. 数据分析与决策支持:智慧大棚通过采集大量的环境数据,并结合历史数据和农作物的生长特性,利用大数据分析和人工智能算法,对农作物的生长状况进行预测和评估,提供决策支持。
农民可以通过手机或者电脑等终端设备,随时随地监控大棚内的环境参数和农作物的生长情况,并根据系统的建议进行调整和管理。
3. 节能减排与资源循环利用:智慧大棚通过精确的环境控制和优化的管理,减少了农作物生长过程中的能耗和资源消耗。
例如,根据实时的温度和湿度数据,合理调节通风和加热设备的工作状态,降低能源的消耗。
同时,智慧大棚还可以利用废弃物和农作物残渣等有机物质,进行堆肥和发酵处理,产生有机肥料,实现资源的循环利用。
4. 产销对接与市场化运营:智慧大棚通过与农产品供应链的对接,实现农产品的产销一体化。
农民可以根据市场需求和价格变动,合理安排种植计划,并通过智慧大棚的数据分析和预测,提高农产品的市场竞争力。
同时,智慧大棚还可以实现农产品的追溯管理,提供可溯源的产品信息,增加消费者对农产品的信任度。
智慧大棚的应用已经在全国范围内得到了广泛推广和应用。
通过智慧大棚的建设,农民可以实现农作物的精准种植和管理,提高农业生产效益,增加农民的收入。
同时,智慧大棚也为城市居民提供了更加安全、健康的农产品,促进了农村与城市的互动与发展。
物联网设施农业温室大棚智能控制系统的研究
目前,我国设施农业大棚建设还存在网络化水平低、运营管理落后、环境监管水平需要进一步提高等诸多问题,限制了改善设施农业温室的整体生产效率。
针对设施农业大棚生产中的一系列问题,本文探讨了基于物联网技术的设施农业大棚中物联网技术的应用设计,开发了设施智能控制系统。
希望本研究能够促进设施农业大棚的科学管理,促进农业大棚的科学化、网络化、智能化、自动化发展。
在物联网技术的不断发展中,农业生产向智能化发展,但我国缺乏对温室智能控制系统的研究,因此需要在系统设计时进行合理的调整。
建立内部结构和运行监控系统。
识别温室变化,实现温室增产目标,促进农业生产进一步发展。
此外,由于我国的农业生产技术尚且不够发达,农业企业和个人对温室智能控制系统的了解程度还有待提高,应用难度较大。
一、物联网概念物联网利用射频识别(RFID)卡、无线传感器等信息检测设备,按照传输协议以有线和无线方式将万物连接到互联网,并使用云计算等。
信息交换和通信技术等。
实现智能识别、定位、跟踪、监控和管理等功能的网络。
物联网建立在互联网之上,将用户端延伸和延伸到万事万物。
在物联网中,物品可以在无人为干预的情况下相互“交流”。
其本质是利用射频识别等技术,实现物品的自动识别和互联网上的信息共享。
智能农业利用遥感技术、地理定位系统技术、地理信息系统技术、计算机网络技术等技术,与土壤快速分析,自动灌溉、自动施肥施药、自动收割、自动采后处理和自动存储等智能农业机械技术融合的新型农业生产方式。
二、温室控制系统的主要功能智慧温室利用物联网搭建温室,自动或远程控制蔬菜的生长环境,使蔬菜全年都能获得最佳的生长环境,提高产量,实现蔬菜的合理种植。
通过作物所需的生长环境和物联网技术,智能温室实现以下功能。
1、数据收集根据作物的种类和生长特性,在温室各点放置温湿度传感器、二氧化碳传感器、照度传感器、水流传感器、土壤湿度传感器等设备,实时采集温室内环境信息。
采集到的信息通过无线射频设备发送到内置物联网网关,物联网网关再对数据进行分析处理后上传至服务器。
智慧农业大棚监控系统的设计与实现
智慧农业大棚监控系统的设计与实现随着科技的不断发展,智慧农业大棚监控系统的设计与实现已经成为现代农业发展的必然趋势。
智慧农业大棚监控系统可以通过对大棚内环境的实时监测和数据分析,提供更加精准的种植管理方案,有效提高农作物的产量和质量,同时降低生产成本和人力资源的浪费。
智慧农业大棚监控系统的设计主要需要考虑以下几个方面:环境参数监测:为了能够及时了解大棚内的环境情况,需要对大棚内的温湿度、土壤水分、二氧化碳浓度等环境参数进行实时监测。
这些数据可以通过各种传感器采集,再通过数据传输模块传输到控制中心进行数据分析。
数据处理与分析:通过对采集的数据进行处理和分析,可以得出大棚内环境的变化趋势和规律,进而提供更加精准的种植管理方案。
例如,通过对土壤水分和温湿度数据的分析,可以得出大棚内的灌溉需求和通风需求等。
控制系统:根据数据分析结果,控制系统可以自动调节大棚内的环境参数,例如开启或关闭通风窗、灌溉设备等。
控制系统还可以通过智能算法实现自动化种植管理,提高农作物的生长效率和产量。
报警系统:为了确保大棚内的环境参数始终处于最佳状态,需要设置报警系统。
当监测到异常数据时,报警系统会立即发出警报,及时通知农民或管理人员采取相应的措施。
云平台与APP:为了方便远程监控和管理,智慧农业大棚监控系统可以搭载云平台和手机APP,让用户可以通过互联网或移动设备随时随地了解大棚内的环境情况和数据变化趋势,进而实现远程种植管理。
为了实现智慧农业大棚监控系统,需要以下关键技术的支持:传感器技术:传感器技术是实现环境参数监测的关键技术之一。
针对不同的环境参数监测需求,需要选择不同的传感器。
例如,温湿度传感器可以监测空气中的温湿度数据;土壤水分传感器可以监测土壤中的水分含量;二氧化碳浓度传感器可以监测空气中的二氧化碳浓度等。
数据传输技术:为了能够将监测到的数据实时传输到控制中心,需要使用数据传输技术。
常用的数据传输技术包括无线通信、物联网等。
基于云平台的智能农业大棚系统
基于云平台的智能农业大棚系统智能农业大棚系统是一种基于云平台的先进技术,利用物联网、大数据、人工智能等技术,结合现代农业生产实践,实现对大棚内环境进行监测和控制,提高农业生产效率和质量,实现节约资源、减少环境污染、优化农业生产。
智能农业大棚系统的设计、开发和运行,体现了科技与农业的紧密结合,是农业现代化的重要组成部分。
一、智能农业大棚系统的构成智能农业大棚系统主要包含以下几个部分:1.传感器设备:用于监测大棚内的温度、湿度、光照强度、二氧化碳浓度、土壤湿度等环境指标。
2.执行器设备:用于控制大棚内的通风、灌溉、遮阳等设备,维持大棚内适宜的生长环境。
3.数据采集和处理设备:用于采集传感器设备的数据,并对数据进行处理和分析,为决策提供依据。
4.云平台:作为智能农业大棚系统的中枢,接收和存储数据,进行数据分析和挖掘,为用户提供决策支持。
5.用户终端:用户可以通过手机客户端或网页端查看大棚内各项环境指标,进行远程控制和管理。
三、智能农业大棚系统的应用范围智能农业大棚系统可以广泛应用于蔬菜、水果、草莓、花卉等多种作物的生产中,特别是在大棚种植上具有广阔的应用前景。
智能农业大棚系统不仅适用于现代农业生产,也适用于城市居民家庭自建的户外蔬菜大棚、农村家庭的小棚设施等多种场景。
四、智能农业大棚系统的实际应用案例1.上海交通大学农业科学与工程学院建设了一座智能大棚,利用云平台实现了对大棚内环境的实时监控和控制,结合大数据分析和人工智能技术,实现了高效、节约资源、环保的种植模式,实现了优质、高产、安全的生产效果。
2.北京农业大学在海淀校区建设了一座智能大棚,应用了物联网技术和大数据分析技术,实现了大棚内光照、温湿度、CO2浓度等参数的实时监测和控制,结合温室气候模型和作物生长模型,为大棚内的蔬菜生产提供了科学的管理决策。
五、智能农业大棚系统的未来发展随着农业现代化水平的不断提高,智能农业大棚系统将在未来得到更广泛的应用。
智慧大棚运营方案
智慧大棚运营方案一、智慧大棚的优势1. 精准监测:智慧大棚通过传感器、监测设备等技术手段,对植物的生长环境进行实时监测,包括温度、湿度、光照、CO2浓度等参数,从而实现对植物生长环境的精准监测。
2. 智能控制:通过智能控制系统,可以对植物生长环境进行精准调节,包括温度、湿度、光照、CO2浓度等参数的自动控制,从而实现对植物生长环境的智能化调控。
3. 多端远程管理:智慧大棚可以实现对植物生长环境的远程监控和管理,农民可以通过手机、电脑等终端设备,随时随地对大棚内的情况进行监测和管理。
4. 大数据分析:智慧大棚可以通过大数据分析,对植物生长环境的数据进行深度挖掘和分析,从而为决策提供科学依据。
5. 节约能源:智慧大棚通过智能控制系统,能够对能源的使用进行精细化管理,最大限度地节约能源成本。
二、智慧大棚运营模式智慧大棚的运营模式主要包括技术应用、管理流程等方面。
智慧大棚的技术应用主要包括传感器、监测设备、智能控制系统、大数据分析等技术手段。
管理流程主要包括种植管理、生产管理、营销管理、信息管理等方面。
1. 种植管理:种植管理是智慧大棚运营的核心环节,包括植物的种植、生长、保健等方面。
通过智慧大棚的精准监测和智能控制系统,可以实现对植物生长环境的精细化管理,包括温度、湿度、光照、CO2浓度等参数的智能控制,从而提高生长速度和产量,并降低病虫害发生率。
2. 生产管理:生产管理包括生产流程、物流管理、质量管理等方面。
通过智慧大棚的大数据分析和智能控制系统,可以对生产流程进行精细化管理,提高生产效率和产品质量,优化物流管理,降低生产成本,提升市场竞争力。
3. 营销管理:营销管理包括市场调研、渠道建设、产品推广等方面。
通过智慧大棚的大数据分析,可以对市场需求进行深度挖掘,精准把握市场动态,制定合理的营销策略,提高产品市场占有率。
4. 信息管理:信息管理是智慧大棚运营的基础,包括生产数据、销售数据、客户数据等各种信息的管理和分析。
智慧大棚整体解决方案
智能智能大棚解决方案网络科技股份有限公司目录第一章概述 (3)1.1名称 (3)1.2背景 (3)1.3现状分析 (5)1.4智能大棚平台优势 (7)第二章解决方案 (9)2.1总体架构 (9)2.2智能大棚平台 (10)2.2.1智能大棚平台组网 (11)2.2.2智能大棚平台子系统 (12)2.3智能大棚平台软件功能 (31)2.4平台特点 (38)第一章概述1.1名称智能大棚解决方案1.2背景温室大棚生产是近20年来我国农业种植中效益最大的产业。
目前我国设施农业面积已达300多万公顷,总面积占世界首位。
其中温室大棚面积约60余万公顷,北方地区约占整个大棚面积的80%以上。
我国北方地区的温室大棚经过对其建筑结构、环境调控技术和栽培技术等方面的不断改进,初步形成了具有中国特色的设施农业生产体系—节能型温室大棚配套栽培技术。
在40℃的高寒地区可实现冬季不加温生产蔬菜,基本消除了冬春蔬菜淡季,该技术在中国北方地区得到广泛应用,南方地区则大力推广塑料大棚和遮阳网栽培,解决了夏季防雨降温的问题。
目前,我国商品化大棚普及率仍然较低,受生产成本等条件的制约,高、中档次的商品化大棚主要被一些机关团体、军队、农场和科研单位采用,却很少被个体及一般农民采用。
普通农户大多采用自建的简易拱棚进行作物生产,约占我国大棚总量的60%以上。
有的大棚结构简单、设备简陋,难以实现环境的综合调控,生产管理和运行水平比较低下。
同时,大棚缺乏有效的管理体制和机制,无法将生产、加工、销售有机地结合起来。
随着科学技术的迅猛发展,我国的温室也必将向大型化、集约化、规模化、产业化方向发展。
温棚骨架材料趋向高强度、轻便、耐腐蚀、使用寿命长发展;规模向多拱拼装式、大型连栋式方向发展,采光利用率高、低能耗的温室将成为发展重点;覆盖材料向透气性好、保温保湿性能优越方向发展;配套设施向电动和计算机自动监控方向发展。
发展温室产业必须以科技创新为依托。
智能温室大棚系统方案详解
智能温室大棚系统方案详解近年来,反季节种植已经成为一种火热的趋势,温室大棚也是到处可见,而温室大棚对于自动化、智能化的要求也是越来越迫切,托普云农为此提出了一整套的智能温室大棚系统解决方案,该系统能够对温室大棚的温湿度、二氧化碳浓度等各个方面的监测,并将通风、浇灌等各个方面的控制进行了综合系统的研究,真正实现了温室大棚对自动化、智能化的要求。
一、智能温室大棚系统方案详解概述传统的人工控制方式,不仅投入成本高,还难以达到科学合理种植的要求,严重影响智能大棚的种植产量和质量。
智能大棚可以对空气温湿度、土壤温湿度、光照、CO2浓度、土壤PH值、风速风向、雨量等大棚现场参数进行实时采集,无线传输至监控服务器,管理者可随时通过电脑或智能手机了解大棚的实时状况,并根据大棚现场内外环境因子的变化情况将命令下发到现场执行设备,保证大棚农作物处于一个良好的生长环境,提升农作物的产量和质量。
二、智能温室大棚系统方案的组成部分1、设施农业智能监测系统通过物联网系统可连接传感器采集空气温湿度、二氧化碳、光照强度、风速风向、降雨量、土壤温湿度、土壤水分、养分含量(N、P、K)、PH值以及植物生理生态指标(叶面积指数、果实膨大、茎杆微变化、叶湿、叶温、水势、茎流、呼吸等)来获得作物生长的最佳条件,并根据参数变化实时调控或自动控制温控系统、灌溉系统等。
2、设施农业视频监控系统随时随地远程查看大棚内的农作物生长情况、各园艺设备的运行状态、工人生产情况,有了这个“千里眼”,管理人员可以做到远程轻松监控、管理作业生产。
3、设施农业智能控制系统通过物联网系统,可以设定温室内各种设备运行环境条件,当环境信息未达到预先制定的条件时,自动启动温室内的相关设备,比如:风机自动调节通风降温、内外遮阳自动调节光照强度、自动喷滴灌、自动加湿除湿、自动施肥,实现智能化管理,节水,省电,省人工,更省心。
4、软件展示平台托普农业物联网软件平台并不只是一个操作平台,而是一个庞大的管理体系,是用户在实现农业运营中使用的有形和无形相结合的控制系统。
智能温室控制系统(详细介绍)
在不适宜植物生长的季节,温室能提供生育期和增加产量。
但是,传统的温室在环境控制方面存在较多问题,比如管控效果受限、管理成本高等。
在传统的普通温室环境控制过程中,控制决策大部分依靠农艺师或种植者的经验和感性认知,存在粗放、宽泛、不确定的属性。
即使配置了卷帘电机、轴流风机、湿帘系统等机械化控制设备,为环境控制提供了必要的条件,但是这些设备的运行控制仍然依赖于人的决策,且耗费大量的时间成本。
尤其是在规模化设施栽培中,如何高效精准地实现环境控制是亟需解决的问题。
应用智能温室控制系统,这些问题便可迎刃而解。
应用智能温室控制系统可为每个温室配置一系列的传感器来采集数据,包括空气温湿度、土壤温湿度、太阳辐照度、CO2浓度和土壤pH等环境因子。
这些都是影响温室内作物生长的基本要素,同时也可进一步获取叶片温湿度、叶面积、茎秆和果实的微变参数等,从中读取更深层次环境与作物生长的关系,给温室环境的智能控制提供更精准的决策依据。
托普物联网系统通过云平台或手机APP可实现对温室环境的远程实时控制,可节约大量的人力成本,实现设备控制的统一和标准化管理。
在智能连栋温室环境调控中需要风机、遮阳帘、加温设备、湿帘等设备的联合运行来确保温度在设定的范围内,这种控制就需要多个设备的联合、高频动作,设备运行的先后顺序、运行时间、运行强度包括能效指标都需要被考量,运用智能温室控制系统便能自动执行、智能运行,从而达成环境控制目的。
智能温室控制系统也叫智能温室大棚控制系统、温室智能控制系统、智能大棚控制系统,是在物联网应用逐渐广泛的情况下提出来的,特别是托普农业物联网的出现,温室智能控制系统是基于此而研制出的一套用于温室灌溉环境监测的控制管理系统。
由浙江托普农业物联网研制的温室大棚智能控制系统可实现对温室灌溉设备的监视、控制、环境数据的不间断采集、整理、统计、制图。
它有着与WINDOWS相一致的界面风格,完善的内存管理和友善直观的操作方式。
农业大棚智能温室控制系统解决方案的设计与实现
农业大棚智能温室控制系统解决方案的设计与实现 摘要:设计了一套能实时控制农业种植温室内温度、湿度、光照度及CO2浓度等参数的测控系统,该系统安装了农艺专家管理程序,能给出不同时期作物生长所需要的最佳环境参数,并自动生成合理的控制方案,实现了人造气候的智能化管理。
阐述了一个大棚智能温室控制系统,该系统运行可靠、成本低。
系统通过对温室内的温度与湿度参量的采集,并根据上述参数实现对温度和湿度的自动调节,达到了温室大棚自动控制的目的。
关键词:农业温室;农业专家管理系统;专家决策;人造气候;智能温室控制系统托普物联网认为:温室生产是一种人为地创造作物生长所需的最佳环境条件,通过科学的经营管理获得最佳经济效益的农业生产模式。
其关键技术为环境控制,温室环境控制是通过改变温室内的温度、湿度、光照和CO2浓度等环境因子来获得作物生长的最佳条件,从而提高农业经济效益。
温室环境控制在所有室内环境控制中是最困难的,除了要监控温度和湿度外,还需兼顾土壤水分、光照度、CO2浓度、EC值和pH值等。
由于温室环境控制的对象种类繁多,在不同生长阶段的需求也各不相同,而且受能源、资金、劳动力等资源的限制及市场与天气变化的影响,温室环境控制必须在极有效率的状态下进行。
因此,要建立一个良好的智能温室控制系统,就必须要有一个良好的系统控制方案。
智能温室控制系统是专门为农业温室、农业环境控制、气象观测开发生产的环境自动控制系统。
可测量风向、风速、温度、湿度、光照、气压、雨量、太阳辐射量、太阳紫外线、土壤温湿度等农业环境要素,根据温室植物生长要求,自动控制开窗、卷膜、风机湿帘、生物补光、灌溉施肥等环境控制设备,自动调控温室内环境,达到适宜植物生长的范围,为植物生长提供最佳环境。
一、国内智能化温室现状目前,国内具有生产智能化温室能力的公司约20余家,由于其研制时间较早,受当时的电脑水平和国内部分种类传感器的性能所限,系统整体水平不高。
此外,由于其产品进入市场时间短,系统的可靠性和耐用性还有待证明。
智慧大棚解决方案
智慧大棚解决方案引言概述:随着农业科技的不断发展,智慧大棚作为一种现代化农业生产方式,已经得到广泛应用。
智慧大棚利用先进的技术和设备,实现了自动化、智能化的生产管理,提高了农作物的产量和质量。
本文将介绍智慧大棚解决方案的相关内容,包括传感器监测、智能控制、数据分析、环境调控和远程监控五个方面。
一、传感器监测1.1 温度传感器:实时监测大棚内外温度变化,保障作物生长环境的稳定性。
1.2 湿度传感器:监测空气湿度,调节大棚内湿度,防止病虫害的发生。
1.3 光照传感器:控制大棚内光照强度,保证作物光合作用正常进行。
二、智能控制2.1 自动灌溉系统:根据土壤湿度和作物需水量自动进行灌溉,节约水资源。
2.2 CO2控制系统:监测大棚内CO2浓度,自动调节通风和CO2供给,促进作物生长。
2.3 营养液控制系统:根据作物生长阶段和需求,自动调节营养液的浓度和配比。
三、数据分析3.1 大数据平台:通过传感器采集的数据,建立大数据平台进行数据分析,为农民提供生产决策支持。
3.2 数据模型:利用机器学习算法建立作物生长模型,预测作物生长情况,提高生产效率。
3.3 数据可视化:将数据以图表形式展示,直观反映大棚内环境参数和作物生长情况,方便农民监测和分析。
四、环境调控4.1 温度调控:根据作物生长需求,自动控制加热和降温设备,保持适宜的生长温度。
4.2 湿度调控:通过加湿器和通风系统调节大棚内湿度,防止作物受热带来的伤害。
4.3 CO2供给:定时供给CO2,促进作物光合作用,提高产量和品质。
五、远程监控5.1 手机APP:农民可以通过手机APP远程监控大棚内环境参数和作物生长情况,实时掌握生产情况。
5.2 远程控制:远程控制大棚内设备的开关和调节,方便农民进行远程管理和维护。
5.3 报警系统:设置异常报警功能,一旦发现环境异常或者设备故障,及时通知农民进行处理,保障作物生长。
综上所述,智慧大棚解决方案通过传感器监测、智能控制、数据分析、环境调控和远程监控等方面的应用,实现了大棚生产的智能化和高效化,为农业生产带来了革命性的变革。
智慧大棚解决方案
智慧大棚解决方案一、背景介绍智慧大棚是一种利用物联网技术和先进的传感器设备,结合农业种植管理技术,实现对大棚环境的监测和控制的系统。
通过智慧大棚解决方案,可以提高农作物的产量和质量,降低生产成本,实现农业的可持续发展。
二、方案概述智慧大棚解决方案主要包括以下几个方面的内容:1. 环境监测系统环境监测系统通过安装各种传感器设备,实时监测大棚内的温度、湿度、光照强度、CO2浓度等环境参数。
通过无线传输技术将数据传输到中央控制系统,实现对大棚环境的全面监测。
2. 智能控制系统智能控制系统根据环境监测数据,通过自动控制设备对大棚内的环境进行调节。
例如,根据温度和湿度数据,控制通风设备和加热设备的开关,保持大棚内的温湿度在适宜的范围内。
通过光照控制系统,可以根据不同作物的需求,自动调节光照强度,提高光合作用效率。
3. 水肥一体化系统水肥一体化系统通过安装水肥一体化设备,实现对水肥的自动供给和调节。
根据作物的需求和土壤的水分含量,自动控制灌溉设备和施肥设备,保持土壤湿度和养分的平衡,提高作物的生长效率。
4. 数据分析与决策支持系统数据分析与决策支持系统采集和分析大棚内的环境监测数据、作物生长数据和生产管理数据,通过数据挖掘和机器学习算法,提供农业专家和农民决策的参考。
例如,根据历史数据温和象数据,预测未来的气候变化,提前采取相应的措施,减少灾害风险。
三、方案优势智慧大棚解决方案具有以下几个优势:1. 提高产量和质量:通过精确的环境控制和水肥管理,可以提高作物的产量和质量,增加农民的收入。
2. 节约资源:智慧大棚解决方案可以根据作物的需求,精确控制水肥的供给,减少浪费,节约资源。
3. 减少劳动力成本:智能控制系统可以自动调节大棚内的环境,减少人工干预,降低劳动力成本。
4. 提高农业可持续发展水平:智慧大棚解决方案可以减少农药和化肥的使用量,降低对环境的污染,促进农业的可持续发展。
四、方案应用场景智慧大棚解决方案适合于各种类型的大棚,包括蔬菜大棚、花卉大棚、水果大棚等。
人工智能在大棚种植中的应用
人工智能在大棚种植中的应用随着科技的不断发展,人工智能逐渐走进了各行各业,并在农业领域展现出巨大的潜力。
大棚种植作为现代农业的重要形式,其管理和生产也开始受益于人工智能的应用。
本文将探讨人工智能在大棚种植中的应用,从智能监控、精准施肥、病虫害预防等方面展开讨论。
1. 智能监控人工智能技术在大棚种植中的应用,首先体现在智能监控方面。
传统的大棚管理过程需要人工巡视,而人工智能技术可以通过安装传感器和监控摄像头,实现对大棚环境的实时监测。
通过监测大棚内的温度、湿度、CO2浓度等参数,系统可以自动调节通风、灌溉系统等设备,确保作物处于最适宜的生长环境中。
2. 精准施肥人工智能技术还可以帮助大棚种植实现精准施肥。
传统的施肥方法常常是依赖于农民的经验和感觉,难以掌握作物生长的实时需要。
而随着人工智能技术的应用,可以通过大数据分析和机器学习算法,结合土壤养分检测数据,实现对每一片土地的施肥量的智能化控制,确保作物吸收养分的同时不会浪费资源或者对环境造成污染。
3. 病虫害预防在大棚种植中,病虫害是一个常见的问题,传统的防治方法通常使用农药,这不仅存在环境污染的风险,还可能残留在作物中对人体健康造成危害。
通过人工智能技术的应用,可以通过图像识别和物联网技术,实现对病虫害的自动监测和识别。
一旦发现病虫害的迹象,系统可以自动触发喷洒药剂或者其他防治手段,及时有效地防止病虫害的扩散,保护作物的生长。
4. 作物生长预测利用人工智能技术进行大棚种植管理,还可以实现对作物生长进行精准的预测。
通过监测作物的生长参数、天气数据等多种因素,结合机器学习算法,可以建立起作物生长模型,预测作物的生长情况和产量。
这不仅可以帮助农民合理安排生产计划,提高产量和质量,还可以帮助农民做好市场供应的预测,降低经营风险。
5. 人工智能的未来发展随着人工智能技术的不断发展和完善,大棚种植管理也将迎来更多的创新。
未来人工智能技术可能会结合无人机、自动化机器人等高科技手段,实现大棚种植的全自动化和智能化管理,提高生产效率,降低生产成本,保护环境,促进农业可持续发展。
智能农业大棚控制系统使用指南
智能农业大棚控制系统使用指南第一章概述 (3)1.1 系统简介 (3)1.2 功能特点 (3)1.2.1 实时监测 (3)1.2.2 自动调控 (3)1.2.3 数据分析 (3)1.2.4 远程控制 (3)1.2.5 故障报警 (4)1.2.6 节能环保 (4)1.2.7 扩展性强 (4)第二章系统安装与调试 (4)2.1 硬件安装 (4)2.1.1 安装前准备 (4)2.1.2 安装步骤 (4)2.2 软件配置 (5)2.2.1 软件安装 (5)2.2.2 参数配置 (5)2.2.3 系统调试 (5)2.3 系统调试 (5)第三章用户界面与操作 (6)3.1 界面布局 (6)3.1.1 主界面 (6)3.1.2 功能模块界面 (6)3.2 功能模块操作 (7)3.2.1 环境监测模块操作 (7)3.2.2 设备控制模块操作 (7)3.2.3 数据统计模块操作 (7)3.3 数据查看与导出 (7)3.3.1 数据查看 (7)3.3.2 数据导出 (7)第四章环境监测与控制 (8)4.1 温湿度监测与调节 (8)4.1.1 温湿度监测 (8)4.1.2 温湿度调节 (8)4.2 光照监测与调节 (8)4.2.1 光照监测 (8)4.2.2 光照调节 (8)4.3 土壤监测与调节 (8)4.3.1 土壤监测 (8)4.3.2 土壤调节 (9)第五章作物管理 (9)5.2 生长周期管理 (9)5.3 肥水管理 (10)第六章病虫害防治 (10)6.1 病虫害监测 (10)6.1.1 监测方法 (10)6.1.2 监测流程 (11)6.2 防治措施 (11)6.2.1 物理防治 (11)6.2.2 化学防治 (11)6.2.3 综合防治 (11)6.3 预警与提醒 (11)6.3.1 预警功能 (11)6.3.2 提醒功能 (11)6.3.3 信息推送 (11)第七章数据分析与报告 (11)7.1 数据分析 (11)7.1.1 数据采集 (11)7.1.2 数据处理 (12)7.1.3 数据分析指标 (12)7.1.4 数据分析结果展示 (12)7.2 报告 (12)7.2.1 报告模板 (12)7.2.2 报告内容 (12)7.2.3 报告流程 (12)7.3 报告导出与打印 (12)7.3.1 报告导出 (12)7.3.2 报告打印 (12)第八章系统维护与保养 (13)8.1 硬件维护 (13)8.1.1 检查内容 (13)8.1.2 维护方法 (13)8.2 软件升级 (13)8.2.1 升级原因 (13)8.2.2 升级方法 (14)8.3 故障处理 (14)8.3.1 常见故障 (14)8.3.2 故障处理方法 (14)第九章安全与隐私 (14)9.1 数据安全 (14)9.1.1 数据加密 (15)9.1.2 数据备份 (15)9.1.3 数据访问权限管理 (15)9.2 用户隐私 (15)9.2.2 用户行为数据保护 (15)9.2.3 用户隐私设置 (15)9.3 系统防护 (15)9.3.1 防火墙设置 (15)9.3.2 入侵检测与防护 (15)9.3.3 安全漏洞修复 (16)9.3.4 系统更新与维护 (16)第十章常见问题与解答 (16)10.1 系统操作问题 (16)10.2 硬件故障问题 (16)10.3 软件使用问题 (16)第一章概述1.1 系统简介智能农业大棚控制系统是一款集成了现代传感技术、信息处理技术、网络通信技术及自动控制技术的高科技产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个人管三个棚,智能温室大棚系统让大棚种植更简单!
浇水、施肥、打药,全凭经验和感觉,传统的大棚菜种植全靠人工,不仅辛苦而且人工成本高。
而现在,一台电脑,一个控制箱,一部智能温室物联网采集器,通过实时智能温室大棚监控系统,农民只需按动开关,就能掌控大棚的蔬菜种植。
物联网、移动互联等信息技术及智能农业装备在农业生产领域的广泛应用,正在悄然改变着农业生产方式,“智慧农业”正渐行渐近。
所谓“智慧农业”就是充分应用现代信息技术成果,集成应用计算机与网络技术、物联网技术、音视频技术、3S技术、无线通信技术及专家智慧与知识,实现农业可视化远程诊断、远程控制、灾变预警等智能管理。
智慧农业就是将物联网技术运用到传统农业中去,运用传感器和软件通过移动平台或者电脑平台对农业生产进行控制,使传统农业更具有“智慧”。
智慧农业是农业生产的高级阶段,是集新兴的互联网、移动互联网、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感节点(环境温湿度、土壤水分、二氧化碳、图像等)和无线通信网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、专家在线指导,为农业生产提供精准化种植、可视化管理、智能化决策。
相比我们记忆中的温室大棚,智能温室大棚可不是你想象的那样老土了。
温湿度控制调节的方式,自动打开或关闭位于大棚顶部的开窗口,全程无人工操作,电脑自动控制完成。
随着设施农业的发展,在温室大棚中种植蔬菜、花卉等已经成为常规,但是普通的温室大棚并没有发挥出设施农业的最大生产效果,而只有通过智能温室大
棚系统来加强智能温室建设,提高温室管理的智能化程度和精细化程度,那么才能够为作物的高产、优质、高效、生态、安全创造条件,帮助客户提高效率、降低成本、增加收益。
应用智能温室大棚系统的最大特点,就是关注大棚环境动态不再需要进入大棚中查看了,而是打开电脑就能监测。
智能温室大棚系统在温室大棚中布置的各种环境传感器,以及摄像头等,就像是智能温室大棚系统的“千里眼”,不用出门,就能了解当前温室大棚中的空气温湿度、光照强度、土壤温湿度等,有利于管理人员开展高效的温室管理。
同时智能温室大棚系统还具备远程环境调控功能,它基于的农业物联网技术实现了电脑或手机远程指令操作,百里之外也能完成浇水、施肥、拉帘、放风等工作,既节省人工,又提高了效率。
设施蔬菜对于温度、湿度等方面的要求很高,要减少病虫害,单单依靠棚室的数据采集还不够,智能温室大棚系统内还可加入“远程智能专家”。
在这个平台上,不仅可以实时观测每个大棚的空气温度、土壤湿度、光照强度、二氧化碳浓度,以及棚外温度、风速等,还可以通过安装在棚内的摄像头,观察每株作物的生长情况。
一旦发现作物出现异常,就可以迅速拍照,并经无线传感器传送到设施农业智能温室大棚系统,自动生成动态的环境趋势图,供远端的专家进行分析、研判。
专家会迅速根据病虫害发生、流行环境条件,通过电脑模型制定出设施病虫害预警方案,农民足不出户就能获得农业专家的技术指导和服务。
智能化种植,精准化管理,使园区内大棚病虫害发生率大幅下降,各类药品投入减少了二分之一,蔬菜生产更加安全。
近年来,设施农业作为我国很多地区的新兴产业,成为这些地区农业经济新的增长点,而智能温室大棚系统的应用,对于设施农业的迅速发展和壮大起到了重要的促进作用,让设施农业发展迈入了精细化、智能化、自动化的发展领域,同时智能温室大棚系统在节本增效上的作用,大家也是有目共睹,节省下来的成本和增加的农业产量和品质都是实实在在的经济效益,因此智能温室大棚系统更是农民致富的好帮手,非常值得在全国设施农业生产中推广和应用。