(强烈推荐)2020高考数学专项突破:圆锥曲线专题
2020年高考数学圆锥曲线解答题必刷热点题型(附答案解析)
2020年高考数学圆锥曲线解答题必刷热点题型1.(2020•蚌埠三模)如图,设抛物线21:4C x y =与抛物线22:2(0)C y px p =>在第一象限的交点为2(,)4t M t ,点A ,B 分别在抛物线2C ,1C 上,AM ,BM 分别与1C ,2C 相切.(1)当点M 的纵坐标为4时,求抛物线2C 的方程;(2)若[1t ∈,2],求MBA ∆面积的取值范围.2.(2020•威海一模)已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,点3(1,)2P -是椭圆上一点,12||F F 是1||PF 和2||PF 的等差中项.(Ⅰ)求椭圆的标准方程;(Ⅱ)若A 为椭圆的右顶点,直线AP 与y 轴交于点H ,过点H 的另一直线与椭圆交于M 、N 两点,且6HMA PHN S S ∆∆=,求直线MN 的方程.3.(2020•濮阳一模)已知O 为坐标原点,抛物线2:2(0)C x py p =>的焦点坐标为1(0,)2,点A ,B 在该抛物线上且位于y 轴的两侧,3OA OB =u u u r u u u r g .(Ⅰ)证明:直线AB 过定点(0,3);(Ⅱ)以A ,B 为切点作C 的切线,设两切线的交点为P ,点Q 为圆22(1)1x y -+=上任意一点,求||PQ 的最小值.4.(2020•辽阳一模)已知抛物线2:2(0)C x py p =>的焦点为F ,直线l 与抛物线C 交于P ,Q 两点.(1)若l 过点F ,抛物线C 在点P 处的切线与在点Q 处的切线交于点G .证明:点G 在定直线上.(2)若2p =,点M 在曲线y =MP ,MQ 的中点均在抛物线C 上,求MPQ ∆面积的取值范围.5.(2020•东莞市模拟)已知抛物线2:4E y x =,过抛物线焦点F 的直线1分别交抛物线E 和圆22:(1)1F x y -+=于点A 、C 、D 、B (自上而下).(1)求证:||||AC BD g 为定值;(2)若||AC 、||CD 、||DB 成等差数列,求直线l 的方程.6.(2020•天津一模)已知抛物线2:C y =的焦点为椭圆2222:1(0)x y E a b a b +=>>的右焦点,C 的准线与E 交于P ,Q 两点,且||2PQ =.(1)求E 的方程;(2)过E 的左顶点A 作直线l 交E 于另一点B ,且(BO O 为坐标原点)的延长线交E 于点M ,若直线AM 的斜率为1,求l 的方程.。
(完整版)2020年高考理科数学《圆锥曲线》题型归纳与训练,推荐文档
2y0
2y0
令 x=0,得 yM=-x0-2,从而|BM|=1-yM=1+x0-2.
y0-1 直线 PB 的方程为 y= x0 x+1.
x0
x0
令 y=0,得 xN=-y0-1,从而|AN|=2-xN=2+y0-1.
1 所以四边形 ABNM 的面积 S=2|AN|·|BM|
1 =2
( )2y0 x20+4y20+4x0y0-4x0-8y0+4 2x0y0-2x0-4y0+4
2020 年高考理科数学《圆锥曲线》题型归纳与训练 【题型归纳】
题型一 求曲线的方程
例 1 已知 F1(2, 0) , F2 (2, 0) ,点 P 满足| PF1 | | PF2 | 2 ,记点 P 的轨迹为 E .求轨迹 E 的方程. 【答案】 x2 y2 1
3
【解析】由| PF1 | | PF2 | 2 4 | F1F2 | 可知:点 P 的轨迹 E 是以 F1, F2 为焦点的双曲 线的右支,
x2 y2 例 2 已知椭圆 C:a2+b2=1 过 A(2,0),B(0,1)两点. (1)求椭圆 C 的方程及离心率;
1
(2)设 P 为第三象限内一点且在椭圆 C 上,直线 PA 与 y 轴交于点 M,直线 PB 与 x 轴交于点 N,求证:四边形 ABNM 的面积为定值.
x2
3
【答案】(1) 4 +y2=1,e= 2 (2)2.
1+
=2.
x0-2 = 2x0y0-x0-2y0+2 = x0y0-x0-2y0+2
2
从而四边形 ABNM 的面积为定值.
【易错点】(1).想不到设出 P(x0,y0)后,利用点斜式写出直线 PA,PB 的方 程.不会由直线 PA,PB 的方程求解|BM|,|AN|;
【2020届】高考数学圆锥曲线专题复习:圆锥曲线常用解法、常规题型与性质
圆锥曲线八种解题方法、七种常规题型和性质(有相应例题详解) 总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
2020新高考数学二轮冲刺圆锥曲线全归纳(压轴题全解析)
MA MB
AB
0
ቤተ መጻሕፍቲ ባይዱ
,即
( x,4
2
y)
( x,2)
0
,即
y
1
x2
2
。
4
【例 3】已知抛物线 C : y2 2x 的焦点为 F ,平行于 x 轴的两条直线 l1,l2 分别交 C 于 A,B 两点,
交 C 的准线于 P,Q 两点. (I)若 F 在线段 AB 上, R 是 PQ 的中点,证明 AR FQ ; (II)若 PQF 的面积是 ABF 的面积的两倍,求 AB 中点的轨迹方程.
5 轨迹 C 的方程.
解 析 设 M 的 坐 标 为 (x, y) , P 的 坐 标 为 (x0 , y0 ) , 因 为 M 为 PD 上 一 点 , 且
|MD|=
4 5
|PD|,所以
x
y
x0
4 5
y0
x0 y0
x 5 4
y
,又
P (x0 ,
y0 )
若 C 为双曲线,则直线 l 与双曲线的渐近线平行;若 C 为抛物线,则直线 l 与抛物线
A圆
B 椭圆
C 线段
D 一段抛物线
解析
设点
M
(x0
,
y0
),
P(x,
2020年理科数学高考大题专项5 直线与圆锥曲线压轴大题
考情分析 必备知识
2.直线与圆锥曲线相交时的弦长问题
(1)斜率为 k(k≠0)的直线与圆锥曲线交于两点 P1(x1,y1),P2(x2,y2),
则所得弦长|P1P2|= 1 + ������2·|x1-x2|或|P1P2|= 1 + ���1���2|y1-y2|. (2)当斜率 k 不存在时,可求出交点坐标,直接计算(利用两点间距
则
S=2������△������������������1 =2×
1 2
×|F1F2|×|y1-y2|=2×
3������2���+��� 4=24×
3������������22++41.
设 t= ������2 + 1,则 m2=t2-1(t≥1),
所以 S=24× 3������2������+1=24× 3������1+1������,因为 t≥1,所以 3t+1������ ≥4, 所以 S∈(0,6],所以四边形 AMBF1 面积的最大值为 6.
考情概览·备考定向
-16-
题型一
题型二
题型三
解 (1)设切点为 Q x0,���4���02 ,y'=12x,则 k1=���2���0,
∴Q 点处的切线方程为 y-���4���02 = ���2���0(x-x0). ∵直线 l 过点 P,∴-���4���02 = ���2���0(a-x0),解得 x0=2a 或 x0=0.
考情分析 必备知识
5.通径:过椭圆、双曲线、抛物线的焦点垂直于焦点所在坐标轴
的弦称为通径,椭圆与双曲线的通径长为
2������2 ������
,过椭圆焦点的弦中通
2020年高考数学专项突破50题(10)--圆锥曲线与方程【含答案解析】
2020年高考数学专项突破50题(10)--圆锥曲线与方程学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(本题共40道小题,每小题2分,共80分)1.设0m >,双曲线:M 24x -2y 1=与圆()22:5N x y m +-=相切,A (-0),B0),若圆N 上存在一点P 满足4PA PB -=,则点P 到x 轴的距离为( )2.已知抛物线2:2(0)C y px p =>的焦点为F ,点(00,2p M x x ⎛⎫>⎪⎝⎭时抛物线C 上的一点,以点M 为圆心与直线2px =交于E ,G 两点,若1sin 3MFG ∠=,则抛物线C 的方程是( ) A. 2y x =B. 22y x =C. 24y x =D.28y x =3.设F 1、F 2分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得123PF PF b +=,1294PF PF ab ⋅=,则该双曲线的离心率为( )A. 43B.53C.94D. 34.抛物线y 2=4x 的焦点为F ,点A (3,2),P 为抛物线上一点,且P 不在直线AF 上,则△P AF 周长的最小值为( )A. 4B. 5C. 4+D. 55.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为F 1,F 2,过F 1的直线l 交C 于A 、B 两点,若→→=AB AF 741,212AF F F =,则椭圆C 的离心率为( ) A.27 B. 37 C. 47 D. 576.抛物线24y x =的焦点为F ,点(),P x y 为该抛物线上的动点,点A 是抛物线的准线与坐标轴的交点,则PF PA的最小值是( )A. 12B.27.已知点F 1是抛物线2:2C x py =的焦点,点F 2为抛物线C 的对称轴与其准线的交点,过F 2作抛物线C 的切线,设其中一个切点为A ,若点A 恰好在以F 1,F 2为焦点的双曲线上,则双曲线的离心率为( )1 B. 11 8.椭圆2x m +236y =1的焦距是2,则m 的值是:A .35或37B .35C .37D .16 9.已知椭圆22143x y +=的右焦点F 是抛物线22(0)y px p =>的焦点,则过F 作倾斜角为60°的直线分别交抛物线于A ,B (A 在x 轴上方)两点,则||||AF BF 的值为( )B. 2C. 3D. 410.已知点(A 在双曲线()2221010x y b b-=>上,则该双曲线的离心率为( )A. 3D. 11.设D 为椭圆2215y x +=上任意一点,()0,2A -,()B 0,2,延长AD 至点P ,使得|PD||BD|=,则点P 的轨迹方程为( )A. 22(2)20x y +-=B. 22(2)20x y ++=C. 22(2)5x y +-=D. 22(2)5x y ++=12..已知F 1、F 2分别是双曲线2221(0,0)16x y a b a -=>>的左、右焦点,过点F 1的直线与双曲线的右支交于点P ,若212PF F F =,直线PF 1与圆222x y a +=相切,则双曲线的焦距为( )A. B. C. 12D. 1013.椭圆22221(0)x y a b a b+=>>的左右焦点分别是F 1、F 2,以F 2为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线PF 1恰好与圆F 2相切于点P ,则椭圆的离心率为A 1BC .2D 14.椭圆13422=+y x 的焦距为 A .1 B .2 C .3 D .4 15.已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的左焦点,直线l 经过点F ,若点(,0)A a ,(0,)B b 关于直线l 对称,则双曲线C 的离心率为( )1 116.已知椭圆22143x y +=,若此椭圆上存在不同的两点A,B 关于直线4y x m =+对称,则实数m 的取值范围是A. ⎛ ⎝⎭B. ⎛ ⎝⎭C. ⎛ ⎝⎭D. ⎛ ⎝⎭17.已知A 、B 是抛物线()220=>y px p 上的两点,直线AB 垂直于x 轴,F 为抛物线的焦点,射线BF 交抛物线的准线于点C ,且AB =,AFC △的面积为2,则p 的值为( )B. 1C. 2D. 418.已知O 为坐标原点,F 1,F 2是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,双曲线C 上一点P 满足12PF PF ⊥,且2122PF PF a ⋅=,则双曲线C 的离心率为( )B. 219.将曲线C 按伸缩变换公式23x xy y''=⎧⎨=⎩变换得曲线方程为x 2+y 2=1,则曲线C 的方程为( )A. 22+149x y =B. 22+194x y =C. 9x 2+4y 2=1D. 4x 2+9y 2=1 20.过椭圆22221x y a b +=(0a b >>)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若1260F PF ∠=o ,则椭圆的离心率为( )A B .12 D .1321.已知抛物线22(0)y px p =>上有一点()4,M y ,它到焦点F 的距离为5,则OFM ∆的面积(O 为原点)为( )A. 1B. 2D. 22.如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过C 1的焦点F ,自上而下依次交C 1和C 2于A ,B ,C ,D 四点,则AB CD ⋅u u u r u u u r的值为A .14B .12C .1D .223.抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是( )A.12B.3 C. 1D. 324.点(2,1)A 到抛物线2y ax =准线的距离为1,则a 的值为( ) A. 14-或121-B.14或112C. -4或-12D. 4或1225.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F 1,F 2.这两条曲线在第一象限的交点为P ,21F PF ∆是以PF 1为底边的等腰三角形.若1|10|PF =,记椭圆与双曲线的离心率分别为1e 、2e ,则12·e e 的取值范围是( ) A. 1(,)9+∞ B. 1(,)5+∞ C. ),31(+∞ D. (0,+∞)26.方程(x +y -1)224x y +-=0所表示的曲线是 ( )A. B.C. D.27.椭圆)0(12222>>=+b a b y a x 的离心率为23,则双曲线12222=-by a x 的离心率为( )A .2B .3C .2D .25 28.过抛物线24y x =的焦点F 的直线与抛物线交于A 、B 两点,且| |3A F =,O 为坐标原点,则AOF ∆的面积与BOF ∆的面积之比为 A.12B.33C. 3D. 229.如图:抛物线24y x =的焦点为F ,弦AB 过F ,原点为O ,抛物线准线与x 轴交于点C ,135OFA ∠=︒,则tan ACB ∠等于( ).A. 33B.223 D. 2230.已知椭圆22:143x y C +=的左、右焦点分别为F 1、F 2,过F 2且斜率为1的直线l 交椭圆C于A 、B 两点,则1F AB ∆的内切圆半径为( ) A. 2722324231.已知直线240x y +-=经过椭圆22221x y a b+=(0a b >>)的右焦点F 2,且与椭圆在第一象限的交点为A ,与y 轴的交点为B ,F 1是椭圆的左焦点,且1||||AB AF =,则椭圆的方程为( )A .2214036x y +=B .2212016x y +=C .221106x y +=D .2215x y +=32.已知抛物线C :22(0)y px p =>的焦点为F ,过F 且倾斜角为120°的直线与抛物线C 交于A ,B 两点,若AF ,BF 的中点在y 轴上的射影分别为M ,N ,且43MN =,则p 的值为( ) A. 2 B. 3C. 4D. 633.如图,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽度为( )A. 14米B. 15米C. 51米D. 251米 34.如图,点F 是抛物线28y x =的焦点,点A ,B 分别在抛物线28y x =及圆22(2)16x y -+=的实线部分上运动,且AB 始终平行于x 轴,则ABF ∆的周长的取值范围是( )A. (2,6)B. (6,8)C. (8,12)D. (10,14)35.设F 2是双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,过F 2的直线交双曲线的右支于点P ,N ,直线PO 交双曲线C 于另一点M ,若223MF PF =,且260MF N ∠=︒,则双曲线C 的离心率为( )A. 3B. 2C.2D.236.已知抛物线2:2(0)C y px p =>的焦点为F ,点(00,2p M x x ⎛⎫>⎪⎝⎭时抛物线C 上的一点,以点M 为圆心与直线2px =交于E ,G 两点,若1sin 3MFG ∠=,则抛物线C 的方程是( ) A. 2y x =B. 22y x =C. 24y x =D.28y x =37.已知抛物线2:8x C y =,定点(0,2)A ,(0,2)B -,点P 是抛物线C 上不同于顶点的动点,则PBA ∠的取值范围为( ) A. 0,4π⎛⎤⎥⎝⎦B. ,42ππ⎡⎫⎪⎢⎣⎭C. 0,3π⎛⎤⎥⎝⎦D.,32ππ⎡⎫⎪⎢⎣⎭38.已知椭圆2222:1x y C a b+=,0a b >>,F 1,F 2分别为椭圆的左右焦点,若椭圆C 上存在点()()000,0P x y x ≥使得1260PF F o ∠=,则椭圆的离心率的取值范围为( )A. ,12⎫⎪⎪⎣⎭B. 0,2⎛ ⎝⎦C. 1,12⎡⎫⎪⎢⎣⎭D. 10,2⎛⎤ ⎥⎝⎦39.已知抛物线C :y 2=4x 的焦点为F ,过点F 且斜率为1的直线与抛物线C 交于A 、B 两点,若在以线段AB 为直径的圆上存在两点M 、N ,在直线l :x+y+a=0上存在一点Q ,使得∠MQN=90°,则实数a 的取值范围为( )A. [-13,3]B. [-3,1]C. [-3,13]D. [-13,13]40.抛物线22y x =的准线方程是( ) A. 12x =B. 12x =-C. 18y =D. 18y =-第II 卷(非选择题)请点击修改第II 卷的文字说明二、(本题共10道小题,每小题7分,共70分)41.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,焦距为23,点P 为椭圆上一点,1290F PF ∠=o,12F PF ∆的面积为1.(1)求椭圆的标准方程;(2)设点B 为椭圆的上顶点,过椭圆内一点(0,)M m 的直线l 交椭圆于C ,D 两点,若BMC ∆与BMD ∆的面积比为2:1,求实数m 的取值范围.42.已知双曲线2215x y -=的焦点是椭圆C :22221(0)x y a b a b+=>>的顶点,且椭圆与双曲线的离心率互为倒数. (1)求椭圆C 的方程;(2)设动点M ,N 在椭圆C 上,且43MN =,记直线MN 在y 轴上的截距为m ,求m 的最大值. 43.已知椭圆C :22221x y a b +=(0a b >>)的离心率为32,以椭圆的四个顶点为顶点的四边形的面积为8. (1)求椭圆C 的方程; (2)如图,斜率为12的直线l 与椭圆C 交于A ,B 两点,点()2,1P 在直线l 的左上方.若90APB ∠=︒,且直线P A ,PB 分别与y 轴交于M ,N 点,求线段MN 的长度.44.已知抛物线C 的方程为22(0)y px p =>,抛物线的焦点到直线:22l y x =+的距离为455.(1)求抛物线C 的方程;(2)设点()0,2R x 在抛物线C 上,过点()1,1Q 作直线交抛物线C 于不同于R 的两点A 、B ,若直线AR 、BR 分别交直线l 于M 、N 两点,求MN 最小时直线AB 的方程. 45.已知椭圆()2222:10x y E a b a b+=>>与y 轴正半轴交于点(3M ,离心率为12.直线l经过点()(),00P t t a <<和点()0,1Q .且与椭图E 交于A 、B 两点(点A 在第二象限). (1)求椭圆E 的标准方程; (2)若AP PB λ=u u u r u u u r,当230t <≤时,求λ的取值范围. 46.动点(,)M x y 2222(22)(22)6x y x y -+++=. (1)求M 点的轨迹并给出标准方程;(2)已知(22,0)D ,直线l :2y kx k =-交M 点的轨迹于A ,B 两点,设AD DB λ=u u u r u u u r且12λ<<,求k 的取值范围.47.已知抛物线22y px =(0p >),其准线方程10x +=,直线l 过点(,0)T t (0t >),且与抛物线交于A 、B 两点,O 为坐标原点.(1)求抛物线方程,并注明:OA OB ⋅u u u v u u u v的值与直线l 倾斜角的大小无关; (2)若P 为抛物线上的动点,记||PT 的最小值为函数()d t ,求()d t 的解析式. 48.已知椭圆2222:1()x y C a b a b+=>的离心率为12,F 1,F 2分别是其左、右焦点,且过点(2,3)A .(1)求椭圆C 的标准方程;(2)若在直线6y x =+上任取一点P ,从点P 向12AF F ∆的外接圆引一条切线,切点为Q .问是否存在点M ,恒有PM PQ =?请说明理由. 49.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为()1,0F ,且点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上. (1)求椭圆C 的标准方程;(2)过椭圆22122:153x y C a b +=-上异于其顶点的任意一点Q 作圆224:3O x y +=的两条切线,切点分别为M ,N (M ,N 不在坐标轴上),若直线MN 在x 轴,y 轴上的截距分别为m ,n ,证明:22113m n+为定值; (3)若12,P P 是椭圆222223:1x y C a b+=上不同两点,12PP x ⊥轴,圆E 过12,P P ,且椭圆C 2上任意一点都不在圆E 内,则称圆E 为该椭圆的一个内切圆,试问:椭圆C 2是否存在过焦点F 的内切圆?若存在,求出圆心E 的坐标;若不存在,请说明理由. 50.已知抛物线2:2G y px =(0p >),点()2,0M 在G 的焦点F 的右侧,且M 到G 的准线的距离是M 到F 距离的3倍,经过点M 的直线与抛物线G 交于不同的A 、B 两点,直线OA 与直线2x =-交于点P ,经过点B 且与直线OA 垂直的直线l 交x 轴于点Q . (1)求抛物线G 的方程和F 的坐标;(2)判断直线PQ 与直线AB 的位置关系,并说明理由;(3)椭圆22143x y +=的两焦点为F 1、F 2,在椭圆22143x y +=外的抛物线G 上取一点E ,若EF 1、EF 2的斜率分别为1k 、2k ,求121k k 的取值范围.试卷答案1.D 【分析】根据圆与双曲线的位置关系,联立双曲线方程和圆的方程,消去x ,可得y 的一元二次方程,由判别式为0,求出m 的值,再根据双曲线的定义以及韦达定理,即可求出。
2020版高考数学大二轮专题突破理科通用版 课件:7.2 热点小专题三 圆锥曲线的离心率
一、考情分析 近几年高考对于圆锥曲线的离心率的考查,特别是直接求离心率 问题为高频考点,其中,一般以椭圆或双曲线为载体,主要考查直接 求解离心率或离心率的取值范围问题,或通过离心率求解参数或参 数的取值范围,在高考中题型以选择题或填空题为主,基本上都是 中等难度的试题.要求学生有较强的推理论证能力和准确的计算能 力以及数形结合的数学思想,教学中要注重对学生直观想象,数学 运算和数学建模等核心素养的培养.
∵若���������������������������������1������1������������������������������2���=2 =3,3,则双曲线的离心率为(
)
∴
A������0.
������ 0 +������
·2 ������0
������ 0 -������
=3,即B������.02
=
������ ������+c .即 b2=a2+2ac.又 b2=c2-a2,∴c2-2ac-2a2=0.即 e2-2e-2=0,
������ 2
关闭
解A 得 e=1+ 3或 1- 3(舍).故选 A.
解析 -16-
答案
热点一
热点二
解题心得离心率e的求解中可以不求出a,c的具体值,而是得出a与 c的关系,从而求得e,这种方法的步骤如下:
答案
热点一
热点二
解题心得 1.椭圆(双曲线)的离心率有一个公式变形,e=������������ =
1-(������������) 2 1 + (������������) 2 ,所以由 a 与 b 的关系可以求离心率,相反,由离 心率也可以得出 a 与 b 的关系;
【2020届】高考数学圆锥曲线专题复习:圆锥曲线综合题答案
【2020届】高考数学圆锥曲线专题复习:圆锥曲线综合题答案解几综合题答案1.解:(Ⅰ)由已知得()(,) 11 22OA OB m n mn ?=?=-=-分14m n ∴?= …………4分(Ⅱ)设P 点坐标为(x ,y )(x >0),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+- …………5分∴)x m ny m n =+=-?? 消去m ,n 可得2243y x mn -=,又因14mn = 8分∴ P 点的轨迹方程为221(0)3y x x -=>它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支…………9分(Ⅲ)设直线l 的方程为2x ty =+,将其代入C 的方程得 223(2)3ty y +-=即 22(31)1290t y ty -++=易知2(31)0t -≠(否则,直线l的斜率为,它与渐近线平行,不符合题意)又22214436(31)36(1)0t t t ?=--=+>设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==--∵ l 与C 的两个交点,M N 在y 轴的右侧12122121222222(2)(2)2()491224313134031x x ty ty t y y t y y t t t t t t t =++=+++-=?+?+--+=->-∴ 2310t -<,即2103t <<又由 120x x +>同理可得 2103t << …………11分由3ME EN =得1122(2,)3(2,)x y x y --=- ∴121223(2)3x x y y -=-??-=?由122222123231t y y y y y t +=-+=-=--得 22631t y t =-由21222229(3)331y y y y y t =-=-=-得 222331y t =--消去2y 得2222363(31)31t t t =--- 解之得:2115t = ,满足2103t << …………13分故所求直线l 存在,其方程为:15250x y --=或15250x y +-= 2. (I )由已知()y M ,0,()y x N -, 2分则()()422,,22=-=-?=?y x y x y x MN OP ,即12422=-y x 4分(II )设()11,y x A ,()22,y x B ,如图,由QB QA ⊥可得()()()()022,2,221212211=+--=-?-=?y y x x y x y x QB QA 5分①若直线x AB ⊥轴,则21x x =,24||||2121-==x y y此时()()()02422221212121=---=+--x x y y x x ,则0128121=+-x x ,解之得,61=x 或21=x但是若21=x ,则直线AB 过Q 点,不可能有QB QA ⊥所以61=x ,此时Q 点到直线AB 的距离为4 7分②若直线AB 斜率存在,设直线AB 的方程为m kx y +=,则=-+=4222y x m kx y ()042412222=+++-m kmx x k 则()()>+--=?≠-0421241601222222m k m k k ,即>+-≠-024012222k m k又124221--=+k km x x ,12422221-+=k m x x 9分∴()()()22121m x x km x x k m kx m kx y y +++=++=124122124124222222222222222--=--+---+=k m k k m m k k m k k k m k∴()()()()2121221122,2,2y y x x y x y x +--=-?-=?()=+++-=21212142y y x x x x 01241248128124222222222=--+--+-+-+k m k k k k km k m 则012822=++k km m ,可得k m 6-=或k m 2-=若k m 2-=,则直线AB 的方程为()2-=x k y ,此直线过点Q ,这与QB QA ⊥矛盾,舍若k m 6-=,则直线AB 的方程为k kx y 6-=,即06=--k y kx 12分此时若0=k ,则直线AB 的方程为0=y ,显然与QB QA ⊥矛盾,故0≠k ∴41141|4|22<+=+-=k k k d 13分由①②可得,4max =d 14分3. 解:① 设1122(,),(,),(,)P x y Q x y R x y112211()(,)[(,)(,)]22OR OP OQ x y x y x y =+?=+121222x x x y y y +?=+?=??..........1’由222x x y y +=?+=,易得右焦点(1,0)F ......................2’ 当直线l x ⊥轴时,直线l 的方程是:1x =,根据对称性可知(1,0)R ........3’ 当直线l 的斜率存在时,可设直线l 的方程为(1)y k x =-代入E 有2222(21)4220k x k x k +-+-=2880k ?=+>2122421k x x k +=+....................................................5’于是(,):R x y x =21222221x x k k +=+ (1)y k x =-消去参数k 得2220x y x +-=而(1,0)R 也适上式,故R 的轨迹方程是2220x y x +-=..................8’②设椭圆另一个焦点为'F ,在'PF F ?中0'120,|'|2,PFF F F ∠==设||PF m =,则|'|PF m = 由余弦定理得2220)222cos120m m m =+-??m ?=.............10’同理,在'QF F ?,设||QF n =,则|'|QF m = 也由余弦定理得2220)222cos60n n n =+-??n ?=’于是1111||||PF QF m n +=+=+=..........................14’ 4. 解:(I )设B(x 0,y 0),A(x 1,y 1),C(x 2,y 2)∵双曲线1131222=-x y 的离心率为125,∴F 对应的准线方程为512=y ,由双曲线的定义得|,512|125||,125|512|||11-=∴=-y AF y AF …………(12分)又A 在双曲线的上半支,∴y 1≥12,)4().512(125||),512(125||)3().512(125||201分分 -=-=-=∴y CF y BF y AF∵|AF|,|BF|,|CF|构成等差数列,∴2|BF|=|AF|+|CF|,∴26113126)(21022210==-=+=x x y y y y 得代入,∴点B 的坐标为)6,26(.…………………………(6分)(II )∵在l 上任取一点P (不同于D 点),都存在实数λ,使得(+=λ,∴在∠APC 的角平分线上,………………………………(7分)∵线段AC 的中点为D 点,∴△APC 是等腰三角形,PD 是线段AC 的垂直平分线,………………(8分)∴设直线l 的方程为),2(6212121x x x y y x x y +----=-),(13,11312,11312,)(2621222122221212122212121y y x x x y x y y y x x x y y x x y -=-∴=-=---+---=-∴作差得又,21362121+---=-∴x y y x x y l 的方程为直线………………(11分)故直线l 恒过点(0,225).…………………………(12分) 5. 解:(I )设椭圆的标准方程为12222=+by a x ,因B 1F 1B 2F 2是正方形,所以b=c ,又a 2= b 2+ c 2,所以b a 2=,…………①由于椭圆上的左(右)顶点到左(右)焦点的距离最近,所以12-=-c a ,②由①②知1,2===c b a ,∴椭圆的标准方程为:.1222=+y x (II )当直线的斜率存在,设直线MN 的方程为2+=kx y 解方程组=++=122y x kx y消去.230,034)21(222>>?=+++k kx x k y 得由得设),(),,(2211y x N y x M ,则221214k k x x +-=+……………… ③ .213221k x x +=………………④又因M 在DN 之间,所以DN DM λ=,即212211),2,()2,(x x y x y x λλ=∴-=-,于是λλλλ212212212221)1(,)1(,x x x x x x x x x x =+++=+=,……………⑤ 将③④代入⑤得λλ2222213)1()214(k k k +=++-,整理得.)1(316121,)1(3121162222λλλλ++=+∴+=+k k …………………………8分 .331,34)1(3161,341211,23222<<<+<∴<+<∴>λλλ由此解得kk又.131,10<<∴<<λλ …………………………………………………………10分当直线的斜率不存在时,直线MN 的方程为x 31,0==这时,.31=∴λ ……………………………………………………………………………11分综上所述,λ的取值范围是.1,31??∈λ …………………………………………12分 6. 解:(1)由于2||,221121==F F NF F F ,+===-==∴.,1||1,2||22221221c b a NF caF F c 解得==1222b a ,从而所求椭圆的方程为.1222=+y x (4分)(2)N B A NB NA ,,,∴=λ 三点共线,而点N 的坐标为(-2,0).设直线AB 的方程为)2(+=x k y ,其中k 为直线AB 的斜率,依条件知k ≠0.由=++=12),2(22y x x k y 消去x 得22)21(22=+-y y k ,即.02412222=+-+y k y kk 根据条件可知??≠<+?-=?.0,0128)4(222k kk k 解得.22||0<<="">设),(),,(2211y x B y x A ,则根据韦达定理,得+=+=+.122,1242221221k k y y k k y y 又由),2(),2(,2211y x y x +=+=λλ得=+=+∴.),2(22121y y x x λλ 从而+=+=+.122,124)1(222222k k y k k y λλ 消去.128)1(222+=+k y λλ得(8分)令3151],31,51[,)1()(212≤<≤∈+=λλλλλλφ任取,则22212121)1()1()()(λλλλλφλφ+-+=-.0)11)((2121>--=λλλλ(10分)]31,51[)(是区间λφ∴上的减函数,从而)51()()31(φλφφ≤≤,即536)(316≤≤λφ, 5361283162≤+≤∴k ,解得.22||0,21626221<<≤≤-≤≤-k k k 适合或因此直线AB 的斜率的取值范围是].2 1,62[]62,21[ -- (12分)7. 解:(Ⅰ)∵0MN AF ?=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =,∴ ||||2||ME MF m EF +=>, (4)分∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =,∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).……………………………6分(Ⅱ)设11(,)Q x y ∵ 0(,)2mP y ,PF FQ λ=,∴ 1011(1),2.m x y y λλ?-=--=? ∴ 1101(1),21.m x y y λλλ?=+-=-??……………………………8分由点P 、Q 均在椭圆W 上,∴ 22220222211,411(1) 1.2(1)y m y m m m λλλ?+=?-+-+=?-?……………………………10分消去0y 并整理,得2211m m m λ-+=-,由221121m m m -+-≤≤及1m >,解得12m <≤.……………………………14分8. 解:(I )设点P y y P y y M ),,4(),,4(222121、M 、A 三点共线,,4,14,4414,2121211222121211=∴+=+--=+=∴y y y y y y y y y y y y k k DM A M 即即………(2分).544212221=+?=?∴y y y y OM …………………………………………………(3分)设∠POM =α,则.5cos ||||=??α.5sin ||||,25=??∴=αS ROM 由此可得tanα=1.……………………(5分)又.45,45),,0(??=∴∈与故向量απα……………………(6分)(II )设点M y y Q ),,4(323、B 、Q 三点共线,,QM BQ k k =∴)9(.04,4))(1(,141,441431312331331233232131233分即即即=+++-=++∴+=-+--=+y y y y y y y y y y y y y y y y y y,0444,4,432322121=+++?∴==y y y y y y y y 即即.(*)04)(43232=+++y y y y ……………………………………(10分))4(4,4442232232232232y x y y y y PQ y y y y y y k PQ-+=-∴+=--=的方程是直线即.4)(,4))((323222322x y y y y y y x y y y y =-+-=+-即……………………(12分)由(*)式,,4)(43232++=-y y y y 代入上式,得).1(4))(4(32-=++x y y y 由此可知直线PQ 过定点E (1,-4).故存在定一点 E (1,-4),使PE ∥.QF …………………………………………(14分)9. (Ⅰ)解:由题意可知,平面区域D 如图阴影所示.设动点P (x ,y ),则|x +y |2?|x -y |2=1,即|x 2-y 2|=2.………………………………4分∵P ∈D .∴x +y >0,x -y >0,即x 2-y 2>0.∴x 2-y 2=2(x >0).即曲线C 的方程为x 22-y 22=1(x >0).…………6分(Ⅱ)解法一:设A (x 1,y 1),B (x 2,y 2),∴以线段AB 为直径的圆的圆心Q (x 1+x 22,y 1+y 22),∵以线段AB 为直径的圆与y 轴相切,∴半径r =12|AB |=x 1+x 22.即|AB |=x 1+x 2.①……………………………………………………………………8分∵曲线C 的方程为x 22-y 22=1(x >0),∴F (2,0)为其焦点,相应的准线方程为x =1,离心率e =2.根据双曲线的定义可得, |AF |x 1-1=|BF |x 2-1=2,∴|AB |=|AF |+|BF |=2(x 1-1)+2(x 2-1)=2(x 1+x 2)-22.②…………………12分由①,②可得,x 1+x 2=2(x 1+x 2)-22.由此可得x 1+x 2=4+22.∴线段AB 的长为4+22.……………………………………………………………14分(Ⅱ)解法二:∵曲线C 的方程为x 22-y 2=1(x >0),∴F (2,0)为其焦点,相应的准线为l :x =1,离心率e =2.分别过A ,B 作AA '⊥l ,BB '⊥l ,垂足分别为A ',B '.设AB 中点Q ,过Q 点作QQ '⊥y 轴,垂足为Q '.由双曲线的定义可得,|AF ||AA '|=|BF ||BB '|=2,∴|AF |=2|AA '|,|BF |=2|BB '|.…………………10分 |AB |=|AF |+|BF |=2(|AA '|+|BB '|) 根据梯形中位线性质可得 |AA '|+|BB '|=2(|QQ '|-1).∴|AB |=2?2(|QQ '|-1).①…………………………12分∵以线段AB 为直径的圆与y 轴相切,∴|QQ '|=12|AB |.②把②代入①得|AB |=22(12|AB |-1),解得|AB |=4+22.……………………………………………………………………14分(Ⅱ)解法三:设A (x 1,y 1),B (x 2,y 2).∵直线AB 过点F (2,0),当AB ⊥x 轴时,|AB |=22,以线段AB 为直径的圆与y 轴相离,不合题意.∴设直线AB 的方程为y =k (x -2).代入双曲线方程x 2-y 2=2得,x 2-k 2(x -2)2=2,即(1-k 2)x 2+4k 2x -(4k 2+2)=0,∵直线与双曲线交于A ,B 两点,∴k ≠±1.∴x 1+x 2=4k 2k 2-1,x 1x 2=4k 2k 2-1.∴|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)[? ??4k 2k 2-12-4?4k 2+2k 2-1]……………………………………………………9分∵以线段AB 为直径的圆与y 轴相切,∴圆的半径12|AB |与圆心到y 轴的距离12(x 1+x 2)相等.即12(1+k 2)[? ??4k 2k 2-12-4?4k 2+2k 2-1]=12(x 1+x 2).∴12(1+k 2)[? ??4k 2k 2-12-4?4k 2+2k 2-1]=12?4k 2k 2-1.………………………………………12分化简得k 4 -2k 2-1=0,解得k 2=1+2(k 2=1-2不合,舍去).经检验,当k 2=1+2时,直线与曲线C 有两个不同的交点。
【600分考点-700分考法】2020版高考数学(理科):专题(10)圆锥曲线课件(附答案)
考点一 椭圆 4.椭圆中的特殊量
9
考点一 椭圆
对于椭圆
由焦半径公式
可得,椭
圆上任一点P到焦点F1的最小距离为a-c,最大距离为a+c,此时点P在长轴 的两端点处;由椭圆的对称性知,点P到焦点F2也有相同的结论.
(2)椭圆的焦点弦
当直线和椭圆相交时,截在椭圆内的线段(包括端点)叫做椭圆的弦.当弦过
焦点时,称其为焦点弦.
设
是椭圆
上两点,若弦AB过左焦点F1,则
10
考点一 椭圆
(3)椭圆的焦点三角形
设F1,F2为椭圆 则△PF1F2为焦点三角形. 如图所示,
的左、右焦点,P为椭圆上异于左、右顶点的点,
11
考点一 椭圆
⑥焦点三角形的周长是2(a+c).
⑦若焦点三角形的内切圆圆心为I,延长PI交线段F1F2于点Q, (角平分线定理),
求椭圆方程一般采取“先定位,后定量”的方法.所谓定位,就是研究 一下此椭圆是不是标准形式的椭圆,其焦点在x轴上还是在y轴上;所谓定量就 是求出椭圆的a,b,c,从而写出椭圆的方程.
14
考点一 椭圆 2.椭圆系方程
15
考点一 椭圆
例1、求适合下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别是(-12,0),(12,0),椭圆上一点P到两焦点的距离的和
19
考点一 椭圆
20
考点一 椭圆
21
考点一 椭圆 方法2 椭圆定义的应用
椭圆定义的应用类型及方法
(1)利用定义确定平面内的动点的轨迹是否为椭圆;
(2)利用定义解决与焦点三角形相关的周长、面积及最值问题.利用定义和余弦定
理可求得|PF1|·|PF2|,再结合
进行转化,进而求得
2020高考数学之冲破压轴题讲与练 专题11 圆锥曲线的几何性质与应用【解析版】
第三章 解析几何专题11 圆锥曲线的几何性质与应用【压轴综述】纵观近几年的高考命题,围绕圆锥曲线的几何性质与应用的高考压轴题,逐渐呈现“多样化”,即离心率问题、渐近线问题、圆锥曲线中的三角形问题、求其它曲线的方程问题、与平面向量相结合问题等. 在上述各类压轴题型中,圆锥曲线的离心率的求法是一类常见题型,也是历年高考考查的热点,解题规律更易把握.求解圆锥曲线的离心率的值或取值范围,其关键是建立恰当的等量或不等量关系,以过渡到含有离心率e 的等式或不等式使问题获解.1、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距.从而可求解(2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求.如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可 (3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 本专题通过例题说明各类问题解答规律与方法.【压轴典例】例1. (2016·全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34【答案】A【解析】本题以椭圆内点线的交错关系为条件,而结论是椭圆的离心率,思考目标自然是要得到a ,b ,c 满足的等量关系,那么方向不外乎两个:坐标关系或几何关系,抓住条件“直线BM 经过OE 的中点”作为突破口适当转化,获得所需等式. 详解:法一:数形结合法如图,设直线BM 与y 轴的交点为N ,且点N 的坐标为(0,m ),根据题意,点N 是OE 的中点,则E (0,2m ),从而直线AE 的方程为x -a +y2m =1,因此点M 的坐标为-c ,2m (a -c )a.又△OBN ∽△FBM , 所以|FM ||ON |=|FB ||OB |,即2m (a -c )a m=a +c a ,解得c a =13,所以椭圆C 的离心率为13. 法二:交点法同法一得直线AE 的方程为x -a +y 2m =1,直线BN 的方程为x a +ym=1.又因为直线AE 与直线BN 交于点M ,且PF ⊥x 轴,可设M (-c ,n ).则⎩⎪⎨⎪⎧-c -a +n2m=1,-c a +nm =1,消去n ,解得c a =13,所以椭圆C 的离心率为13.法三:三点共线法同法一得直线AE 的方程为x -a +y2m =1,由题意可知M ⎝ ⎛⎭⎪⎫-c ,2m ⎝ ⎛⎭⎪⎫1-c a,N (0,m ),B (a,0)三点共线,则2m ⎝⎛⎭⎪⎫1-c a -m -c=m-a ,解得c a =13,所以椭圆C 的离心率为13. 法四:方程法设M (-c ,m ),则直线AM 的方程为y =ma -c(x +a ),所以E ⎝⎛⎭⎪⎫0,ma a -c .直线BM 的方程为y =m-c -a(x -a ),与y 轴交于点⎝⎛⎭⎪⎫0,ma a +c ,由题意知,2ma a +c =ma a -c ,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13. 法五:几何法在△AOE 中,MF ∥OE ,所以MF OE =a -ca .在△BFM 中,ON ∥MF ,所以OE2MF =a a +c ,即OE MF =2aa +c .所以MF OE ·OE MF =a -c a ·2a a +c =1,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13.例2.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =u u u r u u u r ,120F B F B ⋅=u u ur u u u r ,则C 的离心率为____________. 【答案】2. 【解析】分析:通过向量关系得到1F A AB =和1OA F A ⊥,得到1AOB AOF ∠=∠,结合双曲线的渐近线可得21,BOF AOF ∠=∠02160,BOF AOF BOA ∠=∠=∠=从而由0tan 603ba==可求离心率. 详解:如图,由1,F A AB =u u u r u u u r得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =u u u r u u u u rg ,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 603ba==,所以该双曲线的离心率为221()1(3)2c be a a==+=+=. 例3. (2019·浙江高考真题)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______. 【答案】15 【解析】分析:结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁. 详解:方法1:由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y +=可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方, 求得315,22P ⎛⎫- ⎪ ⎪⎝⎭,所以1521512PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-求得315,22P ⎛⎫- ⎪ ⎪⎝⎭,所以1521512PF k ==.例4.(2019·全国高考真题(理))设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________. 【答案】()3,15 【解析】分析:根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 详解:由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△, 又122201482415,44152MF F S y =⨯⨯-=∴=△,解得015y =, ()2201513620x ∴+=,解得03x =(03x =-舍去),M \的坐标为()3,15.例5.(2019·全国高考真题(文))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A .2 B .3 C .2 D .5【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==Q ,||,2cPA PA ∴=∴为以OF 为直径的圆的半径, A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==. 2e ∴=,故选A .例6.(2018全国卷I ))已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若V OMN 为直角三角形,则|MN |=( )A .32B .3C .23D .4【答案】B 【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得33(3,3),(,)22M N -,利用两点间距离公式求得MN 的值. 详解:根据题意,可知其渐近线的斜率为33±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒, 可以得出直线MN 的方程为3(2)y x =-,分别与两条渐近线33y x =和33y x =-联立, 求得33(3,3),(,)22M N -, 所以2233(3)(3)322MN =-++=,故选B.例7.(2018浙江卷)已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP uu u r =2PB u u u u r ,则当m =___________时,点B 横坐标的绝对值最大. 【答案】5 【解析】分析:先根据条件得到A ,B 坐标间的关系,代入椭圆方程解得B 的纵坐标,即得B 的横坐标关于m 的函数关系,最后根据二次函数性质确定最值取法.详解:设1122(,),(,)A x y B x y ,由2AP PB =u u u r u u u r得1212122,12(1),23,x x y y y y -=-=-∴-=-因为A ,B 在椭圆上,所以22221212,,44x x y m y m +=+=2222222243(23),()4424x x m y m y ∴+-=∴+-=,与22224x y m +=对应相减得222231,(109)444m y x m m +==--+≤,当且仅当5m =时取最大值. 例8. (2019·北京卷)数学中有许多形状优美、寓意美好的曲线,曲线C :就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过;③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( ) A.① B.②C.①②D.①②③【答案】C 【解析】分析:将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围. 详解:由得,,,所以可为的整数有0,-1,1,从而曲线恰好经过(0,1),(0,-1),(1,0),(1,1),(-1,0),(-1,1)六个整点,结论①正确. 由得,,解得,所以曲线上任意一点到原点的距离都不超过. 结论②正确.如图所示,易知, 四边形的面积,很明显“心形”区域的面积大于,即“心形”区域的面积大于3,说法③错误.故选C.【压轴训练】1.(2019·天津南开中学高考模拟(理))已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,焦距为()20c c >,抛物线22y cx = 准线交双曲线左支交于,A B 两点,且120AOB ∠=︒,其中O 为原点,则双曲线的离心率e 为( ) A .2 B .12+C .13+D .15+【答案】C 【解析】设抛物线22y cx = 准线与横轴的交点为M ,∴M 的坐标为,02c ⎛⎫-⎪⎝⎭, 设A 在第二象限,由双曲线的对称性可知: °60MOA ∠=,3tan 2AM MOA AM c OM ∠=⇒=,∴A 的坐标为3(,)22c c -,焦距为2c , ∴设22221,1a b c a c ==-=-,又ce c a==, 把A 的坐标代入双曲线方程中,得22422223()()22184042331c c e e e e a b --=⇒-+=⇒=+⇒=+, 故本题选C.2.(2019·山东高考模拟(文))如图,点F 是抛物线28y x =的焦点,点A ,B 分别在抛物线28y x =及圆22(2)16x y -+=的实线部分上运动,且AB 始终平行于x 轴,则ABF ∆的周长的取值范围是( )A.(2,6)B.(6,8)C.(8,12)D.(10,14)【答案】C 【解析】抛物线的准线2l x =-:,焦点20F (,), 由抛物线定义可得2A AF x =+,圆()22216x y -+=的圆心为20(,),半径为4, ∴FAB V 的周长()246A B A B AF AB BF x x x x =++=++-+=+, 由抛物线28y x =及圆()22216x y -+=可得交点的横坐标为2,∴26B x ∈(,),∴()6812B x +∈,,故选 C. 3.(2019·四川棠湖中学高三期末(文))已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为( )A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【答案】A 【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±,不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得:22122bc b bc b d c a b --==+,22222bc b bc b d c a b++==+, 则12226bcd d b c+===,则23,9b b ==, 双曲线的离心率:2229112c b e a a a ==+=+=, 据此可得:23a =,则双曲线的方程为22139x y -=.本题选择A 选项.4.(2019·张家口市第四中学高二月考(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =. 2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .5.(2019·天津市新华中学高考模拟(理))设12F F 、分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线与抛物线24y x =的准线围成三角形的面积为( )A .34 B .35 C .43D .53【答案】C 【解析】依题意|PF 2|=|F 1F 2|,可知三角形PF 2F 1是一个等腰三角形,F 2在直线PF 1的投影是其中点,由勾股定理可知|PF 1|=22244c a -=4b根据双曲定义可知4b ﹣2c =2a ,整理得c =2b ﹣a ,代入c 2=a 2+b 2整理得3b 2﹣4ab =0,求得43b a = ∴双曲线渐近线方程为y =±43x ,即4x ±3y =0, 渐近线与抛物线的准线1x =-的交点坐标为:41,3⎛⎫- ⎪⎝⎭,41,3⎛⎫-- ⎪⎝⎭, 三角形 的面积为:1841233⨯⨯=.故选:C .6.(2019·吉林高考模拟(理))已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 且斜率为247的直线与双曲线在第一象限的交点为A ,若()21210F F F A F A +⋅=u u u u r u u u u r u u u r ,则此双曲线的标准方程可能为( )A .22143x y -= B .22134x y -= C .221169x y -= D .221916x y -=【答案】D 【解析】由()21210F F F A F A +⋅=u u u u r u u u u r u u u r,可知1222FF F A c ==,又2AF 的斜率为247,所以易得217cos 25AF F ∠=-, 在12AF F ∆中,由余弦定理得1165AF c =, 由双曲线的定义得16225c c a -=, 所以53c e a ==,则:3:4a b =, 所以此双曲线的标准方程可能为221916x y -=.故选D7.(2019·天津高考模拟(理))设1e ,2e 分别为具有公共焦点1F ,2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足120PF PF ⋅=u u u r u u u u r ,则221211e e +的值为( )A .12B .13C .2D .不确定【答案】C 【解析】设椭圆、双曲线的长轴长分别为122,2a a ,焦距为2c ,则:12112222PF PF a PF PF a ⎧+=⎪⎨-=⎪⎩,解得:112212PF a a PF a a ⎧=+⎪⎨=-⎪⎩,由勾股定理可得:()222122PF PF c +=,即:()()22212124a a a a c ++-=,整理可得:222122212112,2a a c e e +=∴+=. 故选:C .8.(2017新课标全国卷Ⅲ文科)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A.63B.33C.23D.13【答案】A 【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即222ab d a a b==+,整理可得223a b =,即()2223,a a c=-即2223ac =,从而22223c e a ==,则椭圆的离心率2633c e a ===, 故选A.9.(2019·天津高考模拟(理))己知点A 是抛物线212(0)=>︰y px p C 与双曲线222221(00)-=>>︰,x y a b C a b 的一条渐近线的交点,若点A 到抛物线1C 的准线的距离为p ,则双曲线的离心率为( ) A .2 B .3C .5D .2【答案】C 【解析】设()00,A x y ,则02p x p += 00,222p px y p p ⇒==±⋅=±由双曲线方程可得渐近线方程为:b y x a=±若A 为抛物线与b y x a =交点,则,2p A p ⎛⎫⎪⎝⎭,可得2b a = 即:224b a = 22225c a b a ∴=+=5ce a∴== 由对称性可知,A 为抛物线与by x a=-交点时,结论一致 本题正确选项:C10.(2019·天津高考模拟(理))已知12,F F 分别双曲线22233(0)x y a a -=>的左右焦点,是P 抛物线28y ax =与双曲线的一个交点,若1212PF PF += ,则抛物线的准线方程为( )A.4x =-B.3x =-C.2x =-D.1x =-【答案】C 【解析】由题得双曲线的方程为222213x y a a-=,所以222234,2c a a a c a =+=∴=.所以双曲线的右焦点和抛物线的焦点重合.由题得1221212,62PF PF PF a PF PF a⎧+=⎪∴=-⎨+=⎪⎩. 联立双曲线的方程和抛物线的方程得223830,(33ax ax a x x a --=∴=-=舍)或. 由抛物线的定义得6-a=3a-(-2a),所以a=1,所以抛物线的准线方程为x=-2,故选C.11.(2019·天津高考模拟(文))已知双曲线2222:1x y C a b-=(0,0)a b >>的右焦点为(c,0)F ,直线2a x c =与一条渐近线交于点P ,POF ∆的面积为2a (O 为原点),则抛物线22by x a=的准线方程为( ) A .12y =B .1x =C .1x =-D .2x =【答案】C 【解析】不妨取双曲线的渐近线方程为0bx ay -=,与直线2a x c =联立可得:2a x c aby c ⎧=⎪⎪⎨⎪=⎪⎩,即2,a ab P c c ⎛⎫⎪⎝⎭, 由题意可得2122POFab ab S c a c ⨯⨯==△,22,4b b a a ∴>=,抛物线方程为24y x =, 其准线方程为1x =-. 故选:C .12.(2018·全国卷II )已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23 B .12C .13D .14【答案】D 【解析】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c,由AP 斜率为36得,2223112tan ,sin cos 61313PAF PAF PAF ∠=∴∠=∠=,, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠, 所以2112211313==4,π5431211sin()3221313c a c e a c PAF =∴==+-∠⋅-⋅,故选D. 13.(2019·天津高考模拟(理))以双曲线上一点为圆心作圆,该圆与轴相切于的一个焦点,与轴交于两点,若,则双曲线的离心率是( ).A.B.C.D.【答案】B【解析】不妨设点M 位于第一象限,由双曲线的性质可得, 由圆的弦长公式可得:,结合可得, 整理变形可得:,即,双曲线中,故.故选:B .14.(2019·广东佛山一中高二月考(文))在平面直角坐标系xoy 中,双曲线的右支与焦点为F 的抛物线22(0)x py p => 交于,A B 两点,若AF +BF =4OF ,则该双曲线的渐近线方程为_________. 【答案】22y x =± 【解析】||||=4222A B A B p p pAF BF y y y y p ++++=⨯⇒+= , 因为22222222221202x y a y pb y a b a bx py⎧-=⎪⇒-+=⇒⎨⎪=⎩,所以2222A B pb y y p a b a +==⇒=⇒渐近线方程为22y x =±. 15.(2019·广东高考模拟(理))已知抛物线22(0)y px p =>的焦点为,F O 为坐标原点,点,M N 为抛物线准线上相异的两点,且,M N 两点的纵坐标之积为-4,直线OM ,ON 分别交抛物线于A ,B 两点,若A ,B ,F 三点共线,则p =_______. 【答案】2 【解析】设m 2p M ⎛⎫-⎪⎝⎭,,n 2p N ⎛⎫- ⎪⎝⎭,, 则直线OM 的方程为:x 2p y m =-,代入抛物线方程可得:222p y p y m ⎛⎫=- ⎪⎝⎭, 解得:2A p y m =-,故A 点坐标为:3222p p m m ⎛⎫- ⎪⎝⎭, 同理可得:B 点坐标为:3222p p n n ⎛⎫- ⎪⎝⎭, 又02p F ⎛⎫⎪⎝⎭,, ∴32222p p p FA m m ⎛⎫=-- ⎪⎝⎭u u u r ,,32222p p p FB n n ⎛⎫=-- ⎪⎝⎭u u u r , 又A ,B ,F 三点共线,∴3232222222p p p p p p mn n m ⎛⎫⎛⎫⎛⎫⎛⎫--=-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ ∴22221111p p n m m n ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,由mn 4=- ∴221144p p m n n m -=---,即211104p m n ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭又110m n-≠ ∴2104p -=,0p >∴2p = 故答案为:216.(2018·北京高考真题(理))已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.【答案】31- 2 【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中22,m n 关系,即得双曲线N 的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为3c c +,再根据椭圆定义得32c c a +=,解得椭圆M 的离心率. 详解:由正六边形性质得椭圆上一点到两焦点距离之和为3c c +,再根据椭圆定义得32c c a +=,所以椭圆M 的离心率为23 1.13c a ==-+ 双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为222ππtan 333n m ∴==,,222222234 2.m n m m e e m m,++∴===∴= 17.(2019·上海高考模拟)已知F 是抛物线2y x =的焦点,点A 、B 在抛物线上且位于x 轴的两侧,若2OA OB ⋅= (其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是______ 【答案】3 【解析】设直线AB 的方程为x ty m =+,点11(,)A x y ,22(,)B x y ,直线AB 与x 轴的交点为(0,)M m .联立2{x ty m y x=+=,可得20y ty m --=,根据韦达定理可得12y y m ⋅=-. ∵2OA OB ⋅=u u u v u u u v∴12122x x y y +=,即21212()20y y y y ⋅+⋅-=.∴2m =或1m =-(舍),即122y y ⋅=-. ∵点A ,B 位于x 轴的两侧∴不妨令点A 在x 轴的上方,则10y >. ∵1(,0)4F∴121111119292()22322488ABO AFO S S y y y y y ∆∆+=⨯⨯-+⨯=+≥⨯=,当且仅当143y =时取等号.∴ABO ∆与AFO ∆面积之和的最小值是3. 故答案为3.18. (2017全国卷I )已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线于交M 、N 两点,若60MAN ∠=o ,则C 的离心率为__________. 【答案】233【解析】 如图所示,由题意可得|OA|=a ,|AN|=|AM|=b , ∵∠MAN=60°, ∴|AP|=32b , ∴|OP|=22223||||4OA PA a b -=-.设双曲线C 的一条渐近线y=bax 的倾斜角为θ,则tan θ=223||2||34b AP OP a b =-. 又tan θ=ba, ∴223234bb a a b =-,解得a 2=3b 2,∴e=22123 1133ba+=+=.答案:23 3。
2020高考数学压轴题汇编圆锥曲线解题技巧《圆锥曲线解题十招全归纳》011
,设
A( x1 ,
y1), B(x2,
y2 ), M
(0,
y0 )
,显然直线 l
的斜率存在,设直
线 l 的方程为 y k (x 2) ,代入方程 x2 y2 1 并整理,得 5
(1 5k 2 )x2
20k 2x 20k 2
5
0
∴
x1
x2
20k 2 1 5k 2
,
x1x2
20k 2 5 1 5k 2
C(-1,0),A(1,0)为焦点的椭圆.且椭圆长轴长为 2a 2 2,
焦距 2c=2. a 2, c 1, b2 1. ∴曲线 E 的方程为 x 2 y 2 1. 2
(2)当直线 GH 斜率存在时,设直线 GH 方程为 y kx 2, 代入椭圆方程 x 2 y 2 1, 2
得 ( 1 k 2 )x 2 4kx 3 0. 2
(1) 2 (2)
1
2
32k 2 3(1 2k 2 )
32
3(
1 k2
2)
k 2 3 , 4 32 16 .
2
3(
1 k2
2)
3
4
1
2
16 3
.解得
1 3
3.
又 0 1, 1 1. 3
又当直线 GH 斜率不存在,方程为 x 0, FG 1 FH , 1 . 1 1,即所求的取值范围是[1 ,1)
又 MA (x1, y1 y0 ) ,
MB (x2, y2 y0 ) , AF (2 x1, y1) , BF (2 x2, y2 ) ,
而 MA 1 AF , MB 2 BF ,即 (x1 0, y1 y0 ) 1(2 x1, y1) ,(x2 0, y2 y0 ) 2 (2 x2, y2 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013高考数学专项突破:圆锥曲线专题
目录
一、知识考点讲解 (1)
第一部分了解基本题型 (2)
第二部分掌握基本知识 (4)
第三部分掌握基本方法 (6)
二、知识考点深入透析 (12)
三、圆锥曲线之高考链接 (14)
四、基础知识专项训练 (18)
五、解答题专项训练 (27)
附录:圆锥曲线之高考链接参考答案 (32)
附录:基础知识专项训练参考答案 (37)
附录:解答题专项训练参考答案 (39)
一、知识考点讲解
一、圆锥曲线的考查重点:
高考试卷对圆锥曲线的考查主要是:给出曲线方程,讨论曲线的基本元素和简单的几何性质;或给出曲线满足的条件,判断(或求)其轨迹;或给出直线与曲线、曲线与曲线的位置关系,讨论与其有联系的有关问题(如直线的方程、直线的条数、弦长、曲线中参数的取值范围等);或讨论直线与曲线、曲线与曲线的关系;或考查圆锥曲线与其它知识的综合(如与函数、数列、不等式、向量、导数等)等。
二、圆锥曲线试题的特点:
1、突出重点知识的考查。
直线与圆的方程、圆锥曲线的定义、标准方程、几何性质等是圆锥曲线命题的根本,在对圆锥曲线的考查中,直线与圆锥曲线的位置关系仍然是重点。
2、注重数学思想与方法的考查。
3、融合代数、三角、不等式、排列组合、向量和几何等知识,在知识网络的交汇点处设计问题是高考的一大特点,由于向量具有代数和几何的双重身份,使得圆锥曲线与平面向量的整合交汇成为高考命题的热点,导数知识的引入为我们解决圆锥曲线的最值问题和切线问题提供了新的视角和方法。
三、命题重点趋势:直线与圆锥曲线或圆与圆锥曲线
1、高考圆锥曲线内容重点仍然是直线与圆锥曲线或圆与圆锥曲线,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现。
2、热点主要体现在:直线与圆锥曲线的基础题;涉及位置关系的判定;轨迹问题;范围与位置问题;最值问题;存在性问题;弦长问题;对称问题;与平面向量或导数相结合的问题。
3、直线与圆锥曲线的题型涉及函数的与方程,数形结合,分类讨论,化归与转化等重要的数学思想方法,是高考必考内容之一,这类题型运算量比较大,思维层次较高,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能,对学生的能力要求也相对较高,是每年高考中平面几何部分出题的重点内容
第一部分了解基本题型
一、高考中常见的圆锥曲线题型
1、直线与圆锥曲线结合的题型
(1)求圆锥曲线的轨迹方程:
这类题主要考查学生对圆锥曲线的标准方程及其相关性质,要求较低,一是出现在选择题,填空题或者解答题的第一问,较容易。
(2)求直线方程、斜率、线段长度相关问题:
此类题目一般比较困难,不仅考查学生对圆锥曲线相关知识的掌握,而且还考查学生的综合处理问题的能力,还要求学生有较强的推算能力。
这类题目容易与向量、数列、三角函数等知识相结合,学生在解题时,可能会因为抓不住解题要领而放弃。
(3)判断直线与圆锥曲线的位置关系:
直线与圆锥曲线的位置关系是解析几何的重点内容之一。
可从代数与几何两个角度考虑,①从代数角度看,可通过将表示直线的方程,代入圆锥曲线的方程消元后所得的情况来判断,但要注意的是:对于椭圆方程来讲,所得
一元方程必是一元二次方程,而对双曲线方程来讲未必。
例如:将y kx m =+代入22
221x y a b
-=中消y 后整理得: 222222222()20b a k x a kmx a m a b ----= ,当b k a =±
时,该方程为一次方程,此时直线y kx m =+与双曲线的渐近线平行,当b k a
=±时,该方程为二次方程,这时可以用判别式来判断直线与双曲线的位置关系。
②从几何角度看,可分为三类:无公共点,仅有一个公共点及两个相异的公共点,具体如下:
①直线与圆锥曲线的相离关系,常通过求二次曲线上的点到已知直线的距离的最大值或最小值来解决。
②直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或与双曲线的渐近线平行,对于抛物线,表示直线与其相切或直线与其对称轴平行。
③直线与圆锥曲线有两个相异的公共点,表示直线与圆锥曲线相割,此时直线被圆锥曲线截得的线段称为圆锥曲线的弦。
2、圆与圆锥曲线结合的题型
这类题目要求学生对圆锥曲线、圆以及直线的知识非常熟悉,并有较强的综合能力。
3、圆锥曲线与圆锥曲线结合的题型
这类题目在高考中并不是常考题型,但也是一个命题热点。
题目中经常涉及两种圆锥曲线,对这部份知识要求较高,必须熟练掌握才能进行解题,还有这类题目看起来比较复杂,容易使人产生退却之心,所以面对这种题型,我们要克服心理的恐惧,认真分析题意,结合学过的知识来解题。
4、圆锥曲线与向量知识结合的题型
在解决解析几何问题时,平面向量的出现不仅可以很明确地反映几何特征,而且又方便计算,把解析几何与平面向量综合在一起进行测试,可以有效地考查考生的数形结合思想.因此许多解析几何问题均可与向量知识进行综合。
高考对解析几何与向量综合考查,采取了新旧结合,以旧带新,使新的内容和旧的内容有机地结合在一起设问,就形成了新的高考命题的热点。
二、常见的一些题型:
题型一:数形结合确定直线和圆锥曲线的位置关系;
题型二:弦的垂直平分线问题;
题型三:动弦过定点的问题;
题型四:过已知曲线上定点的弦的问题;
题型五:共线向量问题;
题型六:面积问题;
题型七:弦或弦长为定值问题;
题型八:角度问题;
问题九:四点共线问题;
问题十:范围问题(本质是函数问题);
问题十一、存在性问题:(存在点,存在直线y kx m =+,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)。
三、热点问题:
1、定义与轨迹方程问题;
2、交点与中点弦问题;
3、弦长及面积问题;
4、对称问题;
5、最值问题;
6、范围问题;
7、存在性问题;
8、定值、定点、定直线问题。
第二部分 掌握基本知识
1、与一元二次方程20(0)ax bx c a ++=≠相关的知识:(三个“二次”问题)
(1)判别式:24b ac ∆=- 。
(2)韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,
则 1212,b c x x x x a a
+=-= 。
(3)求根公式:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,
则 1/22b x a
-±= 。