舵机转舵机构和遥控系统讲解
舵机工作原理与控制方法
舵机工作原理与控制方法舵机是一种用于控制机械装置的电机,它可以通过控制信号进行位置或角度的精确控制。
在舵机的工作原理和控制方法中,主要涉及到电机、反馈、控制电路和控制信号四个方面。
一、舵机的工作原理舵机的核心部件是一种称为可变电容的设备,它可以根据控制信号的波形来改变电容的值。
舵机可分为模拟式和数字式两种类型。
以下是模拟式舵机的工作原理:1.内部结构:模拟式舵机由电机、测速电路、可变电容和驱动电路组成。
2.基准电压:舵机工作时,系统会提供一个用于参考的基准电压。
3.控制信号:通过控制信号的波形的上升沿和下降沿来确定舵机的角度。
4.反馈:舵机内部的测速电路用于检测当前位置,从而实现位置的精确控制。
5.驱动电路:根据测速电路的反馈信号来控制电机的转动方向和速度,从而实现角度的调整。
二、舵机的控制方法舵机的控制方法一般采用脉冲宽度调制(PWM)信号来实现位置或角度的控制。
以下是舵机的两种常见控制方法:1.脉宽控制(PWM):舵机的控制信号是通过控制信号的脉冲宽度来实现的。
通常情况下,舵机的控制信号由一系列周期为20毫秒(ms)的脉冲组成,脉冲的高电平部分的宽度决定了舵机的位置或角度。
典型的舵机控制信号范围是1ms到2ms,其中1ms对应一个极限位置,2ms对应另一个极限位置,1.5ms对应中立位置。
2.串行总线(如I2C或串行通信):一些舵机还支持通过串行总线进行控制,这些舵机通常具有内置的电路来解码接收到的串行信号,并驱动电机转动到相应的位置。
这种控制方法可以实现多个舵机的同时控制,并且可以在不同的控制器之间进行通信。
三、舵机的控制电路与控制信号1.控制电路:舵机的控制电路通常由微控制器(如Arduino)、驱动电路和电源组成。
微控制器用于生成控制信号,驱动电路用于放大和处理控制信号,电源则为舵机提供所需的电能。
2.控制信号的生成:控制信号可以通过软件或硬件生成。
用于舵机的软件库通常提供一个函数来方便地生成适当的控制信号。
船舶舵机的结构组成和特点
船舶舵机的结构组成和特点
船舶舵机是船舶控制系统的重要组成部分,负责控制船舶航向。
本文将介绍船舶舵机的结构组成和特点。
1. 基本组成
船舶舵机主要由以下几个部分组成:
●舵机控制器:接收来自船舶控制系统(如自动舵)的信号,控制舵机的动
作。
●传动机构:将舵机控制器输出的力或扭矩传递到舵杆上,驱动舵面转动。
●驱动电机:提供动力,使传动机构和舵面转动。
●位置反馈装置:检测舵面的位置,将信号反馈给舵机控制器,实现闭环控
制。
●电源和控制系统:为舵机提供电力和控制系统。
2. 舵机类型
船舶舵机根据工作原理可分为两类:
●电液舵机:使用液压油作为工作介质,通过油缸的伸缩驱动舵杆转动。
电
液舵机具有较大的输出力和扭矩,适用于大型船舶。
●电动舵机:使用电动机作为动力源,通过减速器或链条驱动舵杆转动。
电
动舵机具有结构简单、维护方便的优点,但输出力和扭矩相对较小,适用于中小型船舶。
3. 特点
船舶舵机的主要特点如下:
●高输出力矩:能够提供足够的力矩驱动舵面转动,实现船舶航向的改变。
●高可靠性:能在恶劣的环境条件下稳定工作,保证船舶航行的安全。
●良好的控制性能:通过控制系统能够实现精确的航向控制。
●易于维护:结构简单,维护方便,降低了运营成本。
舵机原理及控制
舵机原理及控制舵机原理及控制第一章:引言舵机是一种用来控制机械设备运动的装置,广泛应用于航空、汽车、机器人等各个领域。
本章将介绍舵机的基本概念和其在实际应用中的重要性。
第二章:舵机工作原理2.1 舵机概述舵机是一种能够转动到特定角度的电机,其内部结构包括电机、减速机构和反馈控制系统。
舵机通过接收控制信号来控制转动角度,然后通过反馈控制系统使得舵机转动到目标位置。
2.2 舵机工作原理舵机的电机通过控制信号接收到电源,电机产生转动力矩,并通过减速机构将高速低扭的电机输出转化为低速高扭的输出。
同时,反馈控制系统监测舵机位置,并与目标位置进行比较,若有差异,则调整电机输出力矩,直到舵机转动到目标位置。
第三章:舵机控制方法3.1 PWM控制PWM(脉冲宽度调制)是一种常用的舵机控制方法。
通过调整脉冲信号的占空比,控制舵机转动的角度。
一般而言,脉冲信号周期为20ms,脉宽在0.5ms至2.5ms之间,其中1.5ms表示中立位置。
通过改变脉宽,可以将舵机转动到不同的角度。
3.2 PID控制PID(比例-积分-微分)是一种反馈控制方法,可用于舵机控制中的位置闭环控制。
PID控制通过比较目标位置与实际位置之间的差异,计算出控制器的输出值。
比例项决定控制器的输出与误差之间的线性关系,积分项和微分项则用于消除稳态误差和防止控制器过冲。
第四章:舵机在实际应用中的案例分析4.1 航空领域舵机广泛应用于飞机和其他飞行器的操纵系统中。
通过控制舵面的运动,可以实现飞行器的方向调整和姿态稳定。
4.2 汽车领域在汽车行业中,舵机被应用于转向系统中。
通过控制舵机转动到不同角度,实现车辆的方向转向。
4.3 机器人领域舵机是机器人运动的重要部件。
通过控制舵机的转动,可以使机器人的各个关节运动,实现复杂的动作。
在以上几个实际应用的案例中,舵机的原理和控制方法起到了至关重要的作用,使得舵机在现代技术中具有广泛的应用前景。
综上所述,舵机是一种用来控制机械设备运动的装置,其工作原理包括电机、减速机构和反馈控制系统。
舵机资料
舵机资料整理一、舵机简介及构造舵机(英文叫Servo):它由直流电机、减速齿轮组、位置检测器和控制电路组成的一套自动控制系统。
通过发送信号,指定输出轴旋转角度。
舵机一般而言都有最大旋转角度(比如180度),与普通直流电机的区别主要在:直流电机是一圈圈转动的,模拟舵机只能在一定角度内转动,不能整圈转(数字舵机可以在舵机模式和电机模式中切换,没有这个问题)。
普通直流电机无法反馈转动的角度信息,而舵机可以,用途也不同,普通直流电机一般是整圈转动做动力用,舵机是控制某物体转动一定角度用(比如机器人的关节)。
工作原理:控制电路板接受来自信号线的控制信号(PWM),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。
舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,实现目标运动到指定位置。
常见的舵机厂家有:日本的Futaba、JR、SANWA等,国产的有北京的新幻想、吉林的振华等。
现举Futaba S3003来介绍相关参数,以供大家设计时选用。
之所以用3003是因为这个型号是市场上最常见的,也是价格相对较便宜的一种(以下数据摘自Futaba产品手册)。
尺寸(Dimensions):40.4×19.8×36.0 mm重量(Weight):37.2 g工作速度(Operating speed):0.23 sec/60°(4.8V) ,0.19 sec/60°(6.0V)输出力矩(Output torque):3.2 kg.cm (4.8V) ,4.1 kg.cm (6.0V)舵机具有以下一些特点:>体积紧凑,便于安装;>输出力矩大,稳定性好;>控制简单,便于和数字系统接口;正是因为舵机有很多优点,所以,现在不仅仅应用在航模运动中,已经扩展到各种机电产品中来,在机器人控制中应用也越来越广泛。
第九章 液压舵机
第九章舵机steering gear•第一节舵的作用原理和对舵机的要求•第二节液压舵机的工作原理和基本组成•第三节液压舵机的转舵机构•第四节液压舵机的遥控系统•第五节舵机液压系统实例•第六节液压舵机的管理•复习思考题第一节舵的作用原理和对舵机的要求•一、舵的作用:•船舶的操纵性,是船舶的主要航行性能之一。
舵是船舶操纵装置的一个重要部件。
舵是一块平板或具有流线型截面的板,称为舵叶。
装在船尾中纵剖面或对称于中纵剖面的位置上。
它垂直地浸没在水中,并能绕舵轴转动。
舵是船舶的一种十分重要和不可缺少的专用舾装设备。
可以想象,如果船没有舵,或舵失灵,就象汽车没有方向盘一样,将无法行驶)在大海里任凭风浪摆布。
无主动航向的船不仅不能保证航行的安全,而且是不能到达目的港的。
•舵是舵手(驾驶人员)用来保持或改变船舶在水中运动方向的专用设备。
•舵有两大功能:•一是保持船舶预定航向的能力,称为航向稳定性;•二是改变船舶运动方向的能力,称回转性。
•通常把二者统称为船舶的操纵性。
船舵主要由舵叶和舵杆组成,舵叶是产生水压力的部分,舵杆的作用是转动舵叶和保证舵叶具有足够的强度)舵的作用原理是当水流以某冲角冲至舵叶上时,便产生了流体动力,此作用力通过舵杆传递并船体上,从而迫使船舶转向,也就达到了调整航向的目的。
•舵从帆船时代的简单平板舵发展到今天的流线型舵,不断得到改进,现普通舵和特种舵已有十几种类型。
近个时期,随着科学技术的发展,还出现了一些推进设备也兼有舵设备的功能。
舵的种类很多,分类的方法也很多,有按支承情况、舵杆位置、剖面形状分类的,也有按结构形式和使用功能分的。
•舵的分类:•(一)按舵的支承情况来分1.多支承舵:船体尾柱连有三个以上的舵钮。
2.半悬式舵:下支承的位置在舵的半高处。
3.悬式舵:挂在舵杆上的。
4.双支承舵:除了上支承儿还有一个安在舵根的下支承。
•(二)按舵杆轴线位置来分1.不平衡舵:舵叶位于舵杆轴线之后。
2.半平衡舵:一般就是半悬式舵。
船舶辅机:舵机_9.4舵机遥控
锁闭油路 锁闭备用油路
溢流节流安阀全:阀调:速伺服
活塞最大输出力
问:单向阀6弹簧断裂会有什么后果?
9-4-3 交流伺服电机式遥控系统补充
• 液压遥控伺服系统,增加维护管理的工作量,故障率增加, 此外,更重要的是采用浮动杆追随机构同时控制两台主油泵, 当一台主泵变量机构卡阻时,为了保证操舵的需要就必须使 该台主泵与浮动杆脱开,否则另一台主泵也将无法操纵,这 种情况显然不能满足钢质海船入级与建造规范关于万吨以上 油轮必须能在45s内排除单项故障的要求。因此,比较先进 的舵机操纵系统不但控制电路采用了无触点控制,有的并取 消了浮动杆追随机构,下面介绍的HSH式舵机遥控系统即属 这方面的一个例子,
3、单动(非随动)操舵系统
只能控制舵机的起停和转舵方向,当舵转至所需要的舵 角时,操舵者必须再次发出停止转舵的信号,才能使 舵停转
通常既可在驾驶台,也可在舵机室操纵,以备应急操舵 或检修;调试舵机之用
9-4液压舵机的遥控系统
• 根据传递操舵信号方法不同,遥控系统可分 为
1.机械式、主要用于小船 2.液压式、基本淘汰. 3.电气式、现代船舶大多采用电气遥控系统
第九章 第四节 液压舵机的遥控系统
9-4液压舵机的遥控系统
1、随动操舵系统
发出舵角指令后,不仅可使舵按指定方向转动,而且在 舵转到指令舵角后还能自动停止操舵的系统
2、自动操舵系统
在船舶长时间沿指定航向航行时使用,它能在船因风、 流及螺旋桨的不对称作用等造成偏航时,靠罗经测知 并自动发出信号,使操舵装置改变舵角,以使船舶能 够自动地保持既定的航向
• 在HSH遥控系统中,共有两套同样的随动操舵系统。两套系 统各控制一台油泵。由于它们彼此之间并没有直接的机械联 系,因此,在只用一台油泵操舵时,另一台油泵的变量机构 就不会随之动作,因而万一某台工作油泵伺服滑阀卡住时, 就可迅速地实现油泵的换用。当然,必要时也可同时使用两 套泵组,以便加快转舵速度。
舵设备详解
PPT文档演模板
2020/12/17
舵设备详解
n 2)主动舵
n ①结构特点:
n ②作用:在转舵的同时螺旋桨随之转动并发出推力,从而增加了转船力 矩。即使在低速甚至主机停车的情况下,这种舵也能获得转船力矩,大 大提高了船舶的操纵性。
n 3)整流帽舵
n ①结构特点:在流线型舵正对螺旋桨轴线部位,装设一个圆锥形的流线 型体,俗称整流帽。
舵设备详解
6
第三章 舵设备
第1节 舵设备的组成和舵的种类
舵设备的组成:
➢操舵装置控制系统:将指令由驾驶室传至舵机动力装置之间的一系列设备。
(1)主要部件设于驾驶室; (2)传递舵令,以控制舵机动作。
*
PPT文档演模板
舵设备详解
7
第三章 舵设备
第1节 舵设备的组成和舵的种类
舵的种类:
➢按舵叶的剖面形状分:
PPT文档演模板
舵设备详解
n 5)科特导流管舵
n ①结构特点:在螺旋桨外围套装导流管并在其后端处装一舵叶。有两种 形式,一种是导流管固定焊接在船尾骨架上,舵叶可以转动;另一种导 流管与舵叶可在允许角度内一起转动。
n ②作用:增加推进效率,保护螺旋桨,防止绳索缠入。
固定式导流管舵 ↓
转动式导流管舵 ↓
n 主操舵装置:系指在正常情况下为驾驶船舶而使舵产 生动作所必需的机械、转舵机构、舵机装置动力设备 (如设有)以及附属设备和向舵杆施加转矩的设施(如舵 柄或舵扇)。主操舵装置应在驾驶室和舵机室都设有 控制器。
n 辅助操舵装置:系指在主操舵装置失效时,为驾驶船 舶所必需的设备。这些设备不应属于主操舵装置的任 何部分,但可共用其中的舵柄、舵扇或作同样用途的
n 舵角处于25°~32°之间时,舵效最好。一般船舶的最大 有效舵角在32°~35°之间,把35°舵角称为使用极限 舵角,超大型船舶的使用极限舵角一般在35°~40°之间。
一文读懂:舵机的内部结构和工作原理
一文读懂:舵机的内部结构和工作原理展开全文舵机实物图舵机是机器人旋转关节中的常用部件,尤其是小型机器人。
实物就像下面这张图,相信大家都不会陌生。
大家一定见过春晚上哪个跳舞的小机器人,其全身各关节都是有舵机组成。
我们常见到的舵机就是这个模样,一般是塑料外壳,当然很少见的也有金属外壳的舵机,因为涉及到控制信号,所以一般有三条引出线。
也有四条引出线的,可以输出花键轴的位置信息。
这么看,舵机好像和传统意义上的伺服电机有很多相似处,其实也可以这么称呼它。
舵机实物图引线图像上图所示的样子,舵机有一个三线的接口。
黑色线(或棕色线)是接地线,红线接+5V电压,黄线(或是白色或橙色)接控制信号端。
(而步进电机一般会有4~6根不等的引出线)舵机的内部结构各种品牌型号舵机的样子,长的几乎都是差不多的,一般情况下,舵机的输出轴都是偏向一边的,这是由于内部齿轮组的安装方式的原因,如果拆开舵机,我们就会发现更多真相。
我们可以很明显的看出,舵机和步进电机的动力是有着很大区别的,舵机的驱动力来自——直流电机,通过变速齿轮的传动和变速,将动力传输到输出轴,同时,舵机内部都设有角度传感器和控制电路板,用来参与舵机的转动角度的控制和信号的反馈检测工作。
内部构造如果还不够直观的话,我们再来看一张舵机实物的拆解图,你就不用再拆了,因为拆了也是一样的内部构造。
拆解图舵机的闭环检测机制关于舵机的精准位置控制,存在以下如下图的闭环控制机制。
即:位置检测器(角度传感器)是它的输入传感器,舵机转动的位置变化,位置检测器的电阻值就会跟着变化。
通过控制电路读取该电阻值的大小,就能根据阻值适当调整电机的速度和方向,使电机向指定角度旋转。
从而实现了舵机的精确转动的控制。
闭环检测舵机的工作原理舵机的工作原理可以通过下面这张简单的流程图说明,结合上面所说的闭环检测机制内容,相信你很轻松的就可以了解舵机的工作流程和工作原理了。
工作原理说到舵机的控制信号,一般是脉宽调制(PWM)信号,如下图,直观反映了PWM信号和舵机转动角度的关系,你也可以简单的理解为,通过给舵机通电的时间控制,结合角度传感器的反馈信号检测和控制,实现了舵机的精确角度控制。
舵机的控制方式和工作原理介绍
舵机的控制方式和工作原理介绍舵机是一种常见的电动执行器,广泛应用于机械设备、机器人、航模等领域。
它通过接收控制信号来调节输出轴的角度,实现精确的位置控制。
本文将介绍舵机的控制方式和工作原理,供读者参考。
一、PWM控制方式PWM(Pulse Width Modulation)控制是舵机最常用的控制方式之一。
它通过改变控制信号的脉宽来控制舵机的角度。
具体来说,一种典型的PWM控制方式是使用50Hz的周期性信号,脉宽为0.5~2.5ms的方波信号,其中0.5ms对应的是舵机的最小角度,2.5ms对应的是舵机的最大角度。
PWM控制方式的实现比较简单,可以使用单片机、微控制器或者专用的PWM模块来生成PWM信号。
一般情况下,控制信号的频率为50Hz,也可以根据实际需求进行调整。
通过调节控制信号的脉宽,可以精确地控制舵机的角度。
二、模拟控制方式模拟控制方式是舵机的另一种常用控制方式。
它通过改变输入信号的电压值来控制舵机的角度。
典型的模拟控制方式是使用0~5V的电压信号,其中0V对应的是舵机的最小角度,5V对应的是舵机的最大角度。
模拟控制方式的实现需要使用DAC(Digital-to-Analog Converter)将数字信号转换为相应的模拟电压信号。
通过改变模拟电压的大小,可以控制舵机的角度。
需要注意的是,模拟控制方式对输入信号的精度要求较高,不能容忍较大的误差。
三、数字信号控制方式数字信号控制方式是近年来舵机控制的新发展,它使用串行通信协议(如UART、I2C、SPI等)将数字信号传输给舵机,并通过解析数字信号控制舵机的角度。
数字信号控制方式可以实现更高精度、更复杂的控制功能,适用于一些对角度精度要求较高的应用。
数字信号控制方式的实现需要使用带有相应通信协议支持的控制器或者模块,通过编程来实现对舵机的控制。
在这种控制方式下,控制器可以同时控制多个舵机,可以实现多轴运动控制的功能。
另外,数字信号控制方式还可以支持PID控制和反馈控制等高级控制算法。
舵机工作原理与控制方法
舵机工作原理与控制方法舵机是一种常见的机电一体化设备,用于控制终端设备的角度或位置,广泛应用于遥控模型、机器人、自动化设备等领域。
下面将详细介绍舵机的工作原理和控制方法。
一、舵机工作原理:舵机的工作原理可以简单归纳为:接收控制信号-》信号解码-》电机驱动-》位置反馈。
1.接收控制信号舵机通过接收外部的控制信号来控制位置或角度。
常用的控制信号有脉宽调制(PWM)信号,其脉宽范围一般为1-2毫秒,周期为20毫秒。
脉宽与控制的位置或角度呈线性关系。
2.信号解码接收到控制信号后,舵机内部的电路会对信号进行解析和处理。
主要包括解码脉宽、信号滤波和信号放大等步骤。
解码脉宽:舵机会将输入信号的脉宽转换为对应的位置或角度。
信号滤波:舵机通过滤波电路来消除控制信号中的噪声,使得控制稳定。
信号放大:舵机将解码后的信号放大,以提供足够的电流和功率来驱动舵机转动。
3.电机驱动舵机的核心部件是电机。
接收到解码后的信号后,舵机会驱动电机转动。
电机通常是直流电机或无刷电机,通过供电电压和电流的变化控制转动速度和力矩。
4.位置反馈舵机内部通常搭载一个位置传感器,称为反馈装置。
该传感器能够感知电机的转动角度或位置,并反馈给控制电路。
控制电路通过与目标位置或角度进行比较,调整电机的驱动信号,使得电机逐渐趋近于目标位置。
二、舵机的控制方法:舵机的控制方法有脉宽控制方法和位置控制方法两种。
1.脉宽控制方法脉宽控制方法是根据控制信号的脉宽来控制舵机的位置或角度。
控制信号的脉宽和位置或角度之间存在一定的线性关系。
一般来说,舵机收到脉宽为1毫秒的信号时会转动到最左位置,收到脉宽为2毫秒的信号时会转动到最右位置,而脉宽为1.5毫秒的信号舵机则会停止转动。
2.位置控制方法位置控制方法是根据控制信号的数值来控制舵机的位置或角度。
与脉宽控制方法不同,位置控制方法需要对控制信号进行数字信号处理。
数值范围一般为0-1023或0-4095,对应着舵机的最左和最右位置。
舵机的工作原理
舵机的工作原理引言概述:舵机是一种常见的电子设备,广泛应用于机器人、遥控模型等领域。
它能够实现精确的角度控制,具有较高的工作精度和可靠性。
本文将详细介绍舵机的工作原理,包括电机原理、反馈控制原理、位置控制原理、信号控制原理和工作模式。
一、电机原理:1.1 电机类型:舵机通常采用直流电机作为驱动源,常见的有核心式电机和无核心式电机两种类型。
1.2 电机结构:核心式电机由电枢、永磁体和电刷组成,无核心式电机则是通过电磁感应原理实现转动。
1.3 电机工作原理:舵机的电机通过电流控制实现转动,电流的方向和大小决定了舵机的转动方向和角度。
二、反馈控制原理:2.1 反馈装置:舵机内置了一个反馈装置,通常是一个旋转电位器或光电编码器,用于检测舵机的角度。
2.2 反馈信号:反馈装置会输出一个反馈信号,表示当前舵机的角度位置。
2.3 反馈控制:通过比较反馈信号和目标角度信号,舵机可以根据误差进行调整,实现精确的角度控制。
三、位置控制原理:3.1 控制信号:舵机接收一个控制信号,通常是一个脉冲宽度调制(PWM)信号。
3.2 脉宽解读:舵机通过解读控制信号的脉冲宽度来确定目标角度。
3.3 控制算法:舵机根据控制信号的脉冲宽度和反馈信号的角度,采用控制算法计算出驱动电机的电流,从而实现位置控制。
四、信号控制原理:4.1 控制信号范围:舵机的控制信号通常在0.5ms到2.5ms的脉宽范围内变化。
4.2 脉宽对应角度:脉宽的变化对应着舵机的角度变化,通常0.5ms对应最小角度,2.5ms对应最大角度。
4.3 中立位置:控制信号的脉宽为1.5ms时,舵机处于中立位置,即角度为0度。
五、工作模式:5.1 位置模式:舵机可以在位置模式下工作,根据控制信号的脉宽来实现精确的角度控制。
5.2 速度模式:舵机还可以在速度模式下工作,根据控制信号的脉宽来实现转速的控制。
5.3 扭矩模式:舵机在扭矩模式下工作时,根据控制信号的脉宽来实现扭矩的控制,可以用于对外力的响应。
舵机的控制方式和工作原理介绍
舵机的控制方式和工作原理介绍在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。
舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。
舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。
目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。
舵机是一种俗称,其实是一种伺服马达。
其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。
它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。
最后,电压差的正负输出到电机驱动芯片决定电机的正反转。
当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。
当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。
就象我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。
舵机的控制:舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为0.5ms~2.5ms范围内的角度控制脉冲部分。
以180度角度伺服为例,那么对应的控制关系是这样的:0.5ms--------------0度;1.0ms------------45度;1.5ms------------90度;2.0ms-----------135度;2.5ms-----------180度;这只是一种参考数值,具体的参数,请参见舵机的技术参数。
小型舵机的工作电压一般为4.8V或6V,转速也不是很快,一般为0.22/60度或0.18/60度,所以假如你更改角度控制脉冲的宽度太快时,舵机可能反应不过来。
如果需要更快速的反应,就需要更高的转速了。
要精确的控制舵机,其实没有那么容易,很多舵机的位置等级有1024个,那么,如果舵机的有效角度范围为180度的话,其控制的角度精度是可以达到180/1024度约0.18度了,从时间上看其实要求的脉宽控制精度为2000/1024us 约2us。
船舶舵机工作原理与控制方法
船舶舵机工作原理与控制方法
船舶舵机是一种用于控制船舶舵面的机械装置,其工作原理和控制方法与其它机械装置有所不同。
船舶舵机通常由两个主要部分组成:驱动系统和控制系统。
驱动系统是由一组齿轮组成的,这些齿轮通过油缸驱动舵面旋转。
控制系统则是通过按钮、操纵杆和仪表等控制驱动系统的油缸运动,从而实现舵面的位置和角度控制。
船舶舵机的工作原理可以概括为以下几个步骤:
1. 船舶靠岸时,舵机启动,将舵面的旋转方向设置为负角度,使得船体向岸边倾斜。
2. 当船体倾斜到一定角度时,舵机会将舵面的旋转方向设置为正角度,使得船体向岸边修正方向航行。
3. 如果需要船舶进一步向某个方向航行,舵机会根据需要调整舵面的角度,控制船向该方向航行。
4. 如果船舶需要停止,舵机会将舵面的旋转方向设置为负角度,使得船体向停止方向倾斜,从而实现停泊。
船舶舵机的控制方法通常采用操纵杆、按钮和仪表等控制元件,通过接收这些数据,船舶舵机来实现对舵面的位置和角度的控制。
在船舶航行中,驾驶员可以通过操纵舵面来调整船舶的方向和航速,而船舶舵机则根据驾驶员的控制指令,调整舵面的位置和角度,从而实现船舶的运动控制。
舵机的工作原理
舵机的工作原理舵机是一种常见的电子元件,广泛应用于模型、机器人、无人机等领域中,用于控制物体的转动角度。
在这篇文档中,我们将介绍舵机的工作原理及其基本结构。
一、舵机的基本结构舵机通常由电机、减速机、位置反馈器和控制电路构成。
其中,电机负责转动输出轴,减速机将电机的高速旋转转换为高扭矩低速旋转,并通过位置反馈器不断监测转动角度与设定角度之间的差异。
控制电路则根据位置反馈信号调整电机的转动来使得转动角度精确到达设定值。
二、舵机的工作原理舵机的工作原理基于PWM(脉宽调制)信号。
PWM信号是一种周期性的脉冲信号,通过改变脉冲的高电平时间来实现对舵机的角度控制。
每个PWM周期中,脉冲的高电平时间决定了舵机输入的控制信号。
当控制信号的高电平时间较短时,舵机反应为将输出轴转动到最小角度。
类似地,高电平时间较长时,舵机反应为将输出轴转动到最大角度。
而当控制信号的高电平时间等于脉冲周期时,舵机会将输出轴转动到中立位置。
舵机的转动角度范围由其结构和控制电路决定。
通常,舵机的转动角度在90°至180°之间,具体取决于制造商的设计及型号。
三、舵机的工作模式1. 位置控制模式位置控制模式是舵机最常用的工作模式,也是其主要功能之一。
在位置控制模式下,舵机根据控制信号的脉宽来确定目标角度,并通过反馈机制实现精确的角度控制。
这种模式适用于需要精确控制转动角度的应用场景,如模型飞机的舵面控制、机器人的关节控制等。
2. 速度控制模式速度控制模式是舵机的一种特殊工作模式。
在此模式下,舵机通过控制信号的脉宽来确定目标转速,而非具体的转动角度。
这种模式常用于需要旋转运动的应用中,在无人车、机器人导航等领域有广泛应用。
3. 扭矩控制模式扭矩控制模式是舵机的另一种特殊工作模式。
在这种模式下,舵机通过控制信号中的脉宽来调整输出扭矩的大小。
这种模式常用于需要精确控制扭矩大小的应用场景,如机器人抓取物体、模型车辆的爬坡能力等。
二副专业解读船舶舵机系统
二副专业解读船舶舵机系统舵机是用以操纵船舶、控制或改变船舶航向的重要设备,对船舶航行至关重要。
操舵装置是否处于可用的良好状态,直接关系到船舶的航行安全,以至成为船舶安全检查的一项重要内容。
现就船舶操舵装置、操舵控制系统、应急操舵程序和演习及SOLAS公约第五章第26.1款、第26.2款等容易产生误解的概念作些浅释。
一、操舵装置1.定义能够使舵转动的装置称为操舵装置,通常指安装在舵机室内的舵机和传动机构,分为主操舵装置和辅操舵装置。
主操舵装置是指在正常航行的情况下为驾驶船舶而使舵产生动作所必需的机械、转舵机构、舵机装置动力设备(如设有)及其附属设备向舵杆传递转矩的部件(如舵柄及舵扇);辅橾舵装置是指在主操舵装置失效时为驾驶船舶所需的设备。
2.主操舵装置与辅操舵装置的区别从定义上讲,辅操舵装置应独立于主操舵装置,除了舵柄和舵扇等可共用外,其他部分(包括动力部分)都不可以共用。
就字面意义而言,主、辅操舵装置很容易混淆,导致很多航海者把驾驶台的NFU操舵柄(下文会提到)或驾驶台两边操纵台上、舵机间舵机旁边上的香蕉柄当作辅操舵装置。
其实,这些设备都只是主操舵装置的一种控制器(操舵方式),而非所谓的应急舵或辅操舵装置。
3.主操舵装置替代辅操舵装置的条件根据公约要求:如果主操舵装置具有两台或几台相同的动力设备,对于客船,当任一台动力设备不工作时,主操舵装置必须仍能具有足够的强度并在船舶处于最深航海吃水、以最大营运航速前进时将舵自一舷35°转至另一舷35°,以及相同条件下在不超过28秒内将舵自任一舷35°转至另一舷30°;对于货船,当所有动力设备都工作时,主操舵装置必须能满足上述满舵操作的强度,而且主操舵装置应布置成:当其管系或一台动力设备发生单项故障时能被隔离,使操舵能力持续保证或迅速恢复。
在动力设备上,对于客船,任何一台动力设备都得满足公约要求的性能;对于货船,则只需所有动力设备一起工作时满足公约要求性能即可,但需在满足发生单项故障时能被隔离并迅速恢复的条件下才不必设有辅操舵装置。
船舶舵机装置的自动控制系统介绍
三、对舵机拖动控制系统的技术要求 (一)、从主配电板到舵机舱应采用双线供电制,并尽可能远离 分开敷设(如左、右舷两路)。在正常情况下应急配电板供电时, 其中一路可以经应急配电板供电。驾驶室与舵机舱的操舵装置应使 用同一电源。 (二)、舵机电动机应满足舵机的技术性要求,并能保证堵转 1min的要求。 (三)、拖动电动机组应采用双机系统,各机组可单独运行(一 机组为备用),也可同时运行。一机组故障碍时,另一机组应能自 动投入运行。 (四)、至少设有驾驶室和舵机舱两个控制站,并设有转换装置, 防止两地同时操纵。 (五)、现代船舶驾驶室多装有操舵仪,一般设有自动、随动、 应急三种操舵方式,也可只设两种。 (六)、船舶处于最深航海吃水并以最大营运航速前进时,不仅 能满足舵自一舷350转至另一舷350的最大舵角要求,还应满足自任 一舷350转至另一舷300的时间不超过28s的转舵速度要求。 (七)、舵角指示器指示舵角的误差应不大于±10。
右偏,并自动停在右舵,舵操右舵XX0,舵叶右偏,并且自动停在 右舵XX0上。为了减小S形航迹的振幅,船舶在返回正航向过程中, 必须操回舵 .
图13-8 随动操舵方框图
图13-9为自动操舵的原理图。当船舶沿给定航向上航行,舵叶 在艏艉线上,如图示,滚轮1恰好与绝缘块4接触,两个继电器KA1、 KA2线圈都不通电,其常开触头都开启,直流发电机G磁场电流为 零,输出电压U0为零,直流电动机M停转。沿着正航向航行的船舶, 当受到风、水流等外界干扰而向右或左偏转离开正航向K某一角度γ 时,通过罗经的航向发送器,使航向接受器也转动同一角度 γ,于 是被航向接受器带动的滚轮1也就在两个导电半圆环2、3内侧滚动 某一角度,或与导电半圆环2接触,或与3接触,于是
Aura′=0,电动机停止转动。舵叶处于右舵与舵轮转角相对应的某 一角度的位置上。 如果要求回舵,就得舵轮扳回零位,R1的滑动点从a点重新返 回到0点,电桥平衡又被破坏,但这时放大器的输入信号U0a′<0, 发电机励磁电流IfG和输出电压U0为负,电动机逆时针方向转动, 舵叶向着艏艉线方向偏转。当回到艏艉线上时,通过反馈机构,R2 的滑动点也从a′点返回到0′点电桥又重新恢复平衡,放大器输入信 号U00′=0,电动机停止转动。 改变舵轮的转动方向,便可以改变电动机旋转和舵叶偏转的方 向。随动操舵的方框图如图13-8所示。由方框图可知,就其工作原 理来说,随动操舵就是一个闭环的随动系统,是一个根据偏差进行 自动调节的系统。这种系统的停舵指令不是由操舵人员发出的,而 是在舵叶偏转过程中,由它本身通过反馈机构发出的。由于闭环系 统中采用了比较环节(由两个电位器组成的电桥)进行比较,因此 只有当舵角反馈信号(与偏舵角β成比例)与操舵信号(分操舵角γ 成比例)相等时,偏关信号U1=0,舵叶才会停止偏转。舵轮从角回 互零位,舵叶也从β角回到艏艉线上。图13-8 随动操舵方框图 随动操舵的方法是,船舶在偏航右舵,舵轮操右舵XX0,舵叶右
舵机控制舵机旋转原理图
舵机控制舵机旋转原理图章节一:引言舵机是一种常用于控制机械装置旋转角度的装置,被广泛应用于机器人、航模以及其他自动控制领域。
舵机的核心部件是一种能够旋转特定角度的电机,通过接收控制信号来实现精确控制。
本论文将重点介绍舵机的工作原理以及控制舵机旋转的电路原理图。
章节二:舵机工作原理舵机内部由电机、减速器、控制电路、位置反馈装置和输出轴组成。
电机是舵机的动力源,减速器可将电机转速通过齿轮传递给输出轴,控制电路则负责接收外部信号并控制电机旋转到特定位置。
位置反馈装置的作用是反馈输出轴的位置信号给控制电路,确保旋转角度的精确控制。
章节三:舵机控制电路原理图舵机控制电路主要由微控制器、电源电路、驱动电路和通信接口组成。
微控制器是整个舵机控制系统的核心,通过编程实现对舵机的控制。
电源电路提供稳定的电源供电,确保舵机正常工作。
驱动电路负责通过电平变化控制舵机的旋转方向和速度。
通信接口可实现人机交互以及与其他系统的数据交换。
章节四:舵机旋转原理图舵机旋转的原理图主要由电机控制部分、驱动部分和位置反馈部分组成。
电机控制部分包括电源、电机和控制电路,其中电机通过电源得到动力驱动,控制电路接收微控制器发送的PWM信号来控制电机的旋转。
驱动部分包括三态驱动电路和齿轮传动装置,三态驱动电路通过控制三个开关的关闭和开启,可以实现电机正转、反转以及停止。
齿轮传动装置则将电机的转速和扭矩传递给输出轴。
位置反馈部分由位置反馈装置和比较器组成,位置反馈装置可以检测输出轴的位置,并将其转换为电压信号传给比较器,比较器则将反馈信号与控制信号进行比较,以实现对旋转角度的精确控制。
总结本论文介绍了舵机的工作原理以及控制舵机旋转的电路原理图。
舵机通过电机、减速器、控制电路、位置反馈装置和输出轴组成,通过接收控制信号实现旋转角度的精确控制。
控制电路采用微控制器、电源电路、驱动电路和通信接口,而舵机旋转的原理图由电机控制部分、驱动部分和位置反馈部分组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十字头式转舵机构的特点:
1)扭矩特性良好,承载能力较大,能可靠地平衡撞杆 所受的侧推力,可用于转舵扭矩很大的场合。
2)撞杆和油缸间的密封大都采用V型密封圈。密封圈工 作油压越高撑开越大,从而更加贴紧密封面,故密封可靠, 磨损后还具有自动补偿能力。此外,密封泄漏时较易发现, 更换也较方便。
3)油缸内壁除靠近密封端的一小段外,都不与拉杆接 触,故可不经加工或仅作粗略加工。
力矩马达式:舵机遥控系统的控制电路采用了无触点控制, 并取消了浮动杆追随结构。(见下图)
二、伺服油缸式舵机遥控系统 (属电液式)
伺服油缸式舵机遥控系统:(动画)
泵控型舵机液压系统
单动(非随动)操舵系统:只能控制舵机的起停和转舵方 向,当舵转至所需要的舵角时,操舵者必须再次发出停止转 舵的信号,才能使舵停转。通常既可设在驾驶台,也可在舵 机室操纵,以备应急操舵或检修、调试舵机之用。
随动舵、自动舵和非随动(单动)舵控制框图如下所示:
一、伺服电机式舵机遥控系统
1.直流伺服电机式舵机遥控系统( 属电气式,见动画 ) 2.交流伺服电机式舵机遥控系统(力矩马达式,属电液式)
4)油缸为单作用,必须成对工作,故尺寸、重量较大。 而且撞杯中心线通常都按垂直于船舶尾线方向布置,故舵 机室也需要较大的宽度。
二、 拨叉式转舵机构(动画)
受力分析:与十字头式转舵机构相同。
拨叉式转舵机构特点:侧推力可直接由撞杆本身承受而无需导
板。撞杆轴线至舵杆轴间的距离R0可缩减26%,撞杆的最大行程
图示为AEG型转叶式油缸 及密封装置。
回转式转舵机构特点: 1)占地面积小,重量轻,
安装方便; 2)无需外部润滑,管理
简便,且转舵时舵杆不受侧 推力,可减轻舵承磨损;
3)钮矩特性不如滑式, 但比滚轮式和摆缸式好;
4)内泄露部位较多,密 封不如往复式容易解决,容 积效率较低,油压较高时更 为突出。
§9-4 液压舵机的遥控系统
5)当舵叶在负扭矩作用下转动时或者在稳舵时油路锁闭不严, 则滚轮就有可能与某侧撞杆脱开而导致敲击。因此,在某些滚轮 式机构中,在滚轮与拉杆的端部之间还增设了板簧拉紧机构。
四、 摆缸式转舵机构 (动画)
主要结构:采用了与支架相铰接的两摆动式油缸和双作用的 活塞。油缸两端的油管必须采用有挠性的高压软管。
转舵装置
发
受
信 遥控系统 动
器
器
液压舵机
转
舵 油
转舵机构
舵 叶
缸
§9—3 液压舵机的转舵机构
转舵机构作用:用来将油泵供给的液压能变为转动舵杆的机 械能,以推动舵叶偏转。
转舵机构分类:(根据动作方式的不同分)
十字头式
拨叉式
往复式
滚轮式
转
摆缸式
舵
机
构
回转式
一、 十字头式转舵机构(动画)
结构:主要由转舵油缸、插入油缸中的撞杆以及与舵柄相连接 的十字形滑动接头等组成。
现代船舶的舵机,一般都同时装有可由驾驶台遥控的随动操 舵系统和自动操舵系统。此外,一般还同时设有单动(非随动) 操舵系统。
遥控系统分类: 按操舵控制方法分: 随动操舵系统; 自动操舵系统; 单动(非随动)操舵系统。
按传递操舵信号方法分:机械式、液压式、电气式和电液式。 现代船舶大都采用电气式或电液式遥控系统。
工作原理:见右图及后图
四缸转舵机构(也称四撞杆转舵机构)如下所示:
十字头式转舵机构的受力分析:如图所示。
液压对舵柄产生作用力Q :Q = P/cosα=(πD2p)/(4 cosα)
产生的转舵力矩M:
M = z Q Rηm = z ·(P / cosα·R0 )/( cosα·ηm)
M =πD2 z p R0 ηm / (4 cos2α)
结论1:滑式转舵机构所能产生的转舵力矩M 随舵角α
的增大而增大,与舵的水动力矩的变化趋势相适应。
结论2:十字头式转舵机构的工作油压不会因α 的增大而急 剧增加。
因为: M↑→ cos2α↓
结论3:撞杆有侧推力。需 要转舵扭矩很大的场合应有 可靠地平衡撞杆所受的侧推 力装置(导板)。
因而得以减小。在公称转舵扭矩和最大工作油压相同的情况下,
拨叉式的占地面积可比十字头式减少10~ 15%,重量亦相应减轻 10%。但公称转舵扭矩较大时仍以采用十字头式为宜。
三、 滚轮式转舵机构 (动画)
受力分析: 液压对舵柄产生作用力:
Q = P cosα=π D2p cosα/4
转舵扭矩:
M= z Q R0ηm = π D2 z p R0ηm cosα/4
结论:随着α 的增大,这种 机构的工作油压比滑式机构增 加得快。
滚轮式转舵机构的特点:
l)工作时无侧推力,故整个机构结构简单,加工容易,安装、 拆修都较方便。
2)提高了布置上的灵活性。
3)滚轮与撞杆间的磨损可自动进行补偿,不会因接头磨损、 间隙增大而产生撞击。
4)扭矩特性差,故而限制了它在大扭矩舵机中的应用。
5)理论排油量和进油量严格说来并不完全相等,如果使用奇 数的双作用活塞式油缸(在应急情况下)则相差更为明显,所以 在油路中必须采取容积补偿措施。
6)扭矩特性不佳(与滚轮式类同),应用于功率不大的舵机。
五、回转式转舵机构(动画)
受力分析:
转舵扭矩: M= z p A R0ηm
结论:转叶式机构所能产生的转 舵扭矩与舵角无关,其扭矩特性在 坐标图上是一条与横坐标平行的直 线。
随动操舵系统:是指在操舵者发出舵角指令后,不仅可使 舵按指定方向转动,而且在舵转到指令舵角后还能自动停止 操舵的系统。
自动操舵系统:是在船舶长时间沿指定航向航行时使用, 它能在船舶因风、流及螺旋桨的不对称作用等造成偏航时, 靠罗经测知并自动发出信号,使操舵装置改变舵角,以使船 舶能够自动地保持既定的航向。
摆缸式机构转舵的特点:
1)用双作用活塞代替了单作用的撞杆,提高了油缸的利用率, 减小外形尺寸和重量。
2)结构简单,安装较方便。
3)由于采用了双作用活塞,对油缸内表面的加工精度、活塞 杆与油缸的同轴度、以及活塞与油缸间的密封等都有较高的要求。
4)活塞密封较差运行的经济性低;检查和更换密封件又不如 撞杆式方便;当铰接处磨损较大时,工作中也会出现撞击。
摆缸式机构的转舵扭矩:转舵时,油缸摆角β (即任意 舵角时油缸中心线与中舵时舵柄的垂直线间的夹角)将随油
缸的安装角(即中舵时的油缸摆角)和舵转角α 而变。一般 常使中舵时β 为最大,而最大舵角时β 为零或接近于零。但 不论舵角α 如何, β 角总是很小,如果将其忽略不计,则 摆缸式与滚轮式的转舵扭矩基本相同。