曲面积分的方法(分面投影法)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(如;计算± ∫∫ Px, y, z ( x, y) dxdy 时,若选定曲面的上
Dxy
侧时,取“+”,否则取“-”); 四换域:改变积分区域,即积分区域S换为投影域 (如Dxy ),最后计算二重积分。
wk.baidu.com
计算第二曲面积分(坐标曲面积分)的方法 ( 分面投影法) 以计算 ∫∫ P ( x, y, z )dxdy为例: S 一代:将积分的曲面S 的显式方程(如z=z( x,y)) 二投:将S投影到与面积元素( 如 dxdy)中两个变 量同名的坐标平面( 如xoy平面,得投影区域 Dxy ) 上, 转化为二重积分 (如∫∫ P ( x, y, z )dxdy = ± ∫∫ P x, y, z ( x, y ) dxdy,
S Dxy
代入被积函数(如被积函数 P ( x,y,z))中;
注意:对第二曲面积分,投影方向是固定的,不能 随意选定,积分曲面S向xoz坐标平面投影(投影的 区域可以是零区域,但对第一曲面积分来讲,投影 在坐标面上的区域不能为零区域; 三定号 :由积分曲面S所选定的一侧,来确定面积元 素(如面积元素dxdy)前所带的符号是“+” 还是“-”,一般地,选定的积分曲面S的一侧为上、 右、前侧(即曲面S上的外法线向量向上、向右、向 前)时,取“+”,否则取“—”,
相关文档
最新文档