平面直角坐标系中几何综合题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

训练十三《平面直角坐标系》动点专题

解题技巧:

数轴上的动点问题离不开数轴上两点之间的距离。为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:

1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。即数轴上两点间的距离=右边点表示的数-左边点表示的数。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。即一个点表示的数为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。

3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

4.平面直角坐标系中求面积,往往需要转化成长方形、三角形、梯形等有面积公式的标准图形;高一般是非坐标轴顶点坐标A(a,b)中|b|

|a|或,底是坐标轴或者平行于坐标轴两点的距离,求法参见1.

解答题(共17小题)

1.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a、b、c满足关系式:|a﹣2|+(b﹣3)2+=0.

(1)求a、b、c的值;

(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;

(3)在(2)的条件下,是否存在负整数m,使四边形ABOP的面积不小于△AOP面积的两倍若存在,求出所有满足条件的点P的坐标,若不存在,请说明理由.

2.如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+

﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.

(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.

(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC若存在这样一点,求出点P的坐标;若不存在,试说明理由.

(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)

的值是否发生变化,并说明理由.

3.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.

(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化若不变,求出其值;若变化,求出变化范围.

4.如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB交y轴于F点.

(1)求点A、B的坐标.

(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图2,求∠AMD 的度数.

(3)如图3,(也可以利用图1)

①求点F的坐标;

②点P为坐标轴上一点,

若△ABP的三角形和△ABC

的面积相等若存在,求出P点坐标.

5.在直角坐标系中,已知点A、B的坐标是(a,0)(b,0),a,b满足方程组,c为y轴正半轴上一点,且S△ABC=6.

(1)求A、B、C三点的坐标;

(2)是否存在点P(t,t),使S△PAB=S△ABC若存在,请求出P点坐标;若不存在,请说明理由;

(3)若M是AC的中点,N是BC上一点,CN=2BN,连AN、BM相交于点D,求四边形CMDN的面积是.

6.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.

(1)求点A和点B的坐标;

(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.

(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x 轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.

7.如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式.

(1)求a,b的值;

(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;

(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等若存在,求出点P 的坐标;若不存在,请说明理由.

8.在如图直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式+

(b﹣3)2=0,(c﹣4)2≤0.

(1)求a、b、c的值;

(2)如果点P(m,n)在第二象限,四边形CBOP的面积为y,请你用含m,n的式子表示y;

(3)如果点P在第二象限坐标轴的夹角平分线上,并且y=2S四边形CBOA,求P点的坐标.

9.如图,A、B两点坐标分别为A(a,4),B(b,0),且a,b满足(a﹣2b+8)2+=0,E

是y轴正半轴上一点.

(1)求A、B两点坐标;

(2)若C为y轴上一点且S△AOC=S△AOB,求C点的坐标;

(3)过B作BD∥y轴,∠DBF=∠DBA,∠EOF=∠EOA,求∠F与∠A间的数量关系.

10.已知,在平面直角坐标系中,点A(0,m),点B(n,0),m、n满足(m﹣3)2=﹣;(1)求A、B的坐标;

(2)如图1,E为第二象限内直线AB上一点,且满足S△AOE=S△AOB,求E的坐标.

(3)如图2,平移线段BA至OC,B与O是对应点,A与C对应,连AC.E为BA的延长线上一动点,连EO.OF平分∠COE,AF平分∠EAC,OF交AF于F点.若∠ABO+∠OEB=α,请在图2中将图形补充完整,并求∠F(用含α的式子表示).

11.如图,已知点A(﹣m,n),B(0,m),且m、n满足+(n﹣5)2=0,点C在y轴上,将△ABC 沿y轴折叠,使点A落在点D处.

(1)写出D点坐标并求A、D两点间的距离;

(2)若EF平分∠AED,若∠ACF﹣∠AEF=20°,求∠EFB的度数;

(3)过点C作QH平行于AB交x轴于点H,点Q在HC的延长线上,AB交x轴于点R,CP、RP分别平分∠BCQ和∠ARX,当点C在y轴上运动时,∠CPR的度数是否发生变化若不变,求其度数;若变化,求其变化范围.

12.如图,在平面直角坐标系中,点A,B的坐标分别为A(﹣1,0)、B(3,0).现同时将点A,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C、D,连接AC,BD.(1)直接写出点C、D的坐标,求四边形ABDC的面积S四边形ABDC;

(2)在坐标轴上是否存在一点P,使S△PAC=S四边形ABDC若存在这样一点,求出点P的坐标;若不存

在,试说明理由.

(3)如图3,在线段CO上取一点G,使OG=3CG,在线段OB上取一点F,使OF=2BF,CF与BG 交于点H,求四边形OGHF的面积S四边形OGHF.

相关文档
最新文档