汽轮机轴向力
汽轮机原理名词解释
汽轮机的级: 汽轮机的级是汽轮机中由一列静叶栅和一列动叶栅组成的将蒸汽热能转换成机械能的基本工作单元。
级的余速损失: 汽流离开动叶通道时具有一定的速度,且这个速度对应的动能在该级内不能转换为机械功,称余速损失滑销系统: 保证汽缸定向自由膨胀,保持汽缸与转子中心位置一致汽耗微增率: 每增加单位功率需多增加的汽耗量。
迟缓率: 1n 、2n 分别表示在机组同一功率下的最高和最低转速0n 时汽轮机的额定转速压比: 喷嘴后的压力与喷嘴前的滞止压力之比速度系数: :在喷嘴出口处蒸汽的实际速度比理论速度速比: 动叶圆周速度u 与喷嘴出口速度c1之比x1=u/c1。
最佳速比: 轮周效率最大时的速度比称为最佳速度比。
反动度: 动叶的理想比焓降与级的理想比焓降的比值。
表示蒸汽在动叶通道内膨胀程度大小的指标。
轮周效率: 1kg 蒸汽在轮周上所作的轮周功Wu 与整个级所消耗的蒸汽理想能量Eo 之比。
轮周功率: 单位时间内蒸汽推动叶轮旋转所作出的机械功。
轮周损失: 喷嘴出口气流的实际比焓值h1与理想比焓值h1t 之差速度变动率:汽轮机空负荷时对应的最大转速nmax 和额定负荷时所对应的最小转速nmin 之差与与汽轮机额定转速n0之比凝汽器冷却倍率: 进入凝汽器的冷却水量与进入凝汽器的蒸汽量的比值称为凝汽器的冷却倍率。
表明冷却水量是被凝结蒸汽量的多少倍又称循环倍率M=Dw/Dc级按照不同角度的分类:按能量转换特点分为纯冲动级、冲动级、反动级、复速级等几种汽轮机的两大作用原理及其特点:冲动作用原理 冲动力推动动叶做功。
特点:蒸汽只在喷嘴中膨胀。
反动作用原理反动力推动动叶做功。
特点:蒸汽在喷嘴、动叶都膨胀。
1.级的临界状态(蒸汽在膨胀流动过程中,在汽道某一截面上达到当地声速的气流速度称为临界速度。
这时汽流所处的状态称为临界状态,汽流的参数称为临界参数。
)2.滞止状态(气体在流动的过程中,因受到某种物体的阻碍,而流速降低为零的过程称为绝热滞止过程,此时气体的状态为滞止状态)3.切部分的作用及膨胀条件:导向作用和膨胀作用;条件:叶栅后的压力P1小于临界压力P1c 大于极限膨胀压力P1d (P1d< P1<P1c )4.多级汽轮机的特点:(1整机功率较大2每级承担的焓降较小,各级都可以在最佳速比下工作3利用重热现象,余速利用4多级汽轮机相对内效率,绝对内效率明显提高5多级汽轮机单位功率的投资降低)提高单机功率的途径:(多缸、多排气口、提高初温初压、双轴、降低转速)(1)、提高新蒸汽参数、降低终参数;(2)采用高强度、低质量密度的合金材料;(3)采用多排气口;(4)采用低转速;(5)提高机组的相对内效率;(6)采用给水回热循环;(7)采用中间再热循环。
汽轮机一般常识
汽轮机一般常识轴承盖对轴瓦压紧之力称为轴瓦紧力.紧力的作用是保证轴瓦在运行中的稳定,防止轴瓦在转子不平衡力的作用下产生振动.紧力值等于两则铅丝厚度的平均值与顶部铅丝厚度的平均值之差. 当差值为负值时,就表明轴瓦顶部有间隙.在不向轴封供汽的情况下,凝汽器真空一般能过到50kpa左右,此值侧说明真空系统有漏气的地方。
汽机热态启动时,轴封供汽必须在抽真空前投入。
轴封供汽投入时,汽轮机盘车必须投入连续运行,以防转子弯曲。
汽轮机定速后应尽快和机组并网。
汽轮机空转时排气温度不超过120度。
排汽温度过高,将产生热胀变形,【后期气缸翘起】,使汽轮机中心偏移,造成低压轴封摩擦。
带负荷时排汽温不能超过60度。
注意凝汽器水位,减少过冷度。
汽轮机打闸后不能立即关闭轴封供汽门,要待转子静止真空降至零时才能关闭轴封供汽门。
转子静止时严禁向轴封供汽。
如发现有蒸汽漏入汽缸时,应将盘车投入连续运行。
汽轮机规定转子静止后投入盘车,直到高压首级金属温度降至150度以下,停止盘车。
可以定期将转子旋转180度。
转子的轴向膨胀大于汽缸轴向膨胀侧称正胀差,反之承负胀差。
汽轮机在冷态启动前胀差的指示只能为零或负值;而轴向位移的指示只能为正值或零。
减负荷快,负荷突然下降,汽轮机过水,蒸汽温度低于转子和汽缸温度,排气温度上升------胀差也会出现负值。
汽轮机停机时间在十二小时以内,侧为retail启动。
其他情况下汽轮机启动侧为冷态启动。
钢性联轴器要求两对轮端面偏差不大于0.02~0.03mm,圆周偏差不大于0.04mm.汽轮机本体及控制1.汽轮机本体有哪些部分组成的?汽轮机本体由三个部分组成的:(1)转动部分:由主轴,叶轮、动叶栅联轴器及其它装在轴上的零件组成;(2)固定部分:由汽缸、喷嘴隔板、隔板套、汽封、静叶片、滑销系统等组成;(3)控制部分:由自动主汽门,调速汽门.调节装置,保护装置和油系统等组成。
2.什么是冲动式汽轮机?什么是反动式汽轮机?冲动式汽轮机指的是蒸汽只在喷嘴叶栅中进行膨胀做功,而在动叶栅中只改变流动方向不膨胀做功者.反动式汽轮机指的是蒸汽不仅在喷嘴叶珊中进行膨胀,而且在动叶中栅中也进行膨胀的汽轮机。
汽轮机名词解释
汽轮机名词解释集11.汽轮机监视段压力——各抽汽段(除了最末级一、二级外)和调节级室的压力统称监视段压力。
2.过热度——从干饱和蒸汽加热到一定温度的过热蒸汽所加入的热量叫过热度。
3.反动度——就是蒸汽在动叶片内膨胀时所降落的理想焓降与整个级的理想焓降之比。
4.转子的寿命——是指从初次投入运行至转子出现第一道宏观裂纹期间的总工作时间。
5.除氧器的滑压运行——就是除氧器的压力不是恒定的,而是随机组负荷和抽汽压力的变化而变化。
6.油膜振荡——汽轮机转子的一阶临界转速接近工作转速的一半,这样的转子在工作转速下发生半速涡动时就将引起转子的共振,使半速涡动的振幅急剧增大,这种情况称为油膜振荡。
7.凝汽器极限真空——当凝汽器真空提高时,汽轮机的可用热将受到末级叶片蒸汽膨胀能力的限制,当蒸汽在末级叶片中膨胀达到最大值时,与之相对应的真空为极限真空。
8.水锤现象——在有压管道中,由于某一管道部分工作状态突然改变,使液体的流速发生急剧变化,从而引起液体压强的骤然大幅波动,这种现象叫水锤现象。
9.轴向位移——在汽轮机运行中,轴向推力作用于转子上,使之产生轴向窜动称为轴向位移。
10.余速损失——蒸汽离开动叶片时具有一定的余速,即具有一定的动能,这部分没被利用完的动能称余速损失。
11.转子惰走时间——发电机解列后,从汽轮机主汽门、调门关闭时起,到转子完全静止这段时间叫转子惰走时间。
12.死点——热膨胀时,纵销引导轴承座和汽缸沿轴向滑动,横销与纵销作用线的交点称为死点。
13.弹性变形——物体在受外力作用时,不论大小,均要发生变形,当外力停止作用后,如果物体能恢复到原来的形状和尺寸,则这种变形称物体的弹性变形。
14.塑性变形——物体受到外力的作用时,当外力增大到一定程度,即使停止外力作用,物体也不能恢复到原来的形状和尺寸,则这种变形称物体的塑性变形。
15.除氧器自生沸腾——指过量的热疏水进入除氧器时,其汽化出的蒸汽量已经满足或超过除氧器内的用汽需要,从而使除氧器内的给水不需要回热抽汽加热自己就沸腾,这种现象叫除氧器自生沸腾。
机组轴向推力方向
汽轮机轴向推力:
纯冲动式汽轮机动叶片内蒸汽没有压力降,但由于隔板汽封的漏汽,使叶轮前后产生一定的压差,且一般的汽轮机中,每一级动叶片蒸汽流过时都有大小不等的压降,在动叶片前后产生压差。
叶轮和叶片前后的压差及轴上凸肩处的压差使汽轮机产生由高压侧向低压侧、与汽流方向一致的轴向推力。
需指出:当负荷突然减小时,有时会出现与汽流方向相反的轴向推力。
离心式压缩机轴向推力方向:
离心式压缩机从进口开始,每经过一个叶轮的压缩,气体的压
力值会增加一次(按压缩比)。
这样,对于一根转子来说,前面级
的叶轮承受的压力低,后面级的叶轮承受的压力高,整个转子在这
些不同压力的作用下,就会受到从高压端到低压端的一个轴向推力。
这个轴向推力由推力轴承来承受。
一般为了保护推力轴承,在转子
的某个部位会设置一个平衡盘,在平衡盘一端接入低压气体,另一
端接入高压气体,利用这个压差形成的推力来帮助抵消一部分轴向力。
盲板制作:
对焊法兰盲板直径 = 管道通径+85mm
成插法兰盲板直径 = 管道通径+70mm
油冷器及油过滤器:螺丝指向哪边,就是哪边正在使用。
汽轮机转子产生轴向推力原因
汽轮机转子产生轴向推力原因
汽轮机转子产生轴向推力是热力机械循环的关键单元,在汽轮机的许多应用中至关重要。
它的运行稳定性及其耐久性是确保汽轮机系统运行的基础。
汽轮机转子产生轴向推力的原因,可以从物理学上去理解。
当流体在汽轮机转子上运动时,流体会因空气摩擦而面临摩擦力,这种轴向向力促使汽轮机转子产生轴向推力的产生,也就是被称为流体动压力的常量驱动力,这种物理现象可以用简单的物理公式描述,dP/dr=Cf x (V2/2g)。
其中,dP/dr表示轴流体空间中的动压力,Cf表示摩擦因子、V表示流体速度、g表示重力加速度。
因此,随着汽轮机转子转动,流体会面临一个在空间上单调递减的动压力,而动压力也有一个与之相反的反作用力,使转子推动汽轮机运行。
另外,汽轮机转子也会受到流量效应的影响,当流量加大时,流体速度增大的同时,增加的摩擦力会使汽轮机转子产生轴向推力,因此,汽轮机转子通过流量效应进行调节,以维持轮机运行稳定。
总之,汽轮机转子产生轴向推力的根本原因,主要是因为汽轮机转子上运动的流体会产生一个恒定的动压力,并且受流量效应的影响,使汽轮机转子产生轴向推力,从而带动汽轮机的运行。
简述凝汽式汽轮机轴向推力
简述凝汽式汽轮机轴向推力凝汽式汽轮机是一种常见的热力发电设备,广泛应用于电力、化工、冶金等行业。
在汽轮机的运行过程中,轴向推力是一个重要的考虑因素。
轴向推力是指汽轮机转子在运行过程中所受到的沿着轴向的力。
由于汽轮机的转子通常是在高速旋转的状态下运行,因此轴向推力的存在会对设备的运行稳定性和寿命产生重要影响。
在凝汽式汽轮机中,轴向推力主要由两个方面的因素引起:蒸汽流动和蒸汽凝结。
蒸汽流动是产生轴向推力的主要原因之一。
在汽轮机的工作过程中,蒸汽从高温高压区域流向低温低压区域,形成了一个压力梯度。
这个压力梯度会产生一个方向指向低压区域的力,即轴向推力。
蒸汽流动的速度和方向会受到汽轮机的设计和工况等因素的影响,因此轴向推力也会随之变化。
蒸汽凝结也是导致轴向推力的重要因素之一。
凝汽式汽轮机的工作原理是将高温高压的蒸汽通过转子的叶片进行膨胀,然后将膨胀后的蒸汽排入凝汽器中进行冷凝。
在凝汽器中,蒸汽会释放出大量的热量,并转化为液态水。
这个过程中,蒸汽的体积会急剧减小,从而产生了一个方向指向转子的力,即轴向推力。
蒸汽凝结的程度和速度会受到凝汽器的设计和工况等因素的影响,因此轴向推力也会随之变化。
凝汽式汽轮机的轴向推力对设备的运行稳定性和寿命有重要影响。
过大的轴向推力会导致轴承的过早磨损和失效,甚至引起转子的不稳定振动。
过小的轴向推力则会使转子在轴向上产生过大的位移,导致叶片与固定部件之间的碰撞和磨损。
因此,在汽轮机的设计和运行过程中,需要合理控制轴向推力的大小,以确保设备的正常运行。
为了减小轴向推力的大小,凝汽式汽轮机通常采用多级膨胀的结构。
通过将蒸汽的膨胀过程分成多个级别,可以使每个级别上的蒸汽膨胀比减小,从而减小了蒸汽流动和凝结带来的轴向推力。
此外,还可以通过优化凝汽器的设计和工况,使蒸汽的凝结过程更加均匀和稳定,减小轴向推力的波动。
凝汽式汽轮机轴向推力是一个重要的考虑因素,对设备的运行稳定性和寿命产生重要影响。
汽轮机轴向推力的主要平衡手段
汽轮机轴向推力的主要平衡手段说到汽轮机,大家可能会想起那轰隆轰隆的巨型机器,它们在发电厂里转啊转,不停地把热能变成电能。
但你知道吗,这些看起来威风八面的汽轮机,背后也有不少“秘密武器”来确保它们能平稳运行。
今天,我们就聊聊汽轮机轴向推力的平衡手段——说白了,就是如何让这些庞然大物保持平衡,不至于让它们在工作的时候东倒西歪。
1. 轴向推力的由来1.1 轴向推力是什么?首先,咱们得搞明白什么是轴向推力。
简单来说,就是汽轮机在工作时,内部的气体压力会推着轴向前或向后移动。
就像你推一辆车,车子会向你推回来一样,这个推力也会作用在汽轮机的轴上。
不过,汽轮机的轴可不简单,它不仅要承受这些推力,还得保持平稳,不让机器发生什么意外。
1.2 为什么要平衡?你可能会问,轴向推力的平衡有什么重要的?要知道,如果轴向推力不平衡,汽轮机的轴就会“晃荡”起来,就像一只飞盘在空中不稳定,最后搞不好会导致机器损坏,甚至停机。
所以,平衡推力就显得尤为重要。
想象一下你在玩蹦床,如果重心不稳,不用多久你就会摔下去,汽轮机也是同样的道理。
2. 主要的平衡手段2.1 推力轴承首先,最常见的手段就是推力轴承。
推力轴承就像是汽轮机的“支撑杆”,它们负责承受并分散轴向推力。
推力轴承的设计可是相当讲究的,要确保它们能够承受巨大压力,同时还要保持平稳的运转。
想象一下,推力轴承就像是支撑大厦的地基,得够牢固,才能让整个建筑稳如磐石。
2.2 油膜轴承接下来就是油膜轴承,它的工作原理有点像你在洗澡时把水放在手上,水膜能把你的手浮在水面上一样。
油膜轴承通过在轴与轴承之间形成一层油膜来减少摩擦。
这样一来,汽轮机的运转就更加平稳了,像是在滑冰场上滑行一样顺畅。
2.3 推力盘还有一种手段就是推力盘。
推力盘的工作原理比较直观,就是通过一个圆盘来均匀分配推力。
可以把它想象成一个巨大的轮子,当推力作用在这个轮子上时,轮子就会把推力均匀分布,防止局部压力过大。
就像是你用手推一个大球,球会滚动得很均匀,不会一边重一边轻。
某300MW机组供热改造轴向推力计算模型
某300MW机组供热改造轴向推力计算模型管伟诗1,梁志伟1,党丽丽2(1.哈尔滨电气集团电站服务事业部,哈尔滨150028;2.哈尔滨汽轮机厂有限责任公司,哈尔滨150046)摘要:300MW等级火电机组实施供热改造后,汽轮机部分通流级数承受压差改变,因此会对汽轮机转子的推力产生较大影响。
为保证机组的安全,在改造前建立正确的力学模型,进行分析核算。
文中以国内某300MW机组由纯凝机组改造为回转隔板供热抽汽为例,介绍了供热改造后汽轮机推力计算分析模型。
关键词:汽轮机;通流;供热;推力计算中图分类号:TK263.1文献标志码:A文章编号:1002-2333(2021)06-0155-03 Introduction of Axial Thrust Calculation Model for a300MW Unit Heating TransformationGUAN Weishi1,LIANG Zhiwei1,DANG Lili2(1.Power Station Services Division of Harbin Electric Corporation,Harbin150040,China;2.Harbin Turbine Works Co.,Ltd.,Harbin150040,China)Abstract:After the implementation of heat supply reform for300MW Thermal power units,the pressure difference of some flow passage stages of steam turbine changes,which will have a great impact on the thrust of steam turbine rotor.In order to ensure the safety of the unit,this paper establishes the correct mechanical model and carried out analysis and calculation before the transformation.Taking a300MW unit transformed from a pure condensing unit into a rotary diaphragm heating and extraction unit as an example,the calculation and analysis model of steam turbine thrust after heat supply transformation is introduced.Keywords:steam turbine;through flow;heating thrust;calculation0引言随着我国经济的迅速发展,工业及民用电负荷的不断增长。
汽轮机轴向位移与胀差增大原因及处理
汽轮机轴向位移与胀差汽轮机轴向位移与胀差 (1)一、汽轮机轴向位移增大的原因 (1)二、汽轮机轴向位移增大的处理 (1)三、汽机轴向位移测量失灵的运行对策 (1)汽轮机的热膨胀和胀差 (2)相關提問: (2)1、轴向位移和胀差的概念 (3)2、轴向位移和胀差产生的原因(影响机组胀差的因素) (3)使胀差向正值增大的主要因素简述如下: (3)使胀差向负值增大的主要原因: (4)正胀差 - 影响因素主要有: (4)3、轴向位移和胀差的危害 (6)4、机组启动时胀差变化的分析与控制 (6)1、汽封供汽抽真空阶段。
(7)2、暖机升速阶段。
(7)3、定速和并列带负荷阶段。
(7)5、汽轮机推力瓦温度的防控热转贴 (9)1 润滑油系统异常 (9)2 轴向位移增大 (9)3 汽轮机单缸进汽 (10)4 推力轴承损坏 (10)5 任意调速汽门门头脱落 (10)6 旁路系统误动作 (10)7 结束语 (10)汽轮机轴向位移与胀差轴向位移增大原因及处理一、汽轮机轴向位移增大的原因1)负荷或蒸汽流量突变;2)叶片严重结垢;3)叶片断裂;4)主、再热蒸汽温度和压力急剧下降;5)轴封磨损严重,漏汽量增加;6)发电机转子串动;7)系统周波变化幅度大;8)凝汽器真空下降;9)汽轮机发生水冲击;10)推力轴承磨损或断油。
二、汽轮机轴向位移增大的处理1)当轴向位移增大时,应严密监视推力轴承的进、出口油温、推力瓦金属温度、胀差及机组振动情况;2)当轴向位移增大至报警值时,应报告值长、运行经理,要求降低机组负荷;3)若主、再热蒸汽参数异常,应恢复正常;4)若系统周波变化大、发电机转子串动,应与PLN调度联系,以便尽快恢复正常;5)当轴向位移达-1.0mm或+1.2mm时保护动作机组自动停机。
否则手动打闸紧急停机;6)轴向位移增大虽未达跳机值,但机组有明显的摩擦声及振动增加或轴承回油温度明显升高应紧急停机;7)若轴向位移增大而停机后,必须立即检查推力轴承金属温度及轴承进、回油温度,并手动盘车检查无卡涩,方可投入连续盘车,否则进行定期盘车。
汽轮机原理3.5多级汽轮机轴向推力
三、极限功率一、轴向推力:(一)冲动式汽轮机的轴向推力(二)反动式汽轮机的轴向推力二、轴向推力的平衡一、轴向推力:1、作用在动叶上的轴向推力:F Iz 2、作用在叶轮面上的轴向推力:F IIz )]([4][4][4222212222212)()()(p p d l d Fd d p d l d p d l d F d II Zd IIZ b m d b m b m --===---=---πππ(一)冲动式汽轮机的轴向推力:)()()()sin sin (2221221212211p p l d F p p p p pp p p p p l d c c Fpbm I zppb m I zp G -=-=-=∆--=-+-=ΩΩΩππαα压力反动度:3、作用在轴的凸肩上的轴向推力隔板轴封漏汽量、平衡孔漏汽量、动叶根部漏入漏出蒸汽量;泵浦效应;G l 1G l 2G l 3ΩΩΩ<<m p d ∑∑∑∑++=++=nn n nIIIzII zIzzIIIzII zI zzF FF F F F F F 1111(二)反动式汽轮机的轴向推力:)(][4202222)(p p d l d F pp p pd IIZ ddb m --=--=Ω-Ω 叶轮反动度:1、作用在叶片上的轴向推力;2、作用在轮鼓锥形面上的轴向推力;3、作用在转子阶梯上的轴向推力。
二、轴向推力的平衡:1、平衡活塞法(有图)2、反向布置法(有图)3、止推轴承4、平衡孔(有图)——三、极限功率:1、定义:在一定的初终参数和转速下,单排汽口凝汽式汽轮机所能发出的最大功率,称为极限功率。
2、提高单机最大功率的途径:(1)采用高强度、低密度材料;(2)增加排汽口;(3)采用低转速;(4)提高初参数、降低终参数。
汽轮机原理-多级汽轮机的轴向推力及平衡方法
p2
从而可以减少作用在叶轮上的轴向力。 通常在叶轮上开5~7个平衡孔。
pd
8
第四节 级汽轮机的轴向推力及平衡方法
4.汽缸对称布置法 是大型多缸汽轮机平衡轴向推力最有效的办法
采用多缸反向(两个缸对称布置)布置,使汽流在不同的汽缸中作反向流动, 其轴向力方向相反,达到了平衡的目的。 下图为多缸反向布置的示意图。国产125MW、200MW、300MW 汽轮机都采 用多缸反向布置的办法来平衡轴向力。
12
1)掌握多级汽轮机的热力特点及结构特点; 2)掌握多级汽轮机各项热力参数、结构参数沿通流部的不同变化规 律,能正确选择确定各相关参数; 3)掌握多级汽轮机轴封及其系统的结构、工作原理及设计计算; 4)掌握多级汽轮机进、排汽机构损失的形成机理及减小措施; 5)掌握多级汽轮机运行经济性和可靠性指标的评价及计算; 6)掌握多级汽轮机轴向推力的成因、计算及平衡措施。
常见的轴向推 力平衡办法
1.设置平衡活塞 2.转子设计成转鼓形式 3.叶轮上开平衡孔 4.汽缸对称布置法 5.推力轴承承担轴向推力
6
第三节 级汽轮机的轴向推力及平衡方法
二. 轴向推力的平衡方法
1. 平衡活塞法
在平衡活塞上装有齿形轴封,当蒸汽由活塞 的高压侧向低压侧流动时,压力由p0降为px 。 平衡活塞在压力差作用下,就产生了一个向 左的作用力 。 这个力刚好与 Fz 方向相反,起 到了平衡作用。
在一般情况下,作用在一个冲动级上的轴向推力 由 3 部分所组成:
1、作用在动叶片上的轴向力 Fz1 2、作用在叶轮面上的轴向力 Fz2
3、作用在主轴凸肩上的轴向力 Fz3
2
第三节 级汽轮机的轴向推力及平衡方法
一. 多级汽轮机的轴向推力
汽轮机的原理及结构分析
汽轮机的原理及结构分析本文简单介绍了汽轮机的驱动及其设备的原理和内部结构,汽轮机是将蒸汽的能量转换成为机械功的旋转式动力机械,又称蒸汽透平。
汽轮机的工作原理是能将蒸汽热能转化成为机械功的外燃回转式机械,来自锅炉的蒸汽进入汽轮机后,依次经过一系列环形配置的喷嘴和动叶,将蒸汽的热能转换为汽轮机转子旋转的机械能。
蒸汽在汽轮机中,以不同方式进行能量转换。
结构部件由转动部分和静止部分两个方面组成。
转子包括主轴、叶轮、动叶片和联轴器等。
静子包括进汽部分、汽缸、隔板和静叶栅、汽封及轴承等。
希望通过本文使读者初步了解汽轮机,并对实际生产操作有一定的帮助。
标签:汽轮机原理叶轮结构分析汽轮机是用蒸汽来作功的旋转式原动机,来自废热锅炉或其他汽源的蒸汽,经主汽阀和调节阀进入汽轮机,依次高速流过一系列环形配置的喷嘴(或静叶栅)和动叶栅而膨胀作功,将蒸汽的热能转变为推动汽轮机转子旋转的机械功,从而驱动其他机械转动。
与往复式蒸汽机相比,汽轮机中的蒸汽流动是连续的、高速的,单位面积中能通过的流量大,因而能发出较大的功率。
大功率汽轮机可以采用较高的蒸汽压力和温度,顾热效率更高。
工业汽轮机的结构与其工作原理、工作条件、受力情况、工艺要求、材料性质等有密切的关系。
通常,中、小功率的汽轮机采用单缸结构,大功率汽轮机则由高压缸、中压缸(或高中压合缸)和低压缸组成。
根据石化公司现有汽轮机结构特点,以下图1为例介绍。
该结构是杭州汽轮机厂应用引进德国西门子三系列积木块工业汽轮机设计制造技术生产的国产反动式EHNK/ENK型多级抽汽凝汽式汽轮机。
该型汽轮机采用积木块设计原理,通常由进汽段、中间段或延伸段和排汽段三个区段组成,其基本设计形式为多级反动式。
图中所示的工业汽轮机为单轴单缸结构,共有十三级,由一个调节级和十二个压力级组成,其中调节级采用冲动式设计,压力级采用反动式设计,末几级为带叉型叶根的扭曲叶片。
转子为整锻转鼓型,在转子的高压端设有平衡活塞。
汽轮机轴系调整及轴向定位
兴泰发电
XINGTAI POWER
轴系定位分径向定位和轴向定位 下面我先谈谈影响径向定位的因素,径 向主要是对汽封间隙的影响。
兴泰发电
XINGTAI POWER
一、汽轮机汽缸在安装时的影响。安装检修过程中,中心的 变化主要是由于汽缸安装状态不同,使汽缸垂弧发生变化所致。 例如找中心时有只有下半缸而缸内无内缸、隔板或隔板套,有时 虽然只有下半缸,但下半内缸、下半隔板套都已放入;有时在下 半空缸再扣上半空缸;有时在半实缸上再扣合上半实缸;此外合 实缸还有紧与不紧汽缸法兰螺栓的区别,在此不同状态下,汽缸 的垂弧各不相同。所测得汽封凹窝中心值不同。垂弧变化有两面 方面的原因:一方面是增加重量后垂弧增加;另一方面是扣合上 缸并拧紧法兰螺栓后,汽缸的横向断面变成圆,使汽缸体的刚度 增加,垂弧减小。因此安装时必须对汽缸状态这一因素加以考虑 汽缸垂弧的影响。为此要把汽缸相对于转子的中心适当放低,这 样才能在加上大盖并拧紧螺栓后中心正好合适。对于不同类型的 机组如果具体数值没有掌握,就要进行实际测定。
兴泰发电
XINGTAI POWER
②油膜厚度的影响: 转子静止时,轴颈沉于轴瓦底部,此时轴颈中心在轴瓦 凹窝中心的正下方,当转子刚开始转动时,由于转速较低,还 未形成油膜,轴颈和轴承之间为干磨擦,但是随轴颈的转动轴 瓦内的润滑油受挤压从而使压力升高,此压力高到一定程度, 即可把轴颈托起,在轴颈和轴瓦凹窝间形成一层油膜,在转速 升高过程中,由于楔形油膜压力的作用,将使转子位移,这种 油膜引起转子的位移将使转子的中心发生变化。对于圆筒形和 椭圆形轴瓦,上述油膜对转子中心位臵的影响可使转子沿旋转 方向的横向位移量达0.1~0.3mm。因此转子按轴封凹窝找中 心时,应适当加大轴封凹窝沿转子旋转方向的间隙,汽轮机转 子一般为顺时针方向转动,故在转子按轴封凹窝找中心时应使 左侧间隙大于右侧间隙(油楔轴承例外)。
汽轮机知识
7.汽轮机发电机组的经济指标有汽耗率和热耗率,热耗率再来评价经济性指标。
8.当级内未达到临界状态时级的流量不仅与级前参数有关,而且还与级后参数有关。
答:在凝气器中,蒸汽压力和其饱和温度是相对的,只要算出了饱和温度,就可以确定它对应的饱和蒸汽压力,由于凝气器的总压力与蒸汽的分压力相差甚微,则蒸汽的压力Ps,则为凝气器压力Pc. 汽轮机的级内损失有那些?减小的措施有哪些?答:叶栅损失,余速损失,扇形损失,叶轮摩擦损失,部分进汽损失,漏汽损失,湿汽损失。 部分进汽损失的产生:在动叶旋转至不工作弧段时,仍有蒸汽。减小措施:1设计合适的部分进汽度,使叶栅损失,部分进汽损失之和最小,2在不工作弧段的动叶栅相应位置加护装置。 湿汽损失的产生:1部分蒸汽凝结2蒸汽携带水珠3水珠扰乱主流4湿气来不及施放能量形成过冷损失。减小措施:1采用去湿装置,减少湿蒸汽中的水分,2提高动叶的抗侵组成的将热能转化为机械能的基本作功单元。
2,反动度:蒸汽在动叶栅中膨胀时的理想焓降和蒸汽在整个级中膨胀是的滞止理想焓降之比。
3,临界速度:与当地声速相等的气流速度
4,临界压力比:气流达到声速时的压力与滞止压力之比。
5,临界压力:气流达到声速时的压力。
6,轮周功率:单位时间内圆周力在动叶栅上所做的功。
31,一次调频:电负荷改变引起电网频率变化时,电网中并列运行的各台机组均自动地根据自身的静态特性线承担一定负荷的变化以减少电网频率的改变,这种调节过程称为…
32,二次调频:在一次调频后,通过同步器来调整某机组的负荷,并恢复电网频率的过程。
汽轮机轴向位移和胀差零位的确定
汽轮机轴向位移和胀差零位的确定一、轴向位移气压机与汽轮机在运转中,转子沿着主轴方向的窜动称为轴向位移。
机组的轴向位移应保持在允许范围内,一般为0.8~1.0mm,超过这个数值就会引起动静部分发生摩擦碰撞,发生严重损坏事故,如轴弯曲,隔板和叶轮碎裂,汽轮机大批叶片折断等。
转子轴向位移(也被成为窜轴)这一指标主要是用以监督推力承轴的工作状况。
汽轮机运行中,汽流在其通道中流动时所产生的轴向推力是由推力承轴来承担的,并由它来保持转子和汽缸的相对轴向位置。
不同负荷下轴向推力的大小是不同的,推力承轴在受压时产生的弹性变形也相应变化,所以运行中应该将位移数值和准值作比较,借以查明机组运行是否正常。
作用在汽轮机转子的轴向推力,是由推力承轴来承受的,推力承轴承受转子的轴向推力并维持汽轮机通流部分正常的动静轴向间隙。
轴向推力的变化将影响推力承轴工况的变化,进而会影响到汽轮机动静轴向间隙。
从汽轮机安全运行的角度看来,动静轴向间隙是不允许由过大的变化的,所以通常均在推力承轴部位装设汽轮机转子轴向位移监测装置,以保证汽轮机组的安全工作。
推力承轴,包括承轴座架、瓦架、油膜,并非绝对刚性,也就是说在轴向推力用下会产生一定程度的弹性位移。
如果汽轮机轴向推力过大,超过了推力承轴允许的负载限度,则会导致推力承轴的损坏,较常见到的就是推力瓦磨损和烧毁,此时推力承轴将不能保持机组动静之间的正常轴向间隙,从而将导致动静碰磨,严重时还会造成更大的设备损坏事故轴向位移保护装置是用来检测汽轮机转子和静子之间相对位移,它根据推力轴承承载能力和流通部分间隙规定了报警值和停机值,当轴向位移骤增值超过规定值时,轴向位移保护装置能自动报警和自动停机,防止轴向位移增大时汽轮机受到损伤。
轴向位移为正值时,大轴向发电机方向移,若此时汽缸膨胀远小于轴的膨胀,差胀不一定向正值方向变化;如果机组参数不变,负荷稳定,差胀与轴向位移不发生变化。
机组启停过程中及蒸汽参数变化时,差胀将会发生变化,由于负荷的变化而轴向位移也一定发生变化。
关于汽轮机转子的轴向定位问题
关于汽轮机转子的轴向定位问题张国旺2015年11月29日一、关于“规范”中对转子轴向定位的要求:在《DL/T5210.3-2009 电力建设施工质量验收及评价规程第3部分:汽轮发电机组》的“表4.4.7通流部分间隙测量调整”中讲到了“转子定位尺寸K值”“用塞尺或楔形塞尺检查”,“最小轴向通流间隙”在“转子按K值定位后,分别在半实缸及全实缸状态下顶推转子进行测量”。
在《DL 5190.3-2012 电力建设施工技术规范第3部分:汽轮发电机组》中也明确规定:“4.7.11 通流部分间隙的测量应符合下列规定:1)通流部分间隙应符合图纸要求,测量后的记录应比对制造厂的出厂记录;2)测量通流间隙前应先按制造厂提供的第一级喷嘴与转子叶轮间的间隙值对转子进行定位,定位时,转子推力盘应紧贴工作面;3)第一次测定时应使车头侧危急遮断器的飞锤向上;第二次测量时,顺转子运行方向旋转90°,每次应测量左右两侧的间隙;4)转子最终定位后应测取汽缸外部上汽封端面与该转子上外露的精密加工面的距离尺寸作为汽缸轴向位置定位的依据,测量部位应作出标记。
4.7.12 速度级与转向导叶环上半部的最小轴向间隙,可采用前后顶动汽轮机转子的方法进行。
测量时应拆除可能阻挡转子前后位移的部件,并防止顶坏设备。
4.7.13 转子轴向窜动的最终记录,在完成汽机扣盖工作后,以热工整定轴向位移指示时测定的数据为准。
4.7.14 通流部分间隙及汽封轴向间隙不合格时,应由制造厂确定处理方案。
”二、关于转子定位尺寸K值的定义:一般地讲,对单汽缸结构的小汽轮机来说,转子定位尺寸K值就是制造厂提供的第一级静叶(喷嘴)与动叶之间的轴向间隙;对多汽缸结构的汽轮机来说,在制造厂提供的安装说明书中,对每一个汽轮机的转子都提供了一个确定的K值,即是各汽缸第一级静叶(喷嘴)与动叶之间的轴向间隙,对于对分双流结构的汽缸(如对分双流结构的低压缸)其转子的K 值,通常是指汽缸调阀端的第一级静叶与动叶之间的轴向间隙。
汽轮机考试要点 (2)
1.冲动级和反动级的做功原理有何不同?在相等直径和转速的情况下,比较二者的做功能力的大小并说明原因。
答:冲动级做功原理的特点是:蒸汽只在喷嘴中膨胀,在动叶汽道中不膨胀加速,只改变流动方向,动叶中只有动能向机械能的转化。
反动级做功原理的特点是:蒸汽在动叶汽道中不仅改变流动方向而且还进行膨胀加速动叶中既有动能向机械能的转化同时有部分热能转化成动能。
在同等直径和转速的情况下,纯冲动级和反动级的最佳速比比值:上式说明反动级的理想焓降比冲动级的小一倍2.说明高压级内和低压级内主要包括哪几项损失?答:高压级内:叶高损失、喷嘴损失、动叶损失、余速损失、扇形损失、漏气损失、叶轮摩擦损失等;低压级内:湿气损失、喷嘴损失、动叶损失、余速损失,扇形损失、漏气损失、叶轮摩擦损失很小。
3.汽轮机级内有哪些损失?答:汽轮机级内的损失有:1喷嘴损失;2动叶损失3余速损失4叶高损失:又称为端部损失,产生原因:当汽流通过汽道的时候,在上下端面上,由于蒸汽的粘性形成一层很薄的附面层,附面层内粘性力损耗汽流的动能,形成了端部附面层中的摩擦损失。
5扇形损失6叶轮摩擦损失(简称摩擦损失):由两部分组成:a叶轮两侧几围带表面的粗糙度引起的摩擦损失b子午面内的涡流运动引起的损失7部分进汽损失:由鼓风损失和斥汽损失两部分组成8漏汽损失:反动级漏汽损失比冲动级大9湿气损失:过饱和损失,挟带损失,制动损失,扰流损失,工质损失4.据喷嘴斜切部分截面积变化图,请说明:(1).当喷嘴出口截面上的压力比p1/p0大于或等于临界压比时,蒸汽的膨胀特点;(2).当喷嘴出口截面上的压力比p1/p0小于临界压比时,蒸汽的膨胀特点。
答:(1)p1/p0大于或等于临界压比时,喷嘴出口截面AC上的气流速度和方向与喉部界面AB相同,斜切部分不发生膨胀,只起导向作用。
(2)当喷嘴出口截面上的压力比p1/p0小于临界压比时,气流膨胀至AB时,压力等于临界压力,速度为临界速度。
第三章 多级汽轮机 经济指标及极限功率 轴向推力
η g表 示 发 电 机 的 效 率 , 则 在 发 电 机
(3 --- 43 )
的出线端所获得的电功率为: D ∆H D ∆H Pel = Pmη g = 0 t η iη mη g = 0 t η r .el 3600 3600
η 其 中 , r .el = η iη mη g, 称 为 相 对 电 效 率 。 它 表 示 每 kg 蒸 汽 所 具 有
∆H t ηt = h0 − hc
(3 ---- 46 )
其 中 , h0 -------- 蒸 汽 的 初 焓 , hc ------- 凝 结 水 焓 , 即 在 背 压 pc 下 的 饱 和 水 焓 。
h 这 里 , 0 --
hc为 每 1 kg 蒸 汽 在 锅 炉 中 所 获 得 的 热 量 。 对 于 有 回 热
∆H t 。蒸汽在进汽机构中的压力损失和管道长短、阀门型线、蒸汽室形状及
汽流速度有关。通常,当阀门全开时,汽流速度为(40 ~ 60)m / s ,则在进汽 机构中由于节流所引起的压力损失为:
∆p 0 = p 0 − p 0 = (0.03 − 0.05) p 0
(3-----29 )
对于大型汽轮机(如国产200MW 、300MW汽轮机),中压缸和低压缸之间有 低压导汽管道相连接,则低压导汽管道的压力损失为:
二,汽轮机进、排汽机构的压力损失 汽轮机进、
汽轮机必须有进汽机构和排汽管道。进汽机构由主汽阀、调节阀、导汽管和 蒸汽室组成。排汽机构是一个扩散形的排汽管所构成。蒸汽通过汽轮机进、排 汽机构时,由于摩擦和涡流的存在,会使压力降低,形成损失。
1,进汽机构中的压力损失
由于摩擦和涡流的存在,蒸汽通过汽轮机进汽管道就会有压力降低。这个压 力降低不作功,是一种损失。而第一级喷嘴前的压力为 p 0 ,则∆p 0 = p 0 − p 0 。 从图2----13 (b) 中可见,由于压力差∆p存在,使整机理想焓降从 H t " 降为 ∆
汽轮机轴向推力大的原因及处理方法
汽轮机轴向推力大的原因及处理方法在工业生产中,汽轮机是重要的生产设备,对于工业发展有重要的作用,所以汽轮机的正常运转对于工业生产有极大的影响。
在汽轮机运转的过程中,如果轴向推力过大,将会对汽轮机的运行造成巨大的影响。
所以文章对于汽轮机轴向推力过大的原因进行了分析,然后提出了处理的方法,为汽轮机的稳定运行奠定了坚实的基础。
标签:汽轮机;轴向推力;原因分析;处理措施汽轮机在运行的过程中,必须保证内部系统平衡稳定,为汽轮机的安全稳定运行提供基础的保障。
在运行的过程中,所产生的蒸汽会对动叶片产生一定的压力,在叶轮的两侧也会存在一定的压力差,由此会对转子产生一定的压力,推动其位移。
在运行中所产生的压力差有时会达到几兆牛顿,所以一定要采取相应的措施,保持转自的稳定性。
在实际运行中,如果因为安装或者是平时的检修工作不适合,都会对系统部件产生损伤,破坏原有的平衡结构,致使轴向推动力过大,如果严重的话,会造成比较严重的恶性事故。
所以对汽轮机轴向推力过大的原因进行分析,然后制定出解决措施具有非常重要的意义,对于汽轮机的安全运行与工业稳定发展具有非常重要的意义。
在下文中会通过某工厂的实际案例来进行说明。
1 机组情况简介对于汽轮机发生轴向位移增大的原因会有多方面的因素,有系统内部结构失稳导致的,也会因为外部环境的变化所导致的,所以要根据具体的情况进行具体的分析,找出事故的原因,及时的处理,并且为以后的运行提前制定出预防策略,保证机组的稳定运行,下面以某公司的汽轮发电机组为例,进行详细的分析。
某公司的2#汽轮发电机组为中压机组,在2007年正式投入运行。
作用在转子上的轴向推力主要是通过叶轮上的平衡孔来平衡的,并有推力轴承承担剩余的推力。
在机组长期的运行中,由于受到的负荷较大,所以在2011年机组产生了故障,轴向位移过大,对于机组中的推力瓦、推力盘以及叶片等相关构件都造成了极大的损伤,机组停止运行,对其进行检修。
在检修的过程中,由于受到当时的条件所限,所以只是对于损坏的部件进行了更换,对于其他的部件没有进行处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮机轴向力产生的原因是什么?由哪几部分组成?平衡的方法是什么?
答:轴向力产生的原因是:蒸汽在汽轮机级内流动时,除了产生推动叶轮旋转做工的周向力外,还产生与轴线平行的轴向推力,其方向与汽流在汽轮机内的流动方向相同,使转子产生由高压向低压移动的趋势。
整个转子上的轴向推力主要是各级轴向推力的总和。
下图为反冲式汽轮机叶片受力:
轴向力主要由三部分组成:蒸汽作用在动叶片的轴向推力、蒸汽作用在叶轮轮面上的轴向推力、蒸汽作用在汽轮凸肩上的轴向推力。
平衡的方法:开平衡孔——使叶轮前后的压力差减小,从而减小轴向力;采用平衡活塞——在转子通流部分的对侧,加大高压外轴封的直径,以产生相反方向的轴向推力;多缸汽轮机采用反向流动布置——汽缸对置,将蒸汽在汽轮机两汽缸或两部
分内的流动安排成相反的方向,使其产生相反的轴向推力,相互平衡。