高三数学数列的概念与通项公式ppt文档

合集下载

人教版高中数学选择性必修第二册4.2.1(第1课时)等差数列的概念及通项公式【课件】

人教版高中数学选择性必修第二册4.2.1(第1课时)等差数列的概念及通项公式【课件】
类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规
律的数列,建立它们的通项公式和前n项和公式,并运用它们解决实际问题和
数学问题,从中感受数学模型的现实意义与应用.
下面,我们从一类取值规律比较简单的数列入手.
新知导入
请看下面几个问题中的数列.
1. 北京天坛圜丘坛的地面由石板铺成,最中间是圆形的天心石,围绕天心石的
这个数列不能称为等差数列.
新知讲解
等差中项
由三个数a,A,b组成的等差数列可以看成是最简单的等差数列.
这时,A 叫做 a 与 b 的等差中项.
根据等差数列的定义可以知道,2A=a+b.
(1)条件:如果a,A,b成等差数列
(2)结论:A叫做a与b的等差中项
(3)满足的关系式是 2A=a+b
合作探究
是9圈扇环形的石板,从内到外各圈的石板数依次为
9,18,27,36,45,54,63,72,81. ①
2. S,M,L,XL,XXL,XXXL型号的女装上衣对应的尺码分别是
38,40,42,44,46,48. ②
3. 测量某地垂直地面方向海拔500m以下的大气温度,得到从距离地面
20m起每升高100m处的大气温度(单位:℃)依次为
1 − ( ∈ ) 当x=n时的函数值,即 = () .
如图4.2-1, 在平面直角坐标系中画出
= + −
的图象,
就得到一条斜率为d,截距为1 − 的直线.
合作探究
在这条直线上描出点
, , , , ⋯ , , , ⋯ ,
就得到了等差数列{ }的图象.
an=a1+(n-1)d (n∈N*)
合作探究

高中数学《数列概念与通项公式》课件

高中数学《数列概念与通项公式》课件

7
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
2.数列与函数的关系 对任意数列{an},其每一项与序号都有对应关系,见下 表:
序号 1 2 3 4 … n … 项 a1 a2 a3 a4 … an …
8
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
□ 因此,数列也可以看成是定义域为 02 正整数集 N* (或 □ □ 它的 03 有限子集{1,2,3,…,n} )的函数 04 an=f(n) ,
19
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(6)6,6,6,…; (7)0,-1,0,…,cosn2π,…. 解 (1)是无穷递减数列. (2)是有穷递增数列. (3)是无穷数列,也是摆动数列. (4)是有穷递增数列. (5)是无穷数列,也是摆动数列. (6)是无穷数列,也是常数列. (7)是无穷数列,也是摆动数列.
21
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(6)32,1,170,197,…;
(7)12,2,92,8,…. 解 (1)∵各项减去 1 后为正偶数,∴an=2n+1.
(2) ∵ 每 一 项 的 分子 比 分 母少 1, 而 分 母 组成 数 列
21,22,23,24,…,∴an=2n2-n 1.
解 数列 0.6,0.66,0.666,0.6666,…的通项公式为 an=23
1-110n.
25
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5

4.2.1 第一课时 等差数列的概念及通项公式(课件(人教版))

4.2.1 第一课时 等差数列的概念及通项公式(课件(人教版))
4.2 等差数列
4.2.1 等差数列的概念
新课程标准解读 1.通过生活中的实例,理解等差数列的 概念和通项公式的意义. 2.能在具体的问题情境中,发现数列的 等差关系,并解决相应的问题. 3.体会等差数列与一元一次函数的关系.
核心素养
数学抽象
逻辑推理、数学 运算
数学抽象
第一课时 等差数列的概念及通项公式
[随堂检测] 1.已知等差数列{an}的通项公式为 an=3-2n,则它的公差为
()
A.2
B.3
C.-2
D.-3
解析:∵an=3-2n=1+(n-1)×(-2),∴d=-2,故选 C.
答案:C
2.在△ABC 中,三内角 A,B,C 成等差数列,则 B 等于( )
A.30° C.90°
B.60° D.120°
[问题导入] 预习课本第 12~15 页,思考并完成以下问题 1.等差数列的定义是什么?如何判断一个数列是否为等差数列?
2.等差数列的通项公式是什么?
3.等差中项的定义是什么?
[新知初探]
知识点一 等差数列的定义 如果一个数列从第 2 项起,每一项与它的前一项的差等 于同一个常数,那么这个数列就叫做等差数列,这个常 数叫做等差数列的公差,通常用字母 d 表示.
令(n-6)d=0,得 n=6,故选 A.
法二:设公差为 d(d≠0),因为 4a3=3a2,所以 a3=-3d,又
因为 a3=a1+2d,所以 a1=-5d,故 an=-5d+(n-1)d,令
an=0.得 n=6,所以数列{an}中 a6=0.故选 A. 答案:A
5.一个等差数列的第 5 项 a5=10,且 a1+a2+a3=3,则首 项 a1=________,公差 d=________. a5=a1+4d=10, 解析:由题意得 a1+a1+d+a1+2d=3,

等差数列的概念及通项公式.ppt

等差数列的概念及通项公式.ppt

a5 a4 d (a1 3d) d a1 4d
a 由此可知,等差数列 n 的通项公式为 当d≠0时,这是
an a1 (n 1)d
关于n的一个一 次函数。
10等差数列的图象1

9 (1)数列:-2,0,2,4,6,8,10,…
8

7
6

5
4

3
2

1

0 1234
5 6 7 8 9 10
2.2.1等差数列的概念 及通项公式
学习目标: 1.通过实例,理解等差数列的概念. 2.探索并掌握等差数列的通项公式. 3.能在具体的问题情境中,发现数列的等差关系,并能用有关知识解决相应的问
题. 4.体会等差数列与一次函数的关系.
复习数列的有关概念1
按一定的次序排列的一列数叫做数列。 数列中的每一个数叫做这个数列的项。

等差数列的图象2
10
9 (2)数列:7,4,1,-2,…
8
7

6
5
4

3
2

1
0 1 2 3 4 5 6 7 8 9 10

等差数列的图象3
10 9 (1)数列:4,4,4,4,4,4,4,…
8
7 6
5
4
● ● ●● ●●● ● ● ●
3 2
1
0 1 2 3 4 5 6 7 8 9 10
等差中项
(3) 7x, 3x,-x,-5x,-9x,… 公差 d= -4x
(4) 2,0,-2,-4,-6,…
公差 d= -2 递减数列
(5) 5,5,5,5,5,5,… 公差 d=0 非零常数列

人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)

人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)
证明.在求{an}通项公式时,要用到{an-2}是等差数列,先求 1
{an-2}的通项,再求{an}的通项公式.
➢ 等差数列的判定与证明 等差数列的判定方法有以下二种: (1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}为等差数列; (2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}为等差数 列. 如果要证明一个数列是等差数列,必须用定义法或等差 中项法.
(2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后面 的项减前面的项;其二是强调这两项必须相邻.
(3)注意定义中的“同一常数”这一要求,否则这个数 列不能称为等差数列.
2.怎样认识等差数列通项公式 (1)确定 a1 和 d 是确定通项的一般方法. (2)由方程思想,根据 an,a1,n,d 中任何三个量可求 解另一个量,即知三求一. (3)通项公式可变形为 an=dn+(a1-d),可把 an 看作自 变量为 n 的一次函数.
∴294<d≤3.又 d 为整数, ∴d=3. ∴an=a1+(n-1)·d=-24+3(n-1)=3n-27. ∴通项公式为 an=3n-27.
10.如果一个数列的各项都是实数,且从第二项开始, 每一项与它前一项的平方差是相同的常数,则称该数列为等 方差数列,这个常数叫做这个数列的公方差.
(1)设数列{an}是公方差为 p 的等方差数列,求 an 和 an- 1(n≥2)的关系式;
项公式是
.
3.等差中项
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差
中项.
1.正确理解等差数列的定义 (1)注意定义中“从第 2 项起”这一前提条件的两层含 义,其一,第 1 项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且必 须从第 2 项起保证使数列中各项均与其前面一项作差.

数学人教A版(2019)选择性必修第二册4.1.1数列的概念与通项公式(共21张ppt)

数学人教A版(2019)选择性必修第二册4.1.1数列的概念与通项公式(共21张ppt)
96,112,128,144,160,176,192,208,224,240.
并不是所有数列都能写出(或方便写出)其通项公式
n

N*
= f(n)

a1 a2
a3

an …
R
当自变量从1开始,按照从小到大的顺序依次取值时,对应的一列
函数值f(1),f(2),…,f(n),…就是数列{ }.
另一方面,对于函数 = ,如果f(n) (n∈N*)有意义,那么
f(1),f(2),…,f(n),…构成了一个数列{f(n)}。
数列的概念:一般地,把按照确定的顺序排列的一列数称为数列.
数列中的每一个数都叫做数列的项.
数列第一个位置上的数叫做这个数列的第1项 (或首项),用符号表示
第二个位置上的数叫做这个数列的第2项, 用符号表示…,
第个位置上的数叫做这个数列的第项, 用符号表示.
数列的一般形式是 : , , . . . , , . . . ,简记为{}.

(1)这列数是什么呢?请你列出来;
(2)这列数是否具有上述的特征?如果是,请你仿照以上的叙述,
说明这也是具有确定的顺序的一列数


− 、 、





、 ...


记第i个数为si,那么s1=





,s2= ,
不能交换位置、具有确定的顺序


s3=− , s4= ,…


思考: 上面三个例子的共同特征是什么?
数列是自变量为离散的数的函数.
问题5:类比函数的表示方法,数列还有哪些表示方式?
数列也可以用表格和图象来表示.

2023新教材高中数学第4章数列等差数列的概念及通项公式课件新人教A版选择性必修第二册

2023新教材高中数学第4章数列等差数列的概念及通项公式课件新人教A版选择性必修第二册

得aa11+ +1549dd= =82, 0,
解得a1=6145, d=145.
故a75=a1+74d=1654+74×145=24.
法二
∵a60=a15+(60-15)d,∴d=
20-8 60-15

4 15
,∴a75=a60+
(75-60)d=20+15×145=24. 法三 已知数列{an}是等差数列,可设an=kn+b.由a15=8,
ACD [由条件可知an+1-an=-3,∴该数列为等差数列,公差 为-3,这时an=-3n+30.∴a5=-3×5+30=15,又由-3n+30 =-3得n=11,故ACD正确.]
3.在等差数列{an}中,已知a2=2,a5=8,则a9=( )
A.8
B.12
C.16
D.24
C [设等差数列{an}的首项为a1,公差为d, 则由a2=2,a5=8,得 aa11+ +d4= d=2, 8, 解得a1=0,d=2,所以a9 =a1+8d=16.故选C.]
[跟进训练] 2.若等差数列的前三项分别为a,2a-1,3-a,求其第2 022项.
[解] 由等差中项公式可得2(2a-1)=a+(3-a),解得a=54,所
以首项为
5 4
,公差为
2×54-1
数列的通项公式为an=
5 4
+(n-1)×14=14n+1,故其第2 022项为a2 022=14×2 022+1=1 0213.
(2)求数列{an}的通项公式. [解] 由(1)知bn=12+(n-1)×12=n2. ∵bn=an-1 2, ∴an=b1n+2=2n+2. ∴数列{an}的通项公式为an=2n+2.
2.(变条件)将本例中的条件“a1=2,an+1=

高考数学微专题3 数列的通项课件(共41张PPT)

高考数学微专题3 数列的通项课件(共41张PPT)
内容索引
内容索引
目标1 根据规律找通项公式
1 (2023吉林三模)大衍数列,来源于《乾坤谱》中对易传“大
衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,
数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总
和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项
依 次 是 0,2,4,8,12,18,24,32,40,50 , 则 此 数 列 的 第 25 项 与 第 24 项 的 差 为
高考命题方向: 1. 根据前几项来寻找序号 n 与项之间的关系. 2. 根据前几项所呈现的周期性规律,猜想通项. 3. 抓住相邻项的关系转化为熟悉问题.
内容索引
内容索引
说明: 1. 解决方案及流程 (1) 归纳猜想法: ①确定数列的前几项; ②分析序号 n 与项有何关系,初步确定分类标准; ③研究数列整体或部分规律; ④归纳数列的项用序号 n 表示的规律; ⑤证明归纳的正确性.
内容索引
内容索引
1. (2022泰安三模)已知数列{an}满足:对任意的m,n∈N*,都有aman
=am+n,且a2=3,则a20的值为( )
A. 320
B. 315
C. 310
D. 35
【解析】 因为对任意的 m,n∈N*,都有 aman=am+n,所以 a1a1=a2, a1an=a1+n.又 a2=3,所以 a1=± 3,所以aan+n 1=a1,所以数列{an}是首项 为 a1,公比为 a1 的等比数列,所以 an=a1·an1-1=an1,所以 a20=a210=310.
重复循环,2 022=674×3,恰好能被3整除,且a3为偶数,所以a2 022也 为偶数,故B错误;对于C,若C正确,又a2 022=a2 021+a2 020,则a2 021= a1+a2+…+a2 019,同理a2 020=a1+a2+…+a2 018,a2 019=a1+a2+…+ a2 017,依次类推,可得a4=a1+a2,显然错误,故C错误;对于D,因为 a2 024=a2 023+a2 022=2a2 022+a2 021,所以a2 020+a2 024=a2 020+2a2 022+a2 021=2a2 022+(a2 020+a2 021)=3a2 022,故D正确.故选AD.

第5章《数列》(第1节)ppt 省级一等奖课件

第5章《数列》(第1节)ppt  省级一等奖课件

第五章 数列
5.已知数列{an}的通项公式为 an=pn+qn,且 a2=32,a4=23,则
a8=________.
解析
由已知得24pp++qq24==3232,,解得pq==142,.
则 an=14n+2n,故 a8=94.
答案
9 4
第五章 数列
[关键要点点拨] 1.对数列概念的理解
(2014·安阳模拟)设 Sn 为数列{an}的前 n 项和,若不等 式 a2n+Sn2n2≥ma21对任意等差数列{an}及任意正整数 n 都成立,
则实数 m 的最大值为
()
1
1
A.4
B.5
C.1
D.无法确定
第五章 数列
【思路导析】 将已知不等式用 an 与 a1 表示后分离参数 m 转化为 函数的最值问题求解. 【解析】 因为 Sn=12n(a1+an), 所以原不等式可化为 a2n+41(a1+an)2≥ma21. 若 a1=0,则原不等式恒成立; 若 a1≠0,则有 m≤54aan12+21aan1+41,
第五章 数列
满足条件 项数 有限 项数 无限
an+1 > an an+1 < an an+1=an
其中 n∈N*
第五章 数列
3.数列的通项公式: 如果数列{an}的第n项与 序号n 之间的关系可以用一个式子 来表示,那么这个公式叫做这个数列的通项公式.
第五章 数列
二、数列的递推公式 如果已知数列{an}的首项(或前几项),且 任一项an 与它 的 前一项an-1 (n≥2)(或前几项)间的关系可用一个公式 来表示,那么这个公式叫数列的递推公式.
第五章 数列
2.数列的函数特征 数列是一个定义域为正整数集N*(或它的有限子集{1,2, 3,…,n})的特殊函数,数列的通项公式也就是相应的 函数解析式,即f(n)=an(n∈N*).

2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)

2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)

再得出 的表达式
例五.2
在数列 中,1 = 1,+1 =

,求通项公式 ?
3 +2
解:由题意,两边同取倒数,得

1
an+1
+k=2
1
an
+k

1
an+1
1
an+1
=
=
1
2
an
1
2 +3
an
+k
对比原式,得k = 3

1
an
1
an
+ 3 为首项为4,公比为2的等比数列
+ 3 = 4 · 2n−1 = 2n+1
解题思路:设 ,构造等比数列{ + }
具体步骤: 设+1 + = +
即+1 = ⋅ + − 1 ·
对比原式,得k =
q
p−1
得到以1 +为首项,为公比的等比数列{ + }
例四.1
在数列 an 中,a1 = 1,an+1 = 3an + 1,求通项公式an ?
故an =
1
2n+1 −3
六、取对数法
①形如+1 = ⋅
对数运算法则: log ⋅ = log + log
解题思路:等式两边同取对数,构造等比数列
log ⋅= · log
具体步骤: 两边同取以p为底的对数,得log +1 = log + 1
使用条件:已知+1 − =
解题思路: 2 − 1 = 1

4.2.1 第1课时 等差数列的概念及通项公式课件ppt

4.2.1 第1课时 等差数列的概念及通项公式课件ppt

变式训练 3已知数列{an}中,a1=a2=1,an=an-1+2(n≥3).
(1)判断数列{an}是不是等差数列,并说明理由;
(2)求{an}的通项公式.
解 (1)当n≥3时,an=an-1+2,即an-an-1=2,
而a2-a1=0不满足an-an-1=2,
∴{an}不是等差数列.
(2)由(1)得,当n≥2时,an是等差数列,公差为2,
是首项为2,公差为2的等差数列,
1
1
(n-1)=2n,故
2
1
2
2
an= .
a1=2,
素养形成
构造等差数列解题
中的任意两项,就可以求出其他的任意一项.
微练习
(1)等差数列{an}:5,0,-5,-10,…的通项公式是
.
(2)若等差数列{an}的通项公式是an=4n-1,则其公差d=
答案 (1)an=10-5n (2)4
解析 (1)易知首项a1=5,公差d=-5,所以an=5+(n-1)·(-5)=10-5n.
微练习
判断下列各组数列是不是等差数列.如果是,写出首项a1和公差d.
①1,3,5,7,9,…;
②9,6,3,0,-3,…;
③1,3,4,5,6,…;
④7,7,7,7,7,…;
1 1 1 1
⑤1, , , , ,….
2 3 4 5
解 ①是,a1=1,d=2;②是,a1=9,d=-3;③不是;④是,a1=7,d=0;⑤不是.
2
2
1
a=2,
所以这个等差数列的每一项均为 1.故选 B.
(2)因为 a,b,c 成等差数列, , , 也成等差数列,
2 = + ,

数列等比数列等比数列的概念及通项公式ppt

数列等比数列等比数列的概念及通项公式ppt
电路设计
在电路设计中,电阻、电容、电感等元件的参数 可以用等比数列表示。
计算机领域的应用
数据压缩
在数据压缩过程中,等比数列可以用来表示重复的数据模式,从 而减少数据的大小。
加密算法
在加密算法中,等比数列可以用来生成密钥序列,提高加密的安 全性。
图像处理
在图像处理中,等比数列可以用来表示像素值的变化情况,从而 实现图像的缩放和平移等操作。
等比数列的特性
等比数列的每一项都是前一项 的常数倍。
在等比数列中,常数被称为公 比(ratio),通常用字母 q 表示

如果第一项为 a1,公比为 q, 那么第 n 项 an = a1 × q^(n-
1)。
等比数列的应用
1
等比数列在金融领域的应用:如复利计算、投 资回报等。
2
等比数列在物理和工程领域的应用:如放射性 衰变、电路中的电阻等。
05
等比数列的拓展知识
等比数列与等差数列的关联
等比数列和等差数列是两种常见的数列类型,它们之 间存在一定的关联。
如果一个等差数列的公差为0,那么它就变成了一个等 比数列,其中每一项都等于前一项乘以1。
等差数列的每一项与其前一项的差是一个常数,而等 比数列的每一项与其前一项的比值是一个常数。
在等比数列中,如果存在一项为0,那么这个等比数列 就变成了一个有有限项的等差数列。
应用场景
变形的通项公式可以用于解决一些特定的问题,例如求解等 比数列的前n项和,或者在密码学中生成伪随机数等。
03
等比数列的求和公式
等比数列求和公式的推导
定义初始项和公比
通常设等比数列的初始项为 a1,公比为r。
推导求和公式
等比数列的求和公式可以通过错 位相减法推导得到,即利用等比 数列的通项公式和求和公式之间 的迭代关系进行推导。

数列等差数列等差数列的概念及通项公式ppt

数列等差数列等差数列的概念及通项公式ppt

简单明了
数列等差数列的通项公式形式 简洁,易于理解和记忆。
普适性
通项公式可以应用于任何等差 数列,具有广泛的适用性。
重要性
通项公式是解决等差数列问题 的基础和关键,对于理解等差 数列的性质和求解相关问题具
有重要的意义。
03
数列等差数列的求和公式
数列等差数列求和公式的推导
公式推导
利用等差数列的概念和通项公式,推导出等差数列的求和公 式。
声学中的等差数列
在声学中,等差数列被广泛应用于解决一些与声音的频率、 振幅等有关的问题。例如,在研究乐器的声音时,常常需要 使用等差数列来描述音高、音强等物理量随时间的变化规律 。
数列等差数列在计算机科学中的应用
数据结构中的等差数列
在计算机科学中,等差数列被广泛应用于解决一些与数据结构、算法有关的 问题。例如,在解决一些与数组操作、链表操作有关的问题时,常常需要使 用等差数列来描述问题的规律。
密码学中的等差数列
在密码学中,等差数列被广泛应用于解决一些与加密、解密有关的问题。例 如,在一些简单的加密算法中,常常需要使用等差数列来生成密钥、加密和 解密数据。
05
数列等差数列的拓展知识
数列等差数列与等比数列的关系
1
数列等差数列与等比数列是两种常见的数列类 型,具有重要的数学意义和应用价值。
2023
数列等差数列等差数列的 概念及通项公式ppt
目录
• 数列等差数列的概念 • 数列等差数列的通项公式 • 数列等差数列的求和公式 • 数列等差数列的应用实例 • 数列等差数列的拓展知识
01
数列等差数列的概念
数列等差数列的定义
等差数列的定义
如果一个数列从第二项起,每一项与它的前一项的差等于同 一个常数,这个数列就叫做等差数列。这个常数叫做等差数 列的公差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“an+1-an=d(常数)(n≥2)”与“an-an-1=d (d为常数,n≥2)”的细微差别.
题型三 利用递推公式求数列的通项
例3 根据下列条件,写出数列的通项公式:
(1)a1=2,an+1=an+n; (2)a1=1,an-1=2n-1an.
1
(n=1)
an= 2·3n-1 (n∈N*,且n≥2).
(2)当n=1时,a1=S1=
1 8
(a1+2)2,解得a1=2.
当n≥2时,Sn=Sn-Sn-1=
1 8
(an+2)2-
1 8
(an-1+2)2,
所以(an-2)2-(an-1+2)2=0,
所以(an+an-1)(an-an-1-4)=0,
2.数列-1,7,-13,19,…的一个通项公式 是an= (-1)n(6n-5) .
符号问题可通过(-1)n或(-1)n+1表示, 其各项的绝对值的排列规律为:后面的 数的绝对值总比它前面数的绝对值大6, 故通项公式为an=(-1)n(6n-5).
3.如果数列{an}的前n项的和Sn=n2,那么 这个数列的通项公式是 an=2n-1 .
a1=S1=1,所以a1=1, 当n≥2时,an=Sn-Sn-1=2n-1. 经检验,a1符合上式,所以an=2n-1.
4.在数列{an}中,若an+1=
则a6=
1 11
.
an 2an 1
,a1=1,
因为an+1=
2
a an
n
1
1
1
a2=
2
a a1
1
1
=1
3
,
a3=
2
3
1
3
=1
5
,a4=
2
5
1.数列的概念
(1)数列是按一定① 顺序排列的一列数, 记作a1,a2,a3,…,an,…,简记{an}.
(2)数列{an}的第n项an与项数n的关系 若能用一个公式an=f(n)给出,则这个公式 叫做这个数列的② 通项公式.
(3)数列可以看做定义域为N*(或其子 集)的函数,当自变量由小到大依次取 值时,对应的一列函数值,它的图象是 一群③ 孤立的点 .
1
5
=1 ,
7
1
a5=
2
7
1
=1
9
7
1
,a6=
2
9
1
=1
11
.
9
5.已知数列{an}(n∈N*)满足 an+1=an-t (an≥t) t+2-an (an<t),
且t<a1<t+1,其中t>2,若an+k=an(k∈N*),则实 数k的最小值是 4 .
因为t<a1<t+1,所以a2=a1-t<1<t, 故a3=t+2-a2=2t+2-a1>t, a4=a3-t=t+2-a1<t,a5=t+2-a4=a1, 所以最小正周期为4,故k的最小值为4.
(2)分式形式的数列,分子找通项, 分母找通项,要充分借助分子、分母的 关系.
(3)对于比较复杂的通项公式,要借 助等差数列、等比数列(后面将学到) 和其他方法来解决.
(4) 此 类 问 题 虽 无 固 定 模 式 , 但 也 有 其规律可循,主要靠观察(观察规律)、 比较(比较已知的数列)、归纳、转化 (转化为等差或等比数列)等方法.
题型二 利用数列前n项和公式求通项
例2 已知数列{an}的前n项和为Sn,分
别求其通项公式.
(1)Sn=3n-2;
(2)Sn=
1 8
(an+2)2(an>0).
(1)当n=1时,a1=S1=1; 当n≥2时,an=Sn-Sn-1=3n-2-(3n-1-2)
=2·3n-1.
由于a1=1不适合上式,因此数列{an}的通 项公式为
A.0个 B.1个 C.3个 D.5个
本题是考查数列及相关概念的题, 在解题过程中,每一个叙述都有可能判断错 误,故需一一给予剖析:命题①,数列可以 看作是一个定义域为正整数集N+(或它的 有限子集{1,2,3,…,n})的函数;命题 ②,不是每一个数列都有通项,有的数列不 存在通项;另外,有通项公式的数列,通项 公式也不一定惟一;命题③,数列除了用通 项公式表示外还可以用列表法和图象法表示; 命题④,数列存在递增数列、递减数列、常 数数列,还有摆动数列;命题⑤,数列是有 序的;⑥正确.
2
2
2
(4)1,0,-1,0,1,0,-1,0,….
(1)an=(-1)n+1或an=cos(n+1)π.
(2)an=2n+1.
n2
(3)an知数列的前n项,写出数列的通
项公式,主要从以下几个方面来考虑:
(1)符号用(-1)n与(-1)n+1(或(-1)n-1)来 调节,这是因为n和n+1奇偶交错.
4.数列通项an与前n项和Sn的关系
(1)Sn=a1+a2+a3+…+an;
(2)an=⑧
S1(n=1) .
Sn-Sn-1(n≥2)
典例精讲
题型一 观察法写数列的通项公式
例1 求下列数列的一个通项公式:
(1)1,-1,1,-1,…;
(2)3,5,9,17,33,…;
(31 ) ,29, ,8,2 5 ,…;
又an>0,所以an-an-1=4,
可知{an}为等差数列,公差为4,
所以an=a1+(n-1)d=2+(n-1)·4=4n-2,
a1=2也适合上式,故an=4n-2.
点评
本例的关键是应用an=
S1
(n=1)
Sn-Sn-1 (n≥2)求
数列的通项,特别要注意验证a1的值是否
满 足 “ n≥2” 的 通 项 公 式 ; 同 时 认 清
高三数学数列的概念与通项公式
1.了解数列的概念和几种简单的表 示方法(列表、图象、通项公式).
2.了解数列是自变量为正整数的一 类函数.
3.会用观察法、递推法等求数列的 通项公式.
1.以下关于数列的叙述: ①数列是以正整数集为定义域的函数; ②数列都有通项,且是惟一的; ③数列只能用通项公式的方法来表示; ④既不是递增也不是递减的数列,则为常数列; ⑤数列1,1,2,3,5,8与数列8,5,3,2,1,1是同一数列; ⑥是对以所3有为的周n期∈的N*周,期都数有列an.+3=an,则数列{an} 其中正确的结论有( B )
2.数列的表示方法
数列的表示方法有:列举法、图示法、 解析法(用通项公式表示)和递推法 (用递推关系表示).
3.数列分类
(1) 按 照 数 列 的 项 数 分 ④ 有穷数列 、 无穷数列 .
(2)按照任何一项的绝对值是否超过某 一正常数分:⑤ 有界数列 、 无界数列 .
(3)从函数单调性角度考虑分:递增数 列、⑥ 递减数列、常数列、⑦ 摆动数列 .
相关文档
最新文档