直流电动机的机械特性

合集下载

直流电动机的方程式与机械特性

直流电动机的方程式与机械特性

-

电磁力与电枢铁心半径之积为电
磁转矩,电磁转矩是带动电枢旋
S
转的动力矩。
2.直流电动机的工作原理
图a
图b
图c
图d
直流电动机工作过程分解图
电刷两端接入的是直流电源,经过换向片和电刷流到电枢 线圈中的电流,却是交变的。
在恒定的励磁磁场作用下,位于N极下的电枢导体受力方向 始终不变,位于S极下的电枢导体受力方向也始终不变。
机械损耗和铁心损耗在“电动机空载运行时就存在”,二者 之和又称为“空载损耗”。
☆ 空载损耗P0: P0= Pm+PFe
空载损耗产生空载转矩T0,T0与旋转方向相反,是制动转矩。
2.功率平衡方程式
☆附加损耗Ps:
附加损耗又称杂散损耗,其值很难计算和测定,通常取:
Ps =(0.5%~1%)PN。
总损耗:
实际电机有多个位于不同角度的电枢线圈,它们产生的电磁 转矩方向始终不变,能够带动电枢朝某个方向连续旋转。
二、直流电动机的电磁转矩
电磁转矩T是带动直流电动机旋转的动力矩,它是个 既有大小、又有方向的向量。 电磁转矩的方向由左手定则判断。
电磁转矩的大小为:
其中p为磁极对数,N为电枢绕组总导体数,a为单波绕组并联支 路对数,CT为转矩常数。这些参数只与电机的结构有关。
1.电动势平衡方程式(电路系统)
2.转矩平衡方程式(机械系统)
他励直流电动机电路图
3.功率平衡方程式(能量转换过程)
1.电动势平衡方程式
他励直流电动机的励磁电压Uf与电枢电压Ua彼此无关。
励磁电路: Uf →If →Φ 电枢电路:Ua → Ia→T → n →Ea
利用基尔霍夫电压定律,可得 电动势平衡方程式为:

直流电动机的机械特性

直流电动机的机械特性

直流电动机的机械特性直流电动机按励磁方式不同可分为他励、并励、串励和复励四种。

下面一常用的他励和并励电动机为例介绍其机械特性、起动、反转和调速,他励和并励电动机只是连接方式上的不同,两者的特性是一样的。

直流电机的接线图图是他励和并励直流电动机的接线原理图。

他励电动机的励磁绕组与电枢是分离的,分别由励磁电源电压Uf和电枢电源电压U两个直流供电;而在并励电动机中两者是并联的,由同一电压U供电。

并励电动机的励磁绕组与电枢并联,其电压与电流间的关系为:U=E+RaIa 即:Ia=(Ra为电枢电压)If=I=Ia+If≈Ia当电源电压U和励磁电路的电阻Rf(包括励磁绕组的电阻和励磁调节电阻)保持不变时,励磁电流If以及由它所产生的磁通Φ也保持不变,即Φ=常数。

则电动机的转距也就和电枢电流成正比,T= KTΦIa= KIa这是并励电动机的特点。

当电动机的电磁转距T必须与机械负载转距T2及空载损耗转距T0相平衡时,电动机将等速转动;当轴上的机械负载发生变化时,将引起电动机的转速、电流及电磁转距等发生变化。

,称为:n===-T=n0-式中并励电动机的起动与反转并励电动机在稳定运行时,其电枢电流位:Ia=,因电枢电阻Ra很小,所以电动机在正常运行时,电源电压U与反电动势E近似相等。

在起动时,n=0,所以E=kEΦn=0。

这时电枢电流及起动电流为Iast=,由于Ra很小,因此起动电流I ast可达额定电流IN的10~20倍,这时不允许的。

同时并励电动机的转距正比于电枢电流Ia,这么大的起动电流引起极大的起动转距,会对生产机械的传动机构产生冲击和破坏。

限制起动电流的方法就是在起动时的电枢电路中串接起动电阻Rst,见图。

这时起动电枢中的起动电流的初始值为:Iast=则起动电阻为:Rst=-Ra一般:Iast=(1.5~2.5)IN起动时,可将起动电阻Rst放在最大值处,待起动后,随着电动机转速的上升,再把它逐段切除。

注意:直流电动机在起动或工作时,励磁电路一定要保持接通,不能断开(满励磁起动)。

3.3.7直流电动机的工作特性与机械特性11

3.3.7直流电动机的工作特性与机械特性11

2
直流电动机的机械特性
③减弱励磁磁通时的人为特性
改变励磁回路调节电阻Rsf,就可以改变励磁电流,进而改变励磁磁通。由于电动机额定运行时,磁路已经 开始饱和,即使再成倍增加励磁电流,磁通也不会有明显增加,何况由于励磁绕组发热条件的限制,励磁电
流也不允许大幅度地增加,因此,只能在额定值以下调节励磁电流,即只能减弱励磁磁通。
的去磁效应,则转速与负载电流按线性关系变化,
当负载电பைடு நூலகம்增加时,转速有所下降。他励直流电 图3-23 他励电动机的工作特性
动机的工作特性如图3-23所示。
1
直流电动机的工作特性
(2)转矩特性 当U=UN,If=IfN时,Tem f (I a ) 的关系称为转矩特性。根据直流电
机电磁转矩公式可得电动机转矩特性表达如下:
保持R=R a(Rs =0)、U= UN不变,只减弱磁通时的人为机械特性为
n=
(3-29)
对应的转速特性为 n=
(3-30)
在电枢串电阻和降低电压的人为特性中,因为 不变,T ∝I ,所以他们的机械特性n=f(T )曲线也代表了转速 特性n=f(I )曲线。
2
直流电动机的机械特性
但是在讨论减弱磁通的人为特性时,因为磁通 是个变量,所以n=f(I )与n=f(T )两条曲线是不同 的,如图3-29所示
3
机械特性的求取
根据计算所得 (0,n0)和(TN,Nn)两点就可以在 Tem-n平面内画出电动机的固有机械特性。通过式 求出β 后,便可求得他励电动机的固有机械特性方程式n=n0- 。
(2). 人为特性的求取
在固有特性方程式 n=n0-
(n0、β为已知 基础上,根据人为机械特性对应的参数 (U、Rs或Φ)

直流电机机械特性

直流电机机械特性
第3页/共107页
固有机械特性
固有机械特性:当他励电动机电压U=UN, 磁
通Φ=ΦN,电枢没有串联电阻Rad=0时,这

n UN
Ra
T
机械特性称为固K有e机N 械特K性eK: tN 2
人为机械特性:可用改变电动机参数的方法 获得,即机械特性三个变量中任有一个或一个 以上值非额定时得到的机械特性即为人为机械
第28页/共107页
多级起动
因此,采取多级(分级)起动,逐级切除启 动电阻。我国生产的标准控制柜是按快速启动的 原则设计的,一般启动电阻为3~4段。
他励电动机二级起动电路图(图3-32) 他励电动机二级起动的过程 二级起动 他励电动机三级起动电路图(图3-33)
第29页/共107页
多级启动
分级起动时,可将每一级的 I(或 T)取得大 小一致,以使电动机有比较均匀的加速度,使电 流变化不大,
第4页/共107页
根据固有机械特性估算数据
根据固有机械特性可估算以下数据: 电枢电阻Ra:通常电机在额定负载下的铜耗 I2aRa占总损耗ΣΔPN的50%~75%。因
ΣΔPN=输入功率-输出功率 =UNIN-PN =UNIN-ηN UNIN
=(1-ηN )UNIN 即 ΔP铜= I2aRa=(0.5~0.75)(1-
ηN )UNIN 式中, ηN = PN/(UNIN) 是额定运行条件下

第5页/共107页
根据固有机械特性估算数据
故得
Ra
(0.5
~
0.75)(1
PN UNIN
) UN IN
求KeΦN:额定运行条件下的反电势
EN=KeΦNnN=UN-INRa,
故 KeΦN=(UN-INRa)/nN

他励直流电动机的机械特性

他励直流电动机的机械特性

一.能耗制动 1.他励电动机能耗制动电路图及电路特点 1.他励电动机能耗制动电路图及电路特点
他励电动机能耗制动电路原理( 他励电动机能耗制动电路原理(图9-18)
能耗制动时的机械特性为:
Ra + R B Tem = 0 − β Tem 2 C eCT Φ N
n=−
n
制动瞬间 工作点
电动机状态工 作点
启动时电枢电流过渡过程( 启动时电枢电流过渡过程(图9-12)
(7)结论 请看下表: 可以看出: 理论上,只有当时间 n 趋于无穷 时,转速才能达到稳态值 ,但实 际上,由于当 t =(3 ~ 4)TtM 时 ,系统转速已达到稳定运行转速 nz 的 95% ~ 98% 所以,一般可认为经过 3 ~ 4 个 时间常数,转速便达到稳定值, 过渡过程结束
任意给出两点如 T = 0(空载点)和 T = TN通过这两点得连线即为固有机 械特性 (二)人为机械特性的绘制 二 人为机械特性的绘制 各种人为机械特性的计算较为简单,把相应的参数值代入对应的人为机械 特性方程式即可。
四.电力拖动系统稳定运行的条件
我们的任务是什么? 分析生产机械负载转矩特性与电动机的机械特性的配合问题 1.稳态时电动机电流由负载大小决定 1.稳态时电动机电流由负载大小决定 (1)转矩平衡 当他励电动机机械特性 n = f(T)为 3,恒转矩负载特性 n = f(TZ)为 1 因转矩 T 与 TZ 方向相反、大小相等而相互平衡 时,转速为某一稳定值,拖动系统处于稳态 (2)稳态运行 两个特性的交点 A ,转速都是 nA,电磁转矩 等于负载转矩(= TZ1) 交点A表明电力拖动系统的某一稳态运行点 (3)负载发生变化 如负载增大,负载转矩特性由 1 变为 2 。 转速开始时仍为 nA,电磁转矩 T 还是由 A 点决定,因为 T = TZ1< TZ2 所以 dn/dt < 0 ,系统进入动态减速过程 两种不同负载的n= 31,2—两种不同负载的n=f(TZ) 3- n=f(T) 两种不同负载的

直流电动机的机械特性

直流电动机的机械特性

分析方法: 结构 基本工作原理
转矩方程式 电势方程式 电压平衡方程式
启动、调速和制动
机械特性
分析依据:
电磁力定律、电磁感应定 律
3.1 直流电机的构造和工作原理
直流电动机 — 将直流电能变为机械能 直流发电机 — 将机械能变为直流电能
一、 直流电机的结构
直流电机
定子 转子
直流电机的工作原理:基于电磁力定律和电磁感应定律
电动机的电压平衡方程式
I

Ia
UE M
Ra
Rf'
Tn
If Uf
T = Kt Ia E = Ke n,
U = E + IaRa
电路原理图
n = —E—
Ke
= —U–—I—aR–a
Ke
= —KUe—– – —K—ReKa—t·T—2
转速特性
机械特性
n
= —KUe—T– – —K—RTeK0a—t·T—2
TN -- 额定负载转矩
T (N.m) TN 近似固有机械特性为过(0,n0),(TN,nN)的一条直线
利用电动机的铭牌数据来求近似固有机械特性。
已知铭牌数据(PN,UN,IN,nN)(0,n0),(TN,nN)
步骤:
(1)估算
Ra(或测量)
Ra = (0.5
0.75)(1
-
——P—N —)—U—N
保持 If = IfN n = nN,当调整负载电阻 R U I
反映发电机电枢端电压 U 随负载电流 I 变化的特性。
U
U0
电压调整率:
UN
U —U—0 —– U—N– 100%
0
I
UN

直流电动机机械特性

直流电动机机械特性

(二)他励直流电动机的机械特性
他励直流电动机电路原理图
002em em e e T U R n T n T n n C C C βφφ
=-=-=-∆ 机械特性曲线:当U 、R 、φ为常数时,他励直流电动机的机械特性是一条以β为斜率向下倾斜的直线,如图所示。

图2-14他励直流电动机的机械特性
机械特性的硬度: β越大,特性越陡,称为软特性;
β越小,特性越平,称为硬特性;
表明机械特性曲线的下垂程度。

1、他励直流电动机的固有机械特性
当N U U =,N φφ=,a R R =()0s R =时的机械特性称为固有机械特性。

其方程式为 2N a em e N e T N
U R n T C C C φφ=
-, 2、人为机械特性
1)电枢串电阻时的人为机械特性
保持N U U =,N φφ=不变,只在电枢回路串入电阻s R 的人为特性。

《机电传动技术》第三章 直流电机的工作原理及特性

《机电传动技术》第三章  直流电机的工作原理及特性

T = TL +T0
转矩平衡过程 当电动机轴上的机械负载发生变化时, 当电动机轴上的机械负载发生变化时,通过电 动机转速、电动势、电枢电流的变化, 动机转速、电动势、电枢电流的变化,电磁转矩将 自动调整,以适应负载的变化,保持新的平衡。 自动调整,以适应负载的变化,保持新的平衡。 一定, (平衡 此时, 平衡), 例:设外加电枢电压 U 一定,T=TL (平衡),此时, 突然增加, 若TL突然增加,则调整过程为 E = KEΦn E↓ ↓ TL ↑ n↓ ↓ T↑
(3)求理想空载转速
根据(0,n0)和(TN,nN)两点,就可以作出他励电动 机的机械特性曲线。
正反转时的机械特性
2 、人为机械特性
人为机械特性是指人为地改变电动机电枢外加 电压、励磁磁通的大小以及电枢回路串接附加电 阻所得到的机械特性。直流他励电动机有三种人 为机械特性。
Ra U n= − T = n0 − ∆n 2 KeΦ Ke Kt Φ
n
d T
– U + 直流电从两电刷之间通入电枢绕组, 直流电从两电刷之间通入电枢绕组,电枢电流 方向如图所示 由于换向片和电源固定联接, 如图所示。 方向如图所示。由于换向片和电源固定联接,无论 线圈怎样转动,总是S极有效边的电流方向向里 极有效边的电流方向向里, 线圈怎样转动,总是 极有效边的电流方向向里 N 极有效边的电流方向向外。电动机电枢 极有效边的电流方向向外。电动机电枢绕组通电后 中受力(左手定则 按顺时针方向旋转。 左手定则)按顺时针方向旋转 中受力 左手定则 按顺时针方向旋转。
转子
转子部分:转子又称为电枢,包括电枢铁心、 电枢铁心、 转子部分 电枢铁心 电枢绕组、换向器、风扇、 电枢绕组、换向器、风扇、轴等

直流电动机的机械特性PPT课件

直流电动机的机械特性PPT课件
nF n
I
F
16
2.2 直流电机的基本原理
4.直流电动机的基本关系
1)电磁力矩方程
+
U
Tem Cm Ia (2-1)
_
式中
pN
Cm 2 a
当磁场 一定时
电机转矩常数;
Tem Km Ia
式中 Km Cm —转矩系数;
第17页/共60页
IB
nF n
I
F
17
2.2 直流电机的基本原理
4.直流电动机的基本关系
+
U
应用:机电系统驱动控制
_
2)发电机原理
I,U 直流电机
T,n
应用:机电系统制动控制
+
U
电机:电 能 机械能,称可逆原理
_
第13页/共60页
IB
nF n
I
F
IB
n
I
T
n
13
2.2 直流电机的基本原理
4.直流电动机的基本关系
1)电磁力矩方程
+
电磁力定律: (左手定理)
U
_
载流导体在磁场中,受电磁力作用;
p p0 pCua pFe pm ps pCua
24
第24页/共60页
2.2 直流电机的基本原理
4.直流电动机的基本关系
5)功率平衡关系
他励电机稳态运行时的功率流程图
P1 P2 p
p pCua pFe pm ps
25
第25页/共60页
2.3 直流电动机的机械特性
2.3.1 他励电动机的机械特性
I
E
7
第7页/共60页
2.1 直流电机的基本结构及类型

直流电动机的机械特性

直流电动机的机械特性

直流电动机的机械特性直流电动机是一种常用的机电一体化设备,其被广泛应用于各个领域中。

本文将会介绍直流电动机的机械特性以及其对电机性能的影响。

机械特性在直流电动机中,机械特性包括以下几方面:转矩-转速特性转矩-转速特性是描述直流电动机机械性能的一项基本参数。

在电动机工作过程中,其所能输出的最大转矩随着转速的升高而逐渐降低。

这是因为当电动机转速越来越快时,铁芯和电涡流产生的反磁场会减弱,从而导致电动机所能输出的最大功率下降。

负载特性负载特性是指在不同负载下电机的输出特性。

电动机工作时,其常常需要承受较大的负载。

在负载下,电机输出的功率与输出的转矩有直接的关系,因此负载特性也是衡量电机性能的重要指标。

稳态和瞬态特性电动机的稳态和瞬态特性是描述电机工作状态的两个重要参数。

稳态特性是指电机在稳定状态下的运作特性,而瞬态特性则是指电机在启动、停止和加速等瞬态过程中的运作特性。

机械特性对电机性能的影响电动机的机械特性对其性能的影响十分显著。

其中,转矩-转速特性对电机的负荷能力、效率和稳定性都有影响。

转矩-转速特性可以用动态转矩方程来描述,在实际应用中可以根据负载情况来调整电机的运行状态,以保证其在不同负载下的运行稳定性。

另外,稳态和瞬态特性对电机的启动、停止和加速等过程有直接的影响。

在启动过程中,电机可能会受到较大的起动电流,从而导致电机元件的过载。

在停止过程中,电机可能会产生反电动势,导致能量无法全部释放,影响到电机的效率。

因此,在电机的设计过程中需要充分考虑机械特性对电机性能的影响,以使其性能更加优越。

直流电动机的机械特性是描述其工作性能的一个重要因素。

转矩-转速特性、负载特性以及稳态和瞬态特性等机械特性对电机的性能和效率都有显著的影响。

在电机设计和应用中,我们需要充分考虑这些特性的影响,以保证电机的稳定性、负荷能力和实用性。

直流电动机机械特性

直流电动机机械特性

直流电动机机械特性直流电动机是一种广泛应用于工业领域的电动机,其机械特性对于在实际工程中使用起着至关重要的作用。

本文将介绍直流电动机的机械特性,包括其基本结构、工作原理、性能参数以及特性曲线等内容。

基本结构直流电动机主要由定子、转子、换向器、电刷、轴承等部件组成。

定子是固定的部件,包括定子铁心、定子绕组等;转子是旋转的部件,包括转子铁心、励磁绕组等;换向器用于改变电流方向,使电机正常运转;电刷与换向器配合使用,传递电流到转子绕组上;轴承则支撑转子的转动。

直流电动机的工作原理是利用电磁感应的原理,当电流通过转子绕组时,会在空间产生磁场,与定子的磁场相互作用产生转矩,推动转子旋转,从而实现电动机的工作。

性能参数直流电动机的性能参数主要包括额定电压、额定功率、额定转速、额定电流、效率等。

其中,额定功率是指电动机在额定电压、额定电流条件下所能输出的功率;额定转速是指电动机在额定电压下转动的转数;效率则是指电动机输出功率与输入功率之比。

特性曲线直流电动机的特性曲线包括转矩-转速曲线和效率-输出功率曲线。

转矩-转速曲线表示在不同负载下电动机的转子转速和输出转矩的关系,通常转矩与转速呈线性关系;效率-输出功率曲线则表示在不同输出功率下电动机的效率变化情况,一般在额定功率附近效率最高。

直流电动机广泛应用于各种机电设备中,包括传送机械、起动机、升降机、风机等,其机械特性对于实现各种功能起着关键作用。

结论直流电动机的机械特性是其性能的重要指标,了解并掌握电机的特性对于工程设计、运行维护等都有着重要的意义。

通过本文的介绍,相信读者对直流电动机的机械特性有了更深入的了解。

他励直流电动机的机械特性

他励直流电动机的机械特性
接 称为硬特性。 性曲线 结论:下斜的机械特性与恒转矩负载配合, 系统能够稳定运行; 上翘的机械特性与恒转矩负载配合, 系统不能稳定运行。
减小,β 增大,n0增大
线
反之称为软

特性
1、他励电动机的固有机械特性
U=UN、Φ=ΦN, Rpa=0的机械特性称固有机械特性
n UN CeΦN
Ra CeCT ΦN2
恒转矩负载

特性在A点 的斜率:
系统 电压
稳 定
dn/dTL=∞, 则dTL/dn=0
波动 机特
运 行
下斜的机械特性在
上翘的机械特性在
A点其dn/dT<0,则 dT/dn<0,在A点满 足dT/dn<dTL/dn
A点其dn/dT>0,则 dT/dn>0,在A点不 满足dT/dn<dTL/dn
结论:下斜的机械特性与恒转矩负载配合, 系统能够稳定运行; 上翘的机械特性与恒转矩负载配合, 系统不能稳定运行。
斜率β越小, 下斜的机械特性在A点其dn/dT<0,则dT/dn<0,在A点满足dT/dn<dTL/dn
机 斜率β越小,特性越平,称为硬特性。
特性越平, 电力拖动系统的稳定运行,是指在某种外界因素(如电网电压波动或负载的微小变化)的扰动下,系统离开原来的平衡状态,达到新的平衡状态;
的 机械特 (3)改变磁通的人为机械特性
《电机与辅助控制系统》课程
知识点 他励直流电动机的机械特性
直流电动机的机械特性就是指在稳定运行情 况下,电动机的转速与电磁转矩之间的关系,即
n=f(T)。机械特性是电动机的主要特性,是分析
电动机起动、调速、制动等问题的重要工具。下 面以他励直流电动机为例讨论机械特性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动过程
起动条件:1、起动转矩要足够大,
2、起动电流不要太大,
注意:因为在起动时,n=0,反电动势Ea=0
I st
UN Ra
二. 起动方法
1、降压启动 电压调节,现已逐步被晶闸管可控整流电源所取代。这种启动 方法需要专用电源,投资较大大但启动电流小,启动转矩容易 控制,启动平稳启动能耗小,是一种较好的启动方法。 2、串电阻分级启动 无须可调电源,实现方便。但电阻耗能严重,调节平滑性差。
n
n0
Ra Rz CeCT 2
Tz
n0
Ra Rz Ce
Iz
二、反接制动-电枢反接的反接制动
1.原理与方法
+U–
运行
R
If
M
Uf
制动
电枢反接制动是将正在正向 运行的他励直流电动机电枢回路 的电压突然反接,电枢电流也将 反向,主磁通不变,则电磁转矩 反向,产生制动转矩。
2. 机械特性
机械特性分析: U U N , ,N 电动机的机械特性方程式为
n
UN
Ce N
Ra R
C
e
CT
2 N
T
n0
ቤተ መጻሕፍቲ ባይዱ
T
n0
n
说明
式中
Ra R
C
e
CT
2 N
称为人为特性的斜率,当改变外串电阻RΩ的大小,可得到 一簇人为特性曲线,如图所示。
特性的特点是: ①理想空载点n0与固有机械特性的相同; ②斜率β随外串电阻RΩ的增大而增大,使特性变软。电枢 回路串电阻时的人为机械特性可用于电机起动和调速。
n0
UN
Ce N
式中
Ce N
EaN nN
UN
IN nN
Ra
电枢回路电阻计算
电枢回路电阻Ra,可实测或根据经验公式估算。一般直流 电动机额定运行时的铜损约占总损耗的一半至三分之二,
则根R据a上的述估公算式式可为计:算Ra出理(12想~空32载) U转N速I Nn0I。N2PN
103 ()
②求额定工作点(nN,TN)
三.串电阻起动
Ra R1 Ra R1 R2 Ra R1 R2 R3 Ra R1 R2 R3
解析法求起动电阻:
nb nc
Eb Ec
b:
I2
U
Eb R2
c:
I1
U
Ec R1
I1 R3 I 2 R2
d | e : I1 R2
I2
R1
I1 Rm Rm1 ..... R2 R1
RZ
U I
Ra
U
Ce N n Ia
Ra
ne 0, Iae 0
2、 求负载的稳定下放速度
n
n0
Ra Rz CeCT 2
Tem
n0
Ra Rz Ce
Ia
ne 0, Iae 0 n0 ne 0
三、 回馈制动---正向回馈制动
1、求制动时串入电阻值
RZ
U I
Ra
U
Ce N n Ia
※ 直流电动机制动问题总结
一是使系统快速停车(或减速) 制动意义:
二是使位能性负载稳速下放
判别方法: 电磁转矩Tem与转速n方向相反
计算题目类型: 一、求制动时串入电阻值
RZ
U I
Ra
U
Ce N n Ia
Ra
二、求负载的稳定下放速度
n U Ia (Ra Rz )
Ce
一、 能耗制动
1、求制动时串入电阻值
式中气隙磁通Ф<ФN。 n U N Ra T
说明 特性的特点是:
Ce CeCT 2
①与固有机械特性比斜率β随磁通Ф减少而变大,特性变 软;
②特性的理想空载点n0随气隙磁通Ф减少而变大,故特性 上移。减少气隙磁通时的人为机械特性也可用于调速。
减小气隙磁通时的人为机械特性
减小气隙磁通时的人为机械特性
1、起动级数m未定 初选 值,计算起动级
数m
并整定,(
Rm
U )代入求出新的 I1
2、起动级数m已定 选定T1(I1) 值,计算Rm,计算
§9.3他励直流电动机的制动
概念: 就是指使电动机产生一个与转速方向相反的电磁转矩
Tem,(起到阻碍运动的作用)的状态 意义(应用):
一是使系统快速或停车(或减速) 二是使位能性负载的稳速下放 特点: 吸收机械能转换成电能
Ra
nF n0 0, IaF 0
2、 求负载的稳定下放速度 无稳定下放速度
正向回馈 正向能耗
n 正向电动
电枢反接 反向电动
Ia/T 转速反向
反向能耗
反向回馈
I2
Rm1
Rm 2
R1 Ra
R1 Ra
R2 R1 Ra 2
Rm Rm1 Ra m
m Rm
Ra
lg Rm m Ra
lg
R1 R1 Ra ( 1)Ra R2 R2 R1 ( 2 )Ra R1 Rm Rm Rm1 m1R1
解析法计算分级启动电阻分两种情况:
n
n0
Ra Rz CeCT 2
Tem
n0
Ra Rz Ce
Ia
3.反接制动的运行状态
1)反接制动停车状态(第二象限 n>0,T<0):
制动时初瞬最大电流
制动电I阻1=选择UR:a
Ce
N Rz
n
A
按最大制动电流不超过 2 IN 来选择 R Z。
注意:仅用于停车时,当n=0时应立即切断电源
1固有机械特性 气其隙数他磁学励通表直Ф达=流式Ф电为N,动:电机枢的外固串有电机阻械R特Ω性=0是时指,:n=在ƒ(电T)源的电机压械U特=性UN,,
n UN
Ce N
Ra
C
e
CT
2 N
T
n0
N
T
n0
nN
式中
N
Ra
C
e
CT
2 N
称为斜率,ΔnN为额定负载时的转速降。
固有机械特性
他励直流电动机固有机械特性
三、机械特性绘制
直流电动机的固有机械特性可通过实验测得,也可根据铭
牌数据估算求得。其它各种人为机械特性则可根据固有机
械特性求得。 求理想空载点
由于固有机械特性是一条直线,一般通过求取两个特殊点 (理想空载点和额定工作点),再将这两点连成直线便可 得到固有机械特性。
①求理想空载点(n0,0) 计算理想空载转速公式为:
根据铭牌数据可得额定转速nN,而计算电磁转矩公式为:
TN CT N I N 9.55Ce N I N
四、电力拖动系统稳定运行的条件
1.稳态时电动机电流由负载大小决定
(1)转矩平衡(T=Tz) (2)稳态运行- A稳态运行点 (3)负载发生变化 负载转矩特性由 1 变为2,(T<Tz) 进 入动态减速过程 (4)动态减速过程 (5)新的稳态工作点 一直过渡到特性3与2的交点 B 点 减 速过程结束,系统又转化为稳态(T=Tz) (6)结论:
①与固有机械特性比斜率β没变,即特性硬度没变;
②特性的理想空载点n0随电压的下降而变小,是一簇平行 特性。改变电枢电源电压时的人为机械特性可用于调速。
改变电枢电源电压时的人为机械特性
改变电枢电源电压时的人为机械特性
③减少气隙磁通时的人为机械特性
减少气隙磁通时的人为机械特性是指:在电源电压U=UN, 电枢外串电阻RΩ=0,改变气隙磁通Ф时,n=ƒ(T)的机械特 性,其数学表达式为:
T
制动电阻 Rz 愈小,则机械特性愈平 T 平均绝对值愈大,制动愈快.
3.能耗制动的应用
1)能耗制动停车(第二象限 n>0,T<0):
制动时初瞬最大电流
制动电I1阻=选-择C:ReaNRnzA
按最大制动电流不超过 2 IN 来选择 R Z。
3.能耗制动的应用
2)位能负载稳速下放(第四象限 n <0,T>0):
一、能耗制动
1.能耗制动的原理与方法
UN
K
If Uf
–U+
运行 K
Ia T
RZ n
Ea
If
M
制动
电机实际处于发电机运行
R 状态,将转动部分的动能转换 成电能消耗在电阻和电枢回路
的电阻上,所以称为能耗制动。
2.能耗制动的机械特性
机械特性分析:
U
0,
,电动机的机械特性方程式为
N
n
Ra Rz CeCT 2
直流电动机的机械特性
一、机械特性方程式
在电动机的运行中,转速与转矩之间的关系最为重 要,我们把它称为机械特性,即n=ƒ(T)。
n
UN CeΦ
Ra CeΦ
Ia
pN Tem 2 πa ΦIa CTΦIa
n UN
Ce N
Ra
C
e
CT
2 N
T
n0
N
T
n0 nN
二、固有机械特性与人为机械特性
说明
他励直流电动机固有机械特性是一条过理想空载点(n=n0, T=0)斜率很小的硬特性曲线。当空载转矩为T0时,实际 空载转速为n0’。 (2)人为机械特性 每台电动机只有一条固有机械特性,当改变电气参数如变 电源电压、或变气隙磁通、或变电枢外串电阻时,所得到 的机械特性,称为人为机械特性。
①电枢回路串电阻时的人为机械特性
RZ
U I
Ra
Ce N n Ia
Ra
2、求负载的稳定下放速度
n IaC (Ra Rz )
Ce
nB 0, IaB 0 nC 0, IaC 0
nC 0, IaC 0
相关文档
最新文档