2017-2018学年武汉市江夏区七年级下期末数学试卷(含答案解析)

合集下载

2017—2018学年七年级下期末考试数学试卷有答案

2017—2018学年七年级下期末考试数学试卷有答案

2017—2018学年七年级下学期数学期末考试数学(时间:120分钟满分:120分)一、选择题(本题有10小题,每小题3分,共30分) 1.27的立方根是( )A .3B .±3C .± 3D . 3 2.下列各点中,在第二象限的是( )A .(-1,3)B .(1,-3)C .(-1,-3)D .(1,3) 3.下列式子正确的是( )A .9=±3B .38=-2 C .(-3)2=-3 D .-25=54.要调查城区某所初中学校学生的平均体重,选取调查对象最合适的是( ) A .选该校100名男生 B .选该校100名女生;C .选该校七年级的两个班的学生D .在各年级随机选取100名学生。

5.如图,已知AE ∥BC ,AC ⊥AB ,若∠ACB =50°,则∠F AE 的度数是( ) A .50° B .60° C .40° D .30°6.若关于x 的不等式(2-m )x <1的解为x >12-m,则m 的取值范围是( ) A .m >0 B .m <0 C .m >2 D .m <27.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( ) A .36,8 B .28,6 C .28,8 D .13,38.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,梁湖风景区某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为( )A .120mB .130mC .140mD .150m9.一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动:(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第63秒时,这个点所在位置的坐标是( )A .(7,0)B .(0,7)C .(7,7)D .(6,0)10.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们共有( )种租住方案.BAFEC第5题图第8题图yx O1231 2 3 第9题图AA .4B .2C .3D .1二、填空题(共6小题,每小题3分,满分18分)11.计算:25+3-8=________;12.点M (2,-1)向上平移3个单位长度得到的点的坐标是________;13.在对45个数据进行整理的频数分布表中,各组的频数之和等于________;14.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打________折。

湖北省武汉市 七年级(下)期末数学试卷 含答案

 湖北省武汉市 七年级(下)期末数学试卷 含答案

七年级(下)期末数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分) 1.如图,AD ∥BC ,∠C =30°,∠ADB :∠BDC =1:2,则∠DBC 的度数是( )A. B. C. D. 45∘30∘50∘36∘2.下列结论正确的是( )A. 64的立方根是B. 没有立方根±4−18C. 立方根等于本身的数是0D. 3−27=−3273.若点M (a -2,2a +3)是y 轴上的点,则a 的值是( )A. 2B. C. D. −32−2324.已知与都是方程y =kx +b 的解,则k 与b 的值为(){x =4y =−2{x =−2y =−5A. , B. ,k =12b =−4k =−12b =4C. , D. ,k =12b =4k =−12b =−45.不等式组的解集在数轴上可表示为( ){x +1≥0x−2<0A. B.C.D.6.下列调查中,调查方式选择合理的是( )A. 为了了解某一品牌家具的甲醛含量,选择全面调查B. 为了了解某公园全年的游客流量,选择抽样调查C. 为了了解神舟飞船的设备零件的质量情况,选择抽样调查D. 为了了解一批袋装食品是否含有防腐剂,选择全面调查7.若|x +y -5|+(x -y -9)2=0,则x 、y 的值是( )A. B. C. D. {x =7y =−2{x =−2y =7{x =−7y =2{x =2y =−78.下列不等式变形正确的是( )A. 由得B. 由得a >b ac >bc a >b −2a >−2bC. 由得D. 由得a >b −a <−ba >b a−2<b−29.某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( )A. 得分在分之间的人数最多70~80B. 该班的总人数为40C. 得分在分之间的人数最少90~100D. 及格分人数是26(≥60)10.已知方程组中x ,y 的互为相反数,则m 的值为( ){x−y =42x +y =m A. 2 B. C. 0 D. 4−2二、填空题(本大题共6小题,共18.0分)11.如图所示,一块正方形地板,边长60cm ,上面横竖各有两道宽为5cm 的花纹(图中阴影部分),空白部分的面积是______.12.在△ABC 中∠B =90°,BC =5,AB =12,AC =13,则点B 到斜边AC 的距离是______.13.若a 3=-8,则a =______.14.将点P (-3,y )向下平移3个单位,向左平移2个单位后得到点Q (x ,-1),则x +y =______.15.若代数式的值不小于代数式的值,则x 的取值范围是______.3x−151−5x616.记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了______场.三、解答题(本大题共7小题,共52.0分)17.如图,AB 交CD 于O ,OE ⊥AB .(1)若∠EOD =20°,求∠AOC 的度数;(2)若∠AOC :∠BOC =1:2,求∠EOD 的度数.18.如图,在△ABC 中,AD ⊥BC 于点D ,点E 在AB 边上,点G 在AC 边上EF ⊥BC 于点F ,若∠BEF =∠ADG .求证:AB ∥DG19.计算:||-()3+-||-13−1830.125 6.25312720.解方程组.{4(x−y−1)=3(1−y)−2x 2+y 3=221.解不等式组,并把它的解集在数轴上表示出来.{5x +1>3(x−1)12x−1≤7−32x22.为了解某校创新能力大赛的笔试情况,随机抽查了部分参赛同学的成绩,整理井制作了不完整的统计表和统计图,请根据图表中提供的信息解答问题:分数x (分)频数百分比60≤x <703010%70≤x <8090n 80≤x <90m 40%90≤x <1006020%(1)本次调查统计的学生人数为______.(2)在表中:m =______,n =______.(3)补全频数分布直方图.23.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?答案和解析1.【答案】C【解析】解:∵∠ADB:∠BDC=1:2,∴设∠ADB=x,则∠BDC=2x.∵AD∥BC,∴∠DBC=∠ADB=x,∵∠C=30°,∠C+∠DBC+∠BDC=180°,即30°+x+2x=180°,解得x=50°,∴∠DBC=50°.故选:C.设∠ADB=x,则∠BDC=2x,再由AD∥BC得出∠DBC=∠ADB=x,根据三角形内角和定理得出x的值,进而可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.2.【答案】D【解析】解:A、64的立方根是4,故本选项错误;B、-的立方根是-,故本选项错误;C、立方根等于它本身的数是0、1、-1,故本选项错误;D、=-3,-=-3,故本选项正确;故选:D.根据立方根的定义求出每个数(如64、-、±1、0,-27、27)的立方根,再判断即可.本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.3.【答案】A【解析】解:∵点M(a-2,2a+3)是y轴上的点,∴a-2=0,解得:a=2,故选:A.直接利用y轴上点的坐标特点得出答案.此题主要考查了点的坐标,正确记忆点的坐标特点是解题关键.4.【答案】A【解析】解:把与代入方程y=kx+b,得到关于k和b的二元一次方程组,解这个方程组,得.故选:A.将与代入方程y=kx+b,得到关于k和b的二元一次方程组,再求出k和b的值.运用代入法,得关于k和b的二元一次方程组,再解方程组求解是解决此类问题的关键.5.【答案】B【解析】解:不等式组,解①得:x≥-1,解②得:x<2,则不等式组的解集是:-1≤x<2.故选:B.首先解出不等式组x的取值范围,然后根据x的取值范围,找出正确答案;本题考查了不等式组的解法及在数轴上表示不等式的解集,把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答案】B【解析】解:A、为了了解某一品牌家具的甲醛含量,因为普查工作量大,适合抽样调查,故本选项错误;B、为了了解某公园的游客流量,选择抽样调查,故本项正确;C、为了了解神州飞船的设备零件的质量情况的调查是精确度要求高的调查,适于全面调查,故本选项错误;D、为了了解一批袋装食品是否有防腐剂,选择抽样调查,故本项错误,故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.【答案】A【解析】解:∵|x+y-5|+(x-y-9)2=0,∴,解得:,故选:A.利用非负数的性质列出方程组,求出方程组的解即可得到x与y的值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.【答案】C【解析】解:∵a>b,∴①c>0时,ac>bc;②c=0时,ac=bc;③c<0时,ac<bc,∴选项A不正确;∵a>b,∴-2a<-2b,∴选项B不正确;∵a>b,∴-a<-b,∴选项C正确;∵a>b,∴a-2>b-2,∴选项D不正确.故选:C.A:因为c的正负不确定,所以由a>b得ac>bc不正确,据此判断即可.B:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.9.【答案】D【解析】解:A、得分在70~80分之间的人数最多,故正确;B、2+4+8+12+14=40(人),该班的总人数为40人,故正确;C、得分在90~100分之间的人数最少,有2人,故正确;D、40-4=36(人),及格(≥60分)人数是36人,故D错误,故选D.观察频率分布直方图,得分在70~80分之间的人数是14人,最多;该班的总人数为各组人数的和;得分在90~100分之间的人数最少,只有两人;及格(≥60分)人数是36人.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.10.【答案】A【解析】解:由题意得:x+y=0,即y=-x,代入方程组得:,解得:m=x=2,故选:A.根据x与y互为相反数得到x+y=0,即y=-x,代入方程组即可求出m的值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.11.【答案】2500平方厘米【解析】解:(60-2×5)2,=50×50,=2500(平方厘米);∴空白部分的面积是2500平方厘米.故答案为:2500平方厘米由题意可知:利用“挤压法”,将图形中的花纹挤去,求出剩余的正方形的边长,即可求出白色部分的面积.本题考查了生活中的平移现象,解答此题的关键是:利用“挤压法”,求出剩余的长方形的边长,进而求其面积.12.【答案】6013【解析】解:设AC边上的高为h,∵在Rt△ABC中,∠B=90°,AB=5,BC=12,AC=13,∴AB•BC=AC•h,∴h===.故答案为:.设AC边上的高为h,再根据三角形的面积公式即可得出结论.本题考查的是三角形的面积,熟知三角形的面积公式是解答此题的关键.13.【答案】-2【解析】解:∵a3=-8,∴a=-2.故答案为:-2.直接利用立方根的定义分析得出答案.此题主要考查了立方根,正确把握定义是解题关键.14.【答案】-3【解析】解:∵点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),∴x=-3-2,y-3=-1,解得x=-5,y=2,所以,x+y=-5+2=-3.故答案为:-3.根据向下平移纵坐标减,向左平移横坐标减列方程求出x、y的值,然后相加计算即可得解.本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.15.【答案】x≥1143【解析】解:根据题意,得:≥,6(3x-1)≥5(1-5x),18x-6≥5-25x,18x+25x≥5+6,43x≥11,x≥,故答案为:x≥.根据题意列出不等式,依据解不等式得基本步骤求解可得.本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键.16.【答案】27【解析】解:由统计图可得,比赛场数为:10÷20%=50,胜的场数为:50×(1-26%-20%)=50×54%=27,故答案为:27.根据统计图中的数据可以求得比赛总场数,从而可以求得足球队全年比赛胜的场数.本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.【答案】解:(1)∵OE⊥AB,∴∠AOE=90°,∵∠EOD=20°,∴∠AOC=180°-90°-20°=70°;(2)设∠AOC=x,则∠BOC=2x,∵∠AOC+∠BOC=180°,∴x+2x=180°,解得:x=60°,∴∠AOC=60°,∴∠BOD=60°,∴∠EOD=180°-90°-60°=30°.【解析】(1)利用垂直的定义,∠AOE=90°,即可得出结果;(2)利用邻补角的定义,解得∠AOC=60°,有对顶角的定义,得∠BOD=60°,解得∠EOD.本题主要考查了垂直的定义,邻补角的定义,对顶角的性质,熟练掌握垂直的定义,邻补角的定义是解决此题的关键.18.【答案】证明:∵AD⊥BC,EF⊥BC∴AD∥EF∴∠BEF=∠BAD(两直线平行,同位角相等)又∵∠BEF=∠ADG∴∠ADG=∠BAD∴AB∥DG(内错角相等,两直线平行)【解析】依据AD∥EF即可得到∠BEF=∠BAD,再根据∠BEF=∠ADG,即可得出∠ADG=∠BAD,进而得到AB∥DG.此题主要考查了平行线的判定与性质定理,关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.19.【答案】解:原式=-+2.5--1121813=+--1385213=.3724【解析】直接利用立方根以及算术平方根的性质化简各数得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:原方程组可化为:,①×2+②得11x =22,∴x =2,把x =2代入①得:y =3,∴方程组的解为.{x =2y =3【解析】首先对原方程组化简,然后①×2运用加减消元法求解.此题考查的是解二元一次方程组,关键是先化简在运用加减消元法解方程组.21.【答案】解:解不等式5x +1>3(x -1),得:x >-2,解不等式x -1≤7-x ,得:x ≤4,1232则不等式组的解集为-2<x ≤4,将解集表示在数轴上如下:【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】300人 120 30%【解析】解:(1)本次调查统计的学生人数为30÷10%=300(人),故答案为:300人;(2)n=×100%=30%,m=300×40%=120,故答案为:120、30%;(3)补全频数分布直方图如下:(1)利用第一组的频数除以频率即可得到样本容量;(2)90÷300即为70≤x <80组频率,可求出n 的值;300×0.4即为80≤x <90组频数,m 的值;(3)根据80≤x <90组频数即可补全直方图.本题考查了频数分布直方图、频率分布表等知识,要具有读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【答案】解:设每块长方形地砖的长为xcm ,宽为ycm .依题意得,{4y =60x +y =60解得,{x =45y =15答:长方形地砖的长为45cm ,宽为15cm .【解析】就从右边长方形的宽60cm 入手,找到相对应的两个等量关系:4×小长方形的宽=60;一个小长方形的长+一个小长方形的宽=60.本题应从题中所给的已知量60入手,找到最简单的两个等量关系,进而求解.。

2017-2018学年湖北省武汉市江岸区七年级下期末数学试卷及答案解析

2017-2018学年湖北省武汉市江岸区七年级下期末数学试卷及答案解析

2017-2018学年湖北省武汉市江岸区七年级下期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.最接近的整数是()A.0 B.1 C.2 D.32.下列调查适合抽样调查的是()A.了解武汉市2018年中考学生的体育成绩B.乘坐飞机时对乘客的安全检查C.审核书稿中的错别字D.长征火箭发射前的零部件检查3.如图所示,表示关于x的不等式组的解集,下列结果正确的是()A.﹣2<x<2 B.﹣2<x≤2 C.﹣2≤x<2 D.﹣2≤x≤24.在3a+4b=9中,若b=3,则a的值为()A.﹣2 B.﹣1 C.0 D.15.下列方程组的解为的是()A.B.C.D.6.下列不等式变形,不成立的是()A.若m<n,则m+1<n+1 B.若1﹣m<1﹣n,则m<nC.若a2m<a2n,则m<n D.,则m<n7.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.8.如图是用4个相同的长方形与1个小正方形组成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x、y(其中x>y)表示长方形的长与宽,请观察图案,指出以下关系系式中下正确的是()A.x+y=7 B.x﹣y=2 C.4xy+4=49 D.x2﹣4=y29.如图李强从家(一街二巷)到校(四街四巷)的路线图中,规定每次五巷只能向上或向右走,从家到校一共有()不同的走法.A.6种B.8种C.10种D.15种10.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣3 二、填空题(本大题共6个小题,每小题3分,共18分.11.若=2,则x的值为.12.已知,方程3x﹣y=1,用含x的代数式表示y,就是.13.不等式1﹣3x≤﹣2的解集为.14.如果∠1两边与∠2的两边分别平行,若∠1=40°,则∠2=度.15.关于x、y的方程2x+ay=7仅有一组正整数解,则满足条件的正整数a的值为.16.对于实数a、b,我们定义符号max|a,b|的意义为:当a≥b时,max|a,b|=a,当a<b 时,max|a,b|=b;如max|4,﹣2|=4,设y=max|x+3,﹣x+1|,则y的取值范围为.三.解答题(共8题,共72分)17.(8分)解二元一次方程组.18.(8分)解不等式组:,并把解集在数轴上表示出来.19.(8分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.20.(8分)如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=∠2,∠C=∠D.求证:AC∥DF.21.已知是二元一次方程2x+y=a的一个解.(1)根据方程完成下表并在所给的直角坐标系(每个小正方形的边长为1)中描出表示这些解的点(x,y)x…0…y…62…通过观察可以发现这些点在同一直线上,得出结论:任何一个二元一次方程的图象都是一条直线;(2)请在所给的直角坐标系中画出二元一次方程x﹣y=﹣1的图象;(3)观察这两个二元一次方程的图象直接写出二元一次方程组的解:.22.(10分)已知某水果行租赁甲、乙两种货车同时装运香蕉和荔枝,调查了两种车满载时的装运能力,数据如表所示.甲车(辆)乙车(辆)荔枝共计(吨)香蕉共计(吨)1163241610(1)请分析表中数据,分别求出甲、乙货车每辆可以装运荔枝和香蕉各多少吨;(2)现计划将荔枝30吨,香蕉13吨运往外地,若租用甲、乙两种货车共10辆,求安排甲、乙两种货车有几种方案.23.(10分)已知直线AB∥CD,直线MN分别交AB、CD于点E、F,点P为射线EF上的点,点Q为CD上一点,已知∠MEB=α,(90°<α<180°)(1)如图1,点P在线段EF上,点Q在点F的左侧,∠DFN比∠MEB小20°,若∠PQF为∠MEB的一半,求∠EPQ的度数.(2)如图2,EH平分∠AEF交CD于点H,若PQ∥EH,求∠EPQ(用含α的式子表示);(3)如图3,EH平分∠AEF交CD于点H,∠PQF比∠EHF小20°,若∠MEB=100°,则∠EPQ=度.24.(12分)在平面直角坐标系中,已知点A(a,0)、B(b,6)、C(c,2),a、b、c满足.(1)若a=2,则三角形ABC的面积为.(2)将线段BC向右平移m个单位,使三角形ABC的面积小于4,求m的取值范围;(3)若点D(a+8,8),连结AD,将线段BC向右平移n个单位,若线段BC与线段AD 有公共点,请直接写出n的取值范围:.2017-2018学年湖北省武汉市江岸区七年级下期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.最接近的整数是()A.0 B.1 C.2 D.3【分析】估算得出所求即可.【解答】解:∵4<5<9,∴2<<3,则最接近是2,故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.2.下列调查适合抽样调查的是()A.了解武汉市2018年中考学生的体育成绩B.乘坐飞机时对乘客的安全检查C.审核书稿中的错别字D.长征火箭发射前的零部件检查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解武汉市2018年中考学生的体育成绩调查范围广适合抽样调查,故A符合题意;B、乘坐飞机时对乘客的安全检查是事关重大的调查,适合普查,故B不符合题意;C、审核书稿中的错别字适合普查是事关重大的调查,故C不符合题意;D、长征火箭发射前的零部件检查是事关重大的调查,适合普查,故D不符合题意;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.如图所示,表示关于x的不等式组的解集,下列结果正确的是()A.﹣2<x<2 B.﹣2<x≤2 C.﹣2≤x<2 D.﹣2≤x≤2 【分析】根据不等式组的解集的表示方法,可得答案.【解答】解:由数轴,得﹣2<x≤2,故选:B.【点评】本题考查了不等式的解集,利用不等式组的解集的表示方法:大小小大中间找是解题关键.4.在3a+4b=9中,若b=3,则a的值为()A.﹣2 B.﹣1 C.0 D.1【分析】把b=3代入3a+4b=9,求出a的值为多少即可.【解答】解:∵b=3,∴3a+4×3=9,∴3a+12=9,解得a=﹣1.故选:B.【点评】此题主要考查了解二元一次方程、一元一次方程的方法,要熟练掌握,注意代入消元法的应用.5.下列方程组的解为的是()A.B.C.D.【分析】运用代入排除法进行选择或分别解每一个方程组求解.【解答】解:A、不是方程x+2y=4的解,故该选项错误;B、不是方程x+y=3的解,故该选项错误;C、不是方程x+y=3的解,故该选项错误;D、适合方程组中的每一个方程,故该选项正确.故选:D.【点评】此题考查了方程组的解的定义,即适合方程组的每一个方程的解是方程组的解.6.下列不等式变形,不成立的是()A.若m<n,则m+1<n+1 B.若1﹣m<1﹣n,则m<nC.若a2m<a2n,则m<n D.,则m<n【分析】直接利用不等式基本性质进而分别判断得出答案.【解答】解:A、若m<n,则m+1<n+1,正确,不合题意;B、若1﹣m<1﹣n,则m>n,错误,符合题意;C、若a2m<a2n,则m<n,正确,不合题意;D、<,则m<n,正确,不合题意;故选:B.【点评】此题主要考查了不等式的性质,正确记忆不等式性质是解题关键.7.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.如图是用4个相同的长方形与1个小正方形组成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x、y(其中x>y)表示长方形的长与宽,请观察图案,指出以下关系系式中下正确的是()A.x+y=7 B.x﹣y=2 C.4xy+4=49 D.x2﹣4=y2【分析】分别根据大正方形边长、小正方形边长的不同表示可判断A、B,根据大正方形面积的整体与组合的不同表示可判断C,由A、B结论利用平方差公式可判断D.【解答】解:A、因为正方形图案的边长7,同时还可用x+y=7来表示,故此选项错误;B、中间小正方形的边长为2,同时根据长方形长宽也可表示为x﹣y=2,故此选项错误;C、因为正方形图案面积从整体看是49,从组合来看,可以是(x+y)2,还可以是(4xy+4),即4xy+4=49,故此选项错误;D、根据A、B可知x+y=7,x﹣y=2,则x2﹣y2=(x+y)(x﹣y)=14,即x2﹣14=y2,故此选项正确;故选:D.【点评】本题主要考查根据数形结合列二元一次方程的能力,解答需结合图形,利用等式的变形来解决问题.9.如图李强从家(一街二巷)到校(四街四巷)的路线图中,规定每次五巷只能向上或向右走,从家到校一共有()不同的走法.A.6种B.8种C.10种D.15种【分析】可把向上记为1,向右记为2,本题实际就是2个1,3个2组成多少个不同的五位数,从而求解.【解答】解:把向上记为1,向右记为2,李强从家(一街二巷)到校(四街四巷)有多少不同的走法,实际就是2个1,3个2组成多少个不同的五位数,因为11222,12122,12212,12221,21122,21212,21221,22121,22112,22211,所以从家到校一共有10种不同的走法.故选:C.【点评】考查了正数和负数,解题的关键是正确的理解从一个点到另一个点移动如何表示.10.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣3 【分析】根据不等式的性质得出x的解集,进而解答即可.【解答】解:∵﹣1<2x+b<1∴,∵关于x的不等式组﹣1<2x+b<1的解满足0<x<2,∴,解得:﹣3≤b≤﹣1,故选:C.【点评】此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.二、填空题(本大题共6个小题,每小题3分,共18分.11.若=2,则x的值为3.【分析】原式利用算术平方根的定义化简即可求出x的值.【解答】解:∵=2,∴x+1=4,即x=3.故答案为:3【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.12.已知,方程3x﹣y=1,用含x的代数式表示y,就是y=3x﹣1.【分析】把方程3x﹣y=1看作为关于y的一元一次方程,然后解关于y的一次方程即可.【解答】解:移项得﹣y=﹣3x+1,系数化为1得y=3x﹣1.故答案为y=3x﹣1.【点评】本题考查了解二元一次方程:二元一次方程可看着某一字母的一元一次方程.13.不等式1﹣3x≤﹣2的解集为x≥1.【分析】先移项,再合并同类项,把x的系数化为1即可;【解答】解:1﹣3x≤﹣2﹣3x≤﹣3,x≥1,故答案为:x≥1【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.14.如果∠1两边与∠2的两边分别平行,若∠1=40°,则∠2=40或140度.【分析】作出图形,根据两边互相平行的两个角相等或互补解答.【解答】解:如图1,∵∠1与∠2的两边分别平行,∠1=40°,∴∠1=∠3,∠2=∠3,∴∠1=∠2=40°,;如图2,∵∠1与∠2的两边分别平行,∠1=40°,∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°,综上所述,∠2的度数等于40°或140°.故答案为:40或140.【点评】本题考查的是平行线的性质,即两直线平行,同位角相等;两直线平行,同旁内角互补.15.关于x、y的方程2x+ay=7仅有一组正整数解,则满足条件的正整数a的值为5或3.【分析】采用列举法根据x的所有值代入求得a的所有正整数解即可.【解答】解:2x+ay=7,ay=7﹣2x,①当x=1时,7﹣2x=5,∴ay=5,∴a=1,y=5(舍)或a=5,y=1,②当x=2时,7﹣2x=3,∴ay=3,∴a=1,y=3(舍)或a=3,y=1,③当x=3时,7﹣2x=1,∴ay=1,∴a=1,y=1(舍),综上,满足条件的正整数a的值为5或3,故答案为:5或3.【点评】本题主要考查的是二元一次方程的解,应用列举法求解是解题的关键.16.对于实数a、b,我们定义符号max|a,b|的意义为:当a≥b时,max|a,b|=a,当a<b 时,max|a,b|=b;如max|4,﹣2|=4,设y=max|x+3,﹣x+1|,则y的取值范围为y ≥2.【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算.【解答】解:当x+3≥﹣x+1,即x≥﹣1时,y=x+3,∴y≥2,当x+3<﹣x+1,即x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y≥2,故答案为:y≥2.【点评】本题主要考查解一元一次不等式,解题的关键是理解新定义分类讨论计算.三.解答题(共8题,共72分)17.(8分)解二元一次方程组.【分析】由第2个方程可得用y表示的x的式子,代入第1个方程可得y的值,进而可得x的值.【解答】解:由②得x=9﹣3y③把③代入①得2(9﹣3y)﹣y=4,﹣7y=﹣14,解得y=2,把y=2代入③得x=3,∴原方程组的解为.【点评】考查解二元一次方程组;当一个方程中未知数的系数为1时,可考虑用代入法求解比较简便.18.(8分)解不等式组:,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3(x﹣2)≥x﹣4,得:x≥1,解不等式>x﹣1,得:x<4,则不等式组的解集为1≤x<4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键19.(8分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查,样本容量是50;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【分析】(1)根据题目中的信息可知本次调查为抽样调查,也可以得到样本容量;(2)根据每周课外体育活动时间在6≤x<8小时的学生人数占24%,可以求得每周课外体育活动时间在6≤x<8小时的学生人数,从而可以求得2≤x<4的学生数,从而可以将条形统计图补充完整;(3)根据条形统计图可以得到这50名学生每周课外体育活动时间的平均数;(4)根据条形统计图,可以估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人),补全的频数分布直方图如右图所示,(3)由题意可得,=5,即这50名学生每周课外体育活动时间的平均数是5;(4)由题意可得,全校学生每周课外体育活动时间不少于6小时的学生有:1000×(人),即全校学生每周课外体育活动时间不少于6小时的学生有300人.【点评】本题考查频数分布直方图、样本、总体、样本容量、用样本估计总体、加权平均数,解题的关键是明确题意,找出所求问题需要的条件.20.(8分)如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=∠2,∠C=∠D.求证:AC∥DF.【分析】先由对顶角相等,得到:∠1=∠DMF,然后根据等量代换得到:∠2=∠DMF,然后根据同位角相等两直线平行,得到BD∥CE,然后根据两直线平行,同位角相等,得到∠C=∠DBA,然后根据等量代换得到:∠D=∠DBA,最后根据内错角相等两直线平行,即可得到DF与AC平行.【解答】证明:∵∠1=∠DMF,∠1=∠2,∴∠2=∠DMF,∴BD∥CE,∴∠C=∠DBA,∵∠C=∠D,∴∠D=∠DBA,∴AC∥DF.【点评】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.21.已知是二元一次方程2x+y=a的一个解.(1)根据方程完成下表并在所给的直角坐标系(每个小正方形的边长为1)中描出表示这些解的点(x,y)x…﹣101…y…642…通过观察可以发现这些点在同一直线上,得出结论:任何一个二元一次方程的图象都是一条直线;(2)请在所给的直角坐标系中画出二元一次方程x﹣y=﹣1的图象;(3)观察这两个二元一次方程的图象直接写出二元一次方程组的解:.【分析】(1)依据是二元一次方程2x+y=a的一个解,即可得到a=4,进而得出当y=6时,x=﹣1;当x=0时,y=4;当y=2时,x=1,最后描点即可;(2)依据函数解析式画出函数图象即可;(3)依据两直线交点坐标为(1,2),即可得出二元一次方程组的解为.【解答】解:(1)∵是二元一次方程2x+y=a的一个解,∴a=4,∴当y=6时,x=﹣1;当x=0时,y=4;当y=2时,x=1;故答案为:﹣1,4,1;(2)如图所示,(3)由图可得,两直线交点坐标为(1,2),∴二元一次方程组的解为.故答案为:.【点评】本题主要考查二元一次方程的解,解题的关键是掌握方程的解的定义及点的坐标.22.(10分)已知某水果行租赁甲、乙两种货车同时装运香蕉和荔枝,调查了两种车满载时的装运能力,数据如表所示.甲车(辆)乙车(辆)荔枝共计(吨)香蕉共计(吨)1163241610(1)请分析表中数据,分别求出甲、乙货车每辆可以装运荔枝和香蕉各多少吨;(2)现计划将荔枝30吨,香蕉13吨运往外地,若租用甲、乙两种货车共10辆,求安排甲、乙两种货车有几种方案.【分析】(1)先设甲货车每辆可以装运荔枝x吨和香蕉y吨,则由第一组数据可知乙货车每辆可以装运荔枝(6﹣x)吨和香蕉(3﹣y)吨,根据第二组数据可得方程组,求得未知数的值,再将第三组和第四组数据分别进行检验即可;(2)根据两种货车可装的荔枝应大于等于30吨和可装的香蕉应大于等于13吨,分别列出不等式,然后组成不等式组进行求解.【解答】解:(1)设甲货车每辆可以装运荔枝x吨和香蕉y吨,则由第一组数据可知乙货车每辆可以装运荔枝(6﹣x)吨和香蕉(3﹣y)吨,根据第二组数据可得,,解得,答:甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝和香蕉各2吨.(2)设安排甲种货车x辆,则安排乙种货车(10﹣x)辆,依题意得:,解这个不等式组得,∴5≤x≤7,∵x是整数,∴x可取5、6、7,∴安排甲、乙两种货车有3种方案:①甲种货车5辆,乙种货车5辆;②甲种货车6辆,乙种货车4辆;③甲种货车7辆,乙种货车3辆.【点评】本题主要考查二元一次方程组以及一元一次不等式组在现实生活中的应用,运用数学模型进行解题,使问题变得简单.注意本题的不等关系为:两种货车可装的荔枝应大于等于30吨和可装的香蕉应大于等于13吨.23.(10分)已知直线AB∥CD,直线MN分别交AB、CD于点E、F,点P为射线EF上的点,点Q为CD上一点,已知∠MEB=α,(90°<α<180°)(1)如图1,点P在线段EF上,点Q在点F的左侧,∠DFN比∠MEB小20°,若∠PQF为∠MEB的一半,求∠EPQ的度数.(2)如图2,EH平分∠AEF交CD于点H,若PQ∥EH,求∠EPQ(用含α的式子表示);(3)如图3,EH平分∠AEF交CD于点H,∠PQF比∠EHF小20°,若∠MEB=100°,则∠EPQ=70或110度.【分析】(1)依据平行线的性质,即可得到∠PFQ=∠BEN=80°,进而得出∠PQF=50°,再根据∠EPQ=∠PQF+∠PFQ进行计算即可;(2)依据HE平分∠AEF,∠AEF=∠BEM=α,即可得到∠HEF=∠AEF=α,依据EH∥PQ,即可得到∠EPQ的表达式;(3)依据AB∥CD,HE平分∠AEF,即可得到∠AEH=∠AEF=50°,进而得出∠EHF =∠AEH=50°,∠PQF=∠EHF﹣20°=30°,再根据三角形外角性质,可得∠EPQ 的度数.【解答】解:(1)∵AB∥CD,∴∠DFN=∠BEN,又∵∠DFN比∠MEB小20°,∴∠BEN比∠MEB小20°,又∵∠BEM+∠BEN=180°,∴∠BEM=100°,∠BEN=80°,∴∠PFQ=∠BEN=80°,又∵∠PQF为∠MEB的一半,∴∠PQF=50°,∴∠EPQ=∠PQF+∠PFQ=50°+80°=130°;(2)①若P在EF延长线上,Q在HF延长线上,∵HE平分∠AEF,∠AEF=∠BEM=α,∴∠HEF=∠AEF=α,∵EH∥PQ,∴∠EPQ=∠HEF=α;②若P在EF上,Q在HF上,同理可得∠HEF=∠AEF=α,∵EH∥PQ,∴∠EPQ=180°﹣∠HEF=180°﹣α;综上所述,∠EPQ的度数为α或180°﹣α;(3)①若P在EF延长线上,Q在HF延长线上,∵AB∥CD,∴∠MFQ=∠MEB=100°,∵HE平分∠AEF,∴∠AEH=∠AEF=50°,∴∠EHF=∠AEH=50°,∴∠PQF=∠EHF﹣20°=30°,∴∠EPQ=∠MFQ﹣∠PQF=100°﹣30°=70°,②若P在EF上,Q在HF上,同理可得∠PQF=∠EHF﹣20°=30°,∠MFQ=100°,∴∠EFH=80°,∴∠EPQ=∠PQF+∠EFH=30°+80°=110°,故答案为:70°或110°.【点评】本题主要考查了平行线的性质以及三角形外角性质的综合运用,根据外角的性质得出结论是解题关键.24.(12分)在平面直角坐标系中,已知点A(a,0)、B(b,6)、C(c,2),a、b、c满足.(1)若a=2,则三角形ABC的面积为6.(2)将线段BC向右平移m个单位,使三角形ABC的面积小于4,求m的取值范围;(3)若点D(a+8,8),连结AD,将线段BC向右平移n个单位,若线段BC与线段AD 有公共点,请直接写出n的取值范围:4≤n≤6.【分析】先求的解为,进而得出B(a,6),C(a﹣2,2);(1)先求出B(2,6),C(0,2),判断出AB∥y轴,进而用三角形的面积公式即可得出结论;(2)先求出直线AE的解析式为y=x﹣,进而求出G(a+m,2),即可求出FG =|2﹣m|,再用平移后的三角形ABC的面积小于4,求出m的范围,最后排除掉点C 平移后落在线段AE上的m的值,即可得出结论;(3)先求出直线AD解析式,再表示出点B,C平移后对应的点P,Q坐标,最后用点P,Q分别落在线段AD上,即可得出结论.【解答】解:∵,∴,∴B(a,6),C(a﹣2,2),(1)当a=2时,B(2,6),C(0,2),A(2,0),如图1,∴AB∥y轴,∴S△ABC=AB×(x A﹣x C)=×6×2=6,故答案为6.(2)如图2,∵A(a,0),B(a,6),C(a﹣2,2),∴线段BC向右平移m个单位得到EF,∴E(a+m,6),F(a﹣2+m,2),∴直线AE的解析式为y=x﹣,当y=2时,2=x﹣,∴x=a+m,∴G(a+m,2)∴FG=|a+m﹣(a﹣2+m)|=|2﹣m|,当a+m=a﹣2+m时,m=3,此时,不能构成三角形,∴平移后的△ABC是△AEF,即:S△AEF=S△AFG+S△EFG=FG×6=3FG=|6﹣2m|,∵线段BC向右平移m个单位,使三角形ABC的面积小于4,∴|6﹣2m|<4,∴1<m<5,即:1<m<3或3<m<5;(3)如图3,将线段BC向右平移n个单位得到线段PQ,∴P(a+n,6),Q(a﹣2+n,2)∵A(a,0),D(a+8,8),∴直线AD的解析式为y=x﹣a,当线段BC平移到端点C和线段AD相交时,即:点Q在线段AD上,∴a﹣2+n﹣a=2,∴n=4,当线段BC平移到端点B和线段AD相交时,即:点P在线段AD上,∴a+n﹣a=6,∴n=6,∵线段BC与线段AD有公共点,∴4≤n≤6,故答案为:4≤n≤6.【点评】此题是三角形综合题,主要考查了三角形的面积公式,解方程组的方法,解不等式,待定系数法,找出分界点是解本题的关键.。

2017-2018七年级数学下册期末试卷(有答案) (2)

2017-2018七年级数学下册期末试卷(有答案) (2)

2-17-2018学年七年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的2.下列实数中的无理数是()A.1.414 B.0 C.﹣ D.1.有理数9的平方根是()A.±3 B.﹣3 C.3 D.±3.如图,为估计池塘岸边A,B的距离,小明在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离可能是()A.30米B.25米C.20米D.5米4.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.如图,已知直线a∥b,∠1=100°,则∠2等于()A.60°B.80°C.100° D.70°6.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(0,3) C.(3,2) D.(1,3)7.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.78.若m>n,则下列不等式中一定成立的是()A.m+2<n+3 B.2m<3n C.a﹣m<a﹣n D.ma2>na29.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确的是()A.第四小组有10人B.第五小组对应圆心角的度数为45°C.本次抽样调查的样本容量为50D.该校“一分钟跳绳”成绩优秀的人数约为480人10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1二、填空题(共8小题,每小题2分,满分16分)11.如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样做的数学道理是.12.用不等式表示:a与2的差大于﹣1.13.把无理数,,,表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是.14.若(a﹣3)2+=0,则a+b=.15.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为.16.在平面直角坐标系中,若x轴上的点P到y轴的距离为3,则点P的坐标是.17.如图,△ABC中,点D在BC上且BD=2DC,点E是AC中点,已知△CDE面积为1,那么△ABC的面积为.18.在数学课上,老师提出如下问题:如图1,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小军同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B﹣A﹣C为所求.老师说:小军同学的方案是正确的.请回答:该方案最节省材料的依据是.三、解答题(本题共10个小题,共54分,解答应写出文字说明,证明过程或演算步骤)19.计算: +|﹣2|+﹣(﹣).20.解不等式组:,并把它的解集在数轴上表示出来.21.完成下面的证明:已知:如图,AB∥DE,求证:∠D+∠BCD﹣∠B=180°,证明:过点C作CF∥AB.∵AB∥CF(已知),∴∠B=().∵AB∥DE,CF∥AB(已知),∴CF∥DE ()∴∠2+ =180°()∵∠2=∠BCD﹣∠1,∴∠D+∠BCD﹣∠B=180°().22.如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2 ).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接A A1,求△AOA1的面积.23.如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOC=70°.(1)求∠BOD的度数;(2)求∠BOC的度数.24.阅读下列材料:2013年,北京发布《2013年至2017年清洁空气行动计划》,北京的空气污染治理目标是力争到2017年全市PM2.5年均浓度比2012年下降25%以上,控制在60微克/立方米左右.根据某空气监测单位发布数据,2013年北京PM2.5年均浓度89.5微克/立方米,清洁空气问题引起了所有人的高度关注.2014年北京PM2.5年均浓度85.9微克/立方米,比2013年下降3.6微克/立方米.2015年北京PM2.5年均浓度80.6微克/立方米,比上一年又下降了5.3微克/立方米,治理成效比较明显.2016年北京PM2.5年均浓度73微克/立方米,下降更加明显.去年11月,北京市通过的《北京市“十三五”时期环境保护和生态环境建设规划》确定的生态环保目标为:2020年,北京市PM2.5年均浓度比2015年下降30%,全市空气质量优良天数比例超过56%.根据以上材料解答下列问题:(1)在折线图中表示2013﹣2016年北京市PM2.5年度浓度变化情况,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2017年北京市PM2.5年均浓度为,你的预估理由是.(3)根据《北京市“十三五”时期环境保护和生态环境建设规划》,估计2020年北京市PM2.5年度浓度降至微克/每立方米.(结果保留整数)25.如图,已知在△ABC中,DE∥CA,∠1=∠2,∠3=∠4,∠BAC=84°.求∠EDA的度数.26.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?27.已知:∠MON=36°,OE平分∠MON,点A,B分别是射线OM,OE,上的动点(A,B不与点O重合),点D是线段OB上的动点,连接AD并延长交射线ON于点C,设∠OAC=x,(1)如图1,若AB∥ON,则①∠ABO的度数是;②当∠BAD=∠ABD时,x=;当∠BAD=∠BDA时,x=;(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ABD中有两个相等的角?若存在,求出x的值;若不存在,请说明理由.28.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(﹣1,6)的“2属派生点”P′的坐标为;(2)若点P的“3属派生点”P′的坐标为(6,2),则点P的坐标;(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.下列实数中的无理数是()A.1.414 B.0 C.﹣ D.【考点】26:无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:∵无理数就是无限不循环小数,且1.414为有限小数,﹣为分数,0是整数,都属于有理数,为无限不循环小数,∴为无理数.故选:D.2.有理数9的平方根是()A.±3 B.﹣3 C.3 D.±【考点】21:平方根.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故选A3.如图,为估计池塘岸边A,B的距离,小明在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离可能是()A.30米B.25米C.20米D.5米【考点】K6:三角形三边关系.【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:设A,B间的距离为x.根据三角形的三边关系定理,得:15﹣10<x<15+10,解得:5<x<25,故线段可能是此三角形的第三边的是20.故选:C.4.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式【考点】V2:全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解北京市每天的流动人口数,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选:A.5.如图,已知直线a∥b,∠1=100°,则∠2等于()A.60°B.80°C.100° D.70°【考点】JA:平行线的性质.【分析】先根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:如图,∵∠1与∠3是对顶角,∴∠3=∠1=100°,∵a∥b,∴∠2=180°﹣∠3=180°﹣100°=80°.故选B.6.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(0,3) C.(3,2) D.(1,3)【考点】D3:坐标确定位置.【分析】根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.【解答】解:如图所示:棋子“炮”的点的坐标为:(1,3).故选:D.7.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.7【考点】L3:多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.8.若m>n,则下列不等式中一定成立的是()A.m+2<n+3 B.2m<3n C.a﹣m<a﹣n D.ma2>na2【考点】C2:不等式的性质.【分析】根据不等式的基本性质对各选项分析判断即可得解.【解答】解:A、m>n左边加2,右边加3不一定能得到m+2<n+3,故本选项错误;B、m>n左边乘2,右边乘3不一定能得到2m<3n,故本选项错误;C、m>n两边乘以﹣1再加上a可以得到a﹣m<a﹣n,故本选项正确;D、m>n两边乘以a2,若a=0,则ma2>na2不成立,故本选项错误.故选C.9.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确的是()A.第四小组有10人B.第五小组对应圆心角的度数为45°C.本次抽样调查的样本容量为50D.该校“一分钟跳绳”成绩优秀的人数约为480人【考点】V8:频数(率)分布直方图;V3:总体、个体、样本、样本容量;VB:扇形统计图.【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【解答】解:抽取样本人数为10÷20%=50人,第四小组人数为50﹣4﹣10﹣16﹣6﹣4=10人,第五小组对应圆心角度数为360°×=43.2°,用样本估计总体,该校“一分钟跳绳”成绩优秀的人数约为1200×=480人,故选B.10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【考点】37:规律型:数字的变化类.【分析】由题意可得下边三角形的数字规律为:n+2n,继而求得答案.【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.二、填空题(共8小题,每小题2分,满分16分)11.如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样做的数学道理是三角形的稳定性.【考点】K4:三角形的稳定性.【分析】在窗框上斜钉一根木条,构成三角形,故可用三角形的稳定性解释.【解答】解:盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故应填:三角形的稳定性.12.用不等式表示:a与2的差大于﹣1a﹣2>﹣1.【考点】C8:由实际问题抽象出一元一次不等式.【分析】首先表示出a与2的差为a﹣2,再表示大于﹣1是:>1,故可得不等式.【解答】解:由题意得:a﹣2>﹣1;故答案为:a﹣2>﹣1.13.把无理数,,,表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是.【考点】29:实数与数轴;2B:估算无理数的大小.【分析】根据被覆盖的数在3到4之间,化为带根号的数的被开方数的范围,然后即可得解.【解答】解:∵墨迹覆盖的数在3~4,即~,∴符合条件的数是.故答案为:.14.若(a﹣3)2+=0,则a+b=1.【考点】23:非负数的性质:算术平方根;1F:非负数的性质:偶次方.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣3=0,b+2=0,解得a=3,b=﹣2,所以,a+b=3+(﹣2)=1.故答案为:1.15.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为75°.【考点】JA:平行线的性质.【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【解答】解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°.故答案为:75°.16.在平面直角坐标系中,若x轴上的点P到y轴的距离为3,则点P的坐标是(±3,0).【考点】D1:点的坐标.【分析】根据P的位置,结合题意确定出P坐标即可.【解答】解:∵在平面直角坐标系中,若x轴上的点P到y轴的距离为3,∴P的坐标为(±3,0),故答案为:(±3,0)17.如图,△ABC中,点D在BC上且BD=2DC,点E是AC中点,已知△CDE面积为1,那么△ABC的面积为6.【考点】K3:三角形的面积.【分析】根据等底同高的两个三角形的面积公式得到△ADC的面积,然后根据△ABC与△ADC 的底边的数量关系来求△ABC.【解答】解:∵△CDE面积为1,点E是AC中点,=2S△CDE=2.∴S△ADC又∵BD=2DC,=3S△ADC=6.∴S△ABC故答案是:6.18.在数学课上,老师提出如下问题:如图1,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小军同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B﹣A﹣C为所求.老师说:小军同学的方案是正确的.请回答:该方案最节省材料的依据是两点之间,线段最短;垂线段最短.【考点】N4:作图—应用与设计作图.【分析】根据两点之间线段最短以及垂线段最短即可判断.【解答】解:由于两点之间距离最短,故连接AB,由于垂线段最短可知,过点A作AC⊥直线l于点C,此时AC最短,故答案为:两点之间,线段最短;垂线段最短三、解答题(本题共10个小题,共54分,解答应写出文字说明,证明过程或演算步骤)19.计算: +|﹣2|+﹣(﹣).【考点】2C:实数的运算.【分析】原式利用平方根、立方根定义,绝对值的代数意义计算即可得到结果.【解答】解:原式=﹣2+2﹣+3+=3.20.解不等式组:,并把它的解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①得x<4,解不等式②得.x≥﹣2,∴原不等式组的解集为﹣2≤x<4,其解集在数轴上表示为:21.完成下面的证明:已知:如图,AB∥DE,求证:∠D+∠BCD﹣∠B=180°,证明:过点C作CF∥AB.∵AB∥CF(已知),∴∠B=∠1(两直线平行,内错角相等).∵AB∥DE,CF∥AB(已知),∴CF∥DE (平行于同一条直线的两条直线平行)∴∠2+ ∠D=180°(两直线平行,同旁内角互补)∵∠2=∠BCD﹣∠1,∴∠D+∠BCD﹣∠B=180°(等量代换).【考点】JB:平行线的判定与性质.【分析】根据平行线的性质得出∠B=∠1,∠2+∠D=180°,代入求出即可.【解答】证明:过点C作CF∥AB,∵AB∥CF(已知),∴∠B=∠1(两直线平行,内错角相等),∵AB∥DE,CF∥AB(已知),∴CF∥DE (平行于同一条直线的两条直线平行),∴∠2+∠D=180°(两直线平行,同旁内角互补),∵∠2=∠BCD﹣∠1,∴∠D+∠BCD﹣∠B=180°(等量代换),故答案为:∠1,两直线平行,内错角相等,平行于同一条直线的两条直线平行,∠D,两直线平行,同旁内角互补,等量代换.22.如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2 ).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接A A1,求△AOA1的面积.【考点】Q4:作图﹣平移变换.【分析】(1)根据点P、P1的坐标确定出平移规律,再求出C1的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(3)利用△AOA1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)∵点P(a,b)的对应点为P1(a+6,b﹣2),∴平移规律为向右6个单位,向下2个单位,∴A(﹣3,3),B(﹣5,1),C(﹣2,0)的对应点的坐标为A1(3,1),B1(1,﹣1),C1(4,﹣2);(2)△A1B1C1如图所示;(3)△AOA1的面积=6×3﹣×3×3﹣×3×1﹣×6×2,=18﹣﹣﹣6,=18﹣12,=6.23.如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOC=70°.(1)求∠BOD的度数;(2)求∠BOC的度数.【考点】J2:对顶角、邻补角;IJ:角平分线的定义.【分析】(1)直接利用角平分线的定义、结合对顶角的定义分析得出答案;(2)利用(1)中所求,进而得出答案.【解答】解:(1)∵OA平分∠EOC,∠EOC=70°,∴∠AOC=∠EOC=35°,∴∠BOD=∠AOC=35°;(2)∵∠BOD+∠BOC=180°,∴∠BOC=180°﹣35°=145°.24.阅读下列材料:2013年,北京发布《2013年至2017年清洁空气行动计划》,北京的空气污染治理目标是力争到2017年全市PM2.5年均浓度比2012年下降25%以上,控制在60微克/立方米左右.根据某空气监测单位发布数据,2013年北京PM2.5年均浓度89.5微克/立方米,清洁空气问题引起了所有人的高度关注.2014年北京PM2.5年均浓度85.9微克/立方米,比2013年下降3.6微克/立方米.2015年北京PM2.5年均浓度80.6微克/立方米,比上一年又下降了5.3微克/立方米,治理成效比较明显.2016年北京PM2.5年均浓度73微克/立方米,下降更加明显.去年11月,北京市通过的《北京市“十三五”时期环境保护和生态环境建设规划》确定的生态环保目标为:2020年,北京市PM2.5年均浓度比2015年下降30%,全市空气质量优良天数比例超过56%.根据以上材料解答下列问题:(1)在折线图中表示2013﹣2016年北京市PM2.5年度浓度变化情况,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2017年北京市PM2.5年均浓度为60微克/立方米,你的预估理由是2017年全市PM2.5年均浓度比2012年下降25%以上.(3)根据《北京市“十三五”时期环境保护和生态环境建设规划》,估计2020年北京市PM2.5年度浓度降至56微克/每立方米.(结果保留整数)【考点】VD:折线统计图;V5:用样本估计总体.【分析】(1)根据题意画出折线图即可;(2)根据治理目标是力争到2017年全市PM2.5年均浓度比2012年下降25%以上,控制在60微克/立方米左右,解答即可;、(3)根据2020年,北京市PM2.5年均浓度比2015年下降30%,解答即可;【解答】解:(1)折线图如图所示:(2)预估2017年北京市PM2.5年均浓度为60微克/立方米,2017年全市PM2.5年均浓度比2012年下降25%以上.故答案为60微克/立方米,2017年全市PM2.5年均浓度比2012年下降25%以上.(3)80.6×(1﹣30%)=56.42≈56(微克/每立方米),故答案为56.25.如图,已知在△ABC中,DE∥CA,∠1=∠2,∠3=∠4,∠BAC=84°.求∠EDA的度数.【考点】K7:三角形内角和定理;JA:平行线的性质.【分析】设∠1=∠2=x,根据外角定理得∠4=∠3=2x,由三角形的内角和定理表示∠DAC=180﹣4x,利用∠BAC=84°列等式可得结论.【解答】解:∵∠3是△ABD的一个外角,∴∠3=∠1+∠2,设∠1=∠2=x,则∠4=∠3=2x,在△ADC中,∠4+∠3+∠DAC=180°,∴∠DAC=180﹣4x,∵∠BAC=∠1+∠DAC,∴84=x+180﹣4x,x=32,∴∠DAC=180﹣4x=180﹣4×32=52°,∵DE∥CA,∴∠EDA=∠DAC=52°.26.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.构建方程组即可解决问题;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥130,求出整数解即可;【解答】解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥130,解得a≤3∴2≤a≤3.a是正整数,∴a=2或a=3.共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车;27.已知:∠MON=36°,OE平分∠MON,点A,B分别是射线OM,OE,上的动点(A,B不与点O重合),点D是线段OB上的动点,连接AD并延长交射线ON于点C,设∠OAC=x,(1)如图1,若AB∥ON,则①∠ABO的度数是18°;②当∠BAD=∠ABD时,x=126°;当∠BAD=∠BDA时,x=63°;(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ABD中有两个相等的角?若存在,求出x的值;若不存在,请说明理由.【考点】JA:平行线的性质.【分析】(1)运用平行线的性质以及角平分线的定义,可得∠ABO的度数;根据∠ABO、∠BAD 的度数以及△AOB的内角和,可得x的值;(2)分两种情况进行讨论:AC在AB左侧,AC在AB右侧,分别根据三角形内角和定理以及直角的度数,可得x的值.【解答】解:(1)如图1,①∵∠MON=36°,OE平分∠MON,∴∠AOB=∠BON=18°,∵AB∥ON,∴∠ABO=18°;②当∠BAD=∠ABD时,∠BAD=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°﹣18°×3=126°;③当∠BAD=∠BDA时,∵∠ABO=18°,∴∠BAD=81°,∠AOB=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°﹣18°﹣18°﹣81°=63°,故答案为:①18°;②126°;③63°;(2)如图2,存在这样的x的值,使得△ADB中有两个相等的角.∵AB⊥OM,∠MON=36°,OE平分∠MON,∴∠AOB=18°,∠ABO=72°,①当AC在AB左侧时:若∠BAD=∠ABD=72°,则∠OAC=90°﹣72°=18°;若∠BAD=∠BDA=÷2=54°,则∠OAC=90°﹣54°=36°;若∠ADB=∠ABD=72°,则∠BAD=36°,故∠OAC=90°﹣36°=54°;②当AC在AB右侧时:∵∠ABE=108°,且三角形的内角和为180°,∴只有∠BAD=∠BDA=÷2=36°,则∠OAC=90°+36°=126°.综上所述,当x=18、36、54、126时,△ADB中有两个相等的角.28.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(﹣1,6)的“2属派生点”P′的坐标为(11,4);(2)若点P的“3属派生点”P′的坐标为(6,2),则点P的坐标(0,2);(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.【考点】D5:坐标与图形性质.【分析】(1)根据“k属派生点”计算可得;(2)设点P的坐标为(x、y),根据“k属派生点”定义及P′的坐标列出关于x、y的方程组,解之可得;(3)先得出点P′的坐标为(a,ka),由线段PP′的长度为线段OP长度的2倍列出方程,解之可得.【解答】解:(1)点P(﹣1,6)的“2属派生点”P′的坐标为(﹣1+6×2,﹣1×2+6),即(11,4),故答案为:(11,4);(2)设点P的坐标为(x、y),由题意知,解得:,即点P的坐标为(0,2),故答案为:(0,2);(3)∵点P在x轴的正半轴上,∴b=0,a>0.∴点P的坐标为(a,0),点P′的坐标为(a,ka)∴线段PP′的长为P′到x轴距离为|ka|.∵P在x轴正半轴,线段OP的长为a,∴|ka|=2a,即|k|=2,∴k=±2.。

2017-2018七年级数学下册期末试卷(有答案)(17).docx

2017-2018七年级数学下册期末试卷(有答案)(17).docx

2017-2018 学年七年级(下)期末数学试题一、选择题(将正确答案填写在下列表格中,每题 3 分,共 36 分) 1.若分式 有意义,则 x 应满足的条件是()A .x ≠0B .x ≥ 3C .x ≠3D .x ≤32.下列各式中① ;② ; ③; ④(x ≥1); ⑤ ;⑥ 一定是二次根式的有()个.A .3B . 4C .5D .63.用科学记数法表示﹣ 0.0000027 记为( )A .﹣ 27×10﹣ 7B .﹣ 0.27×10﹣ 4C .﹣ 2.7×10﹣ 6D .﹣ 270× 10﹣8 4.分式的值为 0,则()A .x=2B . x=﹣2C .x=±2D .x=0 5.下列二次根式中,最简二次根式是( )A .B .C .D .6.如图,矩形 OABC 的边 OA 长为 2,边 AB 长为 1, OA 在数轴上,以原点 O 为圆心,对角线 OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A .2.5B . 2C .D .7.下列计算正确的是( )A .2a 5 +a 5=2a 10B .3 ] 2(﹣ ) 6 6. 55 5﹣5C .[ (﹣ a )÷a=a =a =0=a =aD a8.如图是一个圆柱形饮料罐,底面半径是 5,高是 12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为 a ,若直吸管在罐外部分还剩余 3,则吸管的总长度 b (罐壁的厚度和小圆孔的大小忽略不计)范围是( )A.12≤ b≤ 13 B.12≤ b≤15 C.13≤b≤16D. 15≤b≤169.下列计算正确的是()A.B.C.D.10.把根式﹣ a化成最简二次根式为()A.B.C.D.﹣11.甲、乙两地之间的高速公路全长200 千米,比原来国道的长度减少了20 千米.高速公路通车后,某长途汽车的行驶速度提高了45 千米 / 时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意,下列方程正确的是()A.B.C.D.12.如图,一只昆虫在棱长为20cm 的正方体的表面上爬行,则它从图中的顶点 A 爬到顶点 B 的最短距离为()A.40cm B.60cm C.D.二、填空题(每题 3 分,共 24 分)13.下列分式﹣,的最简公分母为.14.若 y=2++2,则 x﹣y=.15.若直角三角形的两边长为 6 和 8,则第三边长为.16.分解因式:﹣ 3x2y+6xy2﹣3y3=.17.若 5x=2,5y=3,则 53x﹣2y的值为.18.已知关于 x 的方程=3 的解是正数,则 m 的取值范围是.19.如图所示,所有四边形都是正方形,所有的三角形都是直角三角形,其中正方形D,C,A,B 的面积分别为 1,2,3,4,则正方形 G 的面积为.20.算++⋯的:.+ +三、解答(共 60 分)21.算(1)5x2y2 ?(xy3)x2y?(xy4)(2) 6 +2x.22.解方程:(1)=1(2)= 1..已知x=,y=,求x2+xy+y2的.2324.已知 a2+b2+4a 6b+13=0,分解因式: x2+ax b.25.先化,再求:(1)6a2( 2a 1)(3a+2) +( a+2)( a 2),其中 a=(2)÷(x 2),其中 x=3.26.如,小用一方形片 ABCD行折,已知片 AB 8cm, BC 10cm.折叠点 D 落在 BC上的点 F (折痕 AE),求此 EC的度?27.某服装商一种季衫能市,就用8000元一批衫,面市后果然供不求,服装商又用 17600 元了第二批种衫,所数量是第一批数量的 2 倍,但价了8 元.商家售种衫每件定价都是100 元,最后剩下 10 件按 8 折售,很快售完.(1)两批进货的单价各是多少元?(2)在这两笔生意中,商家共盈利多少元?参考答案与试题解析一、选择题(将正确答案填写在下列表格中,每题 3 分,共 36 分)1.若分式有意义,则x应满足的条件是()A.x≠0B.x≥ 3C.x≠3 D.x≤3【考点】 62:分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵ x﹣3≠0,∴x≠3.故选 C.2.下列各式中①;②;③;④(x≥1);⑤;⑥一定是二次根式的有()个.A.3 B. 4 C.5D.6【考点】 71:二次根式的定义.【分析】二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.【解答】解:①符合二次根式的定义,故正确.②无意义,故错误.③中的 a2≥0,符合二次根式的定义,故正确.④(x≥1)中的 x﹣1≥0,符合二次根式的定义,故正确.⑤是开 3 次方,故错误.⑥中的x2 2x 1=(x 1)2≥0,符合二次根式的定义,故正确.+ ++故选: B.3.用科学记数法表示﹣0.0000027记为()A.﹣ 27×10﹣7 B.﹣ 0.27×10﹣4C.﹣2.7×10﹣6 D.﹣ 270× 10﹣8【考点】 1J:科学记数法—表示较小的数.﹣ n【分析】绝对值小于 1 的负数也可以利用科学记数法表示,一般形式为 a× 10,与较大数的科个数所决定.﹣6【解答】解:﹣ 0.0000027=﹣ 2.7× 10,4.分式的值为0,则()A.x=2 B. x=﹣2 C.x=±2 D.x=0【考点】 63:分式的值为零的条件.【分析】根据分式的值为零的条件得到x2﹣4=0 且 x+2≠0,然后分别解方程与不等式易得x=2.【解答】解:∵分式的值为 0,∴x2﹣ 4=0 且 x+2≠ 0,解x2﹣4=0 得x=±2,而x≠﹣2,∴x=2.故选 A.5.下列二次根式中,最简二次根式是()A.B.C.D.【考点】 74:最简二次根式.【分析】 D 选项的被开方数中,含有能开得尽方的因数2; B、 C 选项的被开方数中含有分母;因此这三个选项都不是最简二次根式; A 它的因式的指数都是1,所以 D 选项符合最简二次根式的要求.【解答】解:∵ B、=,C、=,D、=2x,∴这三个选项都可化简,不是最简二次根式.故选 A.6.如图,矩形 OABC的边 OA 长为 2,边 AB 长为 1, OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B. 2C.D.【考点】 29:实数与数轴.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【解答】解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选 D.7.下列计算正确的是()A.2a5 +a5=2a10 B.3]2(﹣) 6 6.5 5 5﹣50C.[ (﹣ a)÷a=a=a =0=a =a D a【考点】 48:同底数幂的除法; 35:合并同类项; 47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式 =3a5,故 A 错误;(B)原式 =,故B错误;(D)原式 =1,故 D 错误;故选( C)8.如图是一个圆柱形饮料罐,底面半径是5,高是 12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤ b≤ 13 B.12≤ b≤15 C.13≤b≤16D. 15≤b≤16【考点】 KU:勾股定理的应用.【分析】如图,当吸管底部在O 点时吸管在罐内部分 a 最短,此时 a 就是圆柱形的高;当吸管底部在 A 点时吸管在罐内部分 a 最长,此时 a 可以利用勾股定理在Rt△ ABO中即可求出,进而【解答】解:如图,连接BO, AO,当吸管底部在 O 点时吸管在罐内部分 a 最短,此时 a 就是圆柱形的高,即a=12;当吸管底部在 A 点时吸管在罐内部分 a 最长,即线段 AB 的长,在Rt△ABO 中,AB===13,故此时 a=13,所以 12≤ a≤ 13,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是:15≤ b≤ 16.故选: D.9.下列计算正确的是()A.B.C.D.【考点】 79:二次根式的混合运算.【分析】根据二次根式的加减运算,乘除运算,二次根式的化简,逐一检验.【解答】解: A、与不能合并,本选项错误;B、=÷=,本选项正确;C、5 与不能合并,本选项错误;D、==,本选项错误;10.把根式﹣ a化成最简二次根式为()A.B.C.D.﹣【考点】 74:最简二次根式.【分析】根据二次根式的性质,可得答案.【解答】解:﹣ a化成最简二次根式为,故选 A.11.甲、乙两地之间的高速公路全长 200 千米,比原来国道的长度减少了 20 千米.高速公路通车后,某长途汽车的行驶速度提高了 45 千米 / 时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意,下列方程正确的是()A.B.C.D.【考点】 B6:由实际问题抽象出分式方程.【分析】设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据“甲、乙两地之间的高速公路全长 200 千米,比原来国道的长度减少了20 千米.高速公路通车后,某长途汽车的行驶速度提高了 45 千米 / 时,从甲地到乙地的行驶时间缩短了一半”,可列出方程.【解答】解:设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意得=? .故选: D.12.如图,一只昆虫在棱长为20cm 的正方体的表面上爬行,则它从图中的顶点 A 爬到顶点 B 的最短距离为()A.40cm B.60cm C.D.【考点】 KV:平面展开﹣最短路径问题.【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点 A 和 B 点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段 AB即为最短路线.展开后由勾股定理得: AB2=202+(20+20)2=5×202,故 AB==20cm.故选: C.二、填空题(每题 3 分,共 24 分)13.下列分式﹣,的最简公分母为a( a+b)( a﹣ b).【考点】 69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式﹣,的分母分别是a2﹣ab=a( a﹣ b),a2+ab=a(a+b),故最简公分母是 a(a+b)(a﹣b).故答案是: a(a+b)(a﹣b).14.若 y=2++2,则 x﹣y=.【考点】 72:二次根式有意义的条件.【分析】根据被开方数大于等于0 列式求出 x 的值,再求出 y 的值,然后相加即可得解.【解答】解:由题意得,x﹣5≥0,且 5﹣x≥ 0,解得 x≥ 5 且 x≤5,∴x=5,y=2,∴x﹣y=5﹣2= .故答案为:.15.若直角三角形的两边长为 6和 8,则第三边长为10 或 2.【考点】 KU:勾股定理的应用.【分析】分情况考虑:当较大的数8 是直角边时,根据勾股定理求得第三边长是10;当较大的数 8 是斜边时,根据勾股定理求得第三边的长是=2.【解答】解:①当 6 和 8 为直角边时,第三边长为=10;②当 8 为斜边, 6为直角边时,第三边长为=2 .故答案为: 10 或2 .223216.分解因式:﹣ 3x y+6xy ﹣3y =﹣3y(x﹣y).【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3y(x2﹣2xy+y2)=﹣3y(x﹣y)2,故答案为:﹣ 3y(x﹣y)217.若 5x=2,5y=3,则 53x﹣2y的值为.【考点】 48:同底数幂的除法; 47:幂的乘方与积的乘方.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解: 53x=23=8, 52y=32=9,53x﹣2y=53x÷52y=8÷ 9= ,故答案为:.18.已知关于 x 的方程=3 的解是正数,则m 的取值范围是m>﹣ 6 且 m≠﹣ 4.【考点】 B2:分式方程的解.【分析】首先求出关于x 的方程=3 的解,然后根据解是正数,再解不等式求出m 的取值范围.∵方程的解是正数,∴m+6>0 且 m+6≠2,解个不等式得m> 6 且 m≠ 4.故答案: m> 6 且 m≠ 4.19.如所示,所有四形都是正方形,所有的三角形都是直角三角形,其中正方形 D,C,A, B 的面分1,2,3,4,正方形 G 的面 10 .【考点】 KQ:勾股定理.【分析】根据勾股定理可知正方形A、B 的面之和等于正方形E的面,同法可求正方形F、G的面.【解答】解:正方形的面分A、B、C、D、 E、F、G.根据勾股定理可知: E=A+B=7, F=C+D=3,G=E+F=10,故答案 10.20.算+++⋯+的:1.【考点】 79:二次根式的混合运算.【分析】先分母有理化,然后合并即可.【解答】解:原式 =1+++⋯+=1.故答案1.三、解答(共 60 分)21.算(1)5x2y2 ?(xy3)x2y?(xy4)(2)﹣6+2x.【考点】 78:二次根式的加减法; 49:单项式乘单项式.【分析】(1)利用单项式乘以单项式及单项式除以单项式法则计算,即可得到结果;(2)根据二次根式的加减运算法则进行解答即可.【解答】解:(1)原式 =5×(﹣)x2+1y2+3﹣×(﹣)x2+1y1+4=﹣x3y5+x3 y5=;(2)原式 =×3﹣+2 =(2﹣3+2)=.22.解方程:(1)=1(2)=﹣ 1.【考点】 B3:解分式方程.【分析】(1)分式方程两边同乘( x﹣ 3)去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)分式方程两边同乘( x2﹣4)去分母转化为整式方程,求出整式方程的解得到x 的值,检验即可.【解答】(1)解:两边同时乘以( x﹣ 3)得:( 1﹣ x)﹣ 1=x﹣3,整理得, 2x=3,解得: x= ,经检验 x=是原方程的解;2 2 2 (2)解:方程两边同时乘以( x ﹣4)得,﹣( x+2) +16=﹣x +4,整理得, 4x=8,经检验 x=2 是原方程的增根,故原方程无解..已知x=,y=,求x2+xy+y2的值.23【考点】 7A:二次根式的化简求值.【分析】根据题意求出x+y 和 xy 的值,根据完全平方公式把原式变形,代入计算即可.【解答】解:∵ x=,y=,∴x+y=,xy=×=1,则x2+xy+y2=x2+2xy+y2﹣xy=(x+y)2﹣xy=5﹣1=424.已知 a2+b2+4a﹣ 6b+13=0,分解因式: x2+ax﹣b.【考点】 AE:配方法的应用; 1F:非负数的性质:偶次方.【分析】先将已知等式配方,根据非负性求a、b 的值,代入要分解因式的多项式中,利用十字相乘法分解因式即可.【解答】解: a2+b2 +4a﹣6b+13=0,(a2+4a+4)+(b2﹣6b+9)=0,(a+2)2+(b﹣3)2=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴x2+ax﹣b=x2﹣2x﹣ 3=(x+1)(x﹣3).25.先化简,再求值:(1)6a2﹣( 2a﹣1)(3a+2) +( a+2)( a﹣ 2),其中 a=﹣(2)÷(﹣x﹣2),其中x=﹣3.【考点】 6D:分式的化简求值; 4J:整式的混合运算—化简求值.【分析】(1)先去括号,再合并同类项,代入a 的值计算即可;(2)先算括号里面的,再约分,代入 x 的值计算即可.【解答】接:(1)原式 =6a2﹣ 6a2﹣4a+3a+2+a2﹣2a+2a﹣4,=a2﹣a﹣2,当 a=﹣时,原式=;(2)原式 =÷(﹣),=÷=?=,当 x=﹣3时,原式=.26.如图,小红用一张长方形纸片 ABCD进行折纸,已知该纸片宽 AB 为 8cm,长 BC为 10cm.折叠时顶点 D 落在 BC边上的点 F 处(折痕为 AE),求此时 EC的长度?【考点】 PB:翻折变换(折叠问题).【分析】由折叠的性质得 AF=AD=10cm,DE=EF,先在 Rt△ABF中运用勾股定理求 BF,再求 CF,设 EC=xcm,用含 x 的式子表示 EF,在 Rt△CEF中运用勾股定理列方程求 x 即可.【解答】解:∵四边形 ABCD是矩形,∴AB=CD=8cm,AD=CB=10cm,由折叠方法可知: AD=AF=10cm,DE=EF,设EC=xcm,则 EF=ED=(8﹣x)cm, AF=AD=10cm,在 Rt△ABF中, BF===6(cm),则CF=BC﹣BF=10﹣6=4(cm),222在 Rt△CEF中, CF+CE=EF,即 42+x2(﹣)2,= 8 x解得 x=3,即 EC=3cm.27.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用 17600 元购进了第二批这种衬衫,所购数量是第一批购进数量的 2 倍,但单价贵了8 元.商家销售这种衬衫时每件定价都是100 元,最后剩下 10 件按 8 折销售,很快售完.(2)在这两笔生意中,商家共盈利多少元?【考点】 B7:分式方程的应用.【分析】( 1)设第一批进货的单价为x 元/ 件,根据第二批这种衬衫所购数量是第一批购进数量的 2 倍,列出方程即可解决问题.(2)根据题意分别求出两次的利润即可解决问题;【解答】解:(1)设第一批进货的单价为x 元/ 件,由题意 2×=,解得 x=80,经检验, x=80 是原分式方程的解,且符合题意,答:第一次进货单价为80(元 / 件),第二次进货单价为88(元 / 件),(2)第一次进货=100(件),第二次进货量=200(件).总的盈利为:× 100+×+10=4200(元)答:商家总盈利为4200 元.。

七年级下学期数学期末试卷(含答案)

七年级下学期数学期末试卷(含答案)

2017——2018学年度下学期期末学业水平检测七 年 级 数 学 试 题一、单项选择题(每小题2分,共12分)1.在数2,π,38-,0.3333…中,其中无理数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个2.已知:点P (x ,y )且xy=0,则点P 的位置在( )(A) 原点 (B) x 轴上 (C) y 轴上 (D) x 轴上或y 轴上3.不等式组211420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )4.下列说法中,正确的...是( ) (A)图形的平移是指把图形沿水平方向移动 (B)“相等的角是对顶角”是一个真命题 (C)平移前后图形的形状和大小都没有发生改变 (D)“直角都相等”是一个假命题 5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已 知中学生被抽到的人数为150人,则应抽取的样本容量等于( )(A) 1500 (B) 1000 (C) 150 (D) 500 6.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( ) ①∠1=∠2②∠3=∠4 ③∠A=∠DCE ④∠D+∠ABD=180° (A) ①③④ (B) ①②③ (C) ①②④ (D) ②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 . 8.-364的绝对值等于 . 9.不等式组20210x x -≤⎧⎨->⎩的整数解是 .10.如图,a ∥b ,∠1=55°,∠2=40°,则∠3的度数是 °.11.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花 了1250元,设其中有x 张成人票,y 张学生票,根据题意列方程组是 . 12.数学活动中,张明和王丽向老师说明他们的位置(单位:m ): 张明:我这里的坐标是(-200,300); 王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是 m .13.比较大小:215- 1(填“<”或“>”或“=” ). 14.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其 它10个小长方形高之和的41,且样本容量是60,则中间一组的频数是 .三、解答题(每小题5分,共20分) 15.计算:2393-+-.学校 年 班 姓名: 考号:七年级数学试题 第1页 (共6页)七年级数学试题 第2页 (共6页)21 3 4AB CD E(第6题)(第10题)16.解方程组24824x y x y -=⎧⎨+=-⎩ ① ②.17.解不等式11237x x--≤,并把它的解集表示在数轴上.18.已知:如图,AB ∥CD ,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.四、解答题(每小题7分,共28分)19.如图,已知∠1=∠2,∠3=∠4,求证:BC ∥EF .完成推理填空: 证明:因为∠1=∠2(已知),所以AC ∥ ( ) , 所以∠ =∠5 ( ) ,又因为∠3=∠4(已知), 所以∠5=∠ (等量代换),所以BC ∥EF ( ) .20.对于x ,y 定义一种新运算“φ”,x φy =ax +by ,其中a ,b 是常数,等式右边是通常的 加法和乘法运算.已知3φ5=15,4φ7=28,求1φ1的值.21.已知一个正数..的平方根是m+3和2m-15. (1)求这个正数是多少? (2)5+m 的平方根又是多少?22.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗.水果店老板把售 价至少定为多少,才能避免亏本?五、解答题(每小题8分,共16分)23.育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种 活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生 进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.七年级数学试题 第3页 (共6页)七年级数学试卷题 第4页 (共6页) 考号:七年级数学试题 第4页 (共6页) 七年级数学试题 第4页 (共6页) 七年级数学试题 第4页 (共6页)HGF E DC BA七年级数学试题 第4页 (共6页)七年级数学试题 第3页 (共6页)(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的 圆心角度数是 ______度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?24.在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2, 2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+4,y 0-3),请画出三角 形OAB 平移后得到的三角形O 1A 1B 1,并写出点O 1、A 1 、B 1的坐标.六、解答题(每小题10分,共20分)25.为了抓住集安国际枫叶旅游节的商机,某商店决定购进A 、B 两种旅游纪念品.若购进A 种 纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件, 需要800元.(1)求购进A 、B 两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于C 、D 两点,点P 在直线CD 上. (1)试写出图1中∠APB 、∠P AC 、∠PBD 之间的关系,并说明理由;(2)如果P 点在C 、D 之间运动时,∠APB ,∠P AC ,∠PBD 之间的关系会发生变化吗?答: .(填发生或不发生);(3)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2、图3),试分别写出∠APB ,∠P AC ,∠PBD 之间的关系,并说明理由.一. 单项选择题 (每小题3分,共24分)1. C2. B3. D4. C5. D6. C7. D8. C二. 填空题(每小题3分,共24分)9.答案不唯一,如(1,2) 10. 8 11.±10 12. 同位角相等,两直线平行七年级数学试题 第6页 (共6页)七年级数学试题 第5页 (共6页)七年级数学试题 第6页 (共6页)xO 2 1 3 4 5 6 -1 -21-3 -4 12 3 4 -1 -2 -3Ay13. 四 14.7,π 15. 1 16. ()7+410-50x x ≤三.解答题(每小题6分,共24分)17. 解:原式=4259-.…………………3分=517453-=-.…………………6分 18. 解:由①,得 x=y+3.③ ………………2分把③代入②,得 3(y+3)-8y=14,解得 y=-1. ……………… 4分 把y=-1代人③,得 x=2.…… 5分,所以这个方程组的解是21x y =⎧⎨=-⎩. ………………6分19. 解:解不等式213x +>-,得2x >-; ………………1分解不等式1x x -≤8-2,得x ≤3.………………2分 所以原不等式组的解集为-2<x ≤3 ………………………4分 解集在数轴上表示略. ………………6分20. 解:∵DE ∥CF , ∠D=30 o.∴∠DCF=∠D=30 o (两直线平行,内错角相等)………………2分 ∴∠BCF=∠DCF+∠BCD=30 o +40o =70o ..………………4分又∵AB ∥CF∴∠B+∠BCF=180 o (两直线平行,同旁内角互补)∴∠B=180 o —70o =110o .………………6分 四.解答题(每小题7分,共28分)21.解:(1)建立直角坐标系略(2分 ) (2)市场(4,3),超市(2,-3)(2分) (3)图略(3分)22. 评分标准:(1)3分,(2)、(3)各2分,满分7分.(1)(2)图②(或扇形统计图)能更好地说明一半以上国家的学生成绩在60≤x <70之间. (3)图①(或频数分布直方图)能更好地说明学生成绩在70≤x <80的国家多于成绩在50≤x <60的国家.23.解:设七年(1)班和七年(2)班分别有x 人、y 人参加“光盘行动”, 根据题意,得⎩⎨⎧=-=++101288y x y x . ……………3分解得⎩⎨⎧==5565y x .……………6分答:七年(1)班、七年(2)班分别有65人、55人参加“光盘行动”. ……………7分 24.评分标准:每个横线1分,满分7分.(1)∠BFD, 两直线平行,内错角相等, ∠BFD, 两直线平行,同位角相等. (2)对顶角相等, ∠D , 内错角相等,两直线平行.五.解答题(每小题10分,共20分)25. 解:(1)设小李生产1件A 产品需要x min, 生产1件B 产品需要y min. 依题意得⎩⎨⎧=+=+852335y x y x .……………………………2分解得⎩⎨⎧==2015y x . ∴小李生产1件A 产品需要15min ,生产1件B 产品需要A:26.7%B: 53.3%C:13.3%D: 6.7%频数(国家个数)成绩/分24 6 8 10 BAC40 50 60 70 80 D :40≤x <50 C :50≤x <60 B :60≤x <70 A :70≤x <801D20min. ………………………4分(2)1556元 . ……………………………6分 1978.4元 . ……………………………8分 (3)-19.2x +1978.4 . ……………………………10分 26. 解:(1)① x …………1分 3(100-x ) …………2分②依题意得 2(100)16243(100)340x x x x +-≤⎧⎨+-≤⎩. ………………………4分解得 3840x ≤≤.∵x 是整数,∴x =38或39或40 .………………………6分 有三种生产方案:方案一:做竖式纸盒38个,做横式纸盒62个; 方案二:做竖式纸盒39个,做横式纸盒61个;方案三:做竖式纸盒40个,做横式纸盒60个.………………………7分 (2)设做横式纸盒m 个,则横式纸盒需长方形纸板3m 张,竖式纸盒需长方形纸板4(162-2m )张, 所以a =3m +4(162-2m ).∴290<3m +4(162-2m )<306 解得68.4<m <71.6∵m 是整数,∴m =69或70或71. ………………………9分 对应的a =303或298或293. ………………………10分。

2017-2018学年武汉市江夏区七年级下期末数学试卷(有答案)

2017-2018学年武汉市江夏区七年级下期末数学试卷(有答案)

2017-2018学年湖北省武汉市江夏区七年级(下)期末数学试卷、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且 只有一个正确,请在答卷上将正确答案的代号涂黑.1.设a > b,下列结论正确的是( )3•下列调查中,适宜抽样调查的是(A. 了解某班学生的身高情况B. 选出某校短跑最快的学生参加全市比赛C. 了解全班同学每周体育锻炼的时间9.运输360吨化肥,装载了 6节火车车厢和15辆汽车;运输440吨化肥,装载了 8节火车车厢和10辆汽A . a +2>bB . a +2v b +2 C. a +2= b +2 D. a +2》b +22.把方程2x - y = 3改写成用含x 的式子表示 y 的形式正确的是A . 2x = y +3B -x =”C. y = 2x — 3D. y = 3 — 2x C.Z 1=7 4 D.向右平移2个单位长度, 再向上平移3个单位长度得点 A ,则点A 的坐标是() A .( 2, 2) 6.实数 —界于哪两个相邻的整数之间(B . (— 2, 2) C. (—2,— 2) D.( 2,— 2)A . 3 和 4B . 5 和 6 C. D. 9 和 107.某校学生来自甲、乙、丙三个地区,其人数比为 3: 4: 3,如图所示的扇形图表示上述分布情况.若来B . 450 人C. 720人D. 360 人 L Y —+ —t R3a — 22和2a- 3是实数m 的平方根,且t = i ,则不等式. — > .的解集为(A . x>—- x - 9B . x-C. x > 11 ■71D. x — D.调查某批次汽车的抗撞击能力 5.将点 A (— 4,— 1) 人,则该校学生总数为(车.则10节火车车厢和20辆汽车能运输多少吨化肥?(,/ F =Z G.则图中与/ ECB 相等的角有(C. 4个 二、填空题(共6小题,每小题3分,共18分11.计算: -- ______________ .12 •空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是(从“条形图,扇形图,折线图和直方图”中选一个)13.已知 A (a ,0),B (- 3,0)且 AB= 7,则 a = __________ .14 .已知+|5 x - 6y - 33| = 0,求代数式的值:168x +2018y +1 = __________________________ .15.如图,已知 AB// CD / 1 = 55。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

2017-2018学年七年级下学期期末考试数学试卷含答案

2017-2018学年七年级下学期期末考试数学试卷含答案

2017-2018学年七年级下学期期末考试数学试卷(考试时间120分钟,满分120分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下面4个图案,其中不是轴对称图形的是()A. B. C. D.2.下列运算正确的是()A.a3+a2=2a5B.2a(1-a)=2a-2a2C.(-ab2)3=a3b6D.(a+b)2=a2+b23.不等式-3x+2>-4的解集在数轴上表示正确的是() A.B.C. D.4.为了了解某市初一年级11000名学生的视力情况,抽查了1000名学生的视力进行统计分析.下面四种说法正确的是()A.11000名学生是总体B.每名学生是总体的一个个体C.样本容量是11000D.1000名学生的视力是总体的一个样本5.化简:﹣=()A. 0B. 1C. xD.6.下列命题中,正确的是( )A. 三角形的一个外角大于任何一个内角B. 三角形的一条中线将三角形分成两个面积相等的三角形C. 两边和其中一边的对角分别相等的两个三角形全等D. 三角形的三条高都在三角形内部7.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A. CB=CDB. ∠BAC=∠DACC. ∠BCA=∠DCAD. ∠B=∠D=90°8.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°9.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A. B. C. D.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.分解因式:a2b-b3= ____ __ .12.若一个正n边形的每个内角为156°,则这个正n边形的边数是13.如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.则△AEG的周长为 ______ .14.在图中涂黑一个小正方形,使得图中黑色的正方形成为轴对称图形,这样的小正方形可以有 ______ 个15.如果二次三项式x2-mx+9是一个完全平方式,则实数m的值是 ______ .16.关于x 的分式方程= -2解为正数,则m 的取值范围是 ______ .17.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是18.如图,∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记为a 1,第2个等边三角形的边长记为a 2,以此类推.若OA 1=1,则a 2017=三、解答题:本大题共8小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.计算(本题共7分(1)(3分)(-2xy2)2÷xy (2)(4分)(x +2)2+2(x +2)(x -4)-(x +3)(x -3)20. (7分)先化简,再求值:(a+)÷(1+).其中a 是不等式组⎩⎨⎧<-≤-81302a a 的整数解.21.(7分)如图,在平面直角坐标系x O y 中,A (1,2),B (3,1),C (-2,-1).(1)如图中作出△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)写出点A1,B1,C1的坐标(直接写答案).A1 ______ B1 ______ C1 ______ ;(3)求△ABC的面积.22. (7分)在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对七年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的多少人.23. (6分)如图,△ABC中,∠A=40°∠B=76°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE 于点F,求∠CDF的度数.24. (7分)如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.25. (10分)东营市某学校2015年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?26. (11分)在△ABC中,∠ACB=2∠B,如图①,当∠C=900,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠900,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.2017—2018学年第二学期期末考试七年级数学试题参考答案一、1.D 2.B 3.D 4.D 5.C 6.B 7.C 8.B 9.B 10.A二、11.b(a+b)(a-b) 12.15 13.7 14. 3 15.±6 16.m<6且m≠-6 17. (0,3) 18.22016三、19.(1)原式=4x2y4÷xy ………………1分=12xy3;………………3分(2)解:(x+2)2+2(x+2)(x-4)-(x+3)(x-3)=x2+4x+4+2x2-4x-16-x2+9 ………………2分=2x2-3 ………………4分20.解:原式=. ………………3分解不等式组得………………5分∵a=1, a=2分式无意义∴a=0 ………………6分当a=0时,原式=-1.…………………………7分21.(1)图略………………2分(2)(-1,2);(-3,1);(2,-1)………………5分(3)S△ABC=4.5 ………………7分22.(1)样本容量是:30÷20%=150;………………2分(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75.;………………3分(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;………………5分(4)12000×=6000(人).………………7分23.解:∵∠A=40°,∠B=76°,∴∠ACB=180°-40°-76°=64°,………………2分∵CE平分∠ACB,∴∠ACE=∠BCE=32°,∴∠CED=∠A+∠ACE=72°,………………4分∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=72°.………………6分24.(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).………………1分又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.………………3分∴∠DBC=∠DEC.∴DB=DE(等角对等边);………………4分(2)解:∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=4,∴DC=8,………………5分∵AD=CD ,∴AC=16,………………6分∴△ABC 的周长=3AC=48.………………7分25.(1)设购买一个甲种足球需x 元,则购买一个乙种足球需(x +20)元,由题意得:x 2000=2×x +201400.………………3分解得:x =50. ………………4分经检验,x =50是原方程的解. ………………5分x +20=70.答:购买一个甲种足球需50元,购买一个乙种足球需70元.………………6分(2)设这所学校再次购买y 个乙种足球,则购买(50-y )个甲种足球,由题意得: 50×(1+10% )×(50-y )+70×(1-70% )y ≤2900. ………………8分解得:y ≤18.75. ………………9分由题意知,最多可购买18个乙种足球.笞:这所学校此次最多可购买18个乙种足球.………………10分26.(1)猜想:AB=AC+CD .------------------2分(2)猜想:AB+AC=CD . ---------------4分证明:在BA 的延长线上截取AE=AC ,连接ED .------------------5分∵AD 平分∠FAC ,∴∠EAD=∠CAD .在△EAD 与△CAD 中,AE=AC ,∠EAD=∠CAD ,AD=AD ,∴△EAD ≌△CAD . ---------------7分 ∴ED=CD ,∠AED=∠ACD .∴∠FED=∠ACB . ----------8分 又∵∠ACB=2 ∠B ,∠FED=∠B+∠EDB ,.∠EDB=∠B .∴EB=ED .∴EA+AB=EB=ED=CD .∴AC十AB=CD. ------------11分。

江夏区2017-2018学年七年级期末考试数学试题及答案

江夏区2017-2018学年七年级期末考试数学试题及答案

轻轻有很多经验丰富的一线老师,相信会对您有所帮助,如需预约老师辅导,扫码免费登记→
车 4 辆,乙车 2 辆。……6 分.(方程组对 2 分)共计 10 分 24. 解:⑴求得 a=-6, c=-3, B(-6, -3) …… 3 分(a,c,B 对各 1 分)
S S ⑵四边形 MBNO 的面积不变.设 M、N 同时出发的时间为 t,则 四边形MBNO = 长方形OABC - SABM
轻轻有很多经验丰富的一线老师,相信会对您有所帮助,如需预约老师辅导,扫码免费登记→ 试卷由【轻轻家教武汉升学】整理,如需更多试卷资料,请关注【轻轻家教武汉升学】微信公众号
轻轻有很多经验丰富的一线老师,相信会对您有所帮助,如需预约老师辅导,扫码免费登记→ 试卷由【轻轻家教武汉升学】整理,如需更多试卷资料,请关注【轻轻家教武汉升学】微信公众号
x<4…… 2 分.∴原不等式组的解集为 x≤1…… 2 分.画图正确…… 2 分.(图略)…… 8 分.(对
一个结果给 2 分,共计 8 分)
20.证明:∴AC∥GF(内错角相等,两直线平行),∴∠C=∠G(两直线平行,内错角相等),∴∠F=
∠G, ∴CG∥EF(内错角相等,两直线平行),
∴∠CBD=∠FEH(两直线平行,同位角相等),∠2= 1 ∠CBD, ∠3= 1 ∠FEH.
轻轻有很多经验丰富的一线老师,相信会对您有所帮助,如需预约老师辅导,扫码免费登记→ 试卷由【轻轻家教武汉升学】整理,如需更多试卷资料,请关注【轻轻家教武汉升学】微信公众号
轻轻有很多经验丰富的一线老师,相信会对您有所帮助,如需预约老师辅导,扫码免费登记→
2018 年春期末考试七年级数学参考答案
(2018 年 6 月)
11a 30(6 a) 400 ⑵设租甲种货车 a 辆,则租乙种货车(6-a)辆, 20a 90(6 a) 200 ,解得:

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

2017-2018七年级数学下册期末试卷(有答案)(1).docx

2017-2018七年级数学下册期末试卷(有答案)(1).docx

七年级(下)期末数学试卷一、选择题(共 10 小题,每小题 4 分,满分 40 分)1.点 P( 4, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.的平方根是()A.2 B.± 2 C.D.±3.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件4.下列 4 个数中, 3.1415926,,π,,其中无理数是()A.3.1415926 B.C.πD.5.如图, BC⊥ AE于点 C,CD∥AB,∠ B=55°,则∠ 1 等于()A.35°B. 45°C.55°D.65°6.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣ 2 C.1D.﹣ 17.不等式 2x≥ x﹣ 1 的解集在数轴上表示正确的是()A.B.C.D.8.如图,将周长为 8 的△ ABC沿 BC方向平移 1 个单位得到△ DEF,则四边形 ABFD的周长为()9.20 位同学在植树节这天共种了52 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵.设男生有 x 人,女生有 y 人,根据题意,列方程组正确的是()A.B.C.D.10.若不等式组无解,则实数a的取值范围是()A.a≥﹣ 1 B.a<﹣ 1 C. a≤ 1D. a≤﹣ 1二、填空题(每小题 5 分,共 20 分)11.有 30 个数据,其中最大值为40,最小值为 19,若取组距为 4,则应该分成组.12.小刚解出了方程组解为,因不小滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲=,◆ =.13.若x﹣y|+=0,则 xy 1的值为.|+14.在平面直角坐标系中,对于任意两点A(x1,y1) B (x2, y2),规定运算:(1)A⊕B=(x1+x2,y1+y2);(2)A⊙B=x1x2+y1y2;(3)当 x1=x2且 y1=y2时, A=B.有下列四个命题:①若有 A(1,2),B(2,﹣ 1),则 A⊕ B=(3,1), A⊙B=0;②若有 A⊕B=B⊕ C,则 A=C;③若有 A⊙B=B⊙ C,则 A=C;④( A⊕ B)⊕ C=A⊕( B⊕ C)对任意点 A、B、C 均成立.其中正确的命题为(只填序号)三、(本大题共两小题,每小题8 分,共 16 分)22﹣|﹣2)15.化简:()+ ﹣( +|16.解不等式组,把不等式组的解集在数轴上表示出来,并求出不等式组的整数解的和.四、(本大共两小,每小8 分,共 16 分)17.察下列等式:①;②;③;④;⋯(1)猜想第⑤个等式;(2)用含 n(n 正整数)的式子表示你的律.18.如,已知: AC∥FG,∠ 1=∠2,判断 DE与 FG的位置关系,并明理由.五、(本大共两小,每小10 分,共 20 分)19.根据要求,解答下列(1)解下列方程(直接写出方程的解即可)①的解②的解③的解(2)以上每个方程的解中,x 与 y 的大小关系.(3)你构造一个具有以上外形特征的方程,并直接写出它的解.20.操作与探究:(1)数上的点 P 行如下操作:先把点P 表示的数乘以,再把所得数的点向右平移1 个位,得到点 P 的点 P′.点 A,B 在数上,段 AB 上的每个点行上述操作后得到段A′B,′其中点 A,B 的点分 A′, B′.如 1,若点 A 表示的数是 3,点 A′表示的数是;若点B′表示的数是 2,点 B 表示的数是;已知段AB上的点E上述操作后得到的点E′与点 E 重合,点 E 表示的数是.(2)如 2,在平面直角坐系xOy 中,正方形ABCD及其内部的每个点行如下操作:把每个点的横、坐都乘以同一个数 a,将得到的点先向右平移 m 个位,再向上平移 n 个位( m>0,n >0),得到正方形A′B′C及′其D′内部的点,其中点A,B 的点分A′,B′.已知正方形ABCD内部的一个点 F 上述操作后得到的点 F′与点 F 重合,求点 F 的坐.六、(本大题共两小题,每小题12 分,共 24 分)21.我市教育行政部门为了了解七年级学生每学期参加综合实践活动的情况,随机抽样调查了某校七学生一个学期参加综合实践活动的天数,并用得到的数据绘制了如图两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中的 a 的值,并求出该校七年级学生总数;(2)分别求出活动时问为 5 天、 7 天的学生人数,并补全频数分布直方图;(3)求出扇形统计图中“活动时间为 4 天”的扇形所对圆心角的度数;(4)如果该市共有七年级学生6000 人,请你估计“活动时间不小于4 天”的大约有多少人?22. 2016 年 5 月 6 日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知 2 辆大型渣土运输车与 3 辆小型渣土运输车一次共运输土方31 吨, 5 辆大型渣土运输车与 6 辆小型渣土运输车一次共运输土方70 吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20 辆参与运输土方,若每次运输土方总量不少于148 吨,且小型渣土运输车至少派出 2 辆,则有哪几种派车方案?七、(本题 14 分)23.如图 1,直线 MN 与直线 AB、CD分别交于点 E、F,∠ 1 与∠ 2 互补.(1)试判断直线 AB 与直线 CD的位置关系,并说明理由;(2)如图 2,∠BEF与∠ EFD的角平分线交于点 P,EP与 CD交于点 G,点 H 是 MN 上一点,且GH⊥EG,求证: PF∥GH;(3)如图 3,在( 2)的条件下,连接PH,K 是 GH 上一点使∠ PHK=∠HPK,作 PQ平分∠ EPK,问∠ HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.参考答案与试题解析一、选择题(共 10 小题,每小题 4 分,满分 40 分)1.点 P( 4, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】 D1:点的坐标.【分析】根据点在第一象限的坐标特点解答即可.【解答】解:因为点P(4,3)的横坐标是正数,纵坐标是正数,所以点P 在平面直角坐标系的第一象限.故选: A.2.的平方根是()A.2 B.± 2 C.D.±【考点】 22:算术平方根; 21:平方根.【分析】先化简,然后再根据平方根的定义求解即可.【解答】解:∵=2,∴的平方根是±.故选 D.3.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【考点】 V2:全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解: A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选: D.4.下列 4 个数中, 3.1415926,,π,,其中无理数是()A.3.1415926 B.C.πD.【考点】 26:无理数.【分析】无理数常见的三种类型:①开方开不尽的数,②无限不循环小数,③含有π的数.【解答】解: 3.1415926 是有理数,是有理数,π是无理数,=6 是有理数.故选 C.5.如图, BC⊥ AE于点 C,CD∥AB,∠ B=55°,则∠ 1 等于()A.35°B. 45°C.55°D.65°【考点】 JA:平行线的性质; KN:直角三角形的性质.【分析】利用“直角三角形的两个锐角互余”的性质求得∠ A=35°,然后利用平行线的性质得到∠1=∠ B=35°.【解答】解:如图,∵ BC⊥ AE,∴∠ ACB=90°.∴∠ A+∠B=90°.又∵∠ B=55°,∴∠ A=35°.又CD∥AB,∴∠1=∠A=35°.6.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣ 2 C.1D.﹣ 1【考点】 92:二元一次方程的解.【分析】把 x 与 y 的值代入方程计算即可求出k 的值.【解答】解:把代入方程得: 2k﹣ 1=3,解得: k=2,故选 A7.不等式 2x≥ x﹣ 1 的解集在数轴上表示正确的是()A.B.C.D.【考点】 C6:解一元一次不等式; C4:在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得.【解答】解:移项,得: 2x﹣x≥﹣ 1,合并同类项,得: x≥﹣1,故选: A.8.如图,将周长为 8 的△ ABC沿 BC方向平移 1 个单位得到△ DEF,则四边形 ABFD的周长为()A.6 B. 8 C.10D.12【考点】 Q2:平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长 =AD+AB+BF+DF=1+AB+BC+1+AC 即可得出答案.【解答】解:根据题意,将周长为8 个单位的△ ABC沿边 BC向右平移 1 个单位得到△ DEF,又∵ AB+BC+AC=8,8∴四边形 ABFD的周长 =AD+AB+BF+DF=1+AB+BC+1+AC=10.故选: C.9.20 位同学在植树节这天共种了52 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵.设男生有 x 人,女生有 y 人,根据题意,列方程组正确的是()A.B.C.D.【考点】 99:由实际问题抽象出二元一次方程组.【分析】设男生有x 人,女生有 y 人,根据男女生人数为20,共种了 52 棵树苗,列出方程组成方程组即可.【解答】解:设男生有x 人,女生有 y 人,根据题意得,.故选: D.10.若不等式组无解,则实数a的取值范围是()A.a≥﹣ 1 B.a<﹣ 1 C. a≤ 1D. a≤﹣ 1【考点】 CB:解一元一次不等式组.【分析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出 a 的取值范围.【解答】解:,由①得, x≥﹣ a,由②得, x<1,∵不等式组无解,∴﹣ a≥ 1,解得: a≤﹣ 1.故选: D.二、填空题(每小题 5 分,共 20 分)11.有 30 个数据,其中最大值为40,最小值为 19,若取组距为 4,则应该分成 6 组.【考点】 V7:频数(率)分布表.【分析】根据组数 =(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:∵在样本数据中最大值与最小值的差为40﹣19=21,又∵组距为 4,∴组数 =21÷4=5.25,∴应该分成 6 组.故答案为: 6.12.小刚解出了方程组解为,因不小滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲=17,◆ =9.【考点】 98:解二元一次方程组.【分析】根据二元一次方程组的解法即可求答案.【解答】解:将x=4 代入 3x﹣y=3∴12﹣y=3∴y=9将x=4,y=9 代入 2x+y∴2x+y=8+9=17故答案为: 17;913.若 | x﹣y|+=0,则 xy+1 的值为5.【考点】 23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】依据非负数的性质可求得x、 y 的值,然后代入计算即可.【解答】解:∵|x﹣ y=0,|+∴x﹣y=0,y﹣2=0,解得: x=2,y=2.∴x y+1=4+1=5.故答案为: 5.14.在平面直角坐标系中,对于任意两点A(x1,y1) B (x2, y2),规定运算:(1)A⊕B=(x1+x2,y1+y2);(2)A⊙B=x1x2+y1y2;(3)当 x1=x2且 y1=y2时, A=B.有下列四个命题:①若有 A(1,2),B(2,﹣ 1),则 A⊕ B=(3,1), A⊙B=0;②若有 A⊕B=B⊕ C,则 A=C;③若有 A⊙B=B⊙ C,则 A=C;④( A⊕ B)⊕ C=A⊕( B⊕ C)对任意点 A、B、C 均成立.其中正确的命题为①②④(只填序号)【考点】 O1:命题与定理.【分析】①根据新定义的运算法则,可计算出A⊕ B=(3,1),A?B=0;②设 C(x3,y3),根据新定义得 A⊕B=(x1+x2,y1+y2),B⊕C=( x2+x3, y2+y3),则x1+x2=x2+x3, y1+y2 =y2+y3,于是得到 x1=x3,y1=y3,然后根据新定义即可得到 A=C;③由于 A⊙B=x1x2+y1y2, B⊙C=x2x3+y2y3,则 x1x2+y1y2=x2x3+y2y3,不能得到 x1=x3,y1=y3,所以 A ≠C;④根据新定义的运算法则,可得(A⊕ B)⊕ C=A⊕( B⊕ C)=( x1+x2+x3,y1+y2+y3).【解答】解:①∵ A( 1, 2),B(2,﹣ 1),∴A⊕B=(1+2,2﹣1),A⊙B=1×2+2×(﹣ 1),即 A⊕ B=(3,1),A⊙B=0,故①正确;②设 C(x3,y3),则 A⊕B=( x1+x2, y1+y2),B⊕C=(x2+x3,y2+y3),而A⊕ B=B⊕C,所以 x1+x2=x2+x3,y1+y2 =y2+y3,则 x1=x3,y1=y3,所以 A=C,故②正确;③A⊙B=x1x2+y1y2, B⊙ C=x2x3+y2y3,而A⊙ B=B⊙C,则 x1x2+y1y2=x2x3+y2y3,不能得到 x1=x3,y1 =y3,所以 A≠C,故③不正确;④因为( A⊕B)⊕ C=(x1+x2 +x3,y1+y2+y3),A⊕( B⊕ C) =( x1+x2+x3,y1+y2+y3),所以( A⊕B)⊕ C=A⊕( B⊕C),故④正确.综上所述,正确的命题为①②④.故答案为:①②④.三、(本大题共两小题,每小题8 分,共 16 分).化:()2+ ( 2+|2| )15【考点】 2C:数的运算.【分析】原式利用乘方的意,的代数意化,算即可得到果.【解答】解:原式 = +2+2=1 2.16.解不等式,把不等式的解集在数上表示出来,并求出不等式的整数解的和.【考点】 CB:解一元一次不等式;C4:在数上表示不等式的解集.【分析】先求出不等式的解集,在数上表示不等式的解集,求出整数解,即可得出答案.【解答】解:∵解不等式①得:x≤1,解不等式②,得x> 1,∴原不等式的解集是:1< x≤ 1,其解集在数上表示如所示:,∴不等式的整数解有1,0,1,2,∴原不等式的所有整数解的和是1+0+1+2=2.四、(本大共两小,每小8 分,共 16 分)17.察下列等式:①;②;③;④;⋯(1)猜想第⑤个等式;(2)用含 n(n 正整数)的式子表示你的律.【考点】 22:算平方根.【分析】(1)根据前面的等式得出律解答即可;(2)利用数字之化:22+1=5,32+1=10,⋯而得出律求出即可.【解答】解:(1)①;②;③;④,所以第⑤个等式应为,故答案为:;(2)用含自然数 n(n>1)的式子表达以上各式所反映的规律为:.18.如图,已知: AC∥FG,∠ 1=∠2,判断 DE与 FG的位置关系,并说明理由.【考点】 JB:平行线的判定与性质.【分析】首先根据平行线的性质得到∠1=∠ 3,再根据等量关系得到∠3=∠ 2,再根据平行线的判定得到 DE∥FG,从而得到 DE与 FG的位置关系.【解答】解: DE 与 FG是平行的,理由如下:∵AC∥FG,∴∠ 1=∠3.又∵∠ 1=∠ 2,∴∠ 3=∠2.∴DE∥FG.五、(本大题共两小题,每小题10 分,共 20 分)19.根据要求,解答下列问题(1)解下列方程组(直接写出方程组的解即可)①的解为②的解为③的解为(2)以上每个方程组的解中,x 值与 y 值的大小关系为x=y.(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.【考点】 97:二元一次方程组的解.【分析】( 1)观察方程组发现第一个方程的x 系数与第二个方程y 系数相等, y 系数与第二个方程 x 系数相等,分别求出解即可;(2)根据每个方程组的解,得到x 与 y 的关系;(3)根据得出的规律写出方程组,并写出解即可.【解答】解:(1)①的解为;②的解为;③的解为;(2)以上每个方程组的解中,x 值与 y 值的大小关系为x=y;(3),解为,故答案为:(1)①;②;③;(2)x=y20.操作与探究:(1)对数轴上的点 P 进行如下操作:先把点P 表示的数乘以,再把所得数对应的点向右平移1 个单位,得到点 P 的对应点 P′.点 A,B 在数轴上,对线段 AB 上的每个点进行上述操作后得到线段A′B,′其中点 A,B 的对应点分别为 A′,B′.如图 1,若点 A 表示的数是﹣ 3,则点 A′表示的数是0;若点B′表示的数是2,则点 B 表示的数是3;已知线段AB上的点E经过上述操作后得到的对应点E′与点 E 重合,则点 E 表示的数是.(2)如图 2,在平面直角坐标系xOy 中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数 a,将得到的点先向右平移 m 个单位,再向上平移 n 个单位( m>0,n> 0),得到正方形 A′B′C及′其D′内部的点,其中点 A,B 的对应点分别为 A′,B′.已知正方形 ABCD内部的一个点 F 经过上述操作后得到的对应点 F′与点 F 重合,求点 F 的坐标.【考点】 Q3:坐标与图形变化﹣平移;13:数轴; LE:正方形的性质; Q2:平移的性质.【分析】(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点 B 表示的数为 a,根据题意列出方程求解即可得到点 B 表示的数,设点 E 表示的数为 b,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点 F的坐标为( x,y),根据平移规律列出方程组求解即可.【解答】解:(1)点 A′:﹣ 3×+1=﹣1+1=0,设点 B 表示的数为 a,则a+1=2,解得 a=3,设点 E 表示的数为 b,则b+1=b,解得 b= ;故答案为: 0,3,;(2)根据题意得,,解得,设点 F 的坐标为( x,y),∵对应点 F′与点 F 重合,∴x+ =x, y+2=y,解得 x=1,y=4,所以,点 F的坐标为( 1,4).六、(本大题共两小题,每小题12 分,共 24 分)21.我市教育行政部门为了了解七年级学生每学期参加综合实践活动的情况,随机抽样调查了某校七学生一个学期参加综合实践活动的天数,并用得到的数据绘制了如图两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中的 a 的值,并求出该校七年级学生总数;(2)分别求出活动时问为 5 天、 7 天的学生人数,并补全频数分布直方图;(3)求出扇形统计图中“活动时间为 4 天”的扇形所对圆心角的度数;(4)如果该市共有七年级学生 6000 人,请你估计“活动时间不小于 4 天”的大约有多少人?【考点】 V8:频数(率)分布直方图; V5:用样本估计总体; VB:扇形统计图.【分析】(1)根据扇形统计图各部分所占百分比之和为1 解答;(2)活动时问为 5 天、 7 天的学生人数,用总人数乘以百分比即可;(3)用 360°乘以活动时间为 4 天的百分比即可;(4)用样本估计总体,即可计算.【解答】解:(1)a=1﹣( 10%+15%+30%+15%+5%) =25%,七年级学生总数: 20÷10%=200(人).(2)活动时问为 5 天的学生数: 200×25%=50(人);活动时问为 7 天的学生数: 200×5%=10(人);补全频数分布直方图如图所示.(3)活动时间为 4 天的扇形所对的圆心角的度数是360°× 30%=108°.(4)该市七年级学生活动时间不小于 4 天的人数是 6000×(30%+25%+15%+5%) =4500(人).22. 2016 年 5 月 6 日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知 2 辆大型渣土运输车与 3 辆小型渣土运输车一次共运输土方31 吨, 5 辆大型渣土运输车与 6 辆小型渣土运输车一次共运输土方70 吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20 辆参与运输土方,若每次运输土方总量不少于148 吨,且小型渣土运输车至少派出 2 辆,则有哪几种派车方案?【考点】 CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)根据题意可以得到相应的二元一次方程,从而可以求得一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨;(2)根据题意可以列出相应的关系式,从而可以求得有几种方案.【解答】解:(1)设一辆大型渣土运输车一次运输x 吨,一辆小型渣土运输车一次运输y 吨,,解得.即一辆大型渣土运输车一次运输8 吨,一辆小型渣土运输车一次运输 5 吨;(2)由题意可得,设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为x 辆、 y 辆,,解得或或,故有三种派车方案,第一种方案:大型运输车18 辆,小型运输车 2 辆;第二种方案:大型运输车17辆,小型运输车3辆;第三种方案:大型运输车16辆,小型运输车4辆.七、(本题 14 分)23.如图 1,直线 MN 与直线 AB、CD分别交于点 E、F,∠ 1 与∠ 2 互补.(1)试判断直线 AB 与直线 CD的位置关系,并说明理由;(2)如图 2,∠BEF与∠ EFD的角平分线交于点 P,EP与 CD交于点 G,点 H 是 MN 上一点,且GH⊥EG,求证: PF∥GH;(3)如图 3,在( 2)的条件下,连接 PH,K 是 GH 上一点使∠ PHK=∠HPK,作 PQ平分∠ EPK,问∠ HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】 JB:平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠ CFE 互补,所以易证AB∥CD;(2)利用( 1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即 EG⊥PF,故结合已知条件GH⊥EG,易证 PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠ 3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠ HPQ的大小不变,是定值45°.【解答】解:(1)如图 1,∵∠ 1 与∠ 2 互补,∴∠ 1+∠2=180°.又∵∠ 1=∠ AEF,∠ 2=∠ CFE,∴∠ AEF+∠ CFE=180°,∴AB∥CD;(2)如图 2,由( 1)知, AB∥CD,∴∠ BEF+∠ EFD=180°.又∵∠ BEF与∠ EFD的角平分线交于点P,∴∠ FEP+∠ EFP= (∠ BEF+∠ EFD)=90°,∴∠ EPF=90°,即 EG⊥ PF.∵GH⊥EG,∴PF∥GH;(3)∠ HPQ的大小不发生变化,理由如下:如图 3,∵∠ 1=∠2,∴∠ 3=2∠2.又∵ GH⊥ EG,∴∠ 4=90°﹣∠ 3=90°﹣ 2∠ 2.∴∠ EPK=180°﹣∠ 4=90°+2∠2.∵PQ 平分∠ EPK,∴∠ QPK= ∠EPK=45°+∠2.∴∠ HPQ=∠QPK﹣∠ 2=45°,∴∠ HPQ的大小不发生变化,一直是45°.20。

湖北省武汉市江夏区2017-2018学年七年级期末考试数学试题(图片版)

湖北省武汉市江夏区2017-2018学年七年级期末考试数学试题(图片版)

2018年春期末考试七年级数学参考答案(2018年6月)一、选择题:1A.2C.3D.4C.5D. 6B.7A.8B.9D.10B.二、填空题:11. -3. 12.扇形图. 13.-10或4.14.0. 15.100. 16.3<m≤4.三、解答题:(温馨提示:每题都是按每问给出的小题分数,不是合计的整题分数。

请老师们在阅卷时注意给分,在最后计该题分数时应该是合计的分数计入电脑。

)17.解:(1)原方程组的解为21xy=⎧⎨=-⎩…… 4分(2)原方程组的解为4xy=⎧⎨=⎩…… 4分.共计8分18. 解:原式-1-2=-1…… 8分(过程正确4分,结果正确4分,共计8分)19.解:解得第一个不等式x≤1…… 2分,解得第二个不等式x<4…… 2分.∴原不等式组的解集为x≤1…… 2分.画图正确…… 2分.(图略)…… 8分.(对一个结果给2分,共计8分)20.证明:∴AC∥GF(内错角相等,两直线平行),∴∠C=∠G(两直线平行,内错角相等),∴∠F=∠G, ∴CG∥EF(内错角相等,两直线平行),∴∠CBD=∠FEH(两直线平行,同位角相等),∠2=12∠CBD, ∠3=12∠FEH.(该题十一个空全做对的得8分。

只有部分正确的按:①对一个或两个空的给1分;②对三个或四个空的给2分;③对五或六个空的给3分;④对七个或八个空的给4分。

以此类推。

注:如果只错一个空的给7分)21.解:⑴120÷40%=300. ∴共调查了300名同学…… 2分.⑵画图正确……2分.(图略)音乐部分的圆心角是960…… 2分.⑶60÷300×2000÷20=20. ∴需准备20名教师辅导…… 2分.共计8分22.解:⑴①A(4,3)与P(-4,-3); B(3,1)与Q(-3,-1); C(1,2)与R(-1,-2)…… 3分. ②三角形各顶点横纵坐标互为相反数…… 1分.⑵解a=2,b=2…… 4分,不等式解集x<-1…… 2分.共计10分.23. 解:⑴说明:学生无论用二元一次方程组解或用一元一次方程解,只要正确都给分。

湖北省2017-2018学年七年级数学下学期期末模拟试卷及答案(共三套)

湖北省2017-2018学年七年级数学下学期期末模拟试卷及答案(共三套)

湖北省2017-2018学年七年级数学下学期期末模拟试卷及答案(共三套)湖北省2017-2018学年七年级数学下学期期末模拟试卷及答案(一)一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于()A.±2 B.2 C.﹣2 D.42.下列各式化简后,结果为无理数的是()A.B.C.D.3.不等式﹣2x﹣1≥1的解集是()A.x≥﹣1 B.x≤﹣1 C.x≤0 D.x≤14.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40° B.∠COE=130°C.∠EOD=40° D.∠BOE=90°5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°6.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3)C.(0,3)D.(3,﹣3)11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块D.12块、20块二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣=.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a与b平行,则∠1的度数必须是.15.已知关于x的不等式组的解集是x>4,则m的取值范围是.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.三、解答题(共8小题,满分72分)17.计算:().18.解方程组:.19.解不等式组,并把它的解集用数轴表示出来..20.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.21.如图,已知∠ABC=180°﹣∠A ,BD ⊥CD 于D ,EF ⊥CD 于F .(1)求证:AD ∥BC ;(2)若∠1=36°,求∠2的度数.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?23.解决问题.学校要购买A ,B 两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A 型足球和3个B 型足球,则要花费370元,若买3个A 型足球和1个B 型足球,则要花费240元.(1)求A ,B 两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A ,B 两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?24.如图(1),在平面直角坐标系中,A (a ,0),C (b ,2),过C 作CB ⊥x 轴,且满足(a +b )2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.4的算术平方根等于( )A .±2B .2C .﹣2D .4【分析】如果一个非负数x 的平方等于a ,那么x 是a 的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选B .【点评】本题考查的是算术平方根的概念,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.下列各式化简后,结果为无理数的是( )A .B .C .D .【分析】根据无理数的三种形式求解.【解答】解:=8, =4, =3, =2,无理数为. 故选D .【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.不等式﹣2x ﹣1≥1的解集是( )A .x ≥﹣1B .x ≤﹣1C .x ≤0D .x ≤1 【分析】先移项合并同类项,然后系数化为1求解.【解答】解:移项合并同类项得:﹣2x ≥2,系数化为1得:x ≤﹣1.故选B .【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40° B.∠COE=130°C.∠EOD=40° D.∠BOE=90°【分析】首先由垂线的定义可知∠EOB=90°,然后由余角的定义可求得∠EOD,然后由邻补角的性质可求得∠EOC,由对顶角的性质可求得∠AOC.【解答】解:由对顶角相等可知∠AOC=∠BOD=40°,故A正确,所以与要求不符;∵OE⊥AB,∴∠EOB=90°,故D正确,与要求不符;∵∠EOB=90°,∠BOD=40°,∴∠EOD=50°.故C错误,与要求相符.∴∠EOC=180°﹣∠EOD=180°﹣50°=130°.故B正确,与要求不符.故选:C.【点评】本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.5.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于()A.30°B.40°C.45°D.60°【分析】首先过点A作l∥m,由直线l∥m,可得n∥l∥m,由两直线平行,内错角相等,即可求得答案:∠1+∠2=∠3+∠4的度数.【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+2=∠3+∠4=45°.故选:C.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握“两直线平行,内错角相等”性质定理的应用.6.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【分析】本题的关键是先解不等式组,然后再在数轴上表示.【解答】解:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选B.【点评】本题考查一元一次不等式组的解集及在数轴上的表示方法.7.下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EF B.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥c D.∵AB⊥EF,EF⊥CD,∴AB⊥CD【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确;C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.【点评】本题需对等量代换的运用,平行公理的推论等知识点熟练掌握.8.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:8﹣3a=7,解得:a=.故选C.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.如图,把“笑脸”放在平面直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是()A.(3,3)B.(﹣3,3)C.(0,3)D.(3,﹣3)【分析】首先根据左眼坐标可得右眼坐标,再根据平移方法可得平移后右眼B的坐标是(0+3,3).【解答】解:∵左眼A的坐标是(﹣2,3),∴右眼的坐标是(0,3),∴笑脸向右平移3个单位后,右眼B的坐标是(0+3,3),即(3,3),故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.若实数a,b在数轴上的位置如图所示,则以下说法正确的是()A.a>b B.ab>0 C.a+b>0 D.|a|>|b|【分析】先根据数轴确定a,b的范围,再进行逐一分析各选项,即可解答.【解答】解:由数轴可得:a<0<b,|a|<|b|,A、a<b,故错误;B、ab<0,故错误;C、a+b>0,正确;D、|a|<|b|,故错误;故选:C.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴确定a,b的范围.12.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块、16块B.8块、24块 C.20块、12块D.12块、20块【分析】根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.【解答】解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.二、填空题(共4小题,每小题3分,满分12分)13.计算|1﹣|﹣=﹣1.【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣1﹣=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a与b平行,则∠1的度数必须是80°.【分析】先求出∠2的对顶角的度数,再根据同旁内角互补,两直线平行解答.【解答】解:如图,∵∠2=100°,∴∠3=∠2=100°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣100°=80°.故答案为:80°.【点评】本题主要考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键,15.已知关于x的不等式组的解集是x>4,则m的取值范围是m≤3.【分析】先求出不等式的解集,根据已知不等式组的解集即可得出关于m的不等式,求出不等式的解集即可.【解答】解:∵不等式①的解集为x>4,不等式②的解集为x>m+1,,又∵不等式组的解集为x>4,∴m+1≤4,∴m≤3,故答案为:m≤3.【点评】本题考查了解一元一次不等式组,不等式组的解集的应用,能根据不等式的解集和已知不等式组的解集得出关于m的不等式是解此题的关键.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是(﹣505,505).【分析】根据每一个正方形有4个顶点可知每4个点为一个循环组依次循环,用2018除以4,根据商和余数判断出点A2018所在的正方形以及所在的象限,再利用正方形的性质即可求出顶点A2018的坐标.【解答】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵2018÷4=504…2,∴点A 2018是第505个正方形的第2个顶点,在第二象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A 2(﹣1,1),A 6(﹣2,2),A 10(﹣3,3),…,A 2018(﹣505,505). 故答案为(﹣505,505).【点评】本题是对点的坐标变化规律的考查,根据四个点为一个循环组求出点A 2018所在的正方形和所在的象限是解题的关键.三、解答题(共8小题,满分72分)17.计算:().【分析】先进行二次根式的除法运算,然后化简后合并即可.【解答】解:原式=×﹣×=﹣ =﹣. 【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×2+②×3得:13x=﹣1,即x=﹣, 把x=﹣代入①得:y=﹣,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式组,并把它的解集用数轴表示出来..【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x ≥﹣2,解不等式②得:x <,∴不等式组的解集为﹣2≤x <,在数轴上表示不等式组的解集为:. 【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.20.已知x 是的整数部分,y 是的小数部分,求x (﹣y )的值. 【分析】由于3<<4,由此可确定的整数部分x ,接着确定小数部分y ,然后代入所求代数式中计算出结果即可.【解答】解:∵3<<4, ∴的整数部分x=3,小数部分y=﹣3, ∴﹣y=3, ∴x (﹣y )=3×3=9.【点评】此题考查了二次根式的性质,估算无理数的大小;利用二次根式的性质确定x 、y 的值是解决问题的关键.21.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠3,根据垂直推出BD∥EF,根据平行线的性质即可求出∠2.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.【点评】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.收集和整理数据.某中学七(1)班学习了统计知识后,数学老师要求每个学生就本班学生的上学方式进行一次全面调查,如图是一同学通过收集数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(每个学生只选择1种上学方式).(1)求该班乘车上学的人数;(2)将频数分布直方图补充完整;(3)若该校七年级有1200名学生,能否由此估计出该校七年级学生骑自行车上学的人数,为什么?【分析】(1)先求出该班学生的人数,再乘以乘车上学的百分比求解即可,(2)求出步行的人数,再补全条形统计图,(3)利用全面调查与抽样调查的区别来分析即可.【解答】解:(1)该班学生的人数为:15÷30%=50(人),该班乘车上学的人数为:50×(1﹣50%﹣30%)=10(人),(2)步行的人数为:50×50%=25(人),补全条形统计图,(3)不能由此估计出该校七年级学生骑自行车上学的人数.这是七(1)班数学老师要求每个学生就本班学生的上学方式进行一次全面调查,不是七年级学生上学方式的抽样调查,收集的数据对本校七年级学生的上学方式不具有代表性.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?【分析】(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B 型足球,则要花费240元列出方程组解答即可;(2)设购买A型号足球x个,则B型号足球(20﹣x)个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.【解答】解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得解得答:A,B两种型号足球的销售价格各是50元/个,90元/个.(2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得,解得7.5≤x≤12.5∵x是整数,∴x=8、9、10、11、12,有5种购球方案:购买A型号足球8个,B型号足球12个;购买A型号足球9个,B型号足球11个;购买A型号足球10个,B型号足球10个;购买A型号足球11个,B型号足球9个;购买A型号足球12个,B型号足球8个.【点评】此题考查二元一次方程组与一元一次不等式组的实际运用,找出题目蕴含的等量关系与不等关系是解决问题的关键.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.【解答】解:(1)∵(a+b)2≥0,≥0,∴a=﹣b,a﹣b+4=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2)∴三角形ABC的面积=×4×2=4;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(﹣2,0)、C(2,2)代入得,解得,∴直线AC的解析式为y=x+1,∴G点坐标为(0,1),∴S△PAC=S△APG+S△CPG=|t﹣1|2+|t﹣1|2=4,解得t=3或﹣1,∴P点坐标为(0,3)或(0,﹣1).【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.也考查了非负数的性质.湖北省2017-2018学年七年级数学下学期期末模拟试卷及答案(二)一、选择题1.对于点M(0,﹣2)的位置,以下说法中正确的是()A.在x轴上B.在y轴上C.在第三象限内D.在第四象限内2.如图,在数轴上有M、N、P、Q四点,其中某一点表示无理数,这个点是()A.M B.N C.P D.Q3.若是关于x、y的方程x﹣ky=k的解,那么k的值是()A.﹣1 B.1 C.﹣2 D.不存在4.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有5.在下面的四个图形中,∠1与∠2一定相等的是()A.B.C.D.6.已知a>2a,那么对于a的判断正确的是()A.是正数B.是负数C.是非正数D.是非负数7.点P(2m﹣1,3+m)在第二象限,则所有满足条件的整数m有()A.5个B.3个C.1个D.没有8.关于x、y的方程组,那么y是()A.5 B.2a+5 C.a﹣5 D.2a9.体育委员对七(5)班的立定跳远成绩作全面调查,绘成如下统计图,如果把高于0.8米的成绩视为合格,再绘制一张扇形图,“不合格”部分对应的圆心角是()A.50°B.60°C.90°D.80°10.如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A.80°B.82°C.83°D.85°二、填空题11.已知x﹣y=7,当x=﹣4时,y= .12.一个关于x的不等式组的解集表示在数轴上如图.这个不等式组的解集是.13.已知5个运动员从小到大依次大1岁,他们的年龄和不超过100岁,最小的一个运动员一定不会超过岁.14.在正方形网格内有线段AB和点C,画线段CD,使CD∥AB,且D是格点.15.= .16.已知:x≤1,含x的代数式A=3﹣2x,那么A的值的范围是.17.一件商品进价120元,标价a元,要按标价打6折销售,利润不会少于10%,标价a要满足.18.如图,超市里的购物车,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的倍,∠2的度数是.三、解答题(本大题满分为66分)19.解下列方程组:(1)(2).20.解不等式或不等式组,并把解集在数轴上表示出来:(1)(2).21.如图,∠B=48°,∠A′AC=100°,A′A∥BC.(1)求∠CAB的度数;(2)将△ABC平移,使A到达A′,画出平移后的△A′B′C′,并直接写出∠C′CA 的度数.22.已知不等式组(1)用在数轴上画图的方式说明这个不等式组无解;(2)在不等式组的括号里填一个数,使不等式组有解,直接写出它的解集和整数解.23.生活经验:因为你在北半球,用走时准确的手表可以帮你辨别方向.将时针指向太阳所在方向,画它与12点夹角的平分线,这条平分线所指的方向就是南方,如图.题目:沙漠探险队员用手表定好方位,∠COB=48°,发现一处水源D 在7点指的方向,如图.营地E 在水源D 的北偏东40°方向.(1)水源D 在探险队员的 偏 度的方向(方位角);(2)在图中画出营地E 所在的方向;(3)求∠EDO 的度数.24.我市正在实施“引洈济新”工程,让市民喝上洈水水库的清洁水.为了让这泓清水得到永续利用,拟将水价作以下调整:(1)如果李华家每月用水4吨,应交水费 元;张民家每月用水6.5吨,应交水费 元;王星的家里某两个月共用水12吨,两个月的总水费w (元),w 的范围是 ;用如图大小形状完全相同的长方形纸片在直角坐标系中摆成以下图案,已知A (﹣2,6).(1)求出长方形的长与宽;(2)写出B 、C 、D 、E 、F 点的坐标;(3)要使点P (m ,n )在长方形纸片拼成的图案阴影内(可以在边上),在下面的表中填写:m 在哪一范围内取值时,n 对应的范围是什么.参考答案与试题解析一、选择题1.对于点M(0,﹣2)的位置,以下说法中正确的是()A.在x轴上B.在y轴上C.在第三象限内D.在第四象限内【考点】点的坐标.【分析】根据y轴上点的坐标特点,即可解答.【解答】解:点M(0,﹣2)在y轴上,故选:B.【点评】本题考查了点的坐标,解决本题的关键是熟记y轴上点的坐标特点.2.如图,在数轴上有M、N、P、Q四点,其中某一点表示无理数,这个点是()A.M B.N C.P D.Q【考点】实数与数轴;无理数.【分析】先估算出的取值范围,再找出符合条件的点即可.【解答】解:∵≈1.414,∴1.4<<1.5,∴无理数对应的点是P.故选C.【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.3.若是关于x、y的方程x﹣ky=k的解,那么k的值是()A.﹣1 B.1 C.﹣2 D.不存在【考点】二元一次方程的解.【专题】计算题;推理填空题.【分析】把代入关于x、y的方程x﹣ky=k,求出k的值是多少即可.【解答】解:∵是关于x、y的方程x﹣ky=k的解,∴﹣2﹣k=k,∴k=﹣1.故选:A.【点评】此题主要考查了二元一次方程的解,要熟练掌握,采用代入法即可.4.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有【考点】无理数.【分析】根据无理数的定义得到无理数有π,共两个.【解答】解:无理数有:π,故选:C【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.5.在下面的四个图形中,∠1与∠2一定相等的是()A.B.C.D.【考点】对顶角、邻补角.【分析】根据对顶角相等以及平行线的性质,以及余角的性质即可判断.【解答】解:A、∠1与∠2是邻补角,不一定相等,故本选项错误;B、∠1与∠2是对顶角,一定相等,故本选项正确;C、∠1与∠2互补,不一定相等,故本选项错误;D、∠1与∠2不是一组平行线被第三条直线所截,不一定相等,故本选项错误;故选:B.【点评】本题重点考查了对顶角相等以及平行线的性质,属于基础题,难度不大.6.已知a>2a,那么对于a的判断正确的是()A.是正数B.是负数C.是非正数D.是非负数【考点】不等式的性质.【专题】计算题;一元一次不等式(组)及应用.【分析】求出不等式的解集,即可作出判断.【解答】解:由a>2a,移项得:0>2a﹣a,合并得:a<0,则a是负数,故选B【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.7.点P(2m﹣1,3+m)在第二象限,则所有满足条件的整数m有()A.5个B.3个C.1个D.没有【考点】解一元一次不等式组;点的坐标.【专题】计算题.【分析】先根据第二象限点的坐标特征得到,然后解不等式组,再找出不等式的整数解即可.【解答】解:根据题意得,解得﹣3<m<,所以不等式的整数解为﹣2,﹣1,0.故选B.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分;解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.注意第二象限点的坐标特征.8.关于x、y的方程组,那么y是()A.5 B.2a+5 C.a﹣5 D.2a【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组中两方程相减消去x求出y的值即可.【解答】解:,②﹣①得:y=5,故选A【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.体育委员对七(5)班的立定跳远成绩作全面调查,绘成如下统计图,如果把高于0.8米的成绩视为合格,再绘制一张扇形图,“不合格”部分对应的圆心角是()A.50°B.60°C.90°D.80°【考点】扇形统计图;条形统计图.【分析】先求出不合格人数占总人数的百分比,进而可得出结论.【解答】解:∵ =,∴“不合格”部分对应的圆心角是×360°=90°.故选C.【点评】本题考查的是扇形统计图,熟知扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数是解答此题的关键.。

武汉市江夏区2017-2018学年七年级数学下册期末试卷及解析

武汉市江夏区2017-2018学年七年级数学下册期末试卷及解析

武汉市江夏区2017-2018学年七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.设a>b,下列结论正确的是()A.a+2>b+2B.a+2<b+2C.a+2=b+2D.a+2≥b+22.把方程2x﹣y=3改写成用含x的式子表示y的形式正确的是()A.2x=y+3B.x=C.y=2x﹣3D.y=3﹣2x3.下列调查中,适宜抽样调查的是()A.了解某班学生的身高情况B.选出某校短跑最快的学生参加全市比赛C.了解全班同学每周体育锻炼的时间D.调查某批次汽车的抗撞击能力4.如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠45.将点A(﹣4,﹣1)向右平移2个单位长度,再向上平移3个单位长度得点A′,则点A′的坐标是()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)6.实数界于哪两个相邻的整数之间()A.3和4B.5和6C.7和8D.9和107.某校学生来自甲、乙、丙三个地区,其人数比为3:4:3,如图所示的扇形图表示上述分布情况.若来自甲地区有180人,则该校学生总数为()A.600人B.450人C.720人D.360人8.若3a﹣22和2a﹣3是实数m的平方根,且t=,则不等式﹣≥的解集为()A.x≥B.x≤C.x≥D.x≤9.运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车.则10节火车车厢和20辆汽车能运输多少吨化肥?()A.720B.860C.1100D.58010.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD于点O,且∠EOD+∠OBF=180°,∠F=∠G.则图中与∠ECB相等的角有()A.6个B.5个C.4个D.3个二、填空题(共6小题,每小题3分,共18分11.计算:=.12.空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是(从“条形图,扇形图,折线图和直方图”中选一个)13.已知A(a,0),B(﹣3,0)且AB=7,则a=.14.已知:+|5x﹣6y﹣33|=0,求代数式的值:168x+2018y+1=.15.如图,已知AB∥CD,∠1=55°,∠2=45°,点G为∠BED内一点,∠BEG:∠DEG=2:3,EF平分∠BED,则∠GEF=.16.不等式组有4个整数解,则m的取值范围是.三、解答题(共8小题,共72分)17.(8分)解下列方程组(1)(2)18.(8分)计算:+|﹣1|+﹣.19.(8分)解不等式组,并把它们的解集在数轴上表示出来20.(8分)完成下面的证明如图,射线AH交折线ACGFEN于点B、D、E.已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.求证:∠2=∠3.证明:∵∠A=∠1(已知)∴()∴()∵∠C=∠F(已知)∴∴()∴()∵BM平分∠CBD,EN平分∠FEH∴∠2=,∠3=∴∠2=∠321.(8分)为了丰富学生课余生活,某区教育部门准备在七年级开设兴趣课堂.为了了解学生对音乐、书法、球类、绘画这四个兴趣小组的喜爱情况,在全区进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息不完整),请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中音乐部分的圆心角的度数(3)如果该区七年级共有2000名学生参加这4个课外兴趣小组,而每名教师最多只能辅导本组的20名学生,则绘画兴趣小组至少需要准备多少名教师?22.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,其中点A与点P,点B与点Q,点C与点R是对应的点,在这种变换下:(1)直接写出下列各点的坐标①A(,)与P(,);B(,)与Q(,);C(,)与R(,)②它们之间的关系是:(用文字语言直接写出)(2)在这个坐标系中,三角形ABC内有一点M,点M经过这种变换后得到点N,点N在三角形PQR 内,其中M、N的坐标M(,6(a+b)﹣10),N(1﹣,4(b﹣2a)﹣6),求关于x的不等式﹣>b﹣1的解集.23.某民营企业准备用14000元从外地购进A、B两种商品共600件,其中A种商品的成本价为20元,B种商品的成本价为30元.(1)该民营企业从外地购得A、B两种商品各多少件?(2)该民营企业计划租用甲、乙两种货车共6辆,一次性将A、B两种商品运往某城市,已知每辆甲种货车最多可装A种商品110件和B种商品20件;每辆乙种货车最多可装A种商品30件和B种商品90件,问安排甲、乙两种货车有几种方案?请你设计出具体的方案.24.(12分)在平面直角坐标系中,A(a,0),C(0,c)且满足:(a+6)2+=0,长方形ABCO 在坐标系中(如图),点O为坐标系的原点.(1)求点B的坐标.(2)如图1,若点M从点A出发,以2个单位/秒的速度向右运动(不超过点O),点N从原点O出发,以1个单位/秒的速度向下运动(不超过点C),设M、N两点同时出发,在它们运动的过程中,四边形MBNO的面积是否发生变化?若不变,求其值;若变化,求变化的范围.(3)如图2,E为x轴负半轴上一点,且∠CBE=∠CEB,F是x轴正半轴上一动点,∠ECF的平分线CD交BE的延长线于点D,在点F运动的过程中,请探究∠CFE与∠D的数量关系,并说明理由2017-2018学年湖北省武汉市江夏区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.设a>b,下列结论正确的是()A.a+2>b+2B.a+2<b+2C.a+2=b+2D.a+2≥b+2【分析】根据不等式的基本性质1求解可得.【解答】解:将a>b两边都加上2,知a+2>b+2,故选:A.【点评】本题主要考查不等式的性质,解题的关键是熟练掌握不等式的基本性质1:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2.把方程2x﹣y=3改写成用含x的式子表示y的形式正确的是()A.2x=y+3B.x=C.y=2x﹣3D.y=3﹣2x【分析】将x看做常数移项求出y即可得.【解答】解:由2x﹣y=3知2x﹣3=y,即y=2x﹣3,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.3.下列调查中,适宜抽样调查的是()A.了解某班学生的身高情况B.选出某校短跑最快的学生参加全市比赛C.了解全班同学每周体育锻炼的时间D.调查某批次汽车的抗撞击能力【分析】根据由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似对各选项分析判断后利用排除法求解.【解答】解:A、了解某班学生的身高情况适合全面调查;B、选出某校短跑最快的学生参加全市比赛适合全面调查;C、了解全班同学每周体育锻炼的时间适合全面调查;D、调查某批次汽车的抗撞击能力适合抽样调查;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4【分析】熟悉平行线的性质,能够根据已知的平行线找到构成的内错角.【解答】解:A、∠1与∠2不是两平行线AB、CD形成的角,故A错误;B、∠3与∠2不是两平行线AB、CD形成的内错角,故B错误;C、∠1与∠4是两平行线AB、CD形成的内错角,故C正确;D、∠3与∠4不是两平行线AB、CD形成的角,无法判断两角的数量关系,故D错误.故选:C.【点评】正确运用平行线的性质.这里特别注意AD和BC的位置关系不确定.5.将点A(﹣4,﹣1)向右平移2个单位长度,再向上平移3个单位长度得点A′,则点A′的坐标是()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【分析】直接利用平移中点的变化规律求解即可.【解答】解:A(﹣4,﹣1)向右平移2个单位长度得到:(﹣4+2,﹣1),即(﹣2,﹣1),再向上平移3个单位长度得到:(﹣2,﹣1+3),即(﹣2,2).故选:B.【点评】此题主要考查了点的坐标的平移变换.关键是熟记平移变换与坐标变化规律:①向右平移a个单位,坐标P(x,y)⇒P(x+a,y);②向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y);③向上平移b个单位,坐标P(x,y)⇒P(x,y+b);④向下平移b个单位,坐标P(x,y)⇒P(x,y﹣b).6.实数界于哪两个相邻的整数之间()A.3和4B.5和6C.7和8D.9和10【分析】先估算出的范围,即可得出答案.【解答】解:∵5<<6,∴在5和6之间.故选:B.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.7.某校学生来自甲、乙、丙三个地区,其人数比为3:4:3,如图所示的扇形图表示上述分布情况.若来自甲地区有180人,则该校学生总数为()A.600人B.450人C.720人D.360人【分析】根据百分比=,计算即可;【解答】解:甲占=30%,∴该校学生总数为180÷30%=600,故选:A.【点评】本题考查扇形统计图、解得的关键是熟练掌握基本知识,属于中考基础题.8.若3a﹣22和2a﹣3是实数m的平方根,且t=,则不等式﹣≥的解集为()A.x≥B.x≤C.x≥D.x≤【分析】先根据平方根求出a的值,再求出m,求出t,再把t的值代入不等式,求出不等式的解集即可.【解答】解:∵3a﹣22和2a﹣3是实数m的平方根,∴3a﹣22+2a﹣3=0,解得:a=5,3a﹣22=﹣7,所以m=49,t==7,∵﹣≥,∴﹣≥,解得:x≤,故选:B.【点评】本题考查了算术平方根、解一元一次不等式和平方根,能求出t的值是解此题的关键.9.运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车.则10节火车车厢和20辆汽车能运输多少吨化肥?()A.720B.860C.1100D.580【分析】设每节火车车厢能运输x吨化肥,每辆汽车能运输y吨化肥,根据“运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,将其代入10x+20y即可求出结论.【解答】解:设每节火车车厢能运输x吨化肥,每辆汽车能运输y吨化肥,根据题意得:,解得:,∴10x+20y=580.故选:D.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD于点O,且∠EOD+∠OBF=180°,∠F=∠G.则图中与∠ECB相等的角有()A.6个B.5个C.4个D.3个【分析】由“对顶角相等”、“同旁内角互补,两直线平行”判定EC∥BF,则同位角∠ECD=∠F.所以结合已知条件,角平分线的定义,利用等量代换推知同位角∠G=∠ECB.则易证DG∥CE,根据平行线的性质即可得到结论.【解答】证明:∵∠EOD=∠BOC,∠EOD+∠OBF=180°,∴∠BOC+∠OBF=180°,∴EC∥BF,∴∠ECD=∠F,∠ECB=∠CBF,又∵CE平分∠ACB,∴∠ECD=∠ECB.又∵∠F=∠G,∴∠G=∠ECB.∴DG∥CE,∴∠CDG=∠DCE,∴∠CDG=∠G=∠F=DCE=∠CBF=∠ECB,故选:B.【点评】本题考查了平行线的判定和性质,角平分线的定义,熟练掌握平行线的判定和性质是解题的关键.二、填空题(共6小题,每小题3分,共18分11.计算:=﹣3.【分析】根据(﹣3)3=﹣27,可得出答案.【解答】解:=﹣3.故答案为:﹣3.【点评】此题考查了立方的知识,属于基础题,注意立方根的求解方法,难度一般.12.空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形图(从“条形图,扇形图,折线图和直方图”中选一个)【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.【解答】解:根据题意,得:直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图.故答案为:扇形统计图.【点评】此题考查扇形统计图、折线统计图、条形统计图各自的特点.13.已知A(a,0),B(﹣3,0)且AB=7,则a=﹣10或4.【分析】根据平面内坐标的特点解答即可.【解答】解:∵A(a,0),B(﹣3,0)且AB=7,∴a=﹣3﹣7=﹣10或a=﹣3+7=4,故答案为:﹣10或4.【点评】此题考查两点间的距离,关键是根据两点之间的距离解答.14.已知:+|5x﹣6y﹣33|=0,求代数式的值:168x+2018y+1=0.【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可求出值.【解答】解:∵+|5x﹣6y﹣33|=0,∴,①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:y=﹣,则原式=168×6﹣2018×+1=0.故答案为:0【点评】此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.15.如图,已知AB∥CD,∠1=55°,∠2=45°,点G为∠BED内一点,∠BEG:∠DEG=2:3,EF平分∠BED,则∠GEF=10°.【分析】根据平行线的性质得出∠BEF和∠DEF的值,进而利用角平分线和角之间的关系解答即可.【解答】解:过E作EM∥AB,∵AB∥CD,∴EM∥AB∥CD,∵∠1=55°,∠2=45°,∴∠BEM=∠1=55°,∠DEM=∠2=45°,∴∠BED=55°+45°=100°,∵EF平分∠BED,∴∠BEF=50°,∵∠BEG:∠DEG=2:3,∵∠BEG+∠DEG=100°,∴∠BEG=40°,∴∠GEF=50°﹣40°=10°,故答案为:10°【点评】考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.16.不等式组有4个整数解,则m的取值范围是3<m≤4.【分析】通过解不等式组可得出不等式组的解为﹣1<x<m,结合不等式组有4个整数解,即可确定m 的取值范围.【解答】解:,解不等式①得:x>﹣1,∴不等式组的解为﹣1<x<m.∵不等式组有4个整数解,∴3<m≤4.故答案为:3<m≤4.【点评】本题考查了一元一次不等式组的整数解,通过解不等式组结合不等式组整数解得个数,找出m的取值范围是解题的关键.三、解答题(共8小题,共72分)17.(8分)解下列方程组(1)(2)【分析】(1)利用代入消元法求解可得;(2)利用加减消元法求解可得.【解答】解:(1),将①代入②,得:3(y+3)﹣8y=14,解得:y=﹣1,将y=﹣1代入①,得:x=2,所以方程组的解为;(2),②﹣①,得:x=4,将x=4代入①,得:16+3y=16,解得:y=0,所以方程组的解为.【点评】本题主要考查解二元一次方程组,解题关键是掌握方程组解法中的加减消元法和代入消元法.18.(8分)计算:+|﹣1|+﹣.【分析】直接利用二次根式以及立方根的定义和绝对值的性质化简进而得出答案.【解答】解:原式=2+﹣1﹣2﹣=﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(8分)解不等式组,并把它们的解集在数轴上表示出来【分析】利用不等式的性质求出每个不等式的解集,再求出它们的公共部分即可.【解答】解:解得第一个不等式,得x≤1,解得第二个不等式,得x<4,所以,原不等式组的解集为x≤1.把解集在数轴上表示为:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)完成下面的证明如图,射线AH交折线ACGFEN于点B、D、E.已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.求证:∠2=∠3.证明:∵∠A=∠1(已知)∴AC∥GF(内错角相等,两直线平行)∴∠C=∠G(两直线平行,内错角相等)∵∠C=∠F(已知)∴∠F=∠G∴CG∥EF(内错角相等,两直线平行)∴∠CBD=∠FEH(两直线平行,同位角相等)∵BM平分∠CBD,EN平分∠FEH∴∠2=∠CBD,∠3=∠FEH∴∠2=∠3【分析】依据平行线的判定以及性质,即可得到∠C=∠G,即可得到∠F=∠G,进而判定CG∥EF,再根据平行线的性质,即可得到∠CBD=∠FEH,依据角平分线的定义,即可得出结论.【解答】证明:∵∠A=∠1(已知),∴AC∥GF(内错角相等,两直线平行),∴∠C=∠G(两直线平行,内错角相等),∵∠C=∠F(已知),∴∠F=∠G,∴CG∥EF(内错角相等,两直线平行),∴∠CBD=∠FEH(两直线平行,同位角相等),∵BM平分∠CBD,EN平分∠FEH,∴∠2=∠CBD,∠3=∠FEH,∴∠2=∠3.故答案为:AC∥GF(内错角相等,两直线平行),∠C=∠G(两直线平行,内错角相等),∠F=∠G,CG∥EF(内错角相等,两直线平行),∠CBD=∠FEH(两直线平行,同位角相等),∠CBD,∠FEH.【点评】本题主要考查了平行线的判定以及平行线的性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.(8分)为了丰富学生课余生活,某区教育部门准备在七年级开设兴趣课堂.为了了解学生对音乐、书法、球类、绘画这四个兴趣小组的喜爱情况,在全区进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息不完整),请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中音乐部分的圆心角的度数(3)如果该区七年级共有2000名学生参加这4个课外兴趣小组,而每名教师最多只能辅导本组的20名学生,则绘画兴趣小组至少需要准备多少名教师?【分析】(1)根据球类人数及其所占百分比可得总人数;(2)根据各组人数之和等于总人数求得音乐人数,据此可补全条形图,再用360°乘以音乐人数所占比例可得;(3)总人数乘以样本中绘画人数所占比例,再除以20即可得.【解答】解:(1)此次调查的学生人数为120÷40%=300(名);(2)音乐的人数为300﹣(60+120+40)=80(名),补全条形图如下:扇形统计图中音乐部分的圆心角的度数为360°×=96°;(3)60÷300×2000÷20=20.∴需准备20名教师辅导.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,其中点A与点P,点B与点Q,点C与点R是对应的点,在这种变换下:(1)直接写出下列各点的坐标①A(4,3)与P(﹣4,﹣3);B(3,1)与Q(﹣3,﹣1);C(1,2)与R(﹣1,﹣2)②它们之间的关系是:三角形各顶点横、纵坐标均互为相反数(用文字语言直接写出)(2)在这个坐标系中,三角形ABC内有一点M,点M经过这种变换后得到点N,点N在三角形PQR 内,其中M、N的坐标M(,6(a+b)﹣10),N(1﹣,4(b﹣2a)﹣6),求关于x的不等式﹣>b﹣1的解集.【分析】(1)根据点的位置写出坐标,再根据坐标的特征写出规律即可;(2)利用(1)中规律,构建方程组,求出a、b的值,解不等式即可;【解答】解:(1)由图可得,①A(4,3)与P(﹣4,﹣3);B(3,1)与Q(﹣3,﹣1);C (1,2)与R(﹣1,﹣2).②由①可得:两个三角形各顶点横、纵坐标互为相反数.故答案为:4,3,﹣4,﹣3,3,1,﹣3,﹣1,1,2,﹣1,﹣2;(2)∵M、N关于原点对称,∴M、N两点的横坐标互为相反数,纵坐标互为相反数,∴+1﹣=0,6(a+b)﹣10+4(b﹣2a)﹣6=0,解得a=2,b=2,∴﹣>2﹣1∴6x+4﹣7x+3>8∴x<﹣1.【点评】本题考查几何变换﹣中心对称,不等式,坐标与图形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.某民营企业准备用14000元从外地购进A、B两种商品共600件,其中A种商品的成本价为20元,B种商品的成本价为30元.(1)该民营企业从外地购得A、B两种商品各多少件?(2)该民营企业计划租用甲、乙两种货车共6辆,一次性将A、B两种商品运往某城市,已知每辆甲种货车最多可装A种商品110件和B种商品20件;每辆乙种货车最多可装A种商品30件和B种商品90件,问安排甲、乙两种货车有几种方案?请你设计出具体的方案.【分析】(1)设该民营企业从外地购得A种商品x件,B种商品y件,根据总价=单价×数量结合用14000元从外地购进A、B两种商品共600件,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设租甲种货车a辆,则租乙种货车(6﹣a)辆,由要一次性将A、B两种商品运往某城市,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,再结合a为整数,即可找出各租车方案.【解答】解:(1)设该民营企业从外地购得A种商品x件,B种商品y件,根据题意得:,解得:.答:该民营企业从外地购得A种商品400件,B种商品200件.(2)设租甲种货车a辆,则租乙种货车(6﹣a)辆,根据题意得:,解得:≤a≤,∵a为整数,∴a=3或4,∴有两种方案,方案一:租用甲车3辆,乙车3辆;方案二:租用甲车4辆,乙车2辆.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.24.(12分)在平面直角坐标系中,A(a,0),C(0,c)且满足:(a+6)2+=0,长方形ABCO 在坐标系中(如图),点O为坐标系的原点.(1)求点B的坐标.(2)如图1,若点M从点A出发,以2个单位/秒的速度向右运动(不超过点O),点N从原点O出发,以1个单位/秒的速度向下运动(不超过点C),设M、N两点同时出发,在它们运动的过程中,四边形MBNO的面积是否发生变化?若不变,求其值;若变化,求变化的范围.(3)如图2,E为x轴负半轴上一点,且∠CBE=∠CEB,F是x轴正半轴上一动点,∠ECF的平分线CD交BE的延长线于点D,在点F运动的过程中,请探究∠CFE与∠D的数量关系,并说明理由【分析】(1)根据题意可得a=﹣6,c=﹣3,则可求A点,C点,B点坐标;(2)设M、N同时出发的时间为t,则S四边形MBNO=S长方形OABC﹣S△ABM﹣S△BCN=18﹣×2t×3﹣×6×(3﹣t)=9.与时间无关.即面积是定值,其值为9;(3)根据三角形内角和定理和三角形外角等于不相邻的两个内角的和,可求∠CFE与∠D的数量关系.【解答】解:(1)∵(a+6)2+=0,∴a=﹣6,c=﹣3∴A(﹣6,0),C(0,﹣3)∵四边形OABC是矩形∴AO∥BC,AB∥OC,AB=OC=3,AO=BC=6∴B(﹣6,﹣3)(2)四边形MBNO的面积不变.设M、N同时出发的时间为t,则S四边形MBNO=S长方形OABC﹣S△ABM﹣S△BCN=18﹣×2t×3﹣×6×(3﹣t)=9.与时间无关.∴在运动过程中面积不变.是定值9(3)∠CFE=2∠D.理由如下:如图∵∠CBE=∠CEB∴∠ECB=180°﹣2∠BEC∵CDP平分∠ECF∴∠DCE=∠DCF∵AF∥BC∴∠F=180°﹣∠DCF﹣∠DCE﹣∠BCE=180°﹣2∠DCE﹣(180°﹣2∠BEC)∴∠F=2∠BEC﹣2∠DCE∵∠BEC=∠D+∠DCE∴∠F=2(∠D+∠DCE)﹣2∠DCE∴∠F=2∠D【点评】本题考查了四边形的综合题,矩形的性质,熟练运用三角形内角和定理,及三角形外角等于不相邻的两个内角和解决问题是本题的关键.。

精品解析:湖北省武汉市江夏区2018-2019学年七年级下学期期末考试数学试题(解析版)

精品解析:湖北省武汉市江夏区2018-2019学年七年级下学期期末考试数学试题(解析版)

湖北省武汉市江夏区2018-2019学年七年级下学期期末数学试题一、选择题(本大题共10小题,每小题3分,共30分)1. 在下列所给出坐标的点中,在第二象限的是A. (2,3)B. (﹣2,3)C. (﹣2,﹣3)D. (2,﹣3)【答案】B【解析】根据第二象限内点的坐标符号(-,+)进行判断即可.2.下图所表示的不等式组的解集为()A. x>3B. -2<x<3C. x>-2D. -2>x>3【答案】A【解析】根据解集的数轴表示,可知不等式组的解集为x>3.故选A点睛:此题主要考查了不等式解集的数轴表示,利用数轴上解集的表示,取公共部分即可,注意实心点和虚心点表示的不同意义.3.17)A.3B. 4C. 5D. 6 【答案】B 【解析】【详解】试题解析:∵16<17<20.25,∴417<4.5,17最接近的是4.故选B.考点:估算无理数的大小.4.下列问题不适合用全面调查的是()A. 旅客上飞机前的安检:B. 调查春节联欢晚会的收视率:C. 了解某班学生的身高情况:D. 企业招聘,对应试人员进行面试.【答案】B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、旅客上飞机前的安检,必须全面调查,不合题意;B、调查春节联欢晚会的收视率,适合抽样调查,符合题意;C、了解某班学生的身高情况,适合全面调查,不合题意;D、企业招聘,对应试人员进行面试,必须全面调查,不合题意.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B +∠BDC=180°【答案】A【解析】【分析】运用平行线的判定方法进行判定即可.【详解】解:选项A中,∠1=∠2,只可以判定AC//BD(内错角相等,两直线平行),所以A错误;选项B中,∠3=∠4,可以判定AB//CD(内错角相等,两直线平行),所以正确;选项C中,∠5=∠B,AB//CD(内错角相等,两直线平行),所以正确;选项D中,∠B +∠BDC=180°,可以判定AB//CD(同旁内角互补,两直线平行),所以正确;故答案为A.【点睛】本题考查平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键. 6.谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A 等级的人数占总人数的 ( )A. 6%B. 10%C. 20%D. 25%【答案】C【解析】 根据图中所给的信息,用A 等级的人数除以总人数的即可解答.解:10÷(10+15+12+10+3)=20%.故选C .7.如图,,A B 的坐标为(2,0),(0,1),若将线段AB 平移至11A B ,则 a b 的值为( )A. 5B. 4C. 3D. 2【答案】D【解析】【分析】 平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.直接利用平移中点的变化规律求解即可.【详解】解:由B 点平移前后的纵坐标分别为1、2,可得B 点向上平移了1个单位,由A 点平移前后的横坐标分别是为2、3,可得A 点向右平移了1个单位,由此得线段AB 的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A 、B 均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选D .【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.8.由美国单方面挑起的贸易战严重影响了市场经济,某种国外品牌洗农机按原价降价a 元后,再次降价20%现售价为b 元,则原售价为( ) A. 54a b ⎛⎫+ ⎪⎝⎭元 B. 45a b ⎛⎫+ ⎪⎝⎭元 C. 54b a ⎛⎫+ ⎪⎝⎭元 D. 45b a ⎛⎫+ ⎪⎝⎭元 【答案】A【解析】【分析】可设原售价是x 元,根据降价a 元后,再次降价20%后是b 元为相等关系列出方程,用含a ,b 的代数式表示x 即可求解.【详解】设原售价是x 元,则(x-a )(1-20%)=b ,解得x=a+54b . 故选A .【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.9.若实数3是不等式2x –a –2<0的一个解,则a 可取的最小正整数为( )A. 2B. 3C. 4D. 5 【答案】D【解析】解:根据题意,x =3是不等式的一个解,∴将x =3代入不等式,得:6﹣a ﹣2<0,解得:a >4,则a 可取的最小正整数为5,故选D .点睛:本题主要考查不等式的整数解,熟练掌握不等式解得定义及解不等式的能力是解题的关键. 10.如图,在四边形ABCD 中,AD BC ∥,B D ∠=∠,延长BA 至E ,连接CE 交AD 于F ,EAD ∠和ECD ∠的角平分线相交于点P .若60E ∠=︒,70APC ∠=︒,则D ∠的度数是( )A. 80°B. 75°C. 70°D. 60°【答案】A【解析】【分析】 由角平分线的定义可知,∠1=∠2,∠3=∠4,根据三角形的内角和定理,可得∠E+∠1=∠P+∠3,进而∠1-∠3=∠P-∠E=70°-60°=10°=∠2-∠4,同理∠2-∠4=∠D-∠P=10°,从而求出∠D 的度数.【详解】如图;由题意得:∠1=∠2,∠3=∠4,∠E=60°,∠P=70°,在△AME 和△PMC 中,由三角形的内角和定理得:∠E+∠1=∠P+∠3,∴∠1-∠3=∠P-∠E=70°-60°=10°=∠2-∠4, 同理:∠P+∠2=∠D+∠4,∴∠2-∠4=∠D-∠P=10°,∴∠D=80°.故选A .【点睛】考查三角形内角和定理和角平分线的定义,由等式的性质和等量代换可求答案,二、填空题(本大题共6小题,每小题3分,共18分)11.①9平方根是_____;②14=_____;③若11a a -=-,则a 的取值范围是_____. 【答案】 (1). 3-,3; (2). 0.5; (3). 1a ≥.【解析】【分析】根据平方根的含义和求法、算术平方根的含义和求法,以及绝对值的含义和求法,逐项求解即可.【详解】①9平方根是±3;②11 =42;③∵|a-1|=a-1,∴a-1≥0,则a的取值范围是a≥1.故答案为±3;12;a≥1.【点睛】此题主要考查了平方根、算术平方根的含义和求法,要熟练掌握.12.如图是一个会场的台阶的截面图,要在上面铺上地毯,则所需地毯的长度是_____.【答案】7.3m【解析】【分析】地毯的长度实际是所有台阶的宽加上台阶的高,因此可得出答案.【详解】楼梯的长为5m,高为2.3m,则所需地毯的长度是5+2.3=7.3(m).故答案为7.3m.【点睛】考查了生活中平移现象,本题是一道实际问题,难度不大,关键是利用平移的性质得出地毯长的表示形式.13.某校开展“未成年人普法”知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记5 分.小明参加本次竞赛的得分超过100分,他至少答对了_____题;【答案】14【解析】【分析】根据竞赛得分=10×答对的题数-5×未答对(不答)的题数和本次竞赛得分要超过100分,列出不等式,再求解即可.【详解】设要答对x 道,根据题意得:10x-5×(20-x )>100,10x-100+5x >100,15x >200,解得x >403, 则他至少要答对14道;故答案为14.【点睛】此题考查了一元一次不等式的应用,读懂题意,找到关键描述语,找到所求得分的关系式是解决本题的关键.14.如图,直线AB CD EF ,30B ∠=︒,135C ∠=︒,则CGB ∠=____;【答案】15°【解析】【分析】根据平行线的性质得出∠BGF=∠B=30°,∠C+∠CGF=180°,求出∠CGF=45°,即可得出答案.【详解】∵AB ∥CD ∥EF ,∠B=30°,∠C=135°,∴∠BGF=∠B=30°,∠C+∠CGF=180°,∴∠CGF=45°,∴∠CGB=∠CGF-∠BGF=15°,故答案为15°.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力和计算能力.15.如图,平面直角坐标系中的图案是由五个边长为1的正方形组成的.A (a ,0),B (3,3),连接AB 的线段将图案的面积分成相等的两部分,则a 的值是:_____;【答案】2 3【解析】【分析】把图形补成正方形,然后根据梯形的面积公式与三角形的面积公式表示出被分成两个部分的面积,然后列出方程求解即可.【详解】如图,由题意得,12(3+a)×3-3×12=12×(3-a)×3-12,整理得,6a=4,解得a=23.故答案为23.【点睛】本题考查了三角形的面积,坐标与图形性质,作辅助线补成规则图形并表示出分成两个部分的面积是解题的关键.16.若关于x、y的二元一次方程组2x y3k1{x2y2+=-+=-的解满足x+y>1,则k的取值范围是▲ .【答案】k>2.【解析】解二元一次方程组,解一元一次不等式.【分析】解关于x,y的方程组,用k表示出x,y的值,再把x,y的值代入x+y>1即可得到关于k的不等式,求出k的取值范围即可:解2x y 3k 1{x 2y 2+=-+=-得x 2k {y k 1==--. ∵x+y >1,∴2k -k -1>1,解得k >2.三、解答题(共8小题,共72分)17.(1)解方程组:2112x y x y +=⎧⎨-=-⎩;(2)解下列不等式2134136x x ---≤. 【答案】(1)3x =,5y =;(2)4x .【解析】【分析】(1)用加减法消去未知数y 求出x 的值,再代入求出y 的值即可;(2)根据解一元一次不等式的步骤,去分母、去括号、移项、合并同类项、系数化为1,即可得出结果.【详解】(1)211{2x y x y +--=①=②,①+②得,3x=9,解得x=3,把x=3代入②得,y=5,∴原方程组的解为:3{5x y ==. (2)∵2134136x x ---≤ ∴2(2x-1)-6≤3x -4∴4x-2-6≤3x -4∴4x-3x≤-4+2+6∴x≤4∴不等式组的解集为x≤4.【点睛】此题考查了二元一次方程组的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 18.如图,已知AB CD ∥,180B D ∠+∠=︒,求证:BC DE .【答案】见解析.【解析】【分析】根据平行线的性质和判定可以解答本题.【详解】证明:∵AB CD∴B C ∠=∠∵180B D ∠+∠=︒∴180C D ∠+∠=︒∴BC DE .【点睛】本题考查平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明.19.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:今有鸡兔同笼,上有三十五头,下有九四十足,问鸡兔各几何?你能用二元一次方程组表示题中的数量关系并解决问题吗?【答案】鸡、兔分别有23只、12只.【解析】【分析】设鸡有x 只,兔有y 只,根据等量关系:上有三十五头,下有九十四足,可分别得出方程,联立求解即可得出答案.【详解】设鸡有x 只,兔有y 只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:352494x y x y +=⎧⎨+=⎩, 解得23{12x y == 答:鸡有23只,兔有12只.【点睛】此题考查了二元一次方程组的应用,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.20.学校为了解学生对新闻、体育、动画、娱乐、戏曲类电视节目的喜爱情况,采用抽样的方法在七年级选取了一个班的同学,通过问卷调查,收集数据、整理数据,制作了如下两个整统计图,请根据下面两个不完整的统计图分析数据,回答以下问题:(1)七年级的这个班共有学生_____人,图中a=______,b=______,在扇形统计图中,“体育”类电视节目对应的圆心角为:______.(2)补全条形统计图;(3)根据抽样调查的结果,估算该校1750名学生中大约有多少人喜欢“娱乐”类电视节目?【答案】(1)50,36%,10,72°;(2)画图见解析;(3)630人.【解析】【分析】(1)根据新闻人数以及百分比求出总人数即可解决问题.(2)求出娱乐人数,画出统计图即可.(3)利用样本估计总体的思想解决问题即可.【详解】(1)总人数=4÷8%=50(人),b=50×20%=10,a=1-6%-8%-20%-30%=36%,“体育“类电视节目对应的圆心角为360°×20%=72°,(2)娱乐人数=50-4-10-15-3=18,统计图如图所示:(3)1750×1850=630(人), 答:估算该校1750名学生中人约有630人喜欢娱乐”类电视节目.【点睛】本题考查扇形统计图,样本估计总体的思想,频数分布直方图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.如图,已知直线a b ∥,点A 在直线a 上,点B 、C 在直线b 上,点D 在线段BC 上.AB 平分MAD ∠,AC 平分NAD ∠,12∠=∠,求证:DE AC ⊥.【答案】见解析.【解析】【分析】根据平行线的性质得到∠NAC=∠ACD 由角平分线的定义得到∠2=∠BAD ,∠DAC=∠NAC ,由平角的定义得到∠MAD+∠NAD=180°,于是得到结论.【详解】如图;∵直线a ∥b ,∴∠NAC=∠ACD ,∵AB 平分∠MAD ,AC 平分∠NAD ,∴∠2=∠BAD ,∠DAC=∠NAC ,∵∠MAD+∠NAD=180°,∴∠2+∠NAC=12(∠NAD+∠NAD )=90°, ∵∠1=∠2,∴∠1+∠NAC=∠1+∠ACD=90°,∴∠EDC=90°,∴DE ⊥AC .【点睛】本题考查了平行线的性质,三角形的内角和,角平分线的定义,熟练掌握平行线的性质定理是解题的关键.22.2019年“519(我要走)全国徒步日(江夏站)”暨第六届“环江夏”徒步大会5月19日在美丽的花山脚下降重举行.组委会(活动主办方)为了奖励活动中取得了好成绩的参赛选手,计划购买共100件的甲、乙两种纪念品发放.其中甲种纪念品每件售价120元,乙种纪念品每件售价80元.(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多少件?(2)设购买甲种纪念品m 件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种方案所需总费用最少?最少总费用是多少元?【答案】(1)购甲、乙两种纪念品分别有40、60件;(2)共2种方案.【解析】【分析】(1)设甲种纪念品购买了x 件,乙种纪念品购买了(100-x )件,利用购买甲、乙两种纪念品一共花费了9600元列方程120x+80(100-x )=9600,然后解方程求出x ,再计算(100-x )即可;(2)设购买甲种纪念品m 件,乙种奖品购买了(100-m )件,利用购买乙种纪念品的件数不超过甲种奖品件数的2倍,总花费不超过9400元列不等式组 ()1002120801009400m m m m -≤⎧⎨+-≤⎩,然后解不等式组后确定x 的整数值即可得到组委会的购买方案.【详解】(1)设甲种纪念品购买了x 件,乙种纪念品购买了(100-x )件,根据题意得120x+80(100-x )=9600,解得x=40,则100-x=60,答:设甲种纪念品购买了40件,乙种纪念品购买了60件;(2)设购买甲种纪念品m 件,乙种奖品购买了(100-m )件,根据题意,得 ()1002120801009400m m m m -≤⎧⎨+-≤⎩, 解得 1003≤m≤35, ∵m 为整数,∴m=34或m=35,当m=34时,100-m=66;当m=35时,100-m=65;答:组委会有2种不同的购买方案:甲种纪念品34件,乙种奖品购买了66件或甲种纪念品35件,乙种奖品购买了65件.【点睛】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题.23.已知ABC ∆中,点D 是AC 延长线上的一点,过点D 作DE BC ∥,DG 平分ADE ∠,BG 平分ABC ∠,DG 与BG 交于点G .(1)如图1,若90ACB ∠=︒,50A ∠=︒,直接求出G ∠的度数:__________;(2)如图2,若90ACB ∠≠︒,试判断G ∠与A ∠的数量关系,并证明你的结论;(3)如图3,若FE AD ∥,求证:12DFE ABC G ∠=∠+∠. 【答案】(1)25°;(2)2A G ∠=∠,证明略;(3)证明略;【解析】【分析】(1)先根据三角形的内角和得∠ABC=40°,分别根据角平分线的定义和三角形外角的性质得∠G 的度数; (2)根据三角形外角的性质分别表示∠BCD 和∠DFC 的度数,可得∠A 和∠G 的关系;(3)根据平行线的性质和角平分线定义可得结论.【详解】如图1,∵∠ACB=90°,∠A=50°,∴∠ABC=40°,∵BG平分∠ABC,∴∠CBG=20°,∵DE∥BC,∴∠CDE=∠BCD=90°,∵DG平分∠ADE,∴∠CDF=45°,∴∠CFD=45°,∵∠CFD=∠FBG+∠G,∴∠G=45°-20°=25°;(2)如图2,∠A=2∠G,理由是:由(1)知:∠ABC=2∠FBG,∠CDF=∠CFD,∵BC∥DE,∴∠BCD=∠CDE,∵∠BCD=∠A+∠ABC=∠A+2∠FBG,∴2∠FBG+∠A=2∠CDF,∴∠A=2(∠CDF-∠FBG),∵∠CFD=∠FBG+∠G,∴∠G=∠CFD-∠FBG=∠CDF-∠FBG,∴∠A=2∠G;(3)如图3,∵EF ∥AD ,∴∠DFE=∠CDF ,由(2)得:∠CFD=∠CDF ,∴∠DFE=∠CFD=∠FBG+∠G=12∠ABC+∠G . 【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角的性质,解决该题型题目时,利用平行线的性质找出相等(或互补)的角是关键.24.如图1,点(),0A a 、(,0)B b ,其中a 、b 满足()2340a b b a ++--=,将点A 、B 分别向上平移2个单位,再向右平移1个单位至C 、D ,连接AC 、BD .(1)直接写出点D 的坐标:__________;(2)连接AD 交OC 于一点F ,求CF OF的值: (3)如图2,点M 从O 点出发,以每秒1个单位的速度向上平移运动,同时点N 从B 点出发,以每秒2个单位的速度向左平移运动,设射线DN 交y 轴于F .问FMD OFN S S ∆∆-的值是否为定值?如果是定值,请求出它的值;如果不是定值,请说明理由.【答案】解:(1)(4,2);(2)4CF OF=;(3)证明略; 【解析】【分析】(1)利用非负数的性质,构建方程组即可解决问题.(2)利用平行线分线段成比例定理即可解决问题.(3)结论:S △FMD -S △OFN 的值是定值.分两种情形:如图2-1中,当点N 在线段OB 上时,连接OD .如图2-2中,当点N 在BO 的延长线上时,连接OD .分别说明即可解决问题.【详解】(1)∵()2340a b b a ++--=,又∵(3a+b )2≥0,b-a-4≥0, ∴30{40a b b a +--==, 解得1{3a b -==, ∴A (-1,0),B (3,0),∴AB=CD=4,∵OC=2,CD ∥AB ,∴D (4,2),故答案为(4,2).(2)如图1中,∵CD ∥OA ,∴CF CD OF OA=, ∵CD=4,OA=1, ∴4CF OF =. (3)结论:S △FMD -S △OFN 的值是定值.理由:如图2-1中,当点N 在线段OB 上时,连接OD .由题意:OM=t,BN=2t,∴S△OMD=12×t×4=2t,S△DBN=12×2t×2=2t,∴S△OMD=S△BND,∴S四边形DMON=S△OBD=12×3×2=3,∵S△FMD-S△OFN=S四边形DMON=3=定值.如图2-2中,当点N在BO的延长线上时,连接OD.∵S△FMD-S△OFN=S△ODM-S△ODN=S△DBN-S△ODN=S△OBD=3=定值,综上所述,S△FMD-S△OFN的值是定值,定值为3.【点睛】本题考查几何变换综合题,考查了平行四边形的性质,非负数的性质,平行线分线段成比例定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.。

(完整)湖北省武汉市七年级(下)期末数学试卷-(含答案),推荐文档

(完整)湖北省武汉市七年级(下)期末数学试卷-(含答案),推荐文档

{{{2017-2018 学年湖北省武汉市东湖高新区七年级(下)期末数学试卷副标题题号 一二三四总分得分一、选择题(本大题共 8 小题,共 24.0 分)1. 方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛, …”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 解,1 个大桶加上 5 个小桶 可以盛酒 2 斛,…“则一个大桶和个小桶一共可以盛酒斛,则可列方程组正确的是 ( )5 + = 2A. + 5 = 35 + = 3B. + 5 = 2 5 + = 3C. = 5 + 2 5 = +3D. + 5 = 2 2. 如图,若 CD ∥AB ,则下列说法错误的是()A. ∠3 = ∠A C. ∠4 = ∠5B. ∠1 = ∠2D. ∠C + ∠ABC = 180 ∘3. 下列说法:①-1 是 1 的平方根;②如果两条直线都垂直于同一直线,那么这两条直线平行;③ 10在两个连续整数 a 和 b 之间,那么 a +b =7;④所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;⑤无理数就是开放开不尽的数;正确的个数为()A. 1 个B. 2 个C. 3 个D. 4 个4. 下列调查中,适宜采用全面调查方式的是( )A. 调查春节联欢晚会在武汉市的收视率B. 调查某班学生对“武汉精神”的知晓率C. 调查某批次汽车的抗撞击能力D. 了解长江中鱼的种类5. 一个数的立方根是它本身,则这个数是( )A. 0B. 1,0C. 1,−1D. 1,−1或 06. 如果关于 x 为不等式 2≤3x -7<b 有四个整数解,那么 b 的取值范围是( ) A. −11 ≤ b ≤ −14 B. 11 < < 14 C. 11 < b ≤ 14 D. 11 ≤ b < 147. 在平面直角坐标系中,点 P (-4,-1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 若 x >y ,则下列式子中错误的是(){x−5 > y−5 x + 4 > y + 4 x> y−6x> −6yA. B. C. 3 3 D.{ { 二、填空题(本大题共 5 小题,共 15.0 分) 9. 令 a 、b 两数中较大的数记作 max|a ,b |,如 max|2,3|=3,已知 k 为正整数且使不等式max|2k +1,-k +5|≤5 成立,则 k 的值是 .10. 计算:3 3+ 12= .11. 学习了平行线后,学霸君想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示,由操作过程可知学霸君画平行线的依据可以是(把下列所有正确结论的序号都填在横线上)①两直线平行,同位角相等 ②同位角相等,两直线平行 ③内错角相等,两直线平行 ④同旁内角互补,两直线平行;12. 如图,直线 AB 、CD 相交于点 O ,EO ⊥AB ,垂足为O ,DM ∥AB ,若∠EOC =35°,则∠ODM = 度.+ 2= 7= 5{ = 313. 解方程组cx−dy = 4时,一学生把 a 看错后得到y = 1,而正确的解是y = −1,则 a +c +d = .三、计算题(本大题共 1 小题,共 8.0 分) {= + 514. 解方程组: 3x−5y = 1四、解答题(本大题共 6 小题,共 54.0 分)15. 如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为 A (a ,0), B(0,b ),C (2,4),且方程 3x 2a +b +11-2y 3a -2b +9=0 是关于 x ,y 的二元一次方程.(1)求A、B 两点坐标;1(2)如图1,设D 为坐标轴上一点,且满足S△ABD=2S△ABC,求D 点坐标.(3)平移△ABC 得到△EFG(A 与E 对应,B 与F 对应,C 与G 对应),且点E4的横、纵坐标满足关系式:5x E-y E=4,点F 的横、纵坐标满足关系式:3x F-y F=4,求G 的坐标.16.已知:△ABC 中,点D 为线段CB 上一点,且不与点B,点C 重合,DE∥AB 交直线AC 于点E,DF∥AC 交直线AB 于点F.(1)请在图1 中画出符合题意的图形,猜想并写出∠EDF 与∠BAC 的数量关系;(2)若点D 在线段CB 的延长线上时,(1)中的结论仍成立吗?若成立,请给予证明,若不成立,请给出∠EDF 与∠BAC 之间的数量关系,并说明理由.(借助图2 画图说明)(3)如图3,当D 点在线段BC 上且DF 正好平分∠BDE,过E 作EG∥BC,EH平分∠GEA 交DF 于H 点,请直接写出∠DHE 与∠BAC 之间存在怎样的数量关系.17.完成下列推理过程如图,M、F 两点在直线CD 上,AB∥CD,CB∥DE,BM、DN 分别是∠ABC、∠EDF 的平分线,求证:BM∥DN.证明:∵BM、DN 分别是∠ABC、∠EDF 的平分线1∠l=2∠ABC,∠3= (角平分线定义)∵AB∥CD∴∠1=∠2,∠ABC= ()∵CB∥DE∴∠BCD= ()∴∠2= ()∴BM∥DN()18.(1)请在下面的网格中建立适当的平面直角坐标系,使得A、B 两点的坐标分别为(-2,4)、(3,4).(2)点C(-2,n)在直线l 上运动,请你用语言描述直线与y 轴的关系为:.(3)在(1)(2)的条件下,连结BC 交线段OA 于G 点,若△AGC 的面积与△GBO 的面积相等(O 为坐标原点)则C 的坐标为.19.某校举行“汉字听写”比赛,每位学生听写汉字39 个,比赛结束后随即抽查部分组别正确字数x 人数A 0≤x<8 10B 8≤x<16 15C 16≤x<24 25D 24≤x<32 mE 32≤x<40 20根据以上信息解决下列问题:(1)在统计表中,m= ,n= 并补全直方图(2)扇形统计图中“C 组”所对应的圆心角的度数是.(3)若该校共有964 名学生,如果听写正确的个数少于16 个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数有多少人?2x + 3 ≥ x + 42x+ 5−2<3−x20.解不等式组 3 ,并在数轴上表示其解集.{答案和解析1.【答案】B【解析】解:设一个大桶盛酒x 斛,一个小桶盛酒y 斛,根据题意得:,故选:B.设一个大桶盛酒x 斛,一个小桶盛酒y 斛,根据“5 个大桶加上1 个小桶可以盛酒3 斛,1 个大桶加上5 个小桶可以盛酒2 斛”即可得出关于x、y 的二元一次方程组.本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x、y 的二元一次方程组是解题的关键.2.【答案】C【解析】解:∵CD∥AB,∴∠3=∠A,∠1=∠2,∠C+∠ABC=180°,故选:C.由CD 与AB 平行,利用两直线平行内错角相等,同位角相等,同旁内角互补,判断即可得到结果.此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.3.【答案】B【解析】解:①-1 是1 的平方根是正确的;②在同一平面内,如果两条直线都垂直于同一直线,那么这两条直线平行,原来的说法是错误的;③在两个连续整数a 和b 之间,那么a+b=3+4=7 是正确的;④所有的实数都可以用数轴上的点表示,反过来,数轴上的所有点都表示实数,原来的说法是错误的;⑤无理数就是无限不循环的小数,原来的说法是错误的.故选:B.根据估算无理数的大小、实数与数轴、平行线的判定、无理数的定义和特点分别对每一项进行分析,即可得出答案.此题考查了估算无理数的大小、实数与数轴、平行线的判定、实数,熟知有关定义和性质是本题的关键.4.【答案】B【解析】解:A、调查春节联欢晚会在武汉市的收视率适合抽样调查;B、调查某班学生对“武汉精神”的知晓率适合全面调查;C、调查某批次汽车的抗撞击能力适合抽样调查;D、了解长江中鱼的种类适合抽样调查;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【答案】D【解析】解:立方根是它本身有3 个,分别是±1,0.故选:D.如果一个数x 的立方等于a,那么x 是a 的立方根,根据此定义求解即可.本题主要考查了立方根的性质.对于特殊的数字要记住,立方根是它本身有3 个,分别是±1,0.如立方根的性质:(1)正数的立方根是正数;(2)负数的立方根是负数;(3)0 的立方根是0.6.【答案】C【解析】解:解不等式3x-7≥2,得:x≥3,解不等式3x-7<b,得:x<,∵不等式组有四个整数解,∴6<≤7,解得:11<b≤14,故选:C.可先用b 表示出不等式组的解集,再根据恰有四个整数解可得到关于b 的不等组,可求得b 的取值范围.本题主要考查解不等式组,求得不等式组的解集是解题的关键,注意恰有四个整数解的应用.7.【答案】C【解析】解:由点P(-4,-1),可得P 点第三象限.故选:C.直接利用第三象限点的坐标特点得出答案.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.【答案】D【解析】解:∵x>y,∴x-5>y-5,x+4>y+4, x>y,-6x<-6y.故选:D.利用不等式的性质对各选项进行判断.本题考查了不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9.【答案】2 或1【解析】解:①当时,解得:<k≤2;②当时,解得0≤k≤∵k 为正整数,∴使不等式max|2k+1,-k+5|≤5 成立的k 的值是2 或1,故答案为2 或1.根据新定义分、两种情况,分别列出不等式求解即可.本题主要考查对新定义的理解及解一元一次不等式的能力,由新定义会分类讨论是前提,根据题意列出不等式组是关键.310.【答案】5【解析】解:原式=3 +2=5 .故答案为:5 .直接化简二次根式进而计算得出答案.此题主要考查了二次根式的加减,正确化简二次根式是解题关键.11.【答案】②③④【解析】解:第一次折叠后,得到的折痕AB 与直线m 之间的位置关系是垂直;将正方形纸展开,再进行第二次折叠(如图(4)所示),得到的折痕CD 与第一次折痕之间的位置关系是垂直;∵AB⊥m,CD⊥m,∴∠1=∠2=∠3=∠4=90°,∵∠3=∠1,∴AB∥CD(同位角相等,两直线平行),∵∠4=∠2,∴AB∥CD(内错角相等,两直线平行),∵∠2+∠3=180°,∴m∥CD(同旁内角互补,两直线平行).故答案为:②③④.根据折叠可直接得到折痕AB 与直线m 之间的位置关系是垂直,折痕CD 与第一次折痕之间的位置关系是垂直;然后根据平行线的判定条件可得,由③∠3=∠1 可得m∥CD;由④∠4=∠2,可得m∥CD;由∠2+∠3=180°,可得m∥CD.此题主要考查了平行线的判定,以及翻折变换,关键是掌握平行线的判定定理.12.【答案】125【解析】解:∵EO⊥AB,∴∠EOB=90°,∴∠BOC=∠BOE+∠EOC=90°+35°=125°,∵DM∥AB,∴∠ODM=∠BOC=125°.故答案为125°.利用垂直的定义得到∠EOB=90°,则∠BOC=125°,然后利用平行线的性质得到∠ODM=∠BOC=125°.本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.13.【答案】5【解析】解:将x=5,y=1;x=3,y=-1 分别代入cx-dy=4 得:,解得:,将x=3,y=-1 代入ax+2y=7 中得:3a-2=7,解得:a=3,则a=3,c=1,d=1,把a=3,c=1,d=1 代入a+c+d=3+1+1=5,{ {故答案为:5.将 x=5,y=1 代入第二个方程,将 x=3,y=-1 代入第二个方程,组成方程组求出 c 与 d 的值,将正确解代入第一个方程求出 a 即可.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.14. 【答案】解:,把①代入②得:3x -5x -25=1,解得:x =-13,把 x =-13 代入①得:y =-8, x = −13则方程组的解为y = −8. 【解析】方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2 + + 11 = 1 15.【答案】解:(1)由题意得, 3a−2b + 9 = 1, 解得,{b a == −−42,则 A 点的坐标为(-4,0),B 点的坐标为(0,-2);(2)∵△ABC 的三个顶点坐标分别为 A (-4,0),B (0,-2),C (2,4),1 1 1 ∴S △ABC =2×(2+6)×6-2×2×4-2×2×6=14,当点 D 在 x 轴上时,设 D 点坐标为(x ,0),1 1由题意得,2×|x +4|×2=2×14,解得,x =3 或 x =-11,此时点 D 的坐标为(3,0)或(-11,0),当点 D 在 y 轴上时,设 D 点坐标为(0,y ),1 1由题意得,2×|y +2|×4=2×14,3 11解得,y =2或 y =- 2 ,3 11此时点 D 的坐标为(0,2)或(0,- 2 ),3 11综上所述,点 D 的坐标为(3,0)或(-11,0)或(0,2)或(0,- 2 );{ {4(3)设点E 的坐标为(m,m+4),点F 的坐标为(n,3n-4),−4−m= 0−n5m−4−0 = 4n−(−2)由平移的性质得, 3 ,= 2解得,= 6,则点E 的坐标为(2,6),点F 的坐标为(6,2),∵A 点的坐标为(-4,0),B 点的坐标为(0,-2),∴平移规律是先向右平移6 个单位,再向上平移平移6 个单位,∵点C 的坐标为(2,4),∴G 的坐标为(8,10).【解析】(1)根据二元一次方程的定义列出方程组,解方程组求出a、b,得到A、B 两点坐标;(2)根据坐标与图形的性质求出S△ABC,分点D 在x 轴上、点D 在y 轴上两种情况,根据三角形的面积公式计算即可;(3)点E 的坐标为(m,m+4),点F 的坐标为(n, n-4),根据平移规律列出方程组,解方程组求出m、n,得到点E 的坐标、点F 的坐标,根据平移规律解答.本题考查的是二元一次方程的定义、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键.16.【答案】解:(1)结论:∠EDF=∠BAC.理由:∵DE∥AB,DF∥AC,∴四边形AEDF 是平行四边形,∴∠EDF=∠BAC.(2)结论不成立.∠EDF+∠BAC=180°.理由:∵DE∥AB,DF∥AC,∴四边形AEDF 是平行四边形,∴∠EDF=∠EAF,∵∠BAC+∠EAF=180°,∴∠EDF+∠BAC=180°.(3)结论:∠BAC=2∠DHE.理由:∵∠HDE=∠HDB,∠HDE=∠A,∴∠HDB=∠A,∵DH∥AC,EG∥BC,∴∠C=∠HDB=∠AEG,∴∠A=∠AEG,∵∠DHE=∠AEH,∠AEG=2∠AEH,∴∠A=2∠DHE.【解析】(1)根据要求画出图形即可;(2)结论不成立.∠EDF+∠BAC=180°.理由平行四边形的性质、邻补角的性质即可解决问题;(3)结论:∠BAC=2∠DHE.想办法证明∠A=∠AEG,∠AEG=2∠DHE 即可;本题考查作图,平行线的性质、平行四边形的判定和性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.117.【答案】2∠EDF;∠BCD;两直线平行,内错角相等;∠EDF;两直线平行,同位角相等;∠3;等量代换;同位角相等,两直线平行【解析】证明:∵BM、DN 分别是∠ABC、∠EDF 的平分线∠l= ∠ABC,∠3= ∠EDF(角平分线定义)∵AB∥CD∴∠1=∠2,∠ABC=∠BCD(两直线平行,内错角相等)∵CB∥DE∴∠BCD=∠EDF(两直线平行,同位角相等)∴∠2=∠3(等量代换)∴BM∥DN(同位角相等,两直线平行)故答案为:∠EDF;∠BCD;两直线平行,内错角相等;∠EDF;两直线平行,同位角相等;∠3;等量代换;同位角相等,两直线平行.根据平行线的判定和性质解答即可.此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.18.【答案】直线l 平行于y 轴且到y 轴距离为2 个单位长度;(-2,0)【解析】解:(1)平面直角坐标系如图所示;(2)点C(-2,n)在直线l 上运动,直线l 平行于y 轴且到y 轴距离为2 个单位长度;故答案为:直线l 平行于y 轴且到y 轴距离为2 个单位长度;(3)如图,若△AGC 的面积与△GBO 的面积相等(O 为坐标原点)则C 的坐标为(-2,0),故答案为(-2,0).(1)以点A 向下4 个单位,向右2 个单位为坐标原点建立平面直角坐标系即可;(2)根据图象即可得出结论;(3)如图所示,△AGC 的面积与△GBO 的面积相等,此时C 的坐标为(2,0).本题考查了坐标和图形的性质、三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键19.【答案】30;25%;72°【解析】解:(1)∵被调查的总人数为10÷10%=100 人,∴m=100×30%=30,n=1-(10%+15%+20%+30%)=25%,补全图形如下:故答案为:30、25%;(2)扇形统计图中“C组”所对应的圆心角的度数是360°×20%=72°,故答案为:72°;(3)估计这所学校本次比赛听写不合格的学生人数有964×(10%+15%)=241(人).(1)根据A 组频数及其所占百分比求得总人数,总人数乘以D 组百分比可得m,根据百分比之和为1 可得n 的值;(2)用360°乘以C 组百分比可得;(3)总人数乘以样本中A、B 组百分比之和可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计{图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2x + 3 ≥ x + 4①2x + 5−2<3−x ②20.【答案】解: 3 ∵解不等式①得:x ≥1,解不等式②得:x <2,∴不等式组的解集为 1≤x <2,在数轴上表示为:.【解析】先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

2017-2018学年七年级下期末数学试卷(有答案)

2017-2018学年七年级下期末数学试卷(有答案)

2017-208学年七年级(下)期末数学试卷一、选择题(2分/题,共20分)1.(2分)下列四个实数中是无理数的是()A.πB.1.414 C.0 D.2.(2分)下列调查中,适用采用全面调查(普查)方式的是()A.对玉坎河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对为某类烟花爆竹燃放安全情况的调查3.(2分)如图,已知AB∥ED,∠ECF=65°,则∠BAF的度数为()A.115°B.65°C.60°D.25°4.(2分)点P(2m+6,m﹣1)在第三象限,则m的取值范围是()A.m<﹣3 B.m<1 C.m>﹣3 D.﹣3<m<15.(2分)下列说法中不正确的是()A.0是绝对值最小的实数B.=C.任意一个实数的立方根都是非负数D.±3是9的平方根6.(2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万7.(2分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k 的值为()A. B.C.D.8.(2分)如图,将周长为8的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.149.(2分)某商店销售“黄金一号”玉米种子,推出两种销售方案供采购者选择:方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.设购买的种子数量为x千克,若技术员小王选择了方案二比方案一更划算,则他购买种子数量x的范围是()A.x>9 B.x≥9 C.x<9 D.x≤910.(2分)已知关于x,y的方程组,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(3分/题,共24分)11.(3分)4是的算术平方根.12.(3分)点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为.13.(3分)如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为.14.(3分)某区对本区初中在校女生进行身高测量,身高在1.58~1.63m这一组的频数有300人,占全区女生人数的25%,则该区初中在校女生总共有人.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.(3分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣2m﹣5)⊕3=3,则m 的取值范围是.17.(3分)已知不等式(a+1)x>2的解集是x<﹣1,则a的取值是.18.(3分)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.三、解答题(共56分)19.(6分)计算:﹣(1﹣)+|﹣|.20.(6分)解方程组.21.(6分)解不等式7+x≥2(2x﹣1),并把解集在如图的数轴上表示出来.22.(6分)某校数学兴趣小组成员刘明对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析(每个人的成绩各不相同),绘制成如下下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=,b=c=;(2)补全频数分布直方图;(3)如果要画该班上学期期末考试数学成绩的扇形统计图,那么分数在69.5﹣79.5之间的扇形圆心角的度数是(4)张亮同学成绩为79分,他说:“我们班上比我成绩高的人还有,我要继续努力.”他的说法正确吗?请说明理由.分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2820a4c 频率0.04b0.400.320.08123.(6分)如图,A、B两点的坐标分别是A (﹣1,),B (﹣3,0)(1)求出△ABO的面积为;(2)将△ABO向下平移个单位,再向右平移3个单位,得到△A1B1O1,请写出A1、B1、O1三个点的坐标以及△A1B1O1的面积.24.(8分)某地管理部门规划建造面积为4500平方米的集贸市场,市场内设独立商户和棚台交易摊位共90间,每间独立商户店面的平均面积为45平方米,月租费为1150元,每间棚台交易摊位的平均面积为31平方米,月租费为1000元,全部店面的建造面积不低于集贸市场总面积的80%(1)求建造独立商户店面至少多少间?(2)该地管理部门通过了解,独立商户店面的出租率为76%,棚台交易摊位的出租率为90%,为使店面的月租费最高,应建造独立商户店面多少间?此时,店面的月租费是多少?25.(8分)如图所示,已知射线CB∥OA,∠C=∠OAB=110°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF,根据上述条件,解答下列问题:(1)证明:OC∥AB;(2)求∠EOB的度数;(3)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若不变,求出这个比值;若变化,请说明理由.26.(10分)为奖励在演讲比赛中获奖的同学,大队辅导员王老师负责为获奖同学买奖品,要求每人一件.王老师到文具店看了商品后,决定在钢笔和笔记本中选择.如果买3个笔记本和2支钢笔,则需84元;如果买4个笔记本和3支钢笔,则需118元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受7.5折优惠,①若买x(x>0)支钢笔需要花y1元,请你用含x的式子表示y1;②王老师决定买同一种奖品,并且数量超过10个,请你帮王老师判断买哪种奖品更省钱.参考答案与试题解析一、选择题(2分/题,共20分)1.(2分)下列四个实数中是无理数的是()A.πB.1.414 C.0 D.【解答】解:1.414,0,是有理数,π是无理数,故选:A.2.(2分)下列调查中,适用采用全面调查(普查)方式的是()A.对玉坎河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对为某类烟花爆竹燃放安全情况的调查【解答】解:A、对玉坎河水质情况的调查适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查无法进行全面调查,适合抽样调查,故B错误;C、某班50名同学体重情况适用于全面调查,故C正确;D、对于某类烟花爆竹燃放安全情况的调查,无法进行全面调查,故D错误;故选:C.3.(2分)如图,已知AB∥ED,∠ECF=65°,则∠BAF的度数为()A.115°B.65°C.60°D.25°【解答】解:∵AB∥ED,∴∠BAC=∠ECF=65°,∴∠BAF=180°﹣∠BAC=180°﹣65°=115°;故选:A.4.(2分)点P(2m+6,m﹣1)在第三象限,则m的取值范围是()A.m<﹣3 B.m<1 C.m>﹣3 D.﹣3<m<1【解答】解:根据题意,得:,解得:m<﹣3,故选:A.5.(2分)下列说法中不正确的是()A.0是绝对值最小的实数B.=C.任意一个实数的立方根都是非负数D.±3是9的平方根【解答】解:A、0是绝对值最小的有理数,故本选项错误;B、=,故本选项错误;C、正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零.故本选项正确;D、因为(±3)2=9,所以±3是9的平方根,故本选项错误;故选:C.6.(2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万【解答】解:∵为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,∴调查中的样本容量是3万.故选:D.7.(2分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k 的值为()A.B.C.D.【解答】解:,①+②得:2x=12k,即x=6k,把①﹣②得:2y=﹣2k,即y=﹣k,把x=6k,y=﹣k代入2x+3y=6得:12k﹣3k=6,解得:k=,故选:B.8.(2分)如图,将周长为8的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.14【解答】解:∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+2+2=12.故选:C.9.(2分)某商店销售“黄金一号”玉米种子,推出两种销售方案供采购者选择:方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.设购买的种子数量为x千克,若技术员小王选择了方案二比方案一更划算,则他购买种子数量x的范围是()A.x>9 B.x≥9 C.x<9 D.x≤9【解答】解:设购买的种子数量为x千克,根据题意列出不等式可得:4x>3×5+(x﹣3)×4×0.7,解得:x>9,故选:A.10.(2分)已知关于x,y的方程组,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③【解答】解:①当a=0时,原方程组为,解得,②把代入方程组的是方程组的解;③当a=﹣1时,原方程组为,解得,当时,代入方程组可求得a=2,把与a=﹣1代入方程2x﹣y=1﹣a得,方程的左右两边成立,综上可知正确的为①②③.故选:D.二、填空题(3分/题,共24分)11.(3分)4是16的算术平方根.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.12.(3分)点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为(﹣2,1).【解答】解:P到x轴的距离是1,到y轴的距离是2,得|y|=1,|x|=2.由点P在第二象限内,得P(﹣2,1),故答案为:(﹣2,1).13.(3分)如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为60°.【解答】解:∵CD平分∠ACB,∠1=30°,∴∠ACB=2∠1=60°.∵DE∥AC,∴∠DEB=∠ACB=60°.故答案为:60°.14.(3分)某区对本区初中在校女生进行身高测量,身高在1.58~1.63m这一组的频数有300人,占全区女生人数的25%,则该区初中在校女生总共有1200人.【解答】解:300÷25%=1200(人).故答案为:1200.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.16.(3分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣2m﹣5)⊕3=3,则m的取值范围是m≥﹣4.【解答】解:∵1⊕2=2,若(﹣2m﹣5)⊕3=3,∴﹣2m﹣5≤3,解得m≥﹣4.故答案为:m≥﹣4.17.(3分)已知不等式(a+1)x>2的解集是x<﹣1,则a的取值是﹣3.【解答】解:∵不等式(a+1)x>2的解集是x<﹣1,∴=﹣1,解得:a=﹣3,故答案为:﹣318.(3分)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.【解答】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y﹣x)=400.那么列方程组.三、解答题(共56分)19.(6分)计算:﹣(1﹣)+|﹣|.【解答】解:﹣(1﹣)+|﹣|=﹣1+﹣=﹣120.(6分)解方程组.【解答】解:,①×2+②得:7x=21,解得:x=3,把x=3代入①得:y=﹣1,则方程组的解为.21.(6分)解不等式7+x≥2(2x﹣1),并把解集在如图的数轴上表示出来.【解答】解:去括号得,7+x≥4x﹣2,移项得,x﹣4x≥﹣7﹣2,合并同类项得,﹣3x≥﹣9,系数化为1得,x≤3,在数轴上表示如下:.22.(6分)某校数学兴趣小组成员刘明对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析(每个人的成绩各不相同),绘制成如下下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=16,b=0.16c=50;(2)补全频数分布直方图;(3)如果要画该班上学期期末考试数学成绩的扇形统计图,那么分数在69.5﹣79.5之间的扇形圆心角的度数是144°(4)张亮同学成绩为79分,他说:“我们班上比我成绩高的人还有,我要继续努力.”他的说法正确吗?请说明理由.分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2820a4c 频率0.04b0.400.320.081【解答】解:(1)∵调查的总人数c=20÷0.4=50,∴a=50×0.32=16,b=8÷50=0.16,故答案为:16、0.16、50;(2)补全直方图如下:(3)分数在69.5﹣79.5之间的扇形圆心角的度数是360°×0.4=144°,故答案为:144°;(4)正确,由表可知,比79分高的人数占总人数的比例为0.32+0.08=0.4=,∴他的说法正确.23.(6分)如图,A、B两点的坐标分别是A (﹣1,),B (﹣3,0)(1)求出△ABO的面积为;(2)将△A BO向下平移个单位,再向右平移3个单位,得到△A1B1O1,请写出A1、B1、O1三个点的坐标以及△A1B1O1的面积.【解答】解:(1)∵B (﹣3,0),∴OB=3,∵A (﹣1,),∴点A到OB的距离为,∴△ABO的面积=×3×=;故答案为:;(2)A1(2,0)、B1(﹣1,﹣)、O1(3,﹣),△A1B1O1的面积=.24.(8分)某地管理部门规划建造面积为4500平方米的集贸市场,市场内设独立商户和棚台交易摊位共90间,每间独立商户店面的平均面积为45平方米,月租费为1150元,每间棚台交易摊位的平均面积为31平方米,月租费为1000元,全部店面的建造面积不低于集贸市场总面积的80%(1)求建造独立商户店面至少多少间?(2)该地管理部门通过了解,独立商户店面的出租率为76%,棚台交易摊位的出租率为90%,为使店面的月租费最高,应建造独立商户店面多少间?此时,店面的月租费是多少?【解答】解:(1)设独立商户店面的数量为x间,则棚台交易摊位的为(90﹣x)间,由题意得:4500×80%≤45x+31(90﹣x),即1920≤8x+1600,∴40≤x≤55,(2)设月租金收入为W元,则W=400x×75%+360(80﹣x)×90%=﹣24x+25920,∵40≤x≤55,∵﹣24<0∴W随x的增大而减小,当x=40时,Wmax=24960元,∴最高月租金为24960元.25.(8分)如图所示,已知射线CB∥OA,∠C=∠OAB=110°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF,根据上述条件,解答下列问题:(1)证明:OC∥AB;(2)求∠EOB的度数;(3)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若不变,求出这个比值;若变化,请说明理由.【解答】解:(1)∵CB∥OA,∠C=∠OAB=110°,∴∠COA=180°﹣∠C=180°﹣110°=70°,∴∠COA+∠OAB=180°,∴OC∥AB;(2)∵∠FOB=∠AOB,∴OB平分∠AOF,又∵OE平分∠COF,∴∠EOB=∠EOF+∠FOB=∠COA=×70°=35°;(2)不变,∵CB∥OA,∴∠OBC=∠B OA,∠OFC=∠FOA,∴∠OBC:∠OFC=∠AOB:∠FOA,又∵∠FOA=∠FOB+∠AOB=2∠AOB,∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2.26.(10分)为奖励在演讲比赛中获奖的同学,大队辅导员王老师负责为获奖同学买奖品,要求每人一件.王老师到文具店看了商品后,决定在钢笔和笔记本中选择.如果买3个笔记本和2支钢笔,则需84元;如果买4个笔记本和3支钢笔,则需118元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受7.5折优惠,①若买x(x>0)支钢笔需要花y1元,请你用含x的式子表示y1;②王老师决定买同一种奖品,并且数量超过10个,请你帮王老师判断买哪种奖品更省钱.【解答】解:(1)设笔记本的单价为m元/本,钢笔的单价为n元/支,根据题意得:,解得:.答:笔记本的单价为16元/本,钢笔的单价为18元/个.(2)①当0<x≤10时,y1=18x;当x>10时,y1=18×10+18×(x﹣10)=13.5x+45.综上所述:y1=.②设获奖的学生有a个,购买奖品的总价为w,根据题意得:w钢笔=13.5a+45,w笔记本=16a.当w钢笔>w笔记本时,有13.5a+45>16a,解得:x<18;当w钢笔=w笔记本时,有13.5a+45=16a,解得:x=18;当w钢笔>w笔记本时,有13.5a+45<16a,解得:x>18.答:当获奖的学生多于10个少于18个时,购买笔记本省钱;当获奖的学生等于10个时,购买笔记本和购买钢笔所花钱数一样多;当获奖学生多于18个时,购买钢笔省钱.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年湖北省武汉市江夏区七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.设a>b,下列结论正确的是()A.a+2>b+2B.a+2<b+2C.a+2=b+2D.a+2≥b+22.把方程2x﹣y=3改写成用含x的式子表示y的形式正确的是()A.2x=y+3B.x=C.y=2x﹣3D.y=3﹣2x3.下列调查中,适宜抽样调查的是()A.了解某班学生的身高情况B.选出某校短跑最快的学生参加全市比赛C.了解全班同学每周体育锻炼的时间D.调查某批次汽车的抗撞击能力4.如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠45.将点A(﹣4,﹣1)向右平移2个单位长度,再向上平移3个单位长度得点A′,则点A′的坐标是()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)6.实数界于哪两个相邻的整数之间()A.3和4B.5和6C.7和8D.9和107.某校学生来自甲、乙、丙三个地区,其人数比为3:4:3,如图所示的扇形图表示上述分布情况.若来自甲地区有180人,则该校学生总数为()A.600人B.450人C.720人D.360人8.若3a﹣22和2a﹣3是实数m的平方根,且t=,则不等式﹣≥的解集为()A.x≥B.x≤C.x≥D.x≤9.运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车.则10节火车车厢和20辆汽车能运输多少吨化肥?()A.720B.860C.1100D.58010.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD于点O,且∠EOD+∠OBF=180°,∠F=∠G.则图中与∠ECB相等的角有()A.6个B.5个C.4个D.3个二、填空题(共6小题,每小题3分,共18分11.计算:=.12.空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是(从“条形图,扇形图,折线图和直方图”中选一个)13.已知A(a,0),B(﹣3,0)且AB=7,则a=.14.已知:+|5x﹣6y﹣33|=0,求代数式的值:168x+2018y+1=.15.如图,已知AB∥CD,∠1=55°,∠2=45°,点G为∠BED内一点,∠BEG:∠DEG=2:3,EF平分∠BED,则∠GEF=.16.不等式组有4个整数解,则m的取值范围是.三、解答题(共8小题,共72分)17.(8分)解下列方程组(1)(2)18.(8分)计算:+|﹣1|+﹣.19.(8分)解不等式组,并把它们的解集在数轴上表示出来20.(8分)完成下面的证明如图,射线AH交折线ACGFEN于点B、D、E.已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.求证:∠2=∠3.证明:∵∠A=∠1(已知)∴()∴()∵∠C=∠F(已知)∴∴()∴()∵BM平分∠CBD,EN平分∠FEH∴∠2=,∠3=∴∠2=∠321.(8分)为了丰富学生课余生活,某区教育部门准备在七年级开设兴趣课堂.为了了解学生对音乐、书法、球类、绘画这四个兴趣小组的喜爱情况,在全区进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息不完整),请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中音乐部分的圆心角的度数(3)如果该区七年级共有2000名学生参加这4个课外兴趣小组,而每名教师最多只能辅导本组的20名学生,则绘画兴趣小组至少需要准备多少名教师?22.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,其中点A与点P,点B与点Q,点C与点R是对应的点,在这种变换下:(1)直接写出下列各点的坐标①A(,)与P(,);B(,)与Q(,);C(,)与R(,)②它们之间的关系是:(用文字语言直接写出)(2)在这个坐标系中,三角形ABC内有一点M,点M经过这种变换后得到点N,点N在三角形PQR内,其中M、N的坐标M(,6(a+b)﹣10),N(1﹣,4(b﹣2a)﹣6),求关于x的不等式﹣>b﹣1的解集.23.某民营企业准备用14000元从外地购进A、B两种商品共600件,其中A种商品的成本价为20元,B种商品的成本价为30元.(1)该民营企业从外地购得A、B两种商品各多少件?(2)该民营企业计划租用甲、乙两种货车共6辆,一次性将A、B两种商品运往某城市,已知每辆甲种货车最多可装A种商品110件和B种商品20件;每辆乙种货车最多可装A种商品30件和B种商品90件,问安排甲、乙两种货车有几种方案?请你设计出具体的方案.24.(12分)在平面直角坐标系中,A(a,0),C(0,c)且满足:(a+6)2+=0,长方形ABCO在坐标系中(如图),点O为坐标系的原点.(1)求点B的坐标.(2)如图1,若点M从点A出发,以2个单位/秒的速度向右运动(不超过点O),点N从原点O出发,以1个单位/秒的速度向下运动(不超过点C),设M、N两点同时出发,在它们运动的过程中,四边形MBNO 的面积是否发生变化?若不变,求其值;若变化,求变化的范围.(3)如图2,E为x轴负半轴上一点,且∠CBE=∠CEB,F是x轴正半轴上一动点,∠ECF的平分线CD 交BE的延长线于点D,在点F运动的过程中,请探究∠CFE与∠D的数量关系,并说明理由2017-2018学年湖北省武汉市江夏区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.设a>b,下列结论正确的是()A.a+2>b+2B.a+2<b+2C.a+2=b+2D.a+2≥b+2【分析】根据不等式的基本性质1求解可得.【解答】解:将a>b两边都加上2,知a+2>b+2,故选:A.【点评】本题主要考查不等式的性质,解题的关键是熟练掌握不等式的基本性质1:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2.把方程2x﹣y=3改写成用含x的式子表示y的形式正确的是()A.2x=y+3B.x=C.y=2x﹣3D.y=3﹣2x【分析】将x看做常数移项求出y即可得.【解答】解:由2x﹣y=3知2x﹣3=y,即y=2x﹣3,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.3.下列调查中,适宜抽样调查的是()A.了解某班学生的身高情况B.选出某校短跑最快的学生参加全市比赛C.了解全班同学每周体育锻炼的时间D.调查某批次汽车的抗撞击能力【分析】根据由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似对各选项分析判断后利用排除法求解.【解答】解:A、了解某班学生的身高情况适合全面调查;B、选出某校短跑最快的学生参加全市比赛适合全面调查;C、了解全班同学每周体育锻炼的时间适合全面调查;D、调查某批次汽车的抗撞击能力适合抽样调查;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4【分析】熟悉平行线的性质,能够根据已知的平行线找到构成的内错角.【解答】解:A、∠1与∠2不是两平行线AB、CD形成的角,故A错误;B、∠3与∠2不是两平行线AB、CD形成的内错角,故B错误;C、∠1与∠4是两平行线AB、CD形成的内错角,故C正确;D、∠3与∠4不是两平行线AB、CD形成的角,无法判断两角的数量关系,故D错误.故选:C.【点评】正确运用平行线的性质.这里特别注意AD和BC的位置关系不确定.5.将点A(﹣4,﹣1)向右平移2个单位长度,再向上平移3个单位长度得点A′,则点A′的坐标是()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【分析】直接利用平移中点的变化规律求解即可.【解答】解:A(﹣4,﹣1)向右平移2个单位长度得到:(﹣4+2,﹣1),即(﹣2,﹣1),再向上平移3个单位长度得到:(﹣2,﹣1+3),即(﹣2,2).故选:B.【点评】此题主要考查了点的坐标的平移变换.关键是熟记平移变换与坐标变化规律:①向右平移a个单位,坐标P(x,y)⇒P(x+a,y);②向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y);③向上平移b个单位,坐标P(x,y)⇒P(x,y+b);④向下平移b个单位,坐标P(x,y)⇒P(x,y﹣b).6.实数界于哪两个相邻的整数之间()A.3和4B.5和6C.7和8D.9和10【分析】先估算出的范围,即可得出答案.【解答】解:∵5<<6,∴在5和6之间.故选:B.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.7.某校学生来自甲、乙、丙三个地区,其人数比为3:4:3,如图所示的扇形图表示上述分布情况.若来自甲地区有180人,则该校学生总数为()A.600人B.450人C.720人D.360人【分析】根据百分比=,计算即可;【解答】解:甲占=30%,∴该校学生总数为180÷30%=600,故选:A.【点评】本题考查扇形统计图、解得的关键是熟练掌握基本知识,属于中考基础题.8.若3a﹣22和2a﹣3是实数m的平方根,且t=,则不等式﹣≥的解集为()A.x≥B.x≤C.x≥D.x≤【分析】先根据平方根求出a的值,再求出m,求出t,再把t的值代入不等式,求出不等式的解集即可.【解答】解:∵3a﹣22和2a﹣3是实数m的平方根,∴3a﹣22+2a﹣3=0,解得:a=5,3a﹣22=﹣7,所以m=49,t==7,∵﹣≥,∴﹣≥,解得:x≤,故选:B.【点评】本题考查了算术平方根、解一元一次不等式和平方根,能求出t的值是解此题的关键.9.运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车.则10节火车车厢和20辆汽车能运输多少吨化肥?()A.720B.860C.1100D.580【分析】设每节火车车厢能运输x吨化肥,每辆汽车能运输y吨化肥,根据“运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,将其代入10x+20y即可求出结论.【解答】解:设每节火车车厢能运输x吨化肥,每辆汽车能运输y吨化肥,根据题意得:,解得:,∴10x+20y=580.故选:D.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD于点O,且∠EOD+∠OBF=180°,∠F=∠G.则图中与∠ECB相等的角有()A.6个B.5个C.4个D.3个【分析】由“对顶角相等”、“同旁内角互补,两直线平行”判定EC∥BF,则同位角∠ECD=∠F.所以结合已知条件,角平分线的定义,利用等量代换推知同位角∠G=∠ECB.则易证DG∥CE,根据平行线的性质即可得到结论.【解答】证明:∵∠EOD=∠BOC,∠EOD+∠OBF=180°,∴∠BOC+∠OBF=180°,∴EC∥BF,∴∠ECD=∠F,∠ECB=∠CBF,又∵CE平分∠ACB,∴∠ECD=∠ECB.又∵∠F=∠G,∴∠G=∠ECB.∴DG∥CE,∴∠CDG=∠DCE,∴∠CDG=∠G=∠F=DCE=∠CBF=∠ECB,故选:B.【点评】本题考查了平行线的判定和性质,角平分线的定义,熟练掌握平行线的判定和性质是解题的关键.二、填空题(共6小题,每小题3分,共18分11.计算:=﹣3.【分析】根据(﹣3)3=﹣27,可得出答案.【解答】解:=﹣3.故答案为:﹣3.【点评】此题考查了立方的知识,属于基础题,注意立方根的求解方法,难度一般.12.空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形图(从“条形图,扇形图,折线图和直方图”中选一个)【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.【解答】解:根据题意,得:直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图.故答案为:扇形统计图.【点评】此题考查扇形统计图、折线统计图、条形统计图各自的特点.13.已知A(a,0),B(﹣3,0)且AB=7,则a=﹣10或4.【分析】根据平面内坐标的特点解答即可.【解答】解:∵A(a,0),B(﹣3,0)且AB=7,∴a=﹣3﹣7=﹣10或a=﹣3+7=4,故答案为:﹣10或4.【点评】此题考查两点间的距离,关键是根据两点之间的距离解答.14.已知:+|5x﹣6y﹣33|=0,求代数式的值:168x+2018y+1=0.【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可求出值.【解答】解:∵+|5x﹣6y﹣33|=0,∴,①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:y=﹣,则原式=168×6﹣2018×+1=0.故答案为:0【点评】此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.15.如图,已知AB∥CD,∠1=55°,∠2=45°,点G为∠BED内一点,∠BEG:∠DEG=2:3,EF平分∠BED,则∠GEF=10°.【分析】根据平行线的性质得出∠BEF和∠DEF的值,进而利用角平分线和角之间的关系解答即可.【解答】解:过E作EM∥AB,∵AB∥CD,∴EM∥AB∥CD,∵∠1=55°,∠2=45°,∴∠BEM=∠1=55°,∠DEM=∠2=45°,∴∠BED=55°+45°=100°,∵EF平分∠BED,∴∠BEF=50°,∵∠BEG:∠DEG=2:3,∵∠BEG+∠DEG=100°,∴∠BEG=40°,∴∠GEF=50°﹣40°=10°,故答案为:10°【点评】考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.16.不等式组有4个整数解,则m的取值范围是3<m≤4.【分析】通过解不等式组可得出不等式组的解为﹣1<x<m,结合不等式组有4个整数解,即可确定m的取值范围.【解答】解:,解不等式①得:x>﹣1,∴不等式组的解为﹣1<x<m.∵不等式组有4个整数解,∴3<m≤4.故答案为:3<m≤4.【点评】本题考查了一元一次不等式组的整数解,通过解不等式组结合不等式组整数解得个数,找出m的取值范围是解题的关键.三、解答题(共8小题,共72分)17.(8分)解下列方程组(1)(2)【分析】(1)利用代入消元法求解可得;(2)利用加减消元法求解可得.【解答】解:(1),将①代入②,得:3(y+3)﹣8y=14,解得:y=﹣1,将y=﹣1代入①,得:x=2,所以方程组的解为;(2),②﹣①,得:x=4,将x=4代入①,得:16+3y=16,解得:y=0,所以方程组的解为.【点评】本题主要考查解二元一次方程组,解题关键是掌握方程组解法中的加减消元法和代入消元法.18.(8分)计算:+|﹣1|+﹣.【分析】直接利用二次根式以及立方根的定义和绝对值的性质化简进而得出答案.【解答】解:原式=2+﹣1﹣2﹣=﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(8分)解不等式组,并把它们的解集在数轴上表示出来【分析】利用不等式的性质求出每个不等式的解集,再求出它们的公共部分即可.【解答】解:解得第一个不等式,得x≤1,解得第二个不等式,得x<4,所以,原不等式组的解集为x≤1.把解集在数轴上表示为:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)完成下面的证明如图,射线AH交折线ACGFEN于点B、D、E.已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.求证:∠2=∠3.证明:∵∠A=∠1(已知)∴AC∥GF(内错角相等,两直线平行)∴∠C=∠G(两直线平行,内错角相等)∵∠C=∠F(已知)∴∠F=∠G∴CG∥EF(内错角相等,两直线平行)∴∠CBD=∠FEH(两直线平行,同位角相等)∵BM平分∠CBD,EN平分∠FEH∴∠2=∠CBD,∠3=∠FEH∴∠2=∠3【分析】依据平行线的判定以及性质,即可得到∠C=∠G,即可得到∠F=∠G,进而判定CG∥EF,再根据平行线的性质,即可得到∠CBD=∠FEH,依据角平分线的定义,即可得出结论.【解答】证明:∵∠A=∠1(已知),∴AC∥GF(内错角相等,两直线平行),∴∠C=∠G(两直线平行,内错角相等),∵∠C=∠F(已知),∴∠F=∠G,∴CG∥EF(内错角相等,两直线平行),∴∠CBD=∠FEH(两直线平行,同位角相等),∵BM平分∠CBD,EN平分∠FEH,∴∠2=∠CBD,∠3=∠FEH,∴∠2=∠3.故答案为:AC∥GF(内错角相等,两直线平行),∠C=∠G(两直线平行,内错角相等),∠F=∠G,CG ∥EF(内错角相等,两直线平行),∠CBD=∠FEH(两直线平行,同位角相等),∠CBD,∠FEH.【点评】本题主要考查了平行线的判定以及平行线的性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.(8分)为了丰富学生课余生活,某区教育部门准备在七年级开设兴趣课堂.为了了解学生对音乐、书法、球类、绘画这四个兴趣小组的喜爱情况,在全区进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息不完整),请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中音乐部分的圆心角的度数(3)如果该区七年级共有2000名学生参加这4个课外兴趣小组,而每名教师最多只能辅导本组的20名学生,则绘画兴趣小组至少需要准备多少名教师?【分析】(1)根据球类人数及其所占百分比可得总人数;(2)根据各组人数之和等于总人数求得音乐人数,据此可补全条形图,再用360°乘以音乐人数所占比例可得;(3)总人数乘以样本中绘画人数所占比例,再除以20即可得.【解答】解:(1)此次调查的学生人数为120÷40%=300(名);(2)音乐的人数为300﹣(60+120+40)=80(名),补全条形图如下:扇形统计图中音乐部分的圆心角的度数为360°×=96°;(3)60÷300×2000÷20=20.∴需准备20名教师辅导.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,其中点A与点P,点B与点Q,点C与点R是对应的点,在这种变换下:(1)直接写出下列各点的坐标①A(4,3)与P(﹣4,﹣3);B(3,1)与Q(﹣3,﹣1);C(1,2)与R(﹣1,﹣2)②它们之间的关系是:三角形各顶点横、纵坐标均互为相反数(用文字语言直接写出)(2)在这个坐标系中,三角形ABC内有一点M,点M经过这种变换后得到点N,点N在三角形PQR内,其中M、N的坐标M(,6(a+b)﹣10),N(1﹣,4(b﹣2a)﹣6),求关于x的不等式﹣>b﹣1的解集.【分析】(1)根据点的位置写出坐标,再根据坐标的特征写出规律即可;(2)利用(1)中规律,构建方程组,求出a、b的值,解不等式即可;【解答】解:(1)由图可得,①A(4,3)与P(﹣4,﹣3);B(3,1)与Q(﹣3,﹣1);C(1,2)与R(﹣1,﹣2).②由①可得:两个三角形各顶点横、纵坐标互为相反数.故答案为:4,3,﹣4,﹣3,3,1,﹣3,﹣1,1,2,﹣1,﹣2;(2)∵M、N关于原点对称,∴M、N两点的横坐标互为相反数,纵坐标互为相反数,∴+1﹣=0,6(a+b)﹣10+4(b﹣2a)﹣6=0,解得a=2,b=2,∴﹣>2﹣1∴6x+4﹣7x+3>8∴x<﹣1.【点评】本题考查几何变换﹣中心对称,不等式,坐标与图形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.某民营企业准备用14000元从外地购进A、B两种商品共600件,其中A种商品的成本价为20元,B种商品的成本价为30元.(1)该民营企业从外地购得A、B两种商品各多少件?(2)该民营企业计划租用甲、乙两种货车共6辆,一次性将A、B两种商品运往某城市,已知每辆甲种货车最多可装A种商品110件和B种商品20件;每辆乙种货车最多可装A种商品30件和B种商品90件,问安排甲、乙两种货车有几种方案?请你设计出具体的方案.【分析】(1)设该民营企业从外地购得A种商品x件,B种商品y件,根据总价=单价×数量结合用14000元从外地购进A、B两种商品共600件,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设租甲种货车a 辆,则租乙种货车(6﹣a )辆,由要一次性将A 、B 两种商品运往某城市,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,再结合a 为整数,即可找出各租车方案.【解答】解:(1)设该民营企业从外地购得A 种商品x 件,B 种商品y 件, 根据题意得:, 解得:. 答:该民营企业从外地购得A 种商品400件,B 种商品200件.(2)设租甲种货车a 辆,则租乙种货车(6﹣a )辆, 根据题意得:, 解得:≤a ≤, ∵a 为整数,∴a =3或4,∴有两种方案,方案一:租用甲车3辆,乙车3辆;方案二:租用甲车4辆,乙车2辆.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.24.(12分)在平面直角坐标系中,A (a ,0),C (0,c )且满足:(a +6)2+=0,长方形ABCO 在坐标系中(如图),点O 为坐标系的原点.(1)求点B 的坐标.(2)如图1,若点M 从点A 出发,以2个单位/秒的速度向右运动(不超过点O ),点N 从原点O 出发,以1个单位/秒的速度向下运动(不超过点C ),设M 、N 两点同时出发,在它们运动的过程中,四边形MBNO 的面积是否发生变化?若不变,求其值;若变化,求变化的范围.(3)如图2,E 为x 轴负半轴上一点,且∠CBE =∠CEB ,F 是x 轴正半轴上一动点,∠ECF 的平分线CD 交BE 的延长线于点D ,在点F 运动的过程中,请探究∠CFE 与∠D 的数量关系,并说明理由【分析】(1)根据题意可得a =﹣6,c =﹣3,则可求A 点,C 点,B 点坐标;(2)设M 、N 同时出发的时间为t ,则S 四边形MBNO =S 长方形OABC ﹣S △ABM ﹣S △BCN =18﹣×2t ×3﹣×6×(3﹣t )=9.与时间无关.即面积是定值,其值为9;(3)根据三角形内角和定理和三角形外角等于不相邻的两个内角的和,可求∠CFE 与∠D 的数量关系.【解答】解:(1)∵(a +6)2+=0,∴a =﹣6,c =﹣3∴A (﹣6,0),C (0,﹣3)∵四边形OABC 是矩形∴AO ∥BC ,AB ∥OC ,AB =OC =3,AO =BC =6∴B (﹣6,﹣3)(2)四边形MBNO 的面积不变.设M 、N 同时出发的时间为t ,则S 四边形MBNO =S 长方形OABC ﹣S △ABM ﹣S △BCN =18﹣×2t ×3﹣×6×(3﹣t )=9.与时间无关. ∴在运动过程中面积不变.是定值9(3)∠CFE =2∠D .理由如下:如图∵∠CBE =∠CEB∴∠ECB =180°﹣2∠BEC∵CDP 平分∠ECF∴∠DCE =∠DCF∵AF ∥BC∴∠F =180°﹣∠DCF ﹣∠DCE ﹣∠BCE =180°﹣2∠DCE ﹣(180°﹣2∠BEC )∴∠F =2∠BEC ﹣2∠DCE∵∠BEC =∠D +∠DCE∴∠F =2(∠D +∠DCE )﹣2∠DCE∴∠F =2∠D【点评】本题考查了四边形的综合题,矩形的性质,熟练运用三角形内角和定理,及三角形外角等于不相邻的两个内角和解决问题是本题的关键.。

相关文档
最新文档