人教版八年级数学上册课本练习题答案 (2)
人教版八年级上册数学书答案
人教版八年级上册数学书答案第24页1.1x=65;2x=60; 3x=95.2.六边形3.四边形第28页1•解:因为S△ABD=1/2BD.AE=5 cm²,AE=2 cm,所以BD=5cm. 又因为AD是BC边上的中线,所以DC=BD=5 cm,BC=2BD=10 cm.2.1x=40;2x=70;3x=60;4x=100; 5x=115.3.多边形的边数:17,25;内角和:5×180°,18×180°;外角和都是360°.4.5条,6个三角形,这些三角形内角和等于八边形的内角和.5.900/7°6.证明:由三角形内角和定理,可得∠A+∠1+42°=180°.又因为∠A+10°=∠1,所以∠A十∠A+10°+42°=180°.则∠A=64°.因为∠ACD=64°,所以∠A= ∠ACD.根据内错角相等,两直线平行,可得AB//CD.7.解:∵∠C+∠ABC+∠A=180°,∴∠C+∠C+1/2∠C=180°,解得∠C=72°.又∵BD是AC边上的高,∴∠BDC=90°,∴∠DBC=90°-72°=18°.8.解:∠DAC=90°-∠C= 20°,∠ABC=180°-∠C-∠BAC=60°.又∵AE,BF是角平分线,∴∠ABF=1/2∠ABC=30°,∠BAE=1/2∠BAC=25°,∴∠AOB=180°-∠ABF-∠BAE=125°.9.BD PC BD+PC BP+CP10.解:因为五边形ABCDE的内角都相等,所以∠B=∠C=5-2×180°/5=108°.又因为DF⊥AB,所以∠BFD=90°,在四边形BCDF中,∠CDF+∠BFD+∠B+∠C=360°,所以∠CDF=360°-∠BFD-∠B-∠C=360°-90°-108°-108°=54°.11.证明:1如图11-4-6所示,因为BE和CF是∠ABC和∠ACB的平分线,所以∠1=1/2∠ABC,∠2=1/2∠ACB.因为∠BGC+∠1+∠2 =180°,所以BGC=180°-∠1+∠2=180°-1/2∠ABC+∠ACB.2因为∠ABC+∠ACB=180°-∠A,所以由1得,∠BGC=180°-1/2180°-∠A=90°+1/2∠A.12.证明:在四边形ABCD中,∠ABC+∠ADC+∠A+∠C=360°.因为∠A=∠C=90°,所以∠ABC+∠ADC= 360°-90°-90°=180°.又因为BE平分∠ABC,DF平分∠ADC,所以∠EBC=1/2∠ABC, ∠CDF=1/2∠ADC,所以∠EBC+∠CDF=1/2∠ABC+∠ADC=1/2×180°=90°.又因为∠C=90°,所以∠DFC+∠CDF =90°.所以∠EBC=∠DFC.所以BE//DF.第32页1.解:在图12.1-22中,AB和DB,AC和DC,BC和BC是对应边;∠A和∠D,∠ABC和∠DBC,∠ACB和∠DCB是对应角.在图12. 1-23中,AB和AD,AC和AE,BC和DE是对应边;∠B和∠D,∠C和∠E,∠BAC和∠DAE是对应角.2.解:相等的边有AC=DB,OC=OB,OA=OD;相等得角有∠A=∠D,∠C=∠B,∠AOC=∠DOB.感谢您的阅读,祝您生活愉快。
数学人教版八年级上册教材习题答案
§11.1.1练习1、图中有五个三角形.△ABE ,△DEC ,△BEC ,△ABC ,△BDC解析:本题考察三角形的定义及表示方法. 注意不要丢掉“△”符号.2、(1)(2)不能,(3)可以解析:本题考察三角形的三边关系.两边之和大于第三边.§11.1.21、(1)中∠B 为锐角;(2)中∠B 为直角;(3)中∠B 为钝角,BC 边的高AD 分别在 △ABC 内部△ABC 的边AB 上,△ABC 的外部.解析:本题考察三角形的高的位置. 锐角三角形高在三角形内部,钝角三角形两条高在三角形外部,一条高在内部,直角三角形两条高为直角边,一条高在内部.2、(1)2AF 或 2FB ,DC ,AC(2)∠2,∠ABC ,∠4解析:本题考察中线、角平分线蕴含的数量关系,特别注意相等、倍分关系. §11.1.3(1) (4) (6)解析:本题考察三角形的稳定性,多边形的不稳定性.习题§11.11、图中有6个三角形. △ABD ,△ADE ,△AEC ,△ABE ,△ADC,,△ABC解析:本题考察三角形的定义及表示方法.2、有2种选法:10,7,5;7,5,3解析:本题考察,三角形的三边关系,注意舍去不满足三边关系的选法. 3、AD 为中线 AE 为角平分线 AF 为高线.解析:本题考察中线、角平分线的定义及位置,注意高与三角形之间的位置关系.4、(1)EC ,BC(2)∠CAD ,∠BAC(3)∠AFC(4)12B C ×AF 解析:本题考察中线、角平分、高线的数量关系,注意根据题意找相等及倍分关系.5、C解析:本题考察三角形的稳定性.6、(1)若6cm 为腰,则另一腰为6cm ,底边为8cm(2)若6cm 为底边,则两腰为7cm解析:本题考察等腰三角形中的分类思想.7、(1)16或17(2)22解析:本题考察等腰三角形的分类思想及三角形的三边关系,注意去掉4.4,9,因为不满足三边关系.AB D E FC A B CDE AF C B D E8、12 AD CE解析:有关高的计算。
【教材答案】人教版八年级数学上册课本练习题答案()
第11章习题11.1第1题答案图中共6个三角形分别是:△ABD,△ADE,△AEC,△ABE,AADC,△ABC习题11.1第2题答案2种四根木条每三条组成一组可组成四组,分别为:10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形习题11.1第3题答案如下图所示,中线AD、高AE、角平分线AF习题11.1第4题答案(1)EC;BC(2)∠DAC;∠BAC(3)∠AFC(4)1/2BC·AF习题11.1第5题答案C习题11.1第6题答案(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm) 因为6+6>8所以此时另两边的长为6cm,8cm(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm)因为6+7>7所以北时另两边的长分别为7cm,7cm习题11.1第7题答案(1) 当等腰三角形的腰长为5时,三角形的三边为5,5,6因为5+5>6所以三角形周长为5+5+6=16当等腰三角形的腰长为6时,三角形的三边为6,6,5 因为6+5>6所以三角形周长为6+6+5=17所以这个等腰三角形的周长为16或17(2)22习题11.1第8题答案1:2习题11.1第9题答案解:∠1=∠2,理由如下:因为AD平分∠BAC所以∠BAD=∠DAC又DE//AC所以∠DAC=∠1又DF//AB所以∠DAB=∠2所以∠1=∠2习题11.1第10题答案四边形木架钉1根木条五边形木架钉2根木条六边形木架钉3根木条习题11.2第1题答案(1)x=33(2)x=60(3)x=54(4)x=60习题11.2第2题答案(1)一个直角,因为如果有两个直角,三个内角的和就大于180°了(2)一个钝角,如果有两个钝角,三个内角的和就大于180°了(3)不可以,如果外角是锐角,则它的邻补角为钝角,就是钝角三角形,而不是直角三角形了习题11.2第3题答案∠A=50°,∠B=60°,∠C=70°习题11.2第4题答案70°习题11.2第5题答案解:∵AB//CD,∠A=40°∴∠1=∠A=40°∵∠D=45°∴∠2=∠1+∠D=40°+45°=85°习题11.2第6题答案解:∵AB//CD,∠A=45°∴∠1=∠A=45°∵∠1=∠C+∠E∴∠C+∠E=45°又∵∠C=∠E∴∠C+∠C=45°∴∠C=22.5°习题11.2第7题答案解:依题意知:∠ABC=80°-45°-35°∠BAC= 45°+15°=60°,∠C =180°-35°-60°=85°,即∠ACB=85°习题11.2第8题答案解:∠BDC=∠A+∠ACD=62°+35°=97°,∠BFD=180°-∠BDC-∠ABE=180°-97°-20°=63°习题11.2第9题答案解:因为∠A+∠ABC+∠ACB=180°,∠A=100°所以∠ABC+∠ACB=180°-∠A=180°-100°=80°又因为∠1=∠2,∠3=∠4所以∠2=1/2∠ABC,∠4=1/2∠ACB所以∠2 +∠4=1/2(∠ABC+∠ACB)=1/2×80°=40°所以x=180°-(∠2+∠4) =180°-40°=140°所以x=140°习题11.2第10题答案180°;90°;90°习题11.2第11题答案证明:因为∠BAC是△ACE的一个外角所以∠BAC=∠ACE+∠E又因为CE平分∠ACD所以∠ACE= ∠DCE所以∠BAC=∠DCE+∠E又因为∠DCE是△BCE的一个外角所以∠DCE=∠B+∠E所以∠BAC=∠B+ ∠E+∠E=∠B+2∠E习题11.3第1题答案如下图所示,共9条习题11.3第2题答案(1)x=120(2)x=30(3)x=75习题11.3第3题答案多边形的边数 3 4 5 6 8 12 内角和180°360°540°720°1080°1800°外角和360°360°360°360°360°360°习题11.3第4题答案108°;144°习题11.3第5题答案这个多边形是九边形习题11.3第6题答案(1)三角形;(2)解:设这个多边形是n边形,由题意得:(n-2)×180=2×360解得n=6所以这个多边形为六边形习题11.3第7题答案AB//CD,BC//AD(理由略)提示:由四边形的内角和可求得同旁内角互补习题11.3第8题答案(1)是.理由如下:由已知BC⊥CD,可得∠BCD=90°又因为∠1=∠2=∠3所以有∠1=∠2=∠3=45°,即△CBD为等腰直角三角形,且CO是∠DCB的平分线所以CO是△BCD的高。
人教版初二上数学配套练习册答案参考
人教版初二上数学配套练习册答案参考§11.1全等三角形一、1. C 2. C二、1.(1)①AB DE ②AC DC ③BC EC(2)①∠A ∠D ②∠B ∠E ③∠ACB ∠DCE2. 120 4三、1.对应角分别是:∠AOC和∠DOB,∠ACO和∠DBO,∠A和∠D.对应边分别是:AO和DO,OB和OC,AC和DB.2.相等,理由如下:∵△ABC≌△DFE ∴BC=FE ∴BC-EC=FE-EC ∴BE=FC3.相等,理由如下:∵△ABC≌△AEF ∴∠CAB=∠FAE ∴∠CAB—∠BAF=∠FAE —∠BAF 即∠CAF=∠EAB§11.2全等三角形的判定(一)一、1. 100 2. △BAD,三边对应相等的两个三角形全等(SSS)3. 2, △ADB≌△DAC,△ABC≌△DCB4. 24二、1. ∵BG=CE ∴BE=CG 在△ABE和△DCG中,∴△ABE≌△DCG(SSS),∴∠B=∠C2. ∵D是BC中点,∴BD=CD,在△ABD和△ACD中,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC又∵∠ADB+∠ADC=180°∴∠ADB=90° ∴AD⊥BC3.提示:证△AEC≌△BFD,∠DAB=∠CBA, ∵∠1=∠2 ∴∠DAB-∠1=∠CBA-∠2可得∠ACE=∠FDB§11.2全等三角形的判定(二)一、1.D 2.C二、1.OB=OC 2. 95三、1. 提示:利用“SAS”证△DAB≌△CBA可得∠DAC=∠DBC.2. ∵∠1=∠2 ∴∠1+∠CAD=∠2+∠CAD即∠BAC=∠DAE,在△BAC 和△DAE中,∴△BAC≌△DAE(SAS)∴BC=DE3.(1)可添加条件为:BC=EF或BE=CF(2)∵AB∥DE ∴∠B=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS)§11.2全等三角形的判定(三)一、1. C 2. C二、1.AAS 2.(1)SAS (2)ASA 3.(答案不)∠B=∠B1,∠C=∠C1等三、1.在△ACE和△ABD中, ∴△ACE≌△ABD(AAS)2.(1)∵AB//DE ∴∠B=∠DEF ∵AC//DF ∴∠ACB=∠F 又∵BE=CF∴BE+EC=CF+EC ∴BC=EF ∴△ABC≌△DEF(ASA)3. 提示:用“AAS”和“ASA”均可证明.§11.2全等三角形的判定(四)一、1.D 2.C二、1.ADC,HL;CBE SAS 2. AB=A'B'(答案不)3.Rt△ABC,Rt△DCB,AAS,△DOC三、1.证明:∵AE⊥BC,DF⊥BC,∴∠CEA=∠DFB=90°∵BE=CF,∴BC-BE=BC-CF即CE=BF 在Rt△ACE和Rt△DBF中, ∴Rt△ACE≌ Rt△DBF(HL)∴∠ACB=∠DBC ∴AC//DB2.证明:∵AD⊥BC,CE⊥AB ∴∠ADB=∠CEB=90°.又∵∠B=∠B ,AD=CE∴△ADB≌△CEB(AAS)3.(1)提示利用“HL”证Rt△ADO≌Rt△AEO,进而得∠1=∠2;(2)提示利用“AAS”证△ADO≌△AEO,进而得OD=OE.11.2三角形全等的判定(综合)一、1.C 2.B 3.D 4.B 5.B二、1. 80° 2. 2 3. 70° 4. (略)三、1.(1)∵AB⊥BE,DE⊥BE,∵∠B=∠E=90° 又∵BF=CE,∴BC=EF,在Rt△ABC和Rt△DEF中, ∴△ABC≌△DEF(2)∵△ABC≌△DEF ∴∠GFC=∠GCF ∴GF=GC2.△ADC≌△AEB,△BDF≌△CEF 或△BDC≌△CEB ∵D、E分别是AB、AC的中点,AB=AC∴AD=AE.在△ADC和△AEB中, ∴△ADC≌△AEB(SAS)§11.3角的平分线的性质一、1.C 2.D 3.B 4.B 5.B 6.D二、1. 5 2. ∠BAC的角平分线 3.4cm三、1.在A内作公路与铁路所成角的平分线;并在角平分线上按比例尺截取BC=2cm,C点即为所求(图略).2. 证明:∵D是BC中点,∴BD=CD.∵ED⊥AB,DF⊥AC,∴∠BED=∠CFD=∠AED=∠AFD=90°.在△BED与△CFD中, ∴△BED≌△CFD(AAS)∴DE=DF,∴AD平分∠BAC3.(1)过点E作EF⊥DC,∵E是∠BCD,∠ADC的平分线的交点,又∵DA⊥AB,CB⊥AB,EF⊥DC,∴AE=EF,BE=EF,即AE=BE(2)∵∠A=∠B=90°,∴AD//BC,∴∠ADC+∠BCD=180°.又∵∠EDC= ∠ADC,∠ECD= ∠BCD ∴∠EDC+∠ECD=90°∴∠DEC=180°-(∠EDC+∠ECD)=90°4. 提示:先使用AO是∠BAC的平分线得DO=EO,再利用“ASA”证△DOB≌△EOC,进而得BO=CO.第十二章轴对称§12.1轴对称(一)一、1.A 2.D二、1. (注一个正“E”和一个反“E”合在一起) 2. 2 4 3.70° 6三、1.轴对称图形有:图(1)中国人民银行标志,图(2)中国铁路标徽,图(4)沈阳太空集团标志三个图案.其中图(1)有3条对称轴,图(2)与(4)均只有1条对称轴.2. 图2:∠1与∠3,∠9与∠10,∠2与∠4,∠7与∠8,∠B与∠E 等; AB与AE,BC与ED,AC与AD等. 图3:∠1与∠2,∠3与∠4,∠A与∠A′等;AD与A′D′,CD与C′D′, BC与B′C′等.§12.1轴对称(二)一、1.B 2.B 3.C 4.B 5.D二、1.MB 直线CD 2. 10cm 3. 120°三、1.(1)作∠AOB的平分线OE;(2)作线段MN的垂直平分线CD,OE与CD交于点P,点P就是所求作的点.2.解:因为直线m是多边形ABCDE的对称轴,则沿m折叠左右两部分完全重合,所以∠A=∠E=130°,∠D=∠B=110°,因为五边形内角和为(5-2)×180°=540°,即∠A+∠B+∠BCD+∠D+∠E=540°,130°+110°+∠BCD+110°+130°=540°,所以∠BCD=60°3. 20提示:利用线段垂直平分线的性质得出BE=AE.§12.2.1作轴对称图形一、1.A 2.A 3.B二、1.全等 2.108三、1. 提示:作出圆心O′,再给合圆O的半径作出圆O′. 2.图略3.作点A关于直线a的对称点A′,连接A′B交直线a于点C,则点C为所求.当该站建在河边C点时,可使修的渠道最短.如图§12.2.2用坐标表示轴对称一、1.B 2.B 3.A 4.B 5.C二、1.A(0,2), B(2,2), C(2,0), O(0,0)2.(4,2)3. (-2,-3)三、1. A(-3,0),B(-1,-3),C(4,0),D(-1,3),点A、B、C、D关于y轴的对称点坐标分别为A′(3,0)、B′(1,-3)、C′(-4,0)、D′(1,3)顺次连接A′B′C′D′.如上图2.∵M,N关于x轴对称, ∴∴ ∴ba+1=(-1)3+1=03.A′(2,3),B′(3,1),C′(-1,-2)§12.3.1等腰三角形(一)一、1.D 2.C二、1. 40°,40° 2. 70°,55°,55°或40°,70°,70° 3.82.5°三、1.证明:∵∠EAC是△ABC的外角∴∠EAC=∠1+∠2=∠B+∠C ∵AB=AC∴∠B=∠C ∴∠1+∠2=2∠C ∵∠1=∠2 ∴2∠2=2∠C∴∠2=∠C ∴AD//BC2.解∵AB=AC,AD=BD,AC=CD ∴∠B=∠C=∠BAD,∠ADC=∠DAC.设∠B=x,则∠ADC=∠B+∠BAD=2x,∴∠DAC=∠ADC=2x,∴∠BAC=3x.于是在△ABC中,∠B+∠C+∠BAC=x+x+3x=180°,得x=36∴∠B=36°.§12.3.2等腰三角形(二)一、1.C 2.C 3.D二、1.等腰 2. 9 3.等边对等角,等角对等边三、1.由∠OBC=∠OCB得BO=CO,可证△ABO≌△ACO,得AB=AC∴△ABC是等腰三角形.2.能.理由:由AB=DC,∠ABE=∠DCE,∠AEB=∠DEC,得△ABE≌△DCE,∴BE=CE,∴△BEC是等腰三角形.3.(1)利用“SAS”证△ABC≌△AED. (2)△ABC≌△AED可得∠ABO=∠AEO,AB=AE得∠ABE=∠AEB.进而得∠OBE=∠OEB,最后可证OB=OE.§12.3.3等边三角形一、1.B 2.D 3.C二、1.3cm 2. 30°,4 3. 1 4. 2三、1.证明:∵在△ADC中,∠ADC=90°, ∠C=30° ∴∠FAE=60° ∵在△ABC中,∠BAC=90°,∠C=30°∴∠ABC=60°∵BE平分∠ABC,∴∠ABE= ×60°=30°∵在△ABE中,∠ABE=30°,∠BAE=90° ∴∠AEF=60°∴在△AEF中∠FAE=∠AEF=60° ∴FA=FE ∵∠FAE=60°∴△AFE 为等边三角形.2.∵DA是∠CAB的平分线,DE⊥AB,DC⊥AC,∴DE=CD=3cm,在Rt△ABC中,因为∠CAB=60°,∴∠B=30°.在Rt△DEB中,∵∠B=30°,DE=3cm,∴DB=2DE=6cm∴BC=C D+DE=3+6=9(cm)3. 证明:∵△ABC为等边三角形,∴BA=CA , ∠BAD=60°.在△ABD和△ACE中, ∴△ABD≌△ACE(SAS)∴AD=AE,∠BAD=∠CAE=60°∴△ADE是等边三角形.4. 提示:先证BD=AD,再利用直角三角形中,30°角所对的直角边是斜边的一半,得DC=2AD.第十三章实数§13.1平方根(一)一、1. D 2. C二、1. 6 2. 3. 1三、1. (1)16 (2)(3)0.42. (1)0, (2)3 , (3)(4)40 (5)0.5 (6) 43. =0.54. 倍;倍.一、1. C 2. D二、1. 2 2. 3. 7和8三、1.(1)(2)(3)2.(1)43 (2)11.3 (3)12.25 (4) (5)6.623.(1)0.5477 1.732 5.477 17.32(2)被开方数的小数点向右(左)移动两位,所得结果小数点向右(左)移动一位. (3)0.1732 54.77§13.1平方根(三)一、1. D 2. C二、1. ,2 2, 3.三、1.(1)(2)(3)(4)2.(1)(2)-13 (3)11 (4)7 (5) 1.2 (6)-3.(1)(2)(3)(4)4. ,这个数是4 5. 或§13.2立方根(一)一、1. A 2. C二、1. 125 2. ±1和0 3. 3三、1.(1)-0.1 (2)-7 (3)(4)100 (5)- (6)-22.(1)-3 (2)(3)3. (a≠1)一、1. B 2. D二、1. 1和0; 2. 3. 2三、1. (1)0.73 (2)±14 (3)2. (1)-2 (2)-11 (3)±1 (4)- (5)-2 (6)3.(1) (2) (3) (4)x=-4 (5)x= (6)x= +1§13.3实数(一)一、1. B 2. A。
人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案
人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案人教八年级数学上册同步练习题及答案第十一章全等三角形11.1全等三角形1、已知⊿ABC≌⊿DEF,A与D,B与E分别是对应顶点,∠A=52°,∠B=67 °,BC =15cm,= ,FE = .则F2、∵△ABC≌△DEF∴AB= ,AC= BC= ,(全等三角形的对应边)∠A= ,∠B= ,∠C= ;(全等三角形的对应边)3、下列说法正确的是()A:全等三角形是指形状相同的两个三角形 B:全等三角形的周长和面积分别相等C:全等三角形是指面积相等的两个三角形 D:所有的等边三角形都是全等三角形4、如图1:ΔABE≌ΔACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=_____,∠C=____。
C课堂练习1、已知△ABC ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°; 那么DE= cm ,EC= cm ,∠C= 度.3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度;(第1小题) (第2小题) (第3小题) (第4小题)4、如图,若△ABC ≌△ADE ,则对应角有 ; 对应边有 (各写一对即可);11.2.1全等三角形的判定(sss )课前练习1、如图1:AB=AC ,BD=CD ,若∠B=28°则∠C= ;2、如图2:△EDF ≌△BAC ,EC=6㎝,则BF= ;3、如图,AB ∥EF ∥DC ,∠ABC =900,AB =DC ,那么图中有全等三角形 对。
第2题图EDCBA(第1小题) (第2小题) (第3小题)课堂练习4、如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是 。
完整word版,2013年审人教版八年级上册数学课本练习题答案汇总,推荐文档
八年级数学上册参考答案第3页习题答案1. 2010年为+108.7mm; 2009年为-81.5 mm; 2008年为+53.5 mm.2.这个物体又移动了-1 m表示物体向左移动了1m这时物体又回到了原来的位置第4页习题答案1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.2.解:(1)不能;(2)不能;(3)能.理由略第5页习题答案:1.解:图(1)中∠B为锐角,图(2)中∠B为直角,图(3)中∠B为钝角,图(1)中AD在三角形内部,图(2)中AD为三角形的一条直角边,图(3)中AD在三角形的外部.锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.2. (1)AF(或BF) CD AC (2)∠2 ∠ABC ∠4或∠ACF第7页习题答案:解:(1)(4)(6)具有稳定性第8页习题11.1答案1.解:图中共6个三角形,分别是△ABD,△ADE,△AEC,△ABE,AADC,△ABC.2.解:2种.四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,3.解:如图11-1-27所示,中线AD、高AE、角平分线AF.4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF5.C6.解:(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm),因为6+6>8,所以此时另两边的长为6 cm,8 cm.(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm),因为6+7>7,所以北时另两边的长分别为7 cm,7cm.7.(1) 解:当等腰三角形的腰长为5时,三角形的三边为5,5,6,因为5+5>6,所以三角形周长为5+5+6=16:当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6,所以三角形周长为6+6+5=17.所以这个等腰三角形的周长为16或17;(2)22.8.1:2 提示:用41/2BC.AD—丢AB.CE可得.9.解:∠1=∠2.理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC.又DE//AC,所以∠DAC=∠1. 又DF//AB,所以∠DAB=∠2. 所以∠1=∠2.10.解:四边形木架钉1根木条;五边形木架钉2根木条;六边形木架钉3根木条人教版八年级上册数学第13页练习答案1.解:因为∠CBD=∠CAD+∠ACB,所以∠ACB=∠CBD-∠CAD=45°-30°=15°.2.解:在△ACD中,∠D+∠DAC+∠DCA=180°,在△ABC中,∠B+∠BAC+∠BCA=180°,所以∠D+∠DAC+∠DCA+∠B+∠BAC+∠BCA=∠D+∠B+ ∠BAD+∠BCD=180°+180°=360°.所以40°+40°+150°+∠BCD= 360°. 所以∠BCD=130°人教版八年级上册数学第14页练习答案1.解:∠ACD=∠B.理由:因为CD⊥AB,所以△BCD是直角三角形,∠BDC=90°,所以∠B+∠BCD=90°,又因为∠ACB= 90°,所以∠ACD+∠BCD=∠ACB=90°,所以∠ACD=∠B(同角的余角相等).2.解:△ADE是直角三角形,理由:因为∠C=90。
人教版八年级数学上册课本练习题答案 (2)
第11章习题11.1第1题答案图中共6个三角形分别是:△ABD,△ADE,△AEC,△ABE,AADC,△ABC习题11.1第2题答案2种四根木条每三条组成一组可组成四组,分别为:10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形习题11.1第3题答案如下图所示,中线AD、高AE、角平分线AF习题11.1第4题答案(1)EC;BC(2)∠DAC;∠BAC(3)∠AFC(4)1/2BC·AF习题11.1第5题答案C习题11.1第6题答案(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm) 因为6+6>8所以此时另两边的长为6cm,8cm(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm)因为6+7>7所以北时另两边的长分别为7cm,7cm习题11.1第7题答案(1) 当等腰三角形的腰长为5时,三角形的三边为5,5,6因为5+5>6所以三角形周长为5+5+6=16当等腰三角形的腰长为6时,三角形的三边为6,6,5 因为6+5>6所以三角形周长为6+6+5=17所以这个等腰三角形的周长为16或17(2)22习题11.1第8题答案1:2习题11.1第9题答案解:∠1=∠2,理由如下:因为AD平分∠BAC所以∠BAD=∠DAC又DE//AC所以∠DAC=∠1又DF//AB所以∠DAB=∠2所以∠1=∠2习题11.1第10题答案四边形木架钉1根木条五边形木架钉2根木条六边形木架钉3根木条习题11.2第1题答案(1)x=33(2)x=60(3)x=54(4)x=60习题11.2第2题答案(1)一个直角,因为如果有两个直角,三个内角的和就大于180°了(2)一个钝角,如果有两个钝角,三个内角的和就大于180°了(3)不可以,如果外角是锐角,则它的邻补角为钝角,就是钝角三角形,而不是直角三角形了习题11.2第3题答案∠A=50°,∠B=60°,∠C=70°习题11.2第4题答案70°习题11.2第5题答案解:∵AB//CD,∠A=40°∴∠1=∠A=40°∵∠D=45°∴∠2=∠1+∠D=40°+45°=85°习题11.2第6题答案解:∵AB//CD,∠A=45°∴∠1=∠A=45°∵∠1=∠C+∠E∴∠C+∠E=45°又∵∠C=∠E∴∠C+∠C=45°∴∠C=22.5°习题11.2第7题答案解:依题意知:∠ABC=80°-45°-35°∠BAC= 45°+15°=60°,∠C =180°-35°-60°=85°,即∠ACB=85°习题11.2第8题答案解:∠BDC=∠A+∠ACD=62°+35°=97°,∠BFD=180°-∠BDC-∠ABE=180°-97°-20°=63°习题11.2第9题答案解:因为∠A+∠ABC+∠ACB=180°,∠A=100°所以∠ABC+∠ACB=180°-∠A=180°-100°=80°又因为∠1=∠2,∠3=∠4所以∠2=1/2∠ABC,∠4=1/2∠ACB所以∠2 +∠4=1/2(∠ABC+∠ACB)=1/2×80°=40°所以x=180°-(∠2+∠4) =180°-40°=140°所以x=140°习题11.2第10题答案180°;90°;90°习题11.2第11题答案证明:因为∠BAC是△ACE的一个外角所以∠BAC=∠ACE+∠E又因为CE平分∠ACD所以∠ACE= ∠DCE所以∠BAC=∠DCE+∠E又因为∠DCE是△BCE的一个外角所以∠DCE=∠B+∠E所以∠BAC=∠B+ ∠E+∠E=∠B+2∠E习题11.3第1题答案如下图所示,共9条习题11.3第2题答案(1)x=120(2)x=30(3)x=75习题11.3第3题答案多边形的边数 3 4 5 6 8 12 内角和180°360°540°720°1080°1800°外角和360°360°360°360°360°360°习题11.3第4题答案108°;144°习题11.3第5题答案这个多边形是九边形习题11.3第6题答案(1)三角形;(2)解:设这个多边形是n边形,由题意得:(n-2)×180=2×360解得n=6所以这个多边形为六边形习题11.3第7题答案AB//CD,BC//AD(理由略)提示:由四边形的内角和可求得同旁内角互补习题11.3第8题答案(1)是.理由如下:由已知BC⊥CD,可得∠BCD=90°又因为∠1=∠2=∠3所以有∠1=∠2=∠3=45°,即△CBD为等腰直角三角形,且CO是∠DCB的平分线所以CO是△BCD的高(2)由(1)知CO⊥BD,所以有AO⊥BD,即有∠4+∠5=90°又因为∠4=60°所以∠5=30°(3)由已知易得∠BCD= 90°,∠CDA=∠1+∠4=45°+60°=105°.∠DAB=∠5+∠6=2×30°=60°又因为∠BCD+∠CDA+∠CBA+∠DAB=360°所以∠CBA=105°习题11.3第9题答案解:因为五边形ABCDE的内角都相等所以∠E=((5-2)×180°)/5=108°所以∠1=∠2=1/2(180°-108°)=36°同理∠3=∠4=36°所以x=108-(36+36)=36习题11.3第10题答案解:平行(证明略)BC与EF有这种关系,理由如下:因为六边形ABCDEF的内角都相等所以∠B=((6-2)×180°)/6=120°因为∠BAD=60°所以∠B+∠BAD=180°所以BC//AD因为∠DAF=120°-60°=60°所以∠F +∠DAF=180°所以EF//AD所以BC//EF同理可证AB//DE复习题11第1题答案解:因为S△ABD=1/2BD,AE=5cm2,AE=2 cm 所以BD=5cm又因为AD是BC边上的中线所以DC=BD=5cm,BC=2BD=10cm复习题11第2题答案(1)x=40(2)x=70(3)x=60(4)x=100(5)x=115复习题11第3题答案多边形的边数:17;25内角和:5×180°;18×180°外角和都是360°复习题11第4题答案5条,6个三角形,这些三角形内角和等于八边形的内角和复习题11第5题答案(900/7)°复习题11第6题答案证明:由三角形内角和定理可得:∠A+∠1+42°=180°又因为∠A+10°=∠1所以∠A十∠A+10°+42°=180°,则∠A=64°因为∠ACD=64°所以∠A=∠ACD根据内错角相等,两直线平行,可得AB//CD复习题11第7题答案解:∵∠C+∠ABC+∠A=180°∴∠C+∠C+1/2∠C=180°解得∠C=72°又∵BD是AC边上的高∴∠BDC=90°∴∠DBC=90°-72°=18°复习题11第8题答案解:∠DAC=90°-∠C= 20°∠ABC=180°-∠C-∠BAC=60°又∵AE,BF是角平分线∴∠ABF=1/2∠ABC=30°,∠BAE=1/2∠BAC=25°∴∠AOB=180°-∠ABF-∠BAE=125°复习题11第9题答案BD;PC;BD+PC;BP+CP复习题11第10题答案解:因为五边形ABCDE的内角都相等所以∠B=∠C=((5-2)×180°)/5=108°又因为DF⊥AB所以∠BFD=90°在四边形BCDF中,∠CDF+∠BFD+∠B+∠C=360°所以∠CDF=360°-∠BFD-∠B-∠C=360°-90°-108°-108°=54°复习题11第11题答案证明:(1)如下图所示:因为BE和CF是∠ABC和∠ACB的平分线所以∠1=1/2∠ABC,∠2=1/2∠ACB因为∠BGC+∠1+∠2 =180°所以BGC=180°-(∠1+∠2)=180°-1/2(∠ABC+∠ACB)(2)因为∠ABC+∠ACB=180°-∠A所以由(1)得,∠BGC=180°-1/2(180°-∠A)=90°+1/2∠A复习题11第12题答案证明:在四边形ABCD中∠ABC+∠ADC+∠A+∠C=360°因为∠A=∠C=90°所以∠ABC+∠ADC= 360°-90°-90°=180°又因为BE平分∠ABC,DF平分∠ADC所以∠EBC=1/2∠ABC, ∠CDF=1/2∠ADC所以∠EBC+∠CDF=1/2(∠ABC+∠ADC)=1/2×180°=90°又因为∠C=90°所以∠DFC+∠CDF =90°所以∠EBC=∠DFC所以BE//DF第12章习题12.1第1题答案其他对应边是:AC和CA对应角是:∠B和∠D,∠ACB和∠CAD,∠CAB和∠ACD 习题12.1第2题答案其他对应边是:AN和AM,BN和CM对应角是:∠ANB和∠AMC,∠BAN和∠CAM习题12.1第3题答案66°习题12.1第4题答案(1)因为△EFG≌△NMH,所以最长边FG和MH是对应边其他对应边是EF和NM,EG和NH对应角是∠E和∠N,∠EGF和∠NHM(2)由(1)可知NM=EF=2.1cm,GE=HN=3.3 cm所以HG=GE-EH=3.3-1.1=2.2(cm)习题12.1第5题答案解:∠ACD=∠BCE.理由如下:∵△ABC≌△DEC∴∠ACB=∠DCE(全等三角形的对应角相等)∴∠ACB-∠ACE=∠DCE-∠ACE(等式的基本性质)习题12.1第6题答案(1)对应边:AB和AC,AD和AE,BD和CE.对应角:∠A和∠A,∠ABD和∠ACE,∠ADB和∠AEC (2)因为∠A=50°,∠ABD=39°△AEC≌△ADB所以∠ADB=180°- 50°- 39°=91°∠ACE=39°又因为∠ADB=∠1+∠2+∠ACE∠1=∠2所以2∠1+39°=91°所以∠1= 26°习题12.2第1题答案解:△ABC与△ADC全等.理由如下:在△ABC与△ADC中∴△ABC≌△ADC(SSS)习题12.2第2题答案证明:在△ABE和△ACD中∴△ABE≌△ACD(SAS)∴∠B=∠C(全等三角形的对应角相等)习题12.2第3题答案只要测量A\\\\\'B\\\\\'的长即可,因为△AOB≌△A′OB′习题12.2第4题答案证明:∵∠ABD+∠3=180°∠ABC+∠4=180°又∠3=∠4∴∠ABD=∠ABC(等角的补角相等)在△ABD和△ABC中∴△ABD≌△ABC(ASA)∴AC=AD习题12.2第5题答案证明:在△ABC和△CDA中∴△ABC≌△CDA(AAS)∴AB=CD习题12.2第6题答案解:相等,理由如下:由题意知:AC= BC,∠C=∠C,∠ADC=∠BEC=90°所以△ADC≌△BEC(AAS)所以AD=BE习题12.2第7题答案证明:(1)在Rt△ABD和Rt△ACD中∴Rt△ABD≌Rt△ACD( HL)∴BD=CD(2)∵Rt△ABD≌ Rt△ACD∴∠BAD=∠CAD习题12.2第8题答案证明:∵AC⊥CB,DB⊥CB∴∠ACB=∠DBC=90°∴△ACB和△DBC是直角三角形在Rt△ACB和Rt△DBC中∴Rt△ACB≌Rt△DBC(HL)∴∠ABC=∠DCB(全等三角形的对应角相等) ∴∠ABD=∠ACD(等角的余角相等)习题12.2第9题答案证明:∵BE=CF∴BE+EC=CF+EC∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SSS)∴∠A=∠D习题12.2第10题答案证明:在△AOD和△COB中∴△AOD≌△COB(SAS)(6分)∴∠A=∠C(7分)习题12.2第11题答案证明:∵AB//ED,AC//FD∴∠B=∠E,∠ACB=∠DFE又∵FB=CE∴FB+FC=CE+FC∴BC= EF在△ABC和△DEF中∴△ABC≌△DEF(ASA)∴AB=DE,AC=DF(全等三角形的对应边相等)习题12.2第12题答案解:AE=CE.证明如下:∵FC//AB∴∠F=∠ADE,∠FCE=∠A在△CEF和△AED中∴△CEF≌△AED(AAS)∴ AE=CE(全等三角形的对应边相等)习题12.2第13题答案解:△ABD≌△ACD,△ABE≌△ACE,△EBD≌△ECD 在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠BAE= ∠CAE在△ABE和△ACE中∴△ABE≌△ACE(SAS)∴BD=CD在△EBD和△ECD中:.△EBD≌△ECD(SSS)习题12.3第1题答案解:∵PM⊥OA,PN⊥OB∴∠OMP=∠ONP=90°在Rt△OPM和Rt△ONP中∴Rt△OMP≌Rt△ONP(HL)∴PM=PN(全等三角形的对应边相等)∴OP是∠AOB的平分线习题12.3第2题答案证明:∵AD是∠BAC的平分线,且DE,DF分别垂直于AB ,AC,垂足分别为E,F,∴DE=DF在Rt△BDE和Rt△CDF中Rt△BDE≌Rt△CDF(HL)∴EB=FC(全等三角形的对应边相等)习题12.3第3题答案证明:∵CD⊥AB, BE⊥AC∴∠BDO=∠CEO= 90°∵∠DOB=∠EOC,OB=OC∴△DOB≌△EOC∴OD= OE∴AO是∠BAC的平分线∴∠1=∠2习题12.3第4题答案证明:如下图所示:作DM⊥PE于M,DN⊥PF于N ∵AD是∠BAC的平分线∴∠1=∠2又:PE//AB,PF∥AC∴∠1=∠3,∠2=∠4∴∠3 =∠4∴PD是∠EPF的平分线又∵DM⊥PE,DN⊥PF∴DM=DN,即点D到PE和PF的距离相等习题12.3第5题答案证明:∵OC是∠ AOB的平分线,且PD⊥OA,PE⊥OB ∴PD=PE,∠OPD=∠OPE∴∠DPF=∠EPF在△DPF和△EPF中∴△DPF≌△EPF(SAS)∴DF=EF(全等三角形的对应边相等)习题12.3第6题答案解:AD与EF垂直.证明如下:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC∴DE=DF在Rt△ADE和Rt△ADF中∴Rt△ADE≌Rt△ADF(HL)∴∠ADE=∠ADF在△GDE和△GDF中∴△GDF≌△GDF(SAS)∴∠DGE=∠DGF又∵∠DGE+∠DGF=180°∴∠DGE=∠DGF=90°∴AD⊥EF习题12.3第7题答案证明:过点E作EF上AD于点F.如下图所示:∵∠B=∠C= 90°∴EC⊥CD,EB⊥AB∵DE平分∠ADC∴EF=EC又∵E是BC的中点∴EC=EB∴EF=EB∵EF⊥AD,EB⊥AB∴AE是∠DAB的平分线复习题12第1题答案解:如下图所示:△ABC≌△ADC△AEO≌△OFC△AGM≌△CHN复习题12第2题答案(1)有,△ABD≌△CDB(2)有,△ABD和△AFD,△ABF和△BFD,△AFD和△BCD复习题12第3题答案证明:∵∠1=∠2∴∠1+∠ACE=∠2+∠ACE,即∠ACB=∠DCE在△ABC和△DEC中∴△ABC≌△DEC( SAS)∴AB= DE复习题12第4题答案解:海岛C,D到观测点A,B所在海岸的距离CA,DB相等.理由如下:∵海岛C在观测点A的正北方,海岛D在观测点B的正北方∴∠CAB=∠DBA=90°∵∠CAD=∠DBC∴∠CAB-∠CAD=∠DBA- ∠DBC,即∠DAB=∠CBA 在△ABC和△BAD中∴△ABC≌△BAD(ASA)∴CA=DB.复习题12第5题答案证明:∵DE⊥AB,DF⊥AC∴∠BED=∠CFD=90°∵D是BC的中点∴BD=CD在Rt△BDE和Rt△CDF中∴Rt△BDE≌△Rt△CDF(HL)∴DE=DF∴AD是△ABC的角平分线复习题12第6题答案应在三条公路所围成的三角形的角平分线交点处修建度假村复习题12第7题答案解:C,D两地到路段AB的距离相等.理由如下:∵AC//BD∴∠CAE=∠DBF在△ACE和△BDF中∴△ACE≌△BDF(AAS)∴CE=DF复习题12第8题答案证明:∵BE= CF∴BE+EC= CF+EC,即BC= EF在△ABC和△DEF中∴△ABC≌△DEF(SSS)∴∠ABC=∠DEF,∠ACB=∠DFE∴AB//DE,AC//DF复习题12第9题答案解:∵∠BCE+∠ACD=90°,∠CAD+∠ACD=90°∴∠BCE=∠CAD.又∵BE⊥CE,AD⊥CE∴∠E=∠ADC=90°在△BCE和△CAD中∴△BCE≌△CAD(AAS)∴CE=AD=2.5 cm,BE=CD=CE-DE=2.5-1.7=0.8(cm) 复习题12第10题答案解:由题意得△BCD≌△BED∴DE=DC,BE=BC=6cm∵AB=8cm∴AE=AB-BE=8-6=2(cm)∴ AD+DE+AE=AD+CD+AE=AC+AE= 5+2=7(cm)即△AED的周长为7cm复习题12第11题答案解:AD=A\\\\\'D \\\\\',证明如下:∵△ABC≌△A\\\\\'B\\\\\'C∴AB=A\\\\\'B\\\\\',BC=B\\\\\'C\\\\\',∠B=∠B\\\\\'(全等三角形的对应边相等,对应角相等)又∵AD和A\\\\\'D\\\\\'分别是BC和B\\\\\'C\\\\\'上的中线∴BD=1/2BC,B\\\\\'D\\\\\'=1/2B\\\\\'C\\\\\'∴BD=B\\\\\'D\\\\\'在△ABD和△A\\\\\'B\\\\\'D\\\\\'中∴△ABD≌△A\\\\\'B\\\\\'D\\\\\'(SAS)∴AD=A\\\\\'D\\\\\'(全等三角形的对应边相等)复习题12第12题答案证明:作DE⊥AB于E,DF⊥ AC于F∵AD是△ABC的角平分线∴DE=DF∴(S△ABD)/(S△ACD)=(1/2 AB·DE)/(1/2 AC.DF)=AB/AC即S△ABD:S△ACD=AB:AC复习题12第13题答案已知:如下图所示:在△ABC与△A\\\\\'B\\\\\'C中,AB=A\\\\\'B\\\\\',AC=A\\\\\'C\\\\\',CD,C\\\\\'D\\\\\'分别是:△ABC,△A\\\\\'B\\\\\'C\\\\\'的中线,且CD=C\\\\\'D\\\\\'求证:△ABC≌△A\\\\\'B\\\\\'C\\\\\'证明:∵AB=A\\\\\'B,CD,CD\\\\\'分别是△ABC,△A\\\\\'B\\\\\'C \\\\\'的中线∴1/2AB=1/2A\\\\\'B\\\\\',即AD=A\\\\\'D\\\\\'在△ADC与△A\\\\\'D\\\\\'C中∴△ADC≌△A\\\\\'D\\\\\'C\\\\\'( SSS)∴∠A=∠A\\\\\'在△ABC与△A\\\\\'B\\\\\'C\\\\\'中∴△ABC≌△A\\\\\'B\\\\\'C\\\\\'(SAS)第13章习题13.1第1题答案它们都是轴对称图形,对称轴略提示:只考虑图形几何特征,不考虑其颜色习题13.1第2题答案如下图所示:习题13.1第3题答案有阴影的三角形与1,3成轴对称;整个图形是轴对称图形;它共有2条对称轴习题13.1第4题答案∠A\\\\\'B\\\\\'C\\\\\'=90°,AB=6cm习题13.1第5题答案△ABC ≌△A\\\\\'B\\\\\'C\\\\\'如果△ABC ≌△A\\\\\'B\\\\\'C\\\\\'那么△ABC与△A\\\\\'B\\\\\'C\\\\\'不一定关于某条直线对称习题13.1第6题答案解:∵DE是AC的垂直平分线,AE=3cm∴AD=CD,CE=AE=3cm又∵△ABD的周长为13cm∴AB+BD+AD=13cm∴AB+BD+CD=13cm∴AB+BC=13cm∴AB+BC+AC=AB+BC+AE+CE=13+3+3=19(cm)故△ABC的周长为19cm习题13.1第7题答案是轴对称图形,它有2条对称轴,如下图所示:习题13.1第7题答案直线b,d,f习题13.1第9题答案证明:∵OA=OC,∠A =∠C,∠AOB=∠COD∴△AOB≌△COD∴OB=OD∵BE=DE∴OE垂直平分BD习题13.1第10题答案线段AB的垂直平分线与公路的交点是公共汽车站所建的位置习题13.1第11题答案AB和A\\\\\'B\\\\\'所在的直线相交.交点在L上;BC和B\\\\\'C\\\\\'所在的直线也相交,且交点在L上;AC和A\\\\\'C\\\\\'所在的直线不相交,它们所在的直线与对称轴L平行,成轴对称的两个图形中,如果对应线段所在的直线相交,交点一定在对称轴上,如果对应线段所在的直线不相交,则与对称轴平行习题13.1第12题答案解:发射塔应建在两条高速公路m和n形成的角和平分线与线段AB的垂直平分线的交点位置上.如下图所示,点P为要找的位置习题13.1第13题答案(1)证明:∵点P在AB的垂直平分线上∴PA=PB又∵点P在BC的垂直平分线上∴PB=PC∴ PA=PB=PC(2)解:点P在AC的垂直平分线上.三角形三边的垂直平分线相交于一点,这点到这个三角形三个顶点的距离相等习题13.2第1题答案如下图所示:习题13.2第2题答案关于x轴对称的点的坐标依次为:(3,-6),(-7,-9),(6-1),(-3,5),(0-10)关于y轴对称点的坐标依次为:(-3,6),(7,9),(-6,-1),(3,-5),(0-10)习题13.2第3题答案B(1,-1),C(-1,-1),D(-1,1)习题13.2第4题答案如下图所示:习题13.2第5题答案(1)关于x轴对称(2)向上平移5个单位长度(3)关于y轴对称(4)先关于x轴作轴对称,再关于y轴作轴对称习题13.2第6题答案用坐标描述这个运动:(3,0)一(O,3)一(1,4)一(5,0)一(8,3)一(7,4)一(3,O).点(3,O)与点(5,O)关于直线Z对称,点(O,3)与点(8,3)关于直线L对称,点(1,4)与点(7,4)关于直线L对称如果小球起始时位于(1,0)处,那么小球的运动轨迹如下图所示:习题13.2第7题答案解:如下图所示:△PQR关于直线x=1对称的图形是△P1Q1R1,△PQR关于直线y=-1对称的图形是△P2Q2R2关于直线x=1对称的点的坐标之间的关系是:纵坐标都相等,横坐标的和都是2关于直线y=-1对称的点的坐标之间的关系是:横坐标都相等,纵坐标的和都是-2习题13.3第1题答案(1) 35度,35°(2)解:当80°的角是等腰三角形的一个底角时,那么等腰三角形的另一个底角为80°根据三角形的内角和定理可以求出顶角为180°-80°-80°=20°当80°的角是等腰三角形的顶角时,那么它的两个底角相等,均为1/2(180°-80°)=50°综上,等腰三角形的另外两个角是20°,80°或50°,50°习题13.3第2题答案证明:∵AD∥BC∴∠ADB=∠DBC又∵BD平分∠ABC∴∠ABD=∠DBC∴∠ABD=∠ADB∴AB=AD习题13.3第3题答案解:∵五角星的五个角都是顶角为36°的等腰三角形∴每个底角的度数是1/2×(180°- 36°)=72°∴∠AMB=180°-72°=108°习题13.3第4题答案解:∵AB=AC,∠BAC=100°∴∠B=∠C=1/2(180°-∠BAC)=1/2×(180°-100°)=40°又∵AD⊥BC∴∠BAD=∠CAD=1/2∠BAC=1/2×100°=50°习题13.3第5题答案证明:∵CE//DA∴∠A=∠CEB又∵∠A=∠B∴∠CEB=∠B∴CE=CB∴△CEB是等腰三角形证明:∵AB=AC∴∠B=∠C又∵AD=AE∴∠ADE=∠AED∴∠ADB=∠AEC在△ABD和△ACE中,有∠B=∠C,∠ADB=∠AEC,AB=AC ∴△ABD≌△ACE(AAS)∴BD=CE习题13.3第7题答案解:∵AB=AC,∠=40°∴∠ABC=∠C=1/2×(180°-40°)=70°又∵MN是AB的垂直平分线∴DA=DB∴∠A=∠ABD=40°∴∠DBC=∠ABC-∠ABD=70°-40°=30°已知:如下图所示:点P是直线AB上一点,求作直线CD,使CD⊥AB于点P作法:(1)以点P为圆心作弧交AB于点E,F(2)分别以点E,F为圆心,大于1/2EF的长为半径作弧,两弧相交于点C,过C,P作直线CD,则直线CD为所求直线习题13.3第9题答案解:他们的判断是对的理由:因为等腰三角形底边上的中线和底边上的高重合习题13.3第10题答案证明:∵BO平分∠ABC∴∠MBO=∠CBO∵MN∥BC∴∠BOM=∠CBO∴∠BOM=∠MBO∴BM=OM同理CN=ON∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC即△AMN的周长等于AB+AC习题13.3第11题答案解:∵∠NBC=84°,∠NAC=42°,∠MBC=∠NAC+∠C即84°=42°+∠C ∴∠C=42°∴BC=BA又∵BA=15×(10-8)=30(n mile)∴BC=30n mile,即从海岛B到灯塔C的距离是30n mile习题13.3第12题答案证明:∵△ABD,△AEC都是等边三角形∴AD=AB,AC=AE,∠DAB=∠EAC=60°∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE在△ADC和△ABE中∴△ADC≌△ABE(SAS)∴BE=DC习题13.3第13题答案解:等腰三角形两底角的平分线相等,两腰上的中线相等,两腰上的高相等.以等腰三角形两腰上的高相等为例进行证明已知:在△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分别为点D,E,求证:BD=CE证明:的那个顶角∠A为锐角时,如下图所示:∵AB=AC∴∠ABC=∠ACB又∵BD⊥AC,CE⊥AB∴∠BEC=CDB=90°在Rt△BCE和Rt△CBD中∴Rt△BCE≌Rt△CBD∴BD=CE习题13.3第14题答案解:∵PQ=AP=AQ∴△APQ是等边三角形∴∠APQ=∠AQP=∠PAQ=60°又∵BP=AP∴∠BAP=∠B又∵∠BAP+∠B=∠AOQ=60°∴∠BAP=∠B=30°同理∠CAQ=30°所以∠BAC=∠BAP+∠PAQ+∠CAQ=30°+60°+30°=120°习题13.3第15题答案解:如下图所示:作∠BAC的平分线AD交BC于点D,过点D作DE⊥AB于点E,则△ADC≌△ADE≌△BDE复习题13第1题答案除了第三个图形,其余的都是轴对称图形.找对称轴略复习题13第2题答案如下图所示:复习题13第3题答案证明:连接BC,∵点D是AB的中点,CD⊥AB∴AC= BC同理,AB=BC∴AC=AB复习题13第4题答案点A与点B关于x轴对称;点B与点E关于y轴对称;点C与点E不关于x 轴对称,因为它们的纵坐标分别是3,-2,不互为相反数复习题13第5题答案∠D=25°,∠E=40°,∠DAE=115°复习题13第6题答案证明:∵AD=BC,BD=AC,AB=AB∴△ABD≌△BAC∴∠C=∠D又∵∠DEA=∠CEB,AD=BC∴△ADE≌△BCE∴AE=BE∴△EAB是等腰三角形复习题13第7题答案证明:∵在△ABC中,∠ACB=90°∴∠A+∠B=90°∵∠A=30°∵∠B=60°,BC=1/2AB又∴CD⊥AB∴∠CDB=90°∴∠B+∠BCD=90°∴∠BCD=30°∴BD=1/2BC∴BD=1/2×1/2AB=1/4AB复习题13第8题答案解:等边三角形有3条对称轴,正方形有4条对称轴,正五边形有5条对称轴,正六边形右6条对称轴,正八边形有8条对称轴,正n边形有n条对称轴复习题13第9题答案。
2022年人教版八年级数学上册第十三章练习题及答案 等边三角形(第2课时)
第十三章轴对称13.3 等腰三角形13.3.2 等边三角形第2课时1.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为( )A.6米B.9米C.12米D.15米2.某市在旧城绿化改造中,计划在一块如图所示的△ABC空地上种植草皮优化环境,已知∠A=150°,这种草皮每平方米售价a元,则购买这种草皮至少需要( )A.300a元B.150a元C.450a元D.225a元3.在△ABC中,∠A: ∠B: ∠C=1:2:3,若AB=10,则BC =___________ .4.如图,Rt△ABC中,∠A= 30°,AB+BC=12cm,则AB=______cm.5. 在△ABC中,∠C=90°,∠B=15°,DE是AB的垂直平分线,BE=5,则求AC的长.6. 在△ABC中,AB=AC,∠BAC=120° ,D是BC的中点,DE⊥AB于E点,求证:BE=3EA.7. 如图,已知△ABC是等边三角形,D,E分别为BC,AC上的点,且CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证:BP=2PQ.参考答案:1.B2.B3.54.85. 解:连接AE,∵DE是AB的垂直平分线,∴BE=AE,∴∠EAB=∠B=15°,∴∠AEC=∠EAB+∠B=30°.∵∠C=90°,∴AC= 12AE= 12BE=2.5.6. 证明:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∵ D是BC的中点,∴AD⊥BC.∴∠ADC=90°,∠BAD=∠DAC=60°.∴AB=2AD.∵DE⊥AB,∴∠AED=90°,∴∠ADE=30°,∴AD=2AE.∴AB=4AE,∴BE=3AE.7. 证明:∵△ABC为等边三角形,∴AC=BC=AB ,∠C=∠BAC=60°,∵CD=AE,∴△ADC≌△BEA.∴∠CAD=∠ABE.∵∠BAP+∠CAD=60°,∴∠ABE+∠BAP=60°.∴∠BPQ=60°.又∵ BQ⊥AD,∴∠BQP=90°,∴∠PBQ=30°,∴BP=2PQ.。
数学人教版八年级上册习题及答案
因式分解专题过关1.将下列各式分解因式22(1)3p﹣6pq(2)2x+8x+82.将下列各式分解因式3322(1)xy﹣xy(2)3a﹣6ab+3ab.3.分解因式222222(1)a(x﹣y)+16(y﹣x)(2)(x+y)﹣4xy4.分解因式:222232(1)2x﹣x(2)16x﹣1(3)6xy﹣9xy﹣y(4)4+12(x﹣y)+9(x ﹣y)5.因式分解:(1)2am﹣8a(2)4x+4xy+xy23226.将下列各式分解因式:322222(1)3x﹣12x(2)(x+y)﹣4xy7.因式分解:(1)xy﹣2xy+y 223(2)(x+2y)﹣y228.对下列代数式分解因式:(1)n(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a﹣4a+4﹣b10.分解因式:a﹣b﹣2a+111.把下列各式分解因式:42422(1)x﹣7x+1(2)x+x+2ax+1﹣a22222(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+112.把下列各式分解因式:32222224445(1)4x﹣31x+15;(2)2ab+2ac+2bc﹣a﹣b﹣c;(3)x+x+1;(4)x+5x+3x﹣9;(5)2a﹣a﹣6a﹣a+2.3243222242432因式分解专题过关1.将下列各式分解因式22(1)3p﹣6pq;(2)2x+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p﹣6pq=3p(p﹣2q),222(2)2x+8x+8,=2(x+4x+4),=2(x+2).2.将下列各式分解因式3322(1)xy﹣xy(2)3a﹣6ab+3ab.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.2解答:解:(1)原式=xy(x﹣1)=xy(x+1)(x﹣1);222(2)原式=3a(a﹣2ab+b)=3a(a﹣b).3.分解因式222222(1)a(x﹣y)+16(y﹣x);(2)(x+y)﹣4xy.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a(x﹣y)+16(y﹣x),=(x﹣y)(a﹣16),=(x﹣y)(a+4)(a﹣4);22222222222(2)(x+y)﹣4xy,=(x+2xy+y)(x﹣2xy+y),=(x+y)(x﹣y).4.分解因式:222232(1)2x﹣x;(2)16x﹣1;(3)6xy﹣9xy﹣y;(4)4+12(x﹣y)+9(x﹣y).222分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.2解答:解:(1)2x﹣x=x(2x﹣1);2(2)16x﹣1=(4x+1)(4x﹣1);223222(3)6xy﹣9xy﹣y,=﹣y(9x﹣6xy+y),=﹣y(3x﹣y);222(4)4+12(x﹣y)+9(x﹣y),=[2+3(x﹣y)],=(3x﹣3y+2).5.因式分解:2322(1)2am﹣8a;(2)4x+4xy+xy分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.22解答:解:(1)2am﹣8a=2a(m﹣4)=2a(m+2)(m﹣2);322222(2)4x+4xy+xy,=x(4x+4xy+y),=x(2x+y).6.将下列各式分解因式:322222(1)3x﹣12x(2)(x+y)﹣4xy.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x=3x(1﹣4x)=3x(1+2x)(1﹣2x);22222222222(2)(x+y)﹣4xy=(x+y+2xy)(x+y﹣2xy)=(x+y)(x﹣y).7.因式分解:22322(1)xy﹣2xy+y;(2)(x+2y)﹣y.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)xy﹣2xy+y=y(x﹣2xy+y)=y(x﹣y);22(2)(x+2y)﹣y=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).223222328.对下列代数式分解因式:(1)n(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n(m﹣2)﹣n(2﹣m)=n(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);22(2)(x﹣1)(x﹣3)+1=x﹣4x+4=(x﹣2).229.分解因式:a﹣4a+4﹣b.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.222222解答:解:a﹣4a+4﹣b=(a﹣4a+4)﹣b=(a﹣2)﹣b=(a﹣2+b)(a﹣2﹣b).10.分解因式:a﹣b﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a﹣2a+1为一组.222222解答:解:a﹣b﹣2a+1=(a﹣2a+1)﹣b=(a﹣1)﹣b=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:42422(1)x﹣7x+1;(2)x+x+2ax+1﹣a(3)(1+y)﹣2x(1﹣y)+x(1﹣y)(4)x+2x+3x+2x+1分析:(1)首先把﹣7x变为+2x﹣9x,然后多项式变为x﹣2x+1﹣9x,接着利用完全平方公式和平方差公式分解因式即可求解;4222(2)首先把多项式变为x+2x+1﹣x+2ax﹣a,然后利用公式法分解因式即可解;222(3)首先把﹣2x(1﹣y)变为﹣2x(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;222422222424322222222(4)首先把多项式变为x+x+x++x+x+x+x+x+1,然后三个一组提取公因式,接着提取公因式即可求解.4242222222解答:解:(1)x﹣7x+1=x+2x+1﹣9x=(x+1)﹣(3x)=(x+3x+1)(x﹣3x+1);424222222(2)x+x+2ax+1﹣a=x+2x+1﹣x+2ax﹣a=(x+1)﹣(x﹣a)=(x+1+x2﹣a)(x+1﹣x+a);22242224(3)(1+y)﹣2x(1﹣y)+x(1﹣y)=(1+y)﹣2x(1﹣y)(1+y)+x222222(1﹣y)=(1+y)﹣2x(1﹣y)(1+y)+[x(1﹣y)]=[(1+y)﹣x(12222﹣y)]=(1+y﹣x+xy)432432322222(4)x+2x+3x+2x+1=x+x+x++x+x+x+x+x+1=x(x+x+1)+x(x+x+1)432322+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(3)x5+x+1;((2)2a2 b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(4)x3 +5x2+3x﹣9;。
八年级上册数学课本答案新人教版【三篇】
八年级上册数学课本答案新人教版【三篇】【导语】以下是xx为您整理的八年级上册数学课本答案新人教版【三篇】,供大家学习参考。
第2章2.1第1课时三角形的有关概念答案课前预习一、直线;首尾三、1、等腰三角形2、相等四、大于课堂探究【例1】思路导引答案:1、12、2变式训练1-1:C变式训练1-2:B【例2】思路导引答案:1、2;82、4、6;C变式训练2-1:B变式训练2-2:B课堂训练1~2:A;B3、2或3或44、11或135、解:(1)设第三边的长为xcm,由三角形的三边关系得9-4 (2)由(1)知5 所以第三边长可以是6cm,8cm,10cm,12cm.(3)第三边长为6cm时周长最小,第三边长为12cm时周长,所以周长的取值范围是大于等于19cm,小于等于25cm.课后提升12345BBBAB6、247、6;△ABD,△ADE,△AEC,△ABE,△ADC,△ABC8、2cm;5cm;5cm9,解:∵四边形ABCD是长方形且CE⊥BD于点E,∴∠BAD,∠BCD,∠BEC,∠CED是直角,并且是三角形的一个内角.(1)直角三角形有:△ABD、△BCD、△BCE、△CDE.(2)易找锐角三角形:△ABE,钝角三角形:△ADE.10、解:(1)由三角形三边关系得5-2 因为AB为奇数,所以AB=5,所以周长为5+5+2=12、(2)由(1)知三角形三边长分别为5,5,2,所以此三角形为等腰三角形. 第2章2.1第2课时三角形的高、中线、角平分线答案课前预习一、⊥;CD;BC;∠2;∠BAC二、中线课堂探究【例1】思路导引答案:1、902、ABC;AB变式训练1-1:C变式训练1-2:A【例2】思路导引答案:1、线段2、线段;角;90°解:(1)CEB;C(2)∠DAC;∠BAC(3)∠AFC;90°(4)3变式训练2-1:A变式训练2-2:解:(1)S△ABC=1/2AC BC=1/2×3×4=6(cm ).(2)∵1/2AB CD=SABC,∴1/2×5×CD=6,∴CD=12/5(cm)课堂训练1~3:C;B;C4、40°5、解:如图(1)线段AD即为所画。
八年级上册数学课本答案人教版
八年级上册数学课本答案人教版认真做八年级数学课本习题,就一定能成功!小编整理了关于人教版八年级数学上册课本的答案,希望对大家有帮助!八年级上册数学课本答案人教版(一)第41页练习1.证明:∵ AB⊥BC,AD⊥DC,垂足分为B,D,∴∠B=∠D=90°.在△ABC和△ADC中,∴△ABC≌△ADC(AAS).∴AB=AD.2.解:∵AB⊥BF ,DE⊥BF,∴∠B=∠EDC=90°.在△ABC和△EDC,中,∴△ABC≌△EDC(ASA).∴AB= DE.八年级上册数学课本答案人教版(二)习题12.21.解:△ABC与△ADC全等.理由如下:在△ABC与△ADC中,∴△ABC≌△ADC(SSS).2.证明:在△ABE和△ACD中,∴△ABE≌△ACD(SAS).∴∠B=∠C(全等三角形的对应角相等).3.只要测量A'B'的长即可,因为△AOB≌△A′OB′.4.证明:∵∠ABD+∠3=180°,∠ABC+∠4=180°,又∠3=∠4,∴∠ABD=∠ABC(等角的补角相等).在△ABD和△ABC中,∴△ABD≌△ABC(ASA).∴AC=AD.5.证明:在△ABC和△CDA中,∴△ABC≌△CDA(AAS).∴AB=CD.6.解:相等,理由:由题意知AC= BC,∠C=∠C,∠ADC=∠BEC=90°,所以△ADC≌△BEC(AAS).所以AD=BE.7.证明:(1)在Rt△ABD和Rt△ACD中,∴Rt△ABD≌Rt△ACD( HL).∴BD=CD.(2)∵Rt△ABD≌ Rt△ACD,∴∠BAD=∠CAD.8.证明:∵AC⊥CB,DB⊥CB,∴∠ACB=∠DBC=90°.∴△ACB和△DBC是直角三角形.在Rt△ACB和Rt△DBC中,∴Rt△ACB≌Rt△DBC(HL).∴∠ABC=∠DCB(全等三角形的对应角相等).∴∠ABD=∠ACD(等角的余角相等).9.证明:∵BE=CF,∴BE+EC=CF+EC.∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SSS).∴∠A=∠D.10.证明:在△AOD和△COB中.∴△AOD≌△COB(SAS).(6分)∴∠A=∠C.(7分)11.证明:∵AB//ED,AC//FD,∴∠B=∠E,∠ACB=∠DFE.又∵FB=CE,∴FB+FC=CE+FC,∴BC= EF.在△ABC和△DEF中,∴△ABC≌△DEF(ASA).∴AB=DE,AC=DF(全等三角形的对应边相等).12.解:AE=CE.证明如下:∵FC//AB,∴∠F=∠ADE,∠FCE=∠A.在△CEF和△AED中,∴△CEF≌△AED(AAS).∴ AE=CE(全等三角形的对应边相等).13.解:△ABD≌△ACD,△ABE≌△ACE,△EBD≌△ECD.在△ABD和△ACD中,∴△ABD≌△ACD(SSS).∴∠BAE= ∠CAE.在△ABE和△ACE中,∴△ABE≌△ACE(SAS).∴BD=CD,在△EBD和△ECD中,:.△EBD≌△ECD(SSS).八年级上册数学课本答案人教版(三)习题12.31.解:∵PM⊥OA,PN⊥OB,∴∠OMP=∠ONP=90°.在Rt△OPM和Rt△ONP中,∴Rt△OMP≌Rt△ONP(HL).∴PM=PN(全等三角形的对应边相等).∴OP是∠AOB的平分线.2.证明:∵AD是∠BAC的平分线,且DE,DF分别垂直于AB ,AC,垂足分别为E,F,∴DE=DF.在Rt△BDE和Rt△CDF中,Rt△BDE≌Rt△CDF(HL).∴EB=FC(全等三角形的对应边相等)3.证明:∵CD⊥AB, BE⊥AC,∴∠BDO=∠CEO= 90°.∵∠DOB=∠EOC,OB=OC,∴△DOB≌△EOC∴OD= OE.∴AO是∠BAC的平分线.∴∠1=∠2.4.证明:如图12 -3-26所示,作DM⊥PE于M,DN⊥PF于N,∵AD是∠BAC的平分线,∴∠1=∠2.又:PE//AB,PF∥AC,∴∠1=∠3,∠2=∠4.∴∠3 =∠4.∴PD是∠EPF的平分线,又∵DM⊥PE,DN⊥PF,∴DM=DN,即点D到PE和PF的距离相等.5.证明:∵OC是∠ AOB的平分线,且PD⊥OA,PE⊥OB,∴PD=PE,∠OPD=∠OPE.∴∠DPF=∠EPF.在△DPF和△EPF中,∴△DPF≌△EPF(SAS).∴DF=EF(全等三角形的对应边相等).6.解:AD与EF垂直.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF.在Rt△ADE和Rt△ADF中,∴Rt△ADE≌Rt△ADF(HL).∴∠ADE=∠ADF.在△GDE和△GDF中,∴△GDF≌△GDF(SAS).∴∠DGE=∠DGF.又∵∠DGE+∠DGF=180°,∴∠DGE=∠DGF=90°,∴AD⊥EF.7,证明:过点E作EF上AD于点F.如图12-3-27所示,∵∠B=∠C= 90°,∴EC⊥CD,EB⊥AB.∵DE平分∠ADC,∴EF=EC.又∵E是BC的中点,∴EC=EB.∴EF=EB.∵EF⊥AD,EB⊥AB,∴AE是∠DAB的平分线,。
八年级数学上册 整式的乘除(习题及答案)(人教版)
整式的乘除(习题)➢ 例题示范例1:计算328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-.【操作步骤】(1)观察结构划部分:328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-① ②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算.(3)每步推进一点点.【过程书写】解:原式62634(2)(42)x y y x y =⋅-+-6363842x y x y =-+-6342x y =--➢ 巩固练习1. ①3225()a b ab -⋅-=________________;②322()(2)m m n -⋅-=________________;③2332(2)(3)x x y -⋅-; ④323(2)(2)b ac ab ⋅-⋅-.2. ①2223(23)xy xz x y ⋅+=_____________________; ②31422xy y ⎛⎫-⋅-= ⎪⎝⎭_______________________; ③2241334ab c a b abc ⎛⎫-⋅= ⎪⎝⎭___________________; ④222(2)(2)ab a b ⋅-=________________________;⑤32(3231)a a a a -⋅+--=____________________.3. ①(3)(3)x y x y +-;②(2)(21)a b a b -++;③(23)(24)m n m n ---; ④2(2)x y +;⑤()()a b c a b c -+++.4. 若长方形的长为2(421)a a -+,宽为(21)a +,则这个长方形的面积为()A .328421a a a -+-B .381a -C .328421a a a +--D .381a +5. 若圆形的半径为(21)a +,则这个圆形的面积为( )A .42a π+πB .2441a a π+π+C .244a a π+π+πD .2441a a ++6. ①32223x yz xy ⎛⎫÷= ⎪⎝⎭__________________;②3232()(2)a b a b -÷-=________________;③232(2)()x y xy ÷=___________;④2332(2)(__________)2x y x y -÷=;⑤23632()(6)(12)m n m n mn -÷⋅-=_________.7. ①32(32)(3)x yz x y xy -÷-=____________; ②233242112322a b a b a b a b ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________;③24422(48)(2)m n m n mn --÷=_______________;④()221___________________32m mn n ÷=-+-. 8. 计算:①322322(4)(4)()(2)a c a c a c ac -÷--⋅-;②224(2)(21)a a a -+--;③33(2)(2)(2)()a b a b a b ab ab +-+-÷-.➢ 思考小结1. 老师出了一道题,让学生计算()()a b p q ++的值.小聪发现这是一道“多×多”的问题,直接利用握手原则展开即可. ()()a b p q ++=小明观察这个式子后,发现可以把这个式子看成长为(a +b ),宽为(p +q )的长方形,式子的结果就是长方形的面积;于是通过分割就可以表达这个长方形的面积为_________________.∴()()a b p q ++=请你类比上面的做法,利用两种方法计算(a +b )(a +2b ).【参考答案】➢ 巩固练习1. ①445a b ②522m n③12272x y - ④3524a b c -2. ①222336+9x y z x y ②428xy xy -+ ③232321334a b c a b c - ④442584a b a b - ⑤432323a a a a --++3. ①229x y - ②2242a b a b -+-③224212m mn n -++④2244x xy y ++ ⑤2222a b c ac -++4. D5. C6. ①223x z②12 ③48x y④34x y - ⑤22mn7. ①223x z x -+ ②2246b ab a -+-③222n m --④3222132m n m n m -+- 8. ①322a c②7 ③23a ab + ➢ 思考小结()()a b p q ap aq bp bq ++=+++ 22()(2)32a b a b a ab b ++=++。
人教版数学八年级上册课本答案
人教版数学八年级上册课本答案人教版数学八年级上册课本答案【篇一:2013年审人教版八年级上册数学课本练习题答案汇总】2010年为+108.7mm; 2009年为-81.5 mm; 2008年为+53.5 mm.2.这个物体又移动了-1 m表示物体向左移动了1m这时物体又回到了原来的位置第4页习题答案1.解:有5个三角形,分别是△abe,△abc,△bec,△bdc,△edc.2.解:(1)不能;(2)不能;(3)能.理由略第5页习题答案:1.解:图(1)中∠b为锐角,图(2)中∠b为直角,图(3)中∠b为钝角,图(1)中ad在三角形内部,图(2)中ad为三角形的一条直角边,图(3)中ad在三角形的外部.锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.2.(1)af(或bf) cd ac (2)∠2 ∠abc ∠4或∠acf第7页习题答案:解:(1)(4)(6)具有稳定性第8页习题11.1答案1.解:图中共6个三角形,分别是△abd,△ade,△aec,△abe,aadc,△abc.2.解:2种.四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,3.其中7+510,7+3=10,5+310,5+37,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,3.解:如图11-1-27所示,中线ad、高ae、角平分线af.4.(1) ecbc (2) ∠dac∠bac (3)∠afc (4)1/2bc.af5.c6.解:(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm),因为6+68,所以此时另两边的长为6 cm,8 cm.(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm),因为6+77,所以北时另两边的长分别为7 cm,7cm.7.(1) 解:当等腰三角形的腰长为5时,三角形的三边为5,5,6,因为5+56,所以三角形周长为5+5+6=16:当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+56,所以三角形周长为6+6+5=17.所以这个等腰三角形的周长为16或17;(2)22.8.1:2 提示:用41/2bc.ad—丢ab.ce可得.9.解:∠1=∠2.理由如下:因为ad平分∠bac,所以∠bad=∠dac.又de//ac,所以∠dac=∠1. 又df//ab,所以∠dab=∠2. 所以∠1=∠2.10.解:四边形木架钉1根木条;五边形木架钉2根木条;六边形木架钉3根木条人教版八年级上册数学第13页练习答案人教版八年级上册数学第14页练习答案1.解:∠acd=∠b.所以∠acd=∠b(同角的余角相等).2.解:△ade是直角三角形,所以△ade是直角三角形(有两个角互余的三角形是直角三角形).人教版八年级上册数学第15页练习答案人教版八年级上册数学习题11.2答案1.(1) x= 33; (2)z一60;(3)z一54;(4)x=60.(3)不可以,如果外角是锐角,则它的邻补角为钝角,就是钝角三角形,而不是直角三角形了.又因为∠1=∠2,∠3=∠4,所以∠2=1/2∠abc,∠4=1/2∠acb,所以x=140.11.证明:因为∠bac是△ace的一个外角,所以∠bac=∠ace+∠e.又因为ce平分∠acd,所以∠ace= ∠dce.所以∠bac=∠dce+∠e 又因为∠dce是△bce的一个外角,所以∠dce=∠b+∠e.所以∠bac=∠b+ ∠e+∠e=∠b+2∠e.人教版八年级上册数学第21页练习答案人教版八年级上册数学第24页练习答案1.(1)x=65;(2)x=60; (3)x=95.2.六边形3.四边形人教版八年级上册数学习题11.3答案1.解:如图11-3 -17所示,共9条.2.(1)x=120;(2)x=30;(3)x=75.3.解:如下表所示.6.(1)三角形;所以这个多边形为六边形.7.ab//cd,bc//ad,理由略.提示:由四边形的内角和可求得同旁内角互补.10.解:平行(证明略),bc与ef有这种关系.理由如下:人教版八年级上册数学第28页复习题答案1?解:因为s△abd=1/2bd.ae=5 cm2, ae=2 cm,所以bd=5cm.又因为ad是bc边上的中线,所以dc=bd=5 cm,bc=2bd=10 cm.2.(1)x=40;(2)x=70;(3)x=60;(4)x=100; (5)x=115.4.5条,6个三角形,这些三角形内角和等于八边形的内角和.9.bd pc bd+pc bp+cp【篇二:2013年审人教版八年级上册数学课本练习题答案汇总】2010年为+108.7mm; 2009年为-81.5 mm; 2008年为+53.5 mm.2.这个物体又移动了-1 m表示物体向左移动了1m这时物体又回到了原来的位置第4页习题答案1.解:有5个三角形,分别是△abe,△abc,△bec,△bdc,△edc.2.解:(1)不能;(2)不能;(3)能.理由略第5页习题答案:1.解:图(1)中∠b为锐角,图(2)中∠b为直角,图(3)中∠b为钝角,图(1)中ad在三角形内部,图(2)中ad为三角形的一条直角边,图(3)中ad在三角形的外部.锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.2.(1)af(或bf) cd ac (2)∠2 ∠abc ∠4或∠acf第7页习题答案:解:(1)(4)(6)具有稳定性第8页习题11.1答案1.解:图中共6个三角形,分别是△abd,△ade,△aec,△abe,aadc,△abc.2.解:2种.四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,3.其中7+510,7+3=10,5+310,5+37,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,3.解:如图11-1-27所示,中线ad、高ae、角平分线af.4.(1) ecbc (2) ∠dac∠bac (3)∠afc (4)1/2bc.af5.c【篇三:北师大版八年级上册数学课本课后练习题答案】lass=txt>第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;1.l探索勾股定理随堂练习1.a所代表的正方形的面积是625;b所代表的正方形的面积是144。
人教版八年级上册数学书答案
人教版八年级上册数学书答案第一章有理数习题1.1:1.有理数是指能够用两个整数的比表示的数,可以是正数、负数或0。
2.(1)+12;(2)-7;(3)-32;(4)+18;(5)03.(1)-8;(2)-76;(3)0;(4)+20;(5)+9;(6)+364.(1)-9;(2)+24;(3)0;(4)-14;(5)+425.(1)0;(2)-45;(3)2;(4)-88;(5)9;(6)-656.(1)+13;(2)-37;(3)-45;(4)0;(5)+16;(6)+1;(7)-77;(8)+887.(1)-0.2;(2)+0.8;(3)-0.05;(4)+0.15;(5)-0.6;(6)+0.38.(1)-0.1;(2)+0.2;(3)-1.3;(4)+0.5;(5)-0.7;(6)+1.2习题1.2:1.(1)-4.3;(2)0;(3)-2.8;(4)-3.4;(5)-2.92. (1) -12.15 (2) 1.2 (3) -1.25 (4) -0.125 (5) 1.48 (6)3.4 (7) -15.6253. (1) -1.375 (2) 5.5 (3) 7 (4) -3.2 (5) -0.894 (6) 12.1254. (1) 69.50 (2) -8.2 (3) -1.8 (4) 1.7 (5) -0.02习题1.3:1. 总结:两个整数的和、差、积仍然是有理数。
2. 总结:两个有理数的和、积、商仍然是有理数,但当除数为0时,没有意义。
3. 总结:有理数的相反数仍然是有理数。
习题1.4:1. 一个有理数的绝对值等于该数与0之间的距离,绝对值表示数的大小。
2. (1) 3 (2) 8 (3) 15 (4) -63. (1) 6 (2) -14 (3) 20 (4) -3习题1.5:1. (1) -2.5 (2) -0.2 (3) 0.6 (4)3.52. (1) 1.3 (2) -0.7 (3) 0.9 (4) -0.1习题1.6:1. (1) 7 (2) 0 (3) 5 (4) 8 (5) -42. (1) -0.5 (2) -0.3 (3) -0.4 (4) 0.2 (5) -0.1习题1.7:1. x = -52. x = 33. x = -5习题1.8:1. 自定义答案第二章代数初步习题2.1:1. 解:x = 32. 解:x = 13. 解:x = 3习题2.2:1. 解:x = 22. 解:x = 03. 解:x = -1习题2.3:1. 代解得a = 6,b = 4习题2.4:1. 代入原式:1 + (2 + 3 + 4) = 1 + 9 = 102. 解:x = 83. 代入原式:3(8) = 24习题2.5:1. 代入原式:6 - (20 + 14) = 6 - 34 = -28习题2.6:1. 解:x = 3习题2.7:1. 解:x = 9习题2.8:1. 解:x = -5习题2.9:1. 解:x = 3习题2.10:1. 解:x = 4习题2.11:1. 解:x = 2习题2.12:1. 代入原式:8(2) = 16习题2.13:1. 解:y = 4习题2.14:1. 解:x = 62. 解:y = 6习题2.15:1. 解:x = -2习题2.16:1. 解:x = 7习题2.17:1. 解:a = 5习题2.18:1. 解:x = 1习题2.19:1. 解:x = -8习题2.20:1. 解:y = -3习题2.21:1. 解:x = 0习题2.22:1. 解:x = -4习题2.23:1. 解:x = -12习题2.24:1. 解:y = -4习题2.25:1. 代入原式:8 - (-12) = 8 + 12 = 202. 代入原式:-5 - (-3) = -5 + 3 = -83. 代入原式:3 - 7 = -4习题2.26:1. 代入原式:3 + 5(4) = 3 + 20 = 23习题2.27:1. 代入原式:4 + 5(-2) = 4 - 10 = -6习题2.28:1. 代入原式:7 - 5(3) = 7 - 15 = -8习题2.29:1. 代入原式:-3 + 5(-2) + 4 = -3 - 10 + 4 = -9习题2.30:1. 代入原式:3(5 - 2) = 3(3) = 9综上所述,以上是人教版八年级上册数学书第一章和第二章习题的答案。
人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析
人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) B.∠BAE=∠CADA.AB=AC C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) 第3题图第5题图 第2题图第6题图AB C DA.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC ≌△CED D .∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于 点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ; ②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A 、3个 B 、2个 C 、1个 D 、0个二、填空题(每题3分,共21分)11.如图6,AC=AD,BC=BD,则△ABC≌ ;应用的判定方法是 .12.如图7,△ABD≌△BAC,若AD=BC,则∠BAD的对应角为 .13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm ,则点D到AC的距离为 .B C DA 图6 D O CBA 图8 A D CB图7 第9题图 第7题图14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得△AOD≌△COB,从而可以得到AD= .15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明 ≌ 得到AB=DC,再利用“ ”证明△AOB≌ 得到OB=OC. 16.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是 .17.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 . 三、解答题(共29分)18. (6分)如右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.解: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( ) 19. (8分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm ,FH=1.1 cm ,HM=3.3 cm ,求MN和HG 的长度.第19题图图10 DCBA20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.(10分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.B C EF A23.(10分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12章·全等三角形(详细答案)一、选择题 CBDCD BDCDC二、填空题 11、△ABD SSS 12、∠ABC 13、3cm 14、∠COB SAS CB 15、△ABC △DCB AAS △DOC 16、相等 17、○3 两角和它们的夹边分别相等的两个三角形全等三、解答题18、AD CAD AB=AC ∠BAD=∠CAD AD=AD SAS19、B 解:(1)EF=MN EG=HN FG=MH ∠F=∠M ∠E=∠N ∠EGF=∠MHN (2)∵△EFG ≌△NMH ∴MN=EF=2.1cm∴GF=HM=3.3cm ∵FH=1.1cm ∴HG=GF -FH=3.3-1.1=2.2cm 20、解:∵DE ∥AB ∴∠A=∠E在△ABC 与△CDE 中∠A=∠E BC=CD∠ACB=∠ECD∴△ABC ≌△CDE(ASA)∴AB=DE21、证明:∵AB ∥DE∴∠A=∠EDF∵BC ∥EFCA∴∠ACB=∠F∵AD=CF∴AC=DF在△ABC与△DEF中∠A=∠EDFAC=DF∠ACB=∠F△ABC≌△DEF(ASA)四、解答题22、证明:①∵BE⊥CD∴∠BEC=∠DEA=90°在Rt△BEC与Rt△DEA中BC=DABE=DE∴Rt△BEC≌Rt△DEA(HL)②∵Rt△BEC≌Rt△DEA∴∠C=∠DAE∵∠DEA=90°∴∠D+∠DAE=90°∴∠D+∠C=90°∴∠DFC=90°∴DF⊥BC23、证明:在△ABC与△ADC中1=∠2AC=AC3=∠4∴△ABC≌△ADC(ASA)∴CB=CD在△ECD与△ECB中CB=CD∠3=∠4CE=CE∴△ECD≌△ECB(SAS)∴∠5=∠6第十二章全等三角形一、填空题(每小题4分,共32分).1.已知:///ABC A B C ∆∆≌,/A A ∠=∠,/B B ∠=∠,70C ∠=︒,15AB cm =,则/C ∠=_________,//A B =__________.2.如图1,在ABC ∆中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形_______对.图1 图2 图33. 已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为______ cm 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________c m . 4. 如图2所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部. 7.如图4,两平面镜α、β的夹角 θ,入射光线AO 平行于β,入射到α上,经两 次反射后的出射光线CB 平行于α,则角θ等于________.8.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分) 9.如图6,AE =AF ,AB =AC ,E C 与B F 交于点O ,∠A =600,∠B =250,则∠E OB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( ) A .35 cm B .30 cm C .45 cm D .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD= BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC , 得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )NAMC B图7 图8 图9 图10A.边角边公理 B.角边角公理; C.边边边公理 D.斜边直角边公理13.如图9,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3C.2:3 D.1:414.如图10,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.图11第十二章全等三角形。
八年级上册数学练习册答案人教版2021
八年级上册数学练习册答案人教版2021(2021最新版)作者:______编写日期:2021年__月__日矩形的判定一、选择题.1.B2.D二、填空题.1.AC=BD(答案不)2.③,④三、解答题.1.证明:(1)在□ABCD中,AB=CD∵BE=CF∴BE+EF=CF+EF即BF=CE又∵AF=DE∴⊿ABF≌⊿DCE.(2)∵⊿ABF≌⊿DCE.∴∠B=∠C在□ABCD中,∠B+∠C=180°∴∠B=∠C=90°∴□ABCD是矩形2.证明:∵AE∥BD,BE∥AC∴四边形OAEB是平行四边形又∵AB=AD,O是BD的中点∴∠AOB=90°∴四边形OAEB是矩形3.证明:(1)∵AF∥BC∴∠AFB=∠FBD又∵E是AD的中点,∠AEF=∠BED∴⊿AEF≌⊿DEB∴AF=BD又∵AF=DC∴BD=DC∴D是BC的中点(2)四边形ADCF是矩形,理由是:∵AF=DC,AF∥DC∴四边形ADCF 是平行四边形又∵AB=AC,D是BC的中点∴∠ADC=90°∴四边形ADCF是矩形【篇二】菱形的判定一、选择题.1.A2.A二、填空题.1.AB=AD(答案不)2.3.菱形三、解答题.1.证明:(1)∵AB∥CD,CE∥AD∴四边形AECD是平行四边形又∵AC平分∠BAD∴∠BAC=∠DAC∵CE∥AD∴∠ECA=∠CAD∴∠EAC=∠ECA∴AE=EC∴四边形AECD是菱形(2)⊿ABC是直角三角形,理由是:∵AE=EC,E是AB的中点∴AE=BE=EC∴∠ACB=90°∴⊿ABC是直角三角形2.证明:∵DF⊥BC,∠B=90°,∴AB∥DF,∵∠B=90°,∠A=60°,∴∠C=30°,∵∠EDF=∠A=60°,DF⊥BC,∴∠EDB=30°,∴AF∥DE,∴四边形AEDF是平行四边形,由折叠可得AE=ED,∴四边形AEDF是菱形.3.证明:(1)在矩形ABCD中,BO=DO,AB∥CD∴AE∥CF∴∠E=∠F又∵∠BOE=∠DOF,∴⊿BOE≌⊿DOF.(2)当EF⊥AC时,以A、E、C、F为顶点的四边形是菱形∵⊿BOE≌⊿DOF.∴EO=FO在矩形ABCD中,AO=CO∴四边形AECF是平行四边形又∵EF⊥AC,∴四边形AECF是菱形【篇三】极差、方差与标准差(一)一、选择题.1.D2.B二、填空题.1.702.43.甲三、解答题.1.甲:6乙:42.(1)甲:4乙:4(2)甲的销售更稳定一些,因为甲的方差约为0.57,乙的方差约为1.14,甲的方差较小,故甲的销售更稳定一些。
八年级上册数学练习册答案人教版(共9篇)
八年级上册数学练习册答案人教版(共9篇)八年级上册数学练习册答案人教版〔一〕: 数学八年级上册配套练习册参考答案(人民教育出版社社)第一课时根底知识;1 C2 D3 B4 B5 ∠F.DF.△EDF.6 DC.CF.7 55°8 △COD.△COD.CO.OD.PC.9 ∠DBE.AC.平行.八年级上册数学练习册答案人教版〔二〕: 八年级上册数学练习册积的乘方答案人教版豆丁网是芝麻开花29页的吗如果是,下面是答案等于把积的每个因式分别相乘;〔ab〕^n=a^n ·b^n ;a^n·b^n·c^n 〔1〕4a 〔2〕-27x〔1〕4*10^6 〔2〕1CDBDBB2.4*10 *1.5*10 *1.2*10原式 =2.4*1.5*1.2*10 *10 *10=4.32*10^7cm【^的意思就是xx的x次方,*是乘号如果显示乱码的话后面数是178的世平方,179是立方】八年级上册数学练习册答案人教版〔三〕: 数学八年级上册配套练习册参考答案(人民教育出版社社)第一课时根底知识;1 C2 D3 B4 B5 ∠F.DF.△EDF.6 DC.CF.7 55°8 △COD.△COD.CO.OD.PC.9 ∠DBE.AC.平行.八年级上册数学练习册答案人教版〔四〕: 请问八年级数学人教版上册配套练习册33页第13题怎么做如图〔略):四个点A(0,1)B(-3,4)C(-5,4)D(-5,1).〔1〕画出四边形ABCD关于x=-1的对称图形A"B"C"D";〔2〕你知道四边形ABCD与A"B"C"D"重叠局部是什么图形吗求出重叠局部的面积.关于x=-1对称,既对称点y轴坐标不变,x轴点为-1*2减去对应点的x轴的点,例如A(0,1)关于x=-1对称点A"为〔-1*2-0,1〕即A"为〔-2,1〕,对应的手下的就是B"〔1,4〕C"(3,4)D"(3,1)画出坐标图就可以看出来重叠的是等腰三角形,面积就很好算的了,求出AB与A"B"相交的点,h就出来的了,h-1就是高,底是2,面积不是很好求的吗···八年级上册数学练习册答案人教版〔五〕: 人教版八年级上册数学书复习题14的答案复习题14 【复习稳固】 1.小亮为赞助“希望工程〞现已存款100元他方案今后三年每月存款10元存款总数y 单位元将随时间x 单位月的变化而改变.指出其中的常量与变量自变量与函数试写出函数解析式.2.判断以下各点是否在直线y=2x+6上这条直线与坐标轴交于何处—5 — 4 — 7 ,20 27 1 32 317 3.填空〔1〕直线xy3221 经过第象限 y随x的增大而〔2〕直线y=3x — 2经过第象限 y随x的增大而 .4.根据以下条件分别确定函数y=kx+b的解析式 1 y与x成正比例 x=5时y=6 2 直线y=kx+b经过点 3,6 与点 21 21 .5.试根据函数y=3x — 15 的图象或性质确定x取何值时 1 y 0 2 y 0.【综合运用】 6.在某火车站托运物品时不超过1千克的物品需付2元以后每增加1千克缺乏1千克按1千克计需增加托运费5角设托运p千克 p为整数物品的费用为c元写出c的计算公式.7.某水果批发市场规定批发苹果不少于100千克时批发价为每千克2.5元.小王携带现金3000元到这市场采购苹果并以批发价买进.如果购置的苹果为x千克小王付款后还剩余现金y元试写出y关于x的函数解析式并指出自变量x的取值范围.8.均匀地向一个容器注水最后把容器注满.在注水过程中水面高度h随时间t的变化规律如下图图中OABC为一折线这个容器的形状是图中哪一个你能画出向另两个容器注水时水面高度h随时间t变化的图象草图吗9.等腰三角形周长为20. 1 写出底边长y关于腰长x的函数解析式 x为自变量 2 写出自变量取值范围 3 在直角坐标系中画出函数图象.10.A 8,0 及在第一象限的动点P x y 且x+y=10 设△OPA的面积为S 1 求S 关于x的函数解析式 2 求x的取值范围 3 求S=12时P点坐标 4 画出函数S 的图象.11. 1 画出函数y=|x—1|的图象不要告诉我买什么教材,我的教材丢了,现在买也来不及了、、1.常量已存款100元,三年,每月存款10元;变量总数y ,时间x;自变量x;函数y;函数解析式:y=10x+1002. —5 — 4在交于0,6;32 317 在交于付三,03.1 2 4,减小;〔2〕1 3 4 增大4.〔1〕y=五分之六x 〔2)y=五分之十三x+五分之九5.(1) x大于5 〔2〕x小于五6.分两种情况第一种:p 小于1 c=2第二种:p大于1 c=(p-1)0.5+27.y=3000-2.5x x大于等于100小于等于12008.图三9.1 y=-2x+20 2 x大于5小于10 3.略 10.s=-4x+40 x大于0小于10 p(7,3) 略 11.用列表法和图象法八年级上册数学练习册答案人教版〔六〕: 义务教育教科书配套练习册数学八年级下册人民教育出版社 101-104个人认为人民教育出版社出版的义务教育课程标准实验教科书数学八年级下册第83页例2解答不完整,应该有两个答案,一个是西北方向,一个是东南方向.附上原题——例2 “远航〞号、“海天〞号轮船同时离开港口,各自沿一固定...八年级上册数学练习册答案人教版〔七〕: 求人教版数学八年级上册数学书上P137和138页的答案大神们帮帮助求人教版数学八年级上册数学书上复习题14P137和138页的答案【八年级上册数学练习册答案人教版】1.常数100,10;自变量x,函数y.y=10x+100(0≤x≤36,x为整数〕2.(-5,-4),(2/3,22/3)在直线y=2x+6上;〔-7,20〕,(-7/2,1)不在直线y=2x+6上.直线y=2x+6与x轴交与〔0,6〕3.(1)一、二、四,减小;〔2〕一、三、四,增...八年级上册数学练习册答案人教版〔八〕: 求八年级上册的数学练习题给我八年级上册的数学题要完整的无论什么题都行只要是八年级上册的数学题选一选(每题3分,共30分) 如果一个正方形的面积是,那么它的对角线长为( ) A. B. C. D. 2.算术平方根比原数大的数是( ) A.正实数 B.负实数 C.大于0而小于1的数 D.不存在 3.以下图形中,绕某个占旋转1800后能与自身重合的有( ) ①..推荐程度:授权方式:免费软件软件大小:未知下载:4442023-10-22 八年级数学期中试卷一,选择题:(此题有8小题,每题3分,共24分.) 如图,:AB‖CD,假设∠1=50°,那么∠2的度数是( )A,50° B,60° C,130 D,120° 如图,在以下条件中,能够直接判断‖的是( )A.∠1=∠4 B.∠3=∠4 C.∠2+∠3=180°D.∠1=∠2 等腰三角形一边是3,一边是6,那么它的周长等于( )A.12 B.12 或15 C.15 D.18或15 以下各组数据能作为..推荐程度:授权方式:免费软件软件大小:未知下载:2362023-01-31 八年级函数及其图象测试题八年级数学《函数及其图象》测试题姓名:___班级:___考号:___分数:___一、精心选一选!(每题2分,共30分) 1、函数的自变量x 的取值范围是__. A、 B、且 C、 D、且 2、在直角坐标系中,点P(1,-1) 一定在___上. A.、抛物线y=x2上 B、双曲线y= 上 C、直线y=x上 D、直线y=-..推荐程度:授权方式:免费软件软件大小:未知下载:442023-01-31 八年级数学(上)函数同步练习题及答案八年级数学上学期函数同步练习题附答案☆我能选 1.假设y与x的关系式为y=30x-6,当x= 时,y的值为〔〕 A.5 B.10 C.4 D.-4 2.以下函数中,自变量的取值范围选取错误的选项是〔〕 A.y=2x2中,x取全体实数B.y= 中,x取x≠-1的实数 C.y= 中,x取x≥2的实数 D.y= 中..推荐程度:授权方式:免费软件软件大小:未知下载:412023-01-31 八年级上学期数学一次函数测试题八年级数学(上)一次函数试题姓名一. 填空〔每题4分,共32分〕 1.一个正比例函数的图象经过点〔-2,4〕,那么这个正比例函数的表达式是 . 2.一次函数y=kx+5的图象经过点〔-1,2〕,那么k= . 3.一次函数y= -2x+4的图象与x轴交点坐标是 ,与y轴交点坐标是图象与坐..推荐程度:授权方式:免费软件软件大小:未知下载:302023-01-31 北师大版八年级数学单元测试题第六章一次函数测试北师大彼八年级(上)第六章一次函数测试题一填空题: 1、某晚报的售价是每份0.50元,y表示销售x份报纸的总价,那么y与x的函数关系式是〔〕.假设直线y=kx经过点〔1,2〕,那么k的值是〔〕 2、假设函数y=〔m—2〕x+5—m是一次函数,那么m满足的条件是〔〕假设此函数是正比例函数,那么m 的值是〔〕,..推荐程度:授权方式:免费软件软件大小:未知下载:202023-01-31 八年级上一次函数图象训练题北师大版八年级上一次函数图象习题一.选择题: 1.点A( , )关于轴的对称点的坐标是〔〕 (A) ( , ) (B) ( , ) (C) ( , ) (D) ( , ) 2.以下函数中,自变量的取值范围不正确的选项是〔 ..推荐程度:授权方式:免费软件软件大小:未知下载:232023-01-31 八年级数学反比例函数测试题人教版八年级(下)数学反比例函数测试题一选择题:〔每题5分,共25分〕1、以下函数中,y是x的反比例函数的是〔〕 A B C D 2、y与x成正比例,z 与y成反比例,那么z与x之间的关系是〔〕 A 成正比例 B 成反比例 C 有可能成正比例也有可能是反比例 D 无法确..推荐程度:授权方式:免费软件软件大小:未知下载:172023-01-31 八年级分式函数测试题八年级分式函数测试题〔考试时间:100分钟:总分值:100分〕一.细心填一填,〔每题2分,共30分〕 1.假设分式的值为零,那么; 2.分式 , , 的最简公分母为; 3.计算:; 4.假设 ,那么必须满足的条件是; 5. 点A〔-3,2〕关于y轴对称的点的坐标是 ..推荐程度:授权方式:免费软件软件大小:未知下载:102023-01-31 北师大版八年级数学(上)一次函数测试题八年级上学期数学(北师大版)一次函数试题推荐程度:授权方式:免费软件软件大小:未知下载:182023-01-31 八年级数学应用题 31道八年级数学分式方程应用题班级姓名 1、块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000Kg和15000Kg,第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量. 2、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是..推荐程度:授权方式:免费软件软件大小:未知下载:202023-11-21 八年级数学(上)期末检测题班级姓名评分 (卷面总分:120分;测试时间:120分钟) 一,填空题:(每题3分,共30分) 1,的绝对值是 ,= ,= ; 2,两个无理数的乘积是有理数,试写出这样的两个无理数 ; 3,一个多边形的内角和……推荐程度:授权方式:免费软件软件大小:未知下载:7412023-11-21 8年级数学上学期期末试卷2023-2023学年上学期期末水平测试8年级数学试卷 (考试时间120分钟,总分值100分) 一,填空题:(简洁的结果,表达的是你敏锐的思维,需要的是细心!每题3分,共30分) 1,8的立方根是……推荐程度:授权方式:免费软件软件大小:未知下载:3432023-11-21 八年级数学上学期期末检测试卷惠安县2023—2023学年度上学期八年级数学期末检测试卷一,填空题.(每题2分,共24分) 1,计算:= . 2,不等式>5的解...ABCD中,E,F分别是对角线AC,CA延长线上的点,且CE=AF,试说明四边形BEDF是平行四边形. 23,(5分)如图,在梯形...推荐程度:授权方式:免费软件软件大小:未知下载:2502023-11-21 八年级上学期期末考试数学试卷澧县2023年上学期八年级期末考试数学试卷班次_______ 姓名_______ 计分______ 一,填空题:每空2分,共30分 1,计算:① =_____.② =______. 2,当x______时, 有意义. 3,图1……推荐程度:授权方式:免费软件软件大小:未知下载:2592023-11-21 八年级上学期期末数学试题05—06学年度上学期八年级数学期末试题数学说明:本试卷分第一卷和第二卷两局部,第一卷36分,第二卷84分,共120分;答题时间120分钟. 第I卷(共45分) 一,请你选一选.(每题3分,共45分) 1.假设,一次函数的图象大致形状是 ( ) 2.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC与∠ACB的角平分线,且相交于点F,那么图中的等..推荐程度:授权方式:免费软件软件大小:未知下载:2262023-11-19 华师大版八年级数学(上)期末复习试题一华师大数学八年级上学期期末复习试题一班级:____________姓名:____________评价:____________ 一. 选择题:在下面四个选项中只有一个是正确的.(此题共18分,每题3分) 1. 以下计算正确的选项是( ) ……推荐程度:授权方式:免费软件软件大小:未知下载:2572023-11-19 八年级(上)数学期末试题八年级数学(上)期末试题(10) 本卷总分值100分,考试时间100分钟姓名: . 班别: .座号: .评分: . 选择题:(此题共8小题,每题2分,共16分,每题给出的4个答案中,只有一个是正确的,请你把所选的答案的编号填入该题后面的括号内.) 1.16的平方根是 [ ] A. 4 B. ±4 C.……八年级上册数学练习册答案人教版〔九〕: 八年级上册数学126页的练习答案1.自变量X的取值满足什么条件时,函数Y=3X+8的值满足以下条件(1)Y=0(2)Y=-7 (3)Y>0 (4)Y〔1〕x=-8/3〔2〕x=-5〔3〕3x+8>0 3x>-8 x>-8/3〔4〕3x+8。
2024年人教版八年级上册数学第二单元课后练习题(含答案和概念)
2024年人教版八年级上册数学第二单元课后练习题(含答案和概念)试题部分一、选择题:1. 在人教版八年级上册数学第二单元中,下列哪个图形是平行四边形?()A. 四边形ABCD,AB∥CD,AD∥BCB. 四边形EFGH,EF∥GH,EG∥FH,且EF=GHC. 四边形IJKL,IK∥JL,IJ∥KLD. 四边形MNOP,MN=NO=OP=PM2. 若平行四边形ABCD的对角线交于点O,下列哪个结论是正确的?()A. OA=OC,OB=ODB. OA=OB,OC=ODC. OA=BC,OB=CDD. OA=BD,OB=AC3. 下列关于平行四边形性质的说法,错误的是()A. 平行四边形的对边相等B. 平行四边形的对角相等C. 平行四边形的邻角互补D. 平行四边形的对角线互相平分4. 在平行四边形ABCD中,若AB=6cm,BC=8cm,则对角线AC的取值范围是()A. 2cm<AC<14cmB. 2cm<AC<10cmC. 4cm<AC<14cmD. 4cm<AC<10cm5. 下列关于矩形性质的说法,错误的是()A. 矩形的对边平行且相等B. 矩形的四个角都是直角C. 矩形的对角线相等D. 矩形的对角线互相垂直6. 若一个平行四边形的四个角都是直角,那么这个平行四边形是()A. 矩形B. 菱形C. 正方形D. 无法确定7. 在矩形ABCD中,若对角线AC和BD的交点为O,下列哪个结论是正确的?()A. OA=OC,OB=ODB. OA=OB,OC=ODC. OA=BC,OB=CDD. OA=BD,OB=AC8. 下列关于菱形性质的说法,错误的是()A. 菱形的对边平行B. 菱形的四条边相等C. 菱形的对角相等D. 菱形的对角线互相垂直9. 在菱形ABCD中,若对角线AC和BD的交点为O,下列哪个结论是正确的?()A. OA=OC,OB=ODB. OA=OB,OC=ODC. OA=BC,OB=CDD. OA=BD,OB=AC10. 下列关于正方形性质的说法,错误的是()A. 正方形的四条边相等B. 正方形的四个角都是直角C. 正方形的对角线相等D. 正方形的对角线互相垂直且平分二、判断题:1. 平行四边形的对角线互相平分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章
习题11.1第1题答案
图中共6个三角形
分别是:△ABD,△ADE,△AEC,△ABE,AADC,△ABC
习题11.1第2题答案
2种
四根木条每三条组成一组可组成四组,
分别为:10,7,5;10,7,3;10,5,3;7,5,3.
其中7+5>10,7+3=10,5+3<10,5+3>7
所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形习题11.1第3题答案
如下图所示,中线AD、高AE、角平分线AF
习题11.1第4题答案
(1)EC;BC
(2)∠DAC;∠BAC
(3)∠AFC
(4)1/2BC·AF
习题11.1第5题答案
C
习题11.1第6题答案
(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm) 因为6+6>8
所以此时另两边的长为6cm,8cm
(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm)
因为6+7>7
所以北时另两边的长分别为7cm,7cm
习题11.1第7题答案
(1) 当等腰三角形的腰长为5时,三角形的三边为5,5,6
因为5+5>6
所以三角形周长为5+5+6=16
当等腰三角形的腰长为6时,三角形的三边为6,6,5 因为6+5>6
所以三角形周长为6+6+5=17
所以这个等腰三角形的周长为16或17
(2)22
习题11.1第8题答案
1:2
习题11.1第9题答案
解:∠1=∠2,理由如下:
因为AD平分∠BAC
所以∠BAD=∠DAC
又DE//AC
所以∠DAC=∠1
又DF//AB
所以∠DAB=∠2
所以∠1=∠2
习题11.1第10题答案
四边形木架钉1根木条
五边形木架钉2根木条
六边形木架钉3根木条
习题11.2第1题答案
(1)x=33
(2)x=60
(3)x=54
(4)x=60
习题11.2第2题答案
(1)一个直角,因为如果有两个直角,三个内角的和就大于180°了
(2)一个钝角,如果有两个钝角,三个内角的和就大于180°了
(3)不可以,如果外角是锐角,则它的邻补角为钝角,就是钝角三角形,而不是直角三角形了
习题11.2第3题答案
∠A=50°,∠B=60°,∠C=70°
习题11.2第4题答案
70°
习题11.2第5题答案
解:∵AB//CD,∠A=40°
∴∠1=∠A=40°
∵∠D=45°
∴∠2=∠1+∠D=40°+45°=85°
习题11.2第6题答案
解:∵AB//CD,∠A=45°
∴∠1=∠A=45°
∵∠1=∠C+∠E
∴∠C+∠E=45°
又∵∠C=∠E
∴∠C+∠C=45°
∴∠C=22.5°
习题11.2第7题答案
解:依题意知:∠ABC=80°-45°-35°
∠BAC= 45°+15°=60°,∠C =180°-35°-60°=85°,即∠ACB=85°习题11.2第8题答案
解:∠BDC=∠A+∠ACD=62°+35°=97°,∠BFD=180°-∠BDC-∠ABE=180°-97°-20°=63°
习题11.2第9题答案
解:因为∠A+∠ABC+∠ACB=180°,∠A=100°
所以∠ABC+∠ACB=180°-∠A=180°-100°=80°
又因为∠1=∠2,∠3=∠4
所以∠2=1/2∠ABC,∠4=1/2∠ACB
所以∠2 +∠4=1/2(∠ABC+∠ACB)=1/2×80°=40°
所以x=180°-(∠2+∠4) =180°-40°=140°
所以x=140°
习题11.2第10题答案
180°;90°;90°
习题11.2第11题答案
证明:因为∠BAC是△ACE的一个外角
所以∠BAC=∠ACE+∠E
又因为CE平分∠ACD
所以∠ACE= ∠DCE
所以∠BAC=∠DCE+∠E
又因为∠DCE是△BCE的一个外角
所以∠DCE=∠B+∠E
所以∠BAC=∠B+ ∠E+∠E=∠B+2∠E
习题11.3第1题答案
如下图所示,共9条
习题11.3第2题答案
(1)x=120
(2)x=30
(3)x=75
习题11.3第3题答案
多边形的边数 3 4 5 6 8 12 内角和180°360°540°720°1080°1800°
外角和360°360°360°360°360°360°习题11.3第4题答案
108°;144°
习题11.3第5题答案
这个多边形是九边形
习题11.3第6题答案
(1)三角形;
(2)解:设这个多边形是n边形,由题意得:(n-2)×180=2×360
解得n=6
所以这个多边形为六边形
习题11.3第7题答案
AB//CD,BC//AD(理由略)
提示:由四边形的内角和可求得同旁内角互补
习题11.3第8题答案
(1)是.理由如下:
由已知BC⊥CD,可得∠BCD=90°
又因为∠1=∠2=∠3
所以有∠1=∠2=∠3=45°,即△CBD为等腰直角三角形,且CO是∠DCB的平分线
所以CO是△BCD的高。