中心对称图形(较易)

合集下载

中心对称图形--教学设计

中心对称图形--教学设计

《中心对称图形》教学设计一.教学内容和内容解析《中心对称图形》是冀教版八年级上册第十六章第四节的内容,共一课时.本章一共学习了两种对称,分别是轴对称和中心对称,它们在现实生活中有着广泛的应用.本节内容是在学习轴对称以后的中心对称,属于概念性知识.本节课贯穿始终的思想方法是类比,类比轴对称研究中心对称.中心对称又是图形变换中旋转变换的一种特殊情况,所以图形的旋转是学习本节课内容的核心.伴随着课程的学习,学生会体会到,无论是轴对称还是中心对称,本质上都是图形中各个点的对称.本节内容从现实生活中中心对称的应用出发,研究其概念和性质,最终又体现到中心对称在生活和数学后继学习的应用上来.本节课的教学重点是:1. 中心对称图形,中心对称的概念;2. 中心对称的性质,以及运用性质作图.二.教学目标和目标解析图形的旋转在课标中是如下要求的:(1)通过具体实例认识平面图形关于旋转中心的旋转.探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等.(2)了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.(3)探索线段,平行四边形,正多边形,圆的中心对称性质.(4)认识并欣赏自然界和现实生活中的中心对称图形.在“课标”的“总体目标”和“内容要求”的指导下,设置本节课的教学目标.(一)学生在知识与技能方面要经历如下过程:1.了解中心对称、中心对称图形的概念,辨析中心对称,中心对称图形;2.探索中心对称的基本性质;3.能画出一个图形关于某点成中心对称的图形.(二)学生进行如下数学思考:1.类比研究轴对称的方法,研究中心对称的概念和性质,以及作图;2. 通过对中心对称性质的探究及运用,体会特殊图形归纳到一般图形的思想.(三)学生在本节课的学习后要将以下问题解决:能用中心对称的性质准确作出已知图形关于某点中心对称的图形.(四)学生在本节课的学习后要提升以下情感态度价值观:1. 通过一系列探索活动,培养学生独立思考,大胆表述,动手实验,勇于探究的能力,同时,在与同学合作的过程中,体会团结协作的快乐,体会学习数学的快乐;2. 感受数学在生活中的应用,以及数学产生的美.三.教学问题诊断分析1.中心对称与中心对称图形是两个有联系又易混淆的概念.“中心对称”的意义是两个图形关于一个点对称,它揭示的是两个图形所具有的一种特殊位置关系;“中心对称图形”揭示的是一个图形自身具有的特殊性质(对称性).故而,本节内容的难点之一就是中心对称和中心对称图形的辨析.2.学生在小学学习过轴对称图形,以及图形绕着某一个点顺时针或逆时针旋转90°.七年级上册第二章学习了图形的旋转,知道旋转的三要素,了解图形旋转的性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点分别与旋转中心连线所成的角相等.所以,本节课学生只要认识到中心对称是旋转的一种特殊情况,就可以发现研究中心对称可以借助旋转的性质.本节课的难点之二中心对称性质的探究和发现,就得以突破.3.学生可能出现的问题或困难:(1)中心对称图形概念的关键理解不透彻.例如:学生举出中心对称图形的例子,有可能学生会举出“等边三角形”或“电扇”.这说明,学生没有充分意识到,必须旋转180°能重合的图形才叫中心对称图形,并不是只要旋转以后能重合就是中心对称图形.为此教师设计了“奔驰”图案,它可以代表“电扇”图案,可以扩充想象成“等边三角形”,它们旋转120°以后能和自身重合.如果“奔驰”图案研究透彻,学生就会明白中心对称图形定义的关键点,以及判断中心对称图形的依据.(2)归纳性质时,旋转性质应用不到位.由于图形旋转是七年级上学期所学,而三角形全等是本学期所学,学生对全等的使用根深蒂固.所以,在证明对应点连线被对称中心平分时,有的学生往往想到的方法是,测量或证全等.为此,像教材一样,将旋转的性质也放在课件和学案上,并用不同颜色的笔突出,目的是引起学生注意.在说明对应点连线经过对称中心时,有的学生可能根本不去考虑这条性质.因为,当他们把对应点连接时,自然而然交于点O,许多学生根本不去想为什么,他们从心理上认为这是必然的.所以,在小组交流时,适时点拨学生,为什么对应点连线要经过对称中心呢?引导学生利用旋转角是180°来进行说理.四.教学支持条件分析为了有效实现教学目标,根据问题诊断分析和学生的学习行为分析,在教学中采用设问引思,尝试探索,辨析研讨,合作交流,体验理解,内化提升的教法学法;采用问题驱动式教学,学生探究与教师讲授相结合,采用多媒体辅助教学,也使用了易于学生操作的教具学具,使得学生不光从直观上能够感知,而且能够真正的动手操作,构建了有利于学生建立概念的“多元联系表示”的教学情境.五.教学过程分析本节课分为以下六个教学环节:创师探操小设生索作结情辨归应反境析纳用思围绕这样的问题链展开:什么叫中心对称图形?类比轴对称,谈一谈什么叫两个图形成中心对称?中心对称图形和中心对称有何关系?中心对称的性质是怎样的?如何作出一个图形成中心对称的图形?(一)什么是中心对称图形?创设情境,引入新知1.问题设计意图:学生用欣赏的目光来审视美丽图片,体会它们蕴含的文化内涵.学生还会想到,老师为什么会选择这几幅图片呢,它们具有怎样的特征?在这种内驱力的引导下,学生迅速地拿起手中的学具进行动手实验.2.师生活动预设:学生欣赏生活中常见的几幅图片:故宫皇极殿,剪纸艺术品,手工风车,奔驰标志,狮子滚绣球,太极八卦图.在欣赏的同时,学生会发现这些图片都有着丰富的文化底蕴,或者是中国古代建筑物,或者是民间流传的剪纸艺术品,或者是现代轿车的标志图案等等.学生欣赏后老师提出问题:请用数学知识描述这些图片的特征,并用学具验证自己的想法.学生用提前学具进行操作,他们会发现:老师提供的图案,有的是轴对称图形,还能找到他们的对称轴;有的图案并不是轴对称图形.但是,他们都有各自的特征,就是绕着某一点旋转一定度数后与自身重合.师生辨析,生成概念小组交流后,代表上台展示自己的结论.通过生生之间的辨析,所有同学达成共识,这几幅图片中,有已经学习过的轴对称图形,也有绕一点旋转一定度数后能与自身重合的图形.此时,老师指出:本节课,我们就来研究绕一点旋转180°后能与自身重合的图形,揭示课题——中心对称图形.老师提出本节课的问题:你能依据刚才的过程,表述出中心对称图形的定义吗?3.需要概括的概念要点,思想方法:中心对称图形:如果一个图形绕着某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点,叫做它的对称中心,其中对称的点叫做对应点.概念关键点:某一点——对称中心;180°——旋转角;它自身重合——中心对称.思想方法:类比.4.需要学习的技能训练:动手验证,同伴交流,小组展示,积累数学活动经验,同时进行概念表述.5.需要培养的能力:动手验证,合作交流,语言表达能力等.(二)类比轴对称,谈一谈什么叫两个图形成中心对称?1.问题设计意图:学生充分经历观察,分析,举例,交流的过程,扩充对中心对称图形的感性认识,从而理性上能够表述出中心对称图形的定义,这培养了学生的语言表达能力和概括能力;而轴对称是本章刚深入研究过的,所以类比思想在这里起到了重要的作用.2.师生活动预设:类比着轴对称,学生描述出成中心对称的定义.教师举出一个例子,动画演示,加强学生几何直观能力的培养,让学生从形象上体会成中心对称概念.3.需要概括的概念要点,思想方法:成中心对称:如果一个图形绕着某一点旋转180°后与另一图形重合,我们就把这两个图形叫做成中心对称,这个点叫做对称中心,其中成中心对称的点,线段和角分别叫做对应点,对应线段,对应角.概念关键点:某一点——对称中心;180°——旋转角;另一图形重合——成中心对称.思想方法:类比.4.需要进行的技能训练:观察,分析,举例,交流,扩充对中心对称图形的感性认识,理性上表述出定义.5.需要培养的能力:语言表达能力和概括能力.(三)中心对称图形和两个图形成中心对称有什么关系呢?1.问题设计意图:通过对两个概念区别与联系的探究,学生们深刻体会到中心对称就是旋转的一种特殊情况,为研究性质做好铺垫.2.师生活动预设老师提出问题中心对称图形和两个图形成中心对称有什么关系呢?学生思考,交流,陈述,达成共识.3.需要概括的结论:经过师生辨析,达成共识:中心对称图形是一个图形的性质,成中心对称是两个图形的位置关系具有对称性;如果把成中心对称的两个图形看做一个整体,这个图形就是中心对称图形;而中心对称图形和中心对称都需要绕某一点旋转180°,都属于旋转的一种特殊情况.4.需要进行的技能训练:观察,分析,交流,表达.5. 需要培养的能力:对比,语言表达,合作交流.(四) 中心对称的性质是怎样的?合作探究,探索归纳1. 设计意图:在本环节,学生的自主探究欲望促使他们积极探索和交流,他们会经历 猜想,验证,证明等过程,证明时,学生可能会证明全等,也有可能会应用旋转的性质.总之,学生的数学思维过程得到很大的提升和锻炼.2. 师生活动预设:教师提出问题:你能借助旋转的性质,探索出成中心对称的两个图形间存在怎样的性质吗?以△ABC 和△C B A '''为例,进行研究.学生积极思维,在小组间交流,可能会得到如下结论:①△ABC ≌△C B A '''②对应角相等;③对应边相等且平行(或共线);④O C CO O B BO O A AO '='='=,,;⑤C C B B A A ''',,交于一点O.3. 需要概况的性质:通过师生共同总结,探索并归纳出成中心对称的两个图形具有的性质:在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.4. 需要进行的技能训练:学生要积极探索和交流经历猜想,验证,证明等过程.5. 需要培养的能力:动手,作图,逻辑推理.(五) 如何作出一个图形成中心对称的图形?操作应用,总结提升1. 问题设计意图:学生独立作图,再和黑板上准确作图的步骤过程对比,认识到作图的步骤和依据.同时,将图形变化,使学生认识到,无论图形怎么变化,对称中心位置在哪里,只要作出图形上关键点的对应点,就可以作出中心对称图形.这一点,对于以后学习画函数图象等有非常大的'影响.2. 师生活动预设:教师提出要求:请依据性质,完成以下作图:(1)已知线段AB 和点O ,画出线段AB 关于点O 的中心对称图形.(2)已知△ABC 和点O ,画出△ABC 关于点O 的中心对称图形.学生完成作图,并进行辨析,体会到作图的依据仍然是刚刚研究得到的性质.教师指出,我们可以作出线段的中心对称图形,可以作出三角形的中心对称图形,那么四边形呢?学生体会到,某些图形只需要作出它顶点的对应点,再连线即可作出它成中心对称的图形.老师提出问题:对于另一些图形又该如何做出它的中心对称图形呢?通过师生辨析,发现任何图形的对称,本质上都是点的对称,只需做出关键点的对应点,就可以做出它的对称图形来.3. 需要概况的要点,思想方法:任何图形的对称,本质上都是点的对称,只需作出关键点的对应点,就可以作出它的对 称图形来.思想方法:由特殊到一般.4. 需要进行的技能训练:学生进行作图,猜测,辨析,进行归纳总结,体会如何思考抓住问题的本质,以不变应 万变.5. 需要培养的能力:动手作图,归纳总结,语言表达.六. 目标检测设计巩固练习,检验实效1. 下列图形中既是轴对称图形又是中心对称图形的是( ).A B O A BO C2.如图,已知△ABC与△DEF中心对称,找出它们的对称中心O.设计目的:学生通过练习,进一步明确中心对称图形的定义以及成中心对称图形的性质.小结反思,课堂延伸3.学生梳理本节课知识,感悟收获:(1)中心对称图形,中心对称的概念,性质及应用;(2)类比,从特殊到一般的思想方法;(3)独立思考,语言表达能力,小组合作能力的培养;(4)中心对称在生活中和后继数学学习中的应用.4.布置作业:(1)完成课本126页1,2,3,4题;(2)寻找52张扑克牌中的中心对称图形;(3)列表比较中心对称图形和轴对称图形;(4)查询并试着总结“对称思想”在你学过的数学知识中的应用.设计目的:小结可以锻炼学生的概括能力,语言表达能力,更可以在学生脑海中加深对本节课的认识.通过课后作业培养学生的创新精神,增强主动探究的意识和能力.CA B DABC EvFD。

四边形中心对称和中心对称图形教学

四边形中心对称和中心对称图形教学

四边形中心对称和中心对称图形教学pptxx年xx月xx日•中心对称的概念和性质•中心对称图形的概念和性质•四边形中的中心对称目录•中心对称图形的判定•四边形中心对称的判定•中心对称图形的作图•四边形中心对称的作图01中心对称的概念和性质把其中一个图形沿某一点旋转180度后与另一个图形重合,这种图形被称为中心对称图形。

两个图形关于点对称一个图形沿着中心点旋转180度之后能够与原来的图形重合,这个图形就是中心对称图形。

中心对称图形的定义中心对称的定义中心对称图形的性质中心对称图形的对应线段相等、对应角相等,图形的形状不变,只是位置发生了变化。

中心对称的性质中心对称的特性包括旋转中心、旋转方向和旋转角度,其中旋转中心是固定点,旋转方向是顺时针或逆时针,旋转角度是180度。

中心对称的性质中心对称的应用在几何中,中心对称被广泛应用于证明和构造各种几何图形,如平行四边形、矩形和正方形等。

中心对称图形的判定可以通过证明一个图形可以绕一个点旋转180度后与另一个图形重合来判定一个图形是中心对称图形。

中心对称的应用02中心对称图形的概念和性质中心对称图形:在平面内,如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称中心对称不指某一个图形,而是一种变换中心对称图形的定义关于中心对称的两个图形,对应点连线的中点在对称中心关于中心对称的两个图形能够完全重合对称中心是任何一对对应点连接线的中点中心对称图形的性质在几何中,研究“中心对称”主要是为了应用,如:研究轴对称时,有时需要把图形绕着对称轴旋转180度后与原来的图形重合,这往往需要应用“中心对称”在以后的学习中,经常要用到“中心对称”来解一些题目,因此一定要切实掌握“中心对称”的概念及应用中心对称图形的应用03四边形中的中心对称1四边形中的中心对称的定义23平行四边形是具有中心对称特性的四边形,其中对角线的交点称为平行四边形的中心。

平行四边形菱形是一种特殊的平行四边形,其对角线的交点称为菱形的中心。

数学:23.2《中心对称图形》课件(人教版九年级上)

数学:23.2《中心对称图形》课件(人教版九年级上)
图4 解:(1)(3)(4)(5)(8)是中心对称图形,点 O 位置如图 8.
图8
; 优游开户 ;
快の速度退! 因为他看到了那双明亮の眸子之后,非常清楚,雨后此刻已经完全把他当做了敌人,他也很清楚,雨后和敌人交战の时候,是多么の恐怖. "哧!哧!哧!" 在泥屑纷飞之中,他突然听到无数声微弱不可闻の破空声,如果不是他对雨后の手段很了解,恐怕这破空声都会听不 到.他没有犹豫,竟然立刻闭上了眼睛,手中の长剑瞬间化成漫天の剑影,一边爆退,一边护住全身. "砰,砰,砰!" 无数声金铁交击の声音响起,廖奇の身子四周凭空出现了无数の透明の刀片,这些刀片异常の薄,并且完全透明,光凭肉眼根本看不见. 当然! 廖奇也不敢看,所以才在瞬 间闭上了眼睛. 这刀片和廖奇の长剑相撞之后,化作一条刺眼の白光,消失在空中.这光芒廖奇很清楚,并不是像烟花一样,只是绽放の漂亮,这是雨后の一种灵魂攻击方式,一旦看到这白光,灵魂将会颤抖一下,灵魂一旦颤抖,便会被四周射来の刀片刺成马蜂窝… 肉眼不敢看,神识却是 可以探查,廖奇の神识不算强大,但是同样の雨后の物理攻击速度也不断太快.所以,廖奇很有自信,能全身而退,一旦拉开距离,自己今天就稳赢了! "唉…廖奇,其实你呀真の比那个不咋大的男人差太多了!" 就在这一刻,一条宛若黄鹂般の声音响起,声音很好听,但是听在廖奇の耳 中却是宛如恶魔之音,宛如九幽冥界の冥神在对他呼叫.他脸色瞬间变得无比苍白,身子也微微颤抖了一下.手中の长剑虽然没有停止挥舞,但是在这一刻却是出现了一些缺口.一片薄薄の刀片,趁势而入,直接击穿了他の左胸. 破空声终于停止了,廖奇也退出去出千米远. 这个距离,对 于他の实力来说,面对雨后可以算是绝对安全の距离了.但是他のの脸色依旧很难看,非常の难看! "蓝雨,没想到你呀这么卑鄙!" 廖奇依旧闭着眼睛,却是愤怒の怒吼起来.刚才他差点就能全身而退,然后慢慢の磨死雨后.只是就在刚才の一轮交击中,他彻底败了,同时还将原先营造 の良好局面完全葬送了,雨后成功扳回了一局. 雨后刚才の那句话很简单,但是廖奇却是知道,这非常不简单.雨后淡淡の一句话,却是夹杂心灵攻击,并且伴随了灵魂攻击.让他の心神在那一刻出现了一丝松懈,让他中了一刀. 这一刀,直接击穿了他の胸口,刀口很薄,并没有鲜血溢出. 如果这刀是普通の刀,那当然没有关系,就算击穿了心脏都不算大问题.但是这刀片,却是蕴含了雨后最厉害の一种魂技.魂毒! 刀片飞走了,却是留下了一团魂毒,这团魂毒,会无声无息の不断攻击灵魂,一片刀片,毒性不大,但是廖奇,却要不断の分出心神,抵抗那团魂毒.在这团魂毒 没有完全消耗完之前,廖奇绝对不敢出手攻击. 而这段时候,雨后完全可以回复过来,一旦雨后完全回复.他将…面对一些全力出手の雨后,一些让风帝妖帝云帝都哆嗦の雨后! 本书来自 聘熟 当前 第柒伍柒章 女人是毒菜 "卑鄙?你呀利用俺对你呀の感情,破俺心防就不卑鄙?既然 你呀已经不再是以前那个廖奇了,那就是俺の敌人,你呀知道…俺对待敌人の手段!" 雨后冷冷一笑,身子漂浮在半空,大腿根部の两截断腿却是开始以肉眼可见の速度开始生长起来,这速度只需要一些时辰即可完全长出.请大家检索(度#扣¥网)看最全!更新最快の而她那团魂毒, 以廖奇の灵魂境界,要想完全磨耗干净绝对需要一些时辰. "廖奇完了!" 雷帝冷笑一声,很肯定の做出了判断.两人虽然同是是七品上破仙の实力,但是一些是刚进入,一些却是已经进入这境界二十多万年.并且雨后看情况,这二十多万来,这魂技运用の越来越诡异,越可怕了.一开始 廖奇或许有机会,但是现在绝对没有机会了 风帝和妖帝,沉默の点了点头,脸上没有任何神情变幻,其实内心却是愈发の惊恐起来.两人都很清楚,刚才雨后展露の一番连续の手段,换做是他们也绝对抵挡不住,没见廖奇如此熟悉雨后攻击手段都一样轻松中招了吗?一旦中了雨后の魂毒, 那只有死! 四人恐怕只有雷帝和云帝才能抵挡,雷帝有雷电护体,根本不怕雨后,云帝修炼の法则却是很奇妙,能化身千万,雨后很难击中他の真身. 修魂者の手段果然强横无比,让人防不慎防! "怎么这么久还没传讯来?事情不会出了什么变故吧?" 风帝望着雨后眼中の冷意,心里有 些发毛了.只是几次偷偷传讯给雅妃却是泥流入海,他内心越来越急迫了. 他这次计划很谨密,一切目の其实都是得到那把刀,同时拖延时候,给自己争取一切时候.同时也将云帝彻底拉下水.只要自己能实力大增,联合妖帝和云帝,他绝对有把握干掉雷帝.只要干掉雷帝,区区一些雨后 不在话下.妖帝是铁了心跟着自己の,到时候在一起再次联手铲除云帝,整个遗忘部落就是他の天下了! 只是…现在却是迟迟没有消息传来,这就让他心里几多忐忑起来.这些计划,一切都要建立在他顺利得到那把刀,并且让他有足够の时候,炼化参悟那把刀の基础上.如果得不到刀, 事情败露,那么雨后和雷帝正好有借口灭了自己,最后他只有死路一条. 越想越不对劲,他の心情开始变得忐忑猜疑起来,就连看着云帝那副一直笑呵呵の脸,此刻都觉得似乎在无形の嘲讽着他… 事情の确出了变故! 按照风帝の计划,如果一路查下来の话,最后查到流云 死在云帝部落,那么云帝绝对会被雷帝和雨后怀疑.加上云帝前段时候和风帝妖帝走の很近,云帝最后只能被迫和风帝妖帝一起对抗雷帝和雨后了. 一枪将流云刺死の不是别人,正是乔装打扮在天心元老安排之下,进入云帝部落の雅妃. 雅妃尝试勾引过天辰,只是天辰却是没有半点动 心,反而天辰の这股堂弟却是动了心.天心明知道这雅妃是风帝の妃子,并且实力比他强多了,但是在雅妃发出邀请之后,还是没有拒绝. 能上一上风帝の妃子,他觉得就是帮雅妃做一些事情也值了.再说了不就是安排流云和雅妃在自己房间见一面这么简单の事情嘛… 只是在雅妃悄然 の刺出一枪,直接将流云刺死の那一刻,他知道事情有些大条了. 他本能の感觉到有阴谋,想瞬间传音给他の堂哥.只是突然他の眼神迷蒙了起来,他の心火热起来,因为…他看到雅妃对她嫣然一笑,而后身体上の衣袍瞬间滑落,露出一副绝美の身躯,白花花の刺得他眼睛都只能微微眯 起来.他听到雅妃の一句解释:"天心元老,多谢你呀,这流云在风帝部落眼线太多,如果不是你呀,俺根本没有机会接近他,也没有机会报仇!而有些事情,俺又不想风帝知道,所以…" 天心知道这个解释很蹩脚,这里面也肯定有不少圈圈道道,但是天心决定不去深究这么多.他并不怕雅 妃杀他,因为没有他,雅妃根本不能安全走下云帝山,并且今日の事情,他早已释放了记忆神虫,也不怕雅妃黑他.他决定先好好享受一下这具美妙の娇躯,这具身份超然の身躯,然后在上去将事情禀告给天辰巡察使. 然而! 在他和雅妃抵死缠绵一番,身子达到了最兴奋の那一刻,双腿 开始抽蓄,开始乱颤,心防达到最低の那一刻,他知道他错了.雅妃那双温柔粉末着他の身躯の玉手,陡然神力迸发,直接震碎了他の神晶,让他连喊话の机会都没有! "如果有下辈子,你呀一定记得,女人是毒菜,漂亮の女人更是能致命の!" 雅妃伸出一只手,将压在她身体上の天心轻 轻の推翻在一边,那双能轻易击杀天心元老の手.轻轻一甩,无数道起劲射出,将房间内の记忆神虫全部击毙.而后手中冒出熊熊烈火,直接将天心和流云の尸体,焚为灰烬.取出一声白色战甲穿上,神力转换,样貌变幻,竟然变成了天心の模样,并且灵魂气息都变得一样,而后就这么悠悠 然の走下了云帝山,消失远处… 雅妃一边朝风帝山狂奔,一边暗自心喜,流云和天心同时失踪,死无对证,云帝百口莫辩.自己这种伪装奇术根本就没有人发现自己来过云帝山,这样一来风帝将没有半点嫌疑,就算有嫌疑,没有证据,雷帝和雨后不敢轻起战事.这样一来风帝就绝对有时候 炼化屠神刀了… 神识一探,发现白重炙居然还安详の盘坐在帝者之戒の那个不咋大的空间内,沉寂在修炼之中.雅妃扑哧一笑,心里想着,炼吧,炼吧,等本后回到风帝宫就会将你呀也炼了! 雅妃の笑容,在下一秒却是凝固了,脚步也陡然一顿,而后眼中冒出无比の惊恐,身形瞬间爆退. 心里却是万分の疑惑…他怎么会在这里出现?帝位挑战赛不是最少都要一些时辰才能结束吗?他是怎么出来の? 爆退の身子却是再次猛然一顿,她艰难の回头望着那倒身影,想起了一件事情,想起了风帝曾经说过,此人可以化身千万,不过她却是到死都不明白,为何此人似乎早就知道了 一切事情,否则…怎么会提前把真身留在了外面? "呵呵,想让俺当冤大头?俺正好让你呀家主子当冤大头!" 雅妃丰满の娇躯缓缓倒下,露出一些白发白须满脸慈祥笑容の老者,他悠然の将雅妃手上の戒指收起,挥出一掌直接将这具娇躯震成齑粉,身形一闪,消失在原地,只留下漫天の 黑泥土尘屑,以及空气中淡淡の血腥味… 当前 第柒伍捌章 四方震动 文章阅读 "完了,完了!" 望着雨后の那双漂亮の脚lu踩在黑泥土地上缓缓の朝他走来,廖奇苦涩の笑了起来.品 书 网 ( . t . )这女人竟然如此の果决,竟然不惜燃烧神力,不惜以后元气大伤,也要快速 の将自己身体恢复到最巅峰状态. 此刻一些时辰还没完全过去!雨后竟然已经恢复了过来! 雨后有办法提前让自己身体恢复,廖奇却是没有半点办法,让身体内の那团无形の魂毒磨耗干净.他很清楚,就算是自己将魂毒全部磨耗干净,也不是此刻雨后の对手,迟早都会败亡,更别说现 在了! "咻!" 雨后脸上没有任何神情,宛如莲藕般の玉足在地上一踏,身子轻灵の飘了起来,葱白の十指在空中摆动,宛如在弹奏一手绝世の乐曲般,随着她の手摆动,无数の透明刀片飘出,朝廖奇无声无息の射来. 她没有时候等了,拼着消耗大量の元气,也要击杀廖奇,而后出去解救 白重炙.她相信如此多の无形魂毒玉刀射出,此刻の廖奇,绝对不能躲避开去,一旦有一把玉刀射中他,便会有越来越多の魂毒攻击他の灵魂,便会有更多の玉刀射中他,最后,他只有死路一条. "蓝雨,别怪俺,既然生不能和你呀在一起,那么俺们就一起死吧!哈哈哈…" 廖奇当然清楚, 自己绝对挡不住雨后不断射出の玉刀! 所以…他根本就没有想要躲! 他眼中冒出火热の光芒,身体上更是爆发出刺眼の火光.不仅没有去躲避朝他射来の无数玉刀,反而疯狂の朝这些玉刀冲去.长剑化成万道虚影,没有将自己の身子包裹

初中数学中中心对称图形中的面积等分

初中数学中中心对称图形中的面积等分

初中数学中中心对称图形中的面积等分中心对称图形属于图形变换中旋转的特殊形式,它具有独特的一些性质,下面仅从图形的面积角度对中心对称图形进行研究。

一、中心对称图形的相关知识定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,能够重合的顶点叫做对应点(或对称点)。

常见的中心对称图形有:线段、平行四边形、矩形、菱形、正方形、边数为偶数的正多边形、圆等。

一般地,中心对称图形的对称中心是唯一的,在图形的内部。

如线段的对称中心为线段的中点;平行四边形、矩形、菱形、正方形这些图形的对称中心为对角线的交点;边数为偶数的正多边形的对称中心为图形的中心;圆的对称中心是圆心。

由定义易得中心对称图形的性质:每组对应点的连线段经过对称中心且被对称中心平分。

在判断一个图形是否是中心对称图形,可以先初步确定对称中心的位置,再由图形的一个顶点与对称中心连线并延长(构建1800),延长线是否经过图形的另外的顶点,若经过,再判断顶点到对称中心的距离是否相等,若都具备,在判断另外的几对对应点是否具有这些性质。

若均具备则是中心对称图形,否则,不是。

二、中心对称图形中的面积等分线中心对称图形中,经过对称中心的任意一条直线将图形的面积被平分。

例1:人教版八年级数学教材 51页 14题如图,用硬纸板剪一个平行四边形,做出它的对角线的交点O,用大头针把一根平放在平行四边形上的直细木条固定在点O处,并使细木条可以绕点O转动,拨动细木条,使随意停留在任意位置,观察几次拨动的结果,你发现了什么?解:如图,木条和平行四边形组合成图形,该图形是中心对称图形,对称中心为对角线的交点O。

当木条绕点O旋转过程中,可以与一组对边AD、BC相交,也可与对边AB、CD相交,此时木条和对角线把平行四边形ABCD分割成六个基本的三角形,三角形①和三角形④、三角形②和三角形⑤、三角形⑥和三角形③分别关于点O中心对称,它们分别全等,且三角形⑥①②在木条一侧,三角形③④⑤在木条另一侧,利用面积割补法易得S⑥+S①+S②=S③+S④+S⑤即木条平分平行四边形ABCD的面积。

中心对称图形(较易)

中心对称图形(较易)

第二节中心对称图形1.在下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D. 3.下列图形中,既是轴对称图形,又是中心对称图形的有( )。

A. 1个B. 2个C. 3个D. 4个4.下列图形是中心对称图形但不是轴对称图形的是()A. B. C. D.5.下列图形中是中心对称图形但不是轴对称图形的是()A. B. C. D.6.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.7.下列所给图形中,既是中心对称图形又是轴对称图形的是().A. B. C. D. 8.下列标志中,不是中心对称图形的是()A.中国移动B.中国银行C.中国人民银行D.方正集团9.在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是A. B. C. D.10.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.11.大自然中存在很多轴对称现象, 下列植物叶子图案中既是轴对称图形, 又是中心对称图形的是 ( )A. B. C. D.12.下面的图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.13.下列图形中,既是轴对称图形又是中心对称图形的是( ).A. B. C. D.14.下列四张扑克牌中,属于中心对称的图形是()A.红桃7B.方块4C.梅花6D.黑桃515.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.16.下列图形中,是中心对称图形的是()A. B. C. D.17.下列图形中,既是轴对称图形又是中心对称图形的是( )....A. B. C. D. 18.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.19.下列图形中,是轴对称图形但不是中心称图形的是( )A.等边三角形B.正六边形C.正方形D.圆20.剪纸是非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A. B. C. D.21.下列图案中,是轴对称图形但不是中心对称图形的是A. B. C. D.22.如图 , 若要添加一条线段,使之既是轴对称图形又是中心对称图形, 正确的添加位置是A. B. C. D.23.下图是一个由7 个同样的立方体叠成的几何体.请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是( )A. B. C. D. 24.下列图案中,是轴对称图形但不是中心对称图形的是()A. B. C. D.25.已知点 A( a,1)与点 B( 5, b)关于原点对称,则a、 b 值分别是().A. a=1,b=5 B.a=5,b=1C. a=﹣ 5, b=1D . a=﹣ 5, b=﹣ 126.点 M(1,﹣ 2)关于原点对称的点的坐标是()A.(﹣ 1, 2) B .(1, 2) C .(﹣ 1,﹣ 2) D .(﹣ 2,1)27.已知点 P(﹣ 3, 1)关于原点对称的点的坐标是()A.( 1, 3)B.( 3,﹣ 1)C.(﹣ 3,﹣ 1)D.(﹣ 1, 3)28.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点 A 的坐标是( 1,3),则点 M和点 N的坐标分别是()A. M( 1,﹣ 3), N(﹣ 1,﹣ 3)B. M(﹣ 1,﹣ 3),N(﹣ 1, 3)C. M(﹣ 1,﹣ 3),N( 1,﹣ 3)D. M(﹣ 1, 3), N( 1,﹣ 3)29.风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是()A.B.C.D.30.下列图形既是轴对称图形又是中心对称图形的是()A. B . C . D .31.下列图形中是中心对称图形的是():A、①②④;B、②③④;C、①③④;D、①②③;32.下列几何体的主视图既是中心对称图形又是轴对称图形的是().A.B.C.D.33.下列图案中,不是中心对称图形的是()A.B.C.D.34.“珍惜生命,注意安全”是一永恒的话题.在现代化的城市,交通安全晚不能被忽视,下列几个图形是国际通用的几种交通标志,其中不是中心对称图形是()A. B .C. D .35.世界上因为有圆,万物才显得富有生机,请观察生活中美丽和谐的图案:其中既是轴对称图形又是中心对称图形的个数有()A. 1 个B.2个C.3个D.4个36.下列命题中是真命题的是()A. 关于中心对称的两个图形全等B.全等的两个图形是中心对称图形C. 中心对称图形都是轴对称图形D.轴对称图形都是中心对称图形37.( 2007?兰州)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.①②B.①③C.②③D.①②③38.在平面直角坐标系中有三个点A( 1,﹣ 1)、B(﹣ 1,﹣ 1)、C(0, 1),点 P( 0,2)关于 A 的对称点为P1,P1关于 B 的对称点P2,P2关于 C 的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,⋯,则点 P2015的坐标是()A.( 0, 0) B .( 0, 2) C .( 2,﹣ 4) D.(﹣ 4, 2)39.如图所示,已知△ABC与△ CDA关于点 O对称,过O任作直线 EF 分别交 AD、BC于点 E、 F,下面的结论:①点 E 和点 F,点 B 和点 D是关于中心O对称点;②直线 BD必经过点 O;③四边形DEOC与四边形BFOA的面积必相等;④△ AOE与△ COF成中心对称.其中正确的个数为()A. 1 B .2 C . 3 D . 440.若点 P( m,﹣ m+3)关于原点的对称点Q在第三象限,那么m的取值范围是()41.已知点 P( a,a+3)在抛物线 y=x 2﹣ 7x+19 图象上,则点 P 关于原点 O的对称点 P′的坐标是()A.( 4, 7) B .(﹣ 4,﹣ 7) C .( 4,﹣ 7) D .(﹣ 4,7)42.下列两个电子数字成中心对称的是()A. B . C . D .43.一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形44.如图,已知△ ABC与△ A′B′ C′关于点O 成中心对称图形,则下列判断不正确的是()A.∠ ABC=∠ A′ B′C′ B.∠ BOC=∠ B′ A′ C′C. AB=A′ B′D.OA=OA45.在如图所示的平面直角坐标系中,△OA1B1是边长为 2 的等边三角形,作△B2A2B1与△ OA1B1关于点B1成中心对称,再作△B2A3B3与△ B2A2B1关于点B2成中心对称,如此作下去,则△ B2n A2n+1B2n+1( n 是正整数)的顶点A2n+1的坐标是()A.( 4n﹣1,)B.(2n﹣1,)46.下列图案中中心对称图形有()A. 1 个 B . 2 个 C . 3 个 D. 4 个47.如图,把图中的△ABC经过一定的变换得到△A′ B′ C′,如果图中△ ABC上的点 P 的坐标为( a, b),那么它的对应点P′的坐标为()A.( a﹣2, b) B .( a+2, b) C .(﹣ a﹣ 2,﹣ b) D.( a+2,﹣ b)48.在平面直角坐标系中,把一条抛物线先向上平移 3 个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()511A. y=﹣( x﹣2)2﹣4511B. y=﹣( x+ 2)2﹣4 51C. y=﹣( x﹣2)2﹣451. y=﹣( x+ 2)2+449.四边形 ABCD,对角线AC、 BD相交于点O,如果 AO=CO,BO=DO,AC⊥ BD,那么这个四边形()A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形,又是中心对称图形D.是轴对称图形,但不是中心对称图形50.已知点 P( 2+m, n﹣ 3)与点 Q(m, 1+n)关于原点对称,则m﹣ n 的值是()51.已知点 P(1,﹣3),则点P关于原点对称的点的坐标是__.52.若点( a, 1)与(﹣ 2, b)关于原点对称,则 a b=.53.已知点 P( -b ,2)与点 Q( 3,a)关于原点对称,则a +b 的值是.54.如图,正六边形 ABCDEF的边长为 2,则对角线 AE的长是 ______________.55.已知 A( a, 1)与 B( 5, b)关于原点对称,则a﹣ b=.56.若点 P 的坐标为( x+1, y﹣ 1),其关于原点对称的点P′的坐标为(﹣ 3,﹣ 5),则( x, y)为.57.在平面直角坐标系中,已知A(2, 3), B( 0, 1), C( 3,1),若线段 AC与 BD 互相平分,则点D关于坐标原点的对称点的坐标为.58.在平面直角坐标系中,已知A( 2, 3), B( 0,1), C( 3, 1),若线段 AC与 BD互相平分,则点D关于坐标原点的对称点的坐标为.59.在直角坐标系中,将点(﹣ 2,3)关于原点的对称点向左平移 2 个单位长度得到的点的坐标是.60.如图,△ABC三个顶点的坐标分别为A(1,1), B(4,2), C(3,4)( 1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;( 2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;( 3)在x轴上找一点P,使 PA+PB的值最小,请直接写出点P 的坐标.标分别是( 0, 4),( 0, 3),( 0, 2).(1)求对称中心的坐标.(2)写出顶点 B,C, B1, C1的坐标.62.如图,在由边长为 1 的小正方形组成的网格中,△ABC的顶点均落在格点上(1)、在图中画出△ ABC关于点 O成中心对称的图形△ A′B′ C′;(2)、在 (1) 的作图过程中,点 A,B, C 分别绕点 O旋转 _________°,求点 C 在旋转过程中所走过的路径长 .63.如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,在建立平面直角坐标系后,△ ABC的顶点均在格点上,点 B 的坐标为( 1, 0)①画出△ ABC关于 x 轴对称的△ A1B1C1;②画出将△ ABC绕原点 O按逆时针旋转90°所得的△ A2B2C2;③△ A1B1C1与△ A2 B2 C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△ A1B1C1与△ A2 B2 C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.64.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣ 2, 1), B(﹣ 4, 5),C (﹣ 5, 2).(1)画出△ ABC关于 x 轴对称的△ A1B1 C1.(2)画出△ ABC关于原点 O成中心对称的△ A2B2C2.(3)画出△ ABC绕圆心 O顺时针旋转 90°的△ A3B3C3.65.某班围棋兴趣小组的同学在一次活动时,他们用25粒围棋摆成了如图 1 所示图案,甲、乙、丙 3 人发现了该图案以下性质:甲:这是一个中心对称图形;乙:这是一个轴对称图形,且有 4 条对称轴;丙:这是一个轴对称图形,且每条对称轴都经过 5 粒棋子.他们想,若去掉其中若干个棋子,上述性质能否仍具有呢?例如,去掉图案正中间一粒棋子(如图2,“×”表示去掉棋子),则甲、乙发现性质仍具有.(1)图 3 中,请去掉 4 个棋子,使所得图形仅保留甲所发现性质.(2)图 4 中,请去掉 4 个棋子,使所得图形仅保留丙所发现性质.( 3)图 5 中,请去掉若干个棋子(大于0 且小于 10),使所得图形仍具有甲、乙、丙3人所发现性质.66.( 2011?孝感)如图所示,网格中每个小正方形的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案,解答下列问题:( 1)这三个图案都具有以下共同特征:都是对称图形,都不是对称图形.(2)请在图( 2)中设计出一个面积为 4,且具备上述特征的图案,要求所画图案不能与图( 1)中所给出的图案相同.参考答案1. A【解析】 A 既是轴对称图形又是中心对称图形,故正确;B不是轴对称图形,只是中心对称图形;故不正确;C不是轴对称图形,只是中心对称图形;故不正确;D是轴对称图形,不是中心对称图形;故不正确;故选 A.2. A【解析】 A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选: A.点睛:中心对称图形绕某一点旋转180°后的图形与原来的图形重合,轴对称图形被一条直线分割成的两部分沿着对称轴折叠时,互相重合,据此逐一判断出既是轴对称图形又是中心对称图形的是哪个即可3. B【解析】试题分析:图(1)、图( 5)都是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180 度后它的两部分能够重合;即不满足中心对称图形的定义.图( 3)不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180 度后与原图不重合.图( 2)、图( 4)既是轴对称图形,又是中心对称图形.故选 B.考点: 1. 中心对称图形 2. 轴对称图形.4. C【解析】 A 选项不是轴对称也不是中心对称图形,故是错误的;B选项是中心对称图形也是轴对称图形,故是错误的;C选项是中心对称图形,但不是轴对称图形,故是错误的;D选项不是中心对称图形,但是轴对轴图形,故是错误的;5. C【解析】 A. 不是轴对称图形,不是中心对称图形,不符合题意;B.是轴对称图形,不是中心对称图形,不符合题意;C.不是轴对称图形,是中心对称图形,符合题意;D.是轴对称图形,是中心对称图形,不符合题意。

中心对称图形(较易)

中心对称图形(较易)

第二节中心对称图形1.在下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D. 3.下列图形中,既是轴对称图形,又是中心对称图形的有( ) 。

A. 1个B. 2个C. 3个D. 4个4.下列图形是中心对称图形但不是轴对称图形的是()A. B. C. D.5.下列图形中是中心对称图形但不是轴对称图形的是()A. B. C. D.6.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.7.下列所给图形中,既是中心对称图形又是轴对称图形的是().A. B. C. D. 8.下列标志中,不是中心对称图形的是()A. 中国移动B. 中国银行C. 中国人民银行D. 方正集团9.在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是A. B. C. D.10.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.11.大自然中存在很多轴对称现象,下列植物叶子图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.12.下面的图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.13.下列图形中,既是轴对称图形又是中心对称图形的是( ).A. B. C. D.14.下列四张扑克牌中,属于中心对称的图形是()A. 红桃7B. 方块4C. 梅花6D. 黑桃515.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.16.下列图形中,是中心对称图形的是()A. B. C. D.17.下列图形中,既是..中心对称图形的是( )..轴对称图形又是A. B. C. D.18.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.19.下列图形中,是轴对称图形但不是中心称图形的是( )A. 等边三角形B. 正六边形C. 正方形D. 圆20.剪纸是非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A. B. C. D.21.下列图案中,是轴对称图形但不是中心对称图形的是A. B. C. D.22.如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是A. B. C. D.23.下图是一个由7个同样的立方体叠成的几何体.请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是( )A. B. C. D.24.下列图案中,是轴对称图形但不是中心对称图形的是()A. B. C. D.25.已知点A(a,1)与点B(5,b)关于原点对称,则a、b值分别是().A.a=1,b=5 B.a=5,b=1C.a=﹣5,b=1 D.a=﹣5,b=﹣126.点M(1,﹣2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)27.已知点P(﹣3,1)关于原点对称的点的坐标是()A.(1,3)B.(3,﹣1)C.(﹣3,﹣1)D.(﹣1,3)28.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是()A.M(1,﹣3),N(﹣1,﹣3)B.M(﹣1,﹣3),N(﹣1,3)C.M(﹣1,﹣3),N(1,﹣3)D.M(﹣1,3),N(1,﹣3)29.风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是()A.B.C.D.30.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.31.下列图形中是中心对称图形的是():A、①②④;B、②③④;C、①③④;D、①②③;32.下列几何体的主视图既是中心对称图形又是轴对称图形的是().A.B.C.D.33.下列图案中,不是中心对称图形的是()A.B.C.D.34.“珍惜生命,注意安全”是一永恒的话题.在现代化的城市,交通安全晚不能被忽视,下列几个图形是国际通用的几种交通标志,其中不是中心对称图形是()A.B.C.D.35.世界上因为有圆,万物才显得富有生机,请观察生活中美丽和谐的图案:其中既是轴对称图形又是中心对称图形的个数有()A.1个B.2个C.3个D.4个36.下列命题中是真命题的是()A.关于中心对称的两个图形全等B.全等的两个图形是中心对称图形C.中心对称图形都是轴对称图形D.轴对称图形都是中心对称图形37.(2007•兰州)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.①②B.①③C.②③D.①②③38.在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是()A.(0,0)B.(0,2)C.(2,﹣4)D.(﹣4,2)39.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC 于点E、F,下面的结论:①点E和点F,点B和点D是关于中心O对称点;②直线BD必经过点O;③四边形DEOC与四边形BFOA的面积必相等;④△AOE与△COF成中心对称.其中正确的个数为()A.1 B.2 C.3 D.440.若点P(m,﹣m+3)关于原点的对称点Q在第三象限,那么m的取值范围是()A.0<m<3 B.m<0 C.m>0 D.m≥041.已知点P(a,a+3)在抛物线y=x2﹣7x+19图象上,则点P关于原点O的对称点P′的坐标是()A.(4,7)B.(﹣4,﹣7)C.(4,﹣7)D.(﹣4,7)42.下列两个电子数字成中心对称的是()A.B.C.D.43.一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形44.如图,已知△ABC与△A′B′C′关于点O成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A′B′C′B.∠BOC=∠B′A′C′C.AB=A′B′D.OA=OA45.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,)B.(2n﹣1,)C .(4n+1,)D .(2n+1,)46.下列图案中中心对称图形有( )A .1个B .2个C .3个D .4个47.如图,把图中的△ABC 经过一定的变换得到△A ′B ′C ′,如果图中△ABC 上的点P 的坐标为(a ,b ),那么它的对应点P ′的坐标为( )A .(a ﹣2,b )B .(a+2,b )C .(﹣a ﹣2,﹣b )D .(a+2,﹣b ) 48.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x 2+5x+6,则原抛物线的解析式是( ) A .y=﹣(x ﹣25)2﹣411B .y=﹣(x+25)2﹣411C .y=﹣(x ﹣25)2﹣41.y=﹣(x+25)2+4149.四边形ABCD ,对角线AC 、BD 相交于点O ,如果AO=CO ,BO=DO ,AC ⊥BD ,那么这个四边形( )A .仅是轴对称图形B .仅是中心对称图形C .既是轴对称图形,又是中心对称图形D .是轴对称图形,但不是中心对称图形50.已知点P(2+m,n﹣3)与点Q(m,1+n)关于原点对称,则m﹣n的值是()A.1 B.﹣1 C.2 D.﹣251.已知点P(1,﹣3),则点P关于原点对称的点的坐标是__.52.若点(a,1)与(﹣2,b)关于原点对称,则a b= .53.已知点P(-b,2)与点Q(3,a)关于原点对称,则a+b的值是.54.如图,正六边形ABCDEF的边长为2,则对角线AE的长是______________.55.已知A(a,1)与B(5,b)关于原点对称,则a﹣b= .56.若点P的坐标为(x+1,y﹣1),其关于原点对称的点P′的坐标为(﹣3,﹣5),则(x,y)为.57.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.58.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD 互相平分,则点D关于坐标原点的对称点的坐标为.59.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是.60.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.61.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.62.如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上(1)、在图中画出△ABC关于点O成中心对称的图形△A′B′C′;(2)、在(1)的作图过程中,点A,B,C分别绕点O旋转_________°,求点C在旋转过程中所走过的路径长.63.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.64.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC关于原点O成中心对称的△A2B2C2.(3)画出△ABC绕圆心O顺时针旋转90°的△A3B3C3.65.某班围棋兴趣小组的同学在一次活动时,他们用25粒围棋摆成了如图1所示图案,甲、乙、丙3人发现了该图案以下性质:甲:这是一个中心对称图形;乙:这是一个轴对称图形,且有4条对称轴;丙:这是一个轴对称图形,且每条对称轴都经过5粒棋子.他们想,若去掉其中若干个棋子,上述性质能否仍具有呢?例如,去掉图案正中间一粒棋子(如图2,“×”表示去掉棋子),则甲、乙发现性质仍具有.请你帮助一起进行探究:(1)图3中,请去掉4个棋子,使所得图形仅保留甲所发现性质.(2)图4中,请去掉4个棋子,使所得图形仅保留丙所发现性质.(3)图5中,请去掉若干个棋子(大于0且小于10),使所得图形仍具有甲、乙、丙3人所发现性质.66.(2011•孝感)如图所示,网格中每个小正方形的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案,解答下列问题:(1)这三个图案都具有以下共同特征:都是对称图形,都不是对称图形.(2)请在图(2)中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图(1)中所给出的图案相同.参考答案1.A【解析】A既是轴对称图形又是中心对称图形,故正确;B不是轴对称图形,只是中心对称图形;故不正确;C不是轴对称图形,只是中心对称图形;故不正确;D是轴对称图形,不是中心对称图形;故不正确;故选A.2.A【解析】A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.点睛:中心对称图形绕某一点旋转180°后的图形与原来的图形重合,轴对称图形被一条直线分割成的两部分沿着对称轴折叠时,互相重合,据此逐一判断出既是轴对称图形又是中心对称图形的是哪个即可3.B【解析】试题分析:图(1)、图(5)都是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.图(3)不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180度后与原图不重合.图(2)、图(4)既是轴对称图形,又是中心对称图形.故选B.考点:1.中心对称图形2.轴对称图形.4.C【解析】A选项不是轴对称也不是中心对称图形,故是错误的;B选项是中心对称图形也是轴对称图形,故是错误的;C选项是中心对称图形,但不是轴对称图形,故是错误的;D选项不是中心对称图形,但是轴对轴图形,故是错误的;故选C。

(完整版)中心对称图形(较易)

(完整版)中心对称图形(较易)
A。 等边三角形 B。 正六边形 C。 正方形 D。 圆
20.剪纸是非物质文化遗产之一,下列剪纸作品中是中心对称图形的是( )
A. B. C。 D。
21.下列图案中,是轴对称图形但不是中心对称图形的是
A. B。 C. D。
22.如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是
39.如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:
①点E和点F,点B和点D是关于中心O对称点;
②直线BD必经过点O;
③四边形DEOC与四边形BFOA的面积必相等;
④△AOE与△COF成中心对称.
其中正确的个数为( )
A.1 B.2 C.3 D.4
A. B.
C. D.
30.下列图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
31.下列图形中是中心对称图形的是( ):
A、①②④; B、②③④; C、①③④; D、①②③;
32.下列几何体的主视图既是中心对称图形又是轴对称图形的是( ).
A. B.
C. D.
33.下列图案中,不是中心对称图形的是( )
38.在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是( )
A. (0,0) B. (0,2) C. (2,﹣4) D. (﹣4,2)
42.下列两个电子数字成中心对称的是( )
A. 中国移动 B。 中国银行 C。 中国人民银行 D。 方正集团

浙教版初中数学八年级下册第四单元《平行四边形》(较易)(含答案解析)

浙教版初中数学八年级下册第四单元《平行四边形》(较易)(含答案解析)

浙教版初中数学八年级下册第四单元《平行四边形》(较易)(含答案解析)考试范围:第四单元;   考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知四边形ABCD中,∠A与∠B互补,∠D=70°,则∠C的度数为( )A. 70°B. 90°C. 110°D. 140°2. 已知在四边形ABCD中,∠A−∠C=∠D−∠B.下列说法正确的是( )A. AB//CD.B. AD//BC.C. AB//CD,且AD//BC.D. AB,CD与AD,BC都不平行.3. 平行四边形被两条对角线分成四个三角形,下列说法正确的是( )A. 四个三角形的面积都相等.B. 只有相对的两个三角形的面积相等.C. 只有相邻的两个三角形的面积相等.D. 四个三角形的面积都不相等.4. 如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为( )A. 102°B. 112°C. 122°D. 92°5. 如图所示,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是( )A. OC=OC′B. AB//A′B′C. BC=B′C′D. ∠ABC=∠A′C′B′6. 下列图形为中心对称图形的是( )A. 有一个角是30°的直角三角形B. 等边三角形C. 两条相交直线D. 有三个角的度数分别为80°,90°,115°的四边形7. 下列条件中,不能判定一个四边形是平行四边形的是( )A. 两组对边分别平行B. 一组对边平行,另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等8. 如图,平行四边形ABCD中,E、F分别为边AB、DC的中点,则图中共有平行四边形的个数是( )A. 3个B. 4个C. 5个D. 6个9. 如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连结AC,BC,并分别找出它们的中点D,E,连结DE.现测得AC=30m,BC=40m,DE=24m,则AB的距离为( )A. 50mB. 48mC. 45mD. 35m10. 如图,在Rt△ABC中,∠A=30°,点D、E分别是直角边AC、BC的中点,连接DE,则∠CED 的度数是( )A. 70°B. 60°C. 30°D. 20°11. 用反证法证明“△ABC中,若∠A>∠B>∠C,则∠A>60°”,第一步应假设( )A. ∠A=60°B. ∠A<60°C. ∠A≠60°D. ∠A≤60°12. 用反证法证明命题“三角形中最多有一个角是钝角时,下列假设正确的是( )A. 三角形中至少有两个角是钝角B. 三角形中没有一个角是钝角C. 三角形中三个角都是钝角D. 三角形中至少有一个角是钝角第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 四边形三个内角的度数如图所示,则∠α的度数是.14. 如图,已知▱ABCD的面积为56,AC与BD相交于O点,则图中阴影部分的面积是.15. 用反证法证明“若|a|<1,则a2<1”是真命题时,第一步应该先假设______.16. 已知△ABC中,AB=AC,求证:∠B<90°,用反证法证明:第一步是:假设______.三、解答题(本大题共9小题,共72.0分。

2014年国考真题解析——判断推理.

2014年国考真题解析——判断推理.

2014年国考真题解析——判断推理华图教育一、图形推理。

请按每道题的答题要求作答。

2014-国考-76. 从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。

【答案】D【所属考试模块】判断推理【题型】【考点】平移、运算【难度系数】容易【作者】柏刚张昆【解析】本题考查位置类中的旋转,第一幅图形是沿逆时针平移,第二幅图形是顺时针平移,然后进行叠加得出第三幅图形。

在第二段图形中,按照上述的规律,因此,得出本题答案C【拓展】位置类一直是近期国考中的热点,但是在位置类的知识点中,不仅仅只有旋转一点,还会有平移和翻转,所以有可能在之后的考试中,很有可能会将这些知识点融合。

--------------------------------------------------------------------------------------------------2014-国考-77. 从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。

【答案】D【所属考试模块】判断推理【题型】【考点】其他规律【难度系数】容易【作者】柏刚张昆【解析】本题考查是对图形中的俯视图和侧视图,第一段的图形中的第二幅图是第一幅的俯视图,第三幅是第一幅的侧视图,按照上述规律,因此,得出本题答案D【拓展】从各个角度来看图形,不仅仅只有俯视图和侧视图,还会包括主视图、左视图、仰视图等等,这些知识点就需要考生多多的进行提高,以防之后还会从这几个角度做文章。

--------------------------------------------------------------------------------------------------2014-国考-78. 从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。

【答案】C【所属考试模块】判断推理【题型】【考点】其他位置【难度系数】容易【作者】柏刚张昆【解析】本题考查的是位置类中的其他位置,所出现的图形都是有两个部分构成,然后从每个图形的位置来看分别依次是相离、相交、相离、相交这种规律,因此,本题答案得出C【拓展】本题主要考查了图形中位置类的其他位置,并不是按照大家正常所学的平移、旋转、翻转这些平常所见的几类,这就会给考生提醒,我们不能仅仅局限于正常的位置推理,还要多多注意一个图形中多个图形的整体位置,如相交、相切等这种静态位置关系。

中心对称图形1

中心对称图形1

魔术师解除蒙具后,看到扑克牌如下图:
魔术师很快确定了哪两张牌被旋转过,你知道是哪两张吗?
练习1
下列图形中,属于中心对称图形的有 a、b、f、g、h ; 属于轴对称图形的有 a、b、c、d、e、f、g ; a、b、f、g
既是中心对称图形又是轴对称图形的有
.
a、线段
b、圆
c、等腰梯形
d、等边三角形
e、五角星
内壁之前,鞠言略微の有些犹豫.鞠言当然是想得到黑月大王の黑月至宝,可是想进行奎安大王の考验,还需要立下誓言才行.“好在,呐誓言の约束性并不是很大,俺の自由几乎不受影响.奎安大王,只是要立下誓言者,在有能历之后,夺回黑月混元空间.呐个有能历,是很宽泛の范畴,反正现在の 俺,距离那个有能历肯定是差了拾万八千里.”鞠言寻思着.也就是略微犹豫了一下.呐样の机会,鞠言又如何能错过呢?先不说外面还有红叶大王等着杀他,就算没有红叶大王の威胁,鞠言也不能轻易错过呐等机会.所以略微迟疑,鞠言便决定立下誓言.“呐誓言,该如何立,难道就是对着呐面内 壁将誓言说一遍?”鞠言皱了皱眉,口中嘀咕.“试试看!”反正尝试一下,也不会对自身有哪个损失.鞠言将自身立誓需要说の话,郑叠の对内壁说了一遍,然而内壁毫无反应.“看来,并不是呐样立下誓言の.”鞠言摇摇头.“用申念?嗯,方才俺得到奎安大王所留信息,就是用申念接触内壁.” 转念中,鞠言便酝酿了一下,而后轻轻催动申魂历,将包含誓言信息の申念,覆在内壁之上.“嗡!”果然,当鞠言申念与内壁再次接触,随着一声细微声响传出,内壁の表面,顿事有淡淡の光晕闪烁起来.紧接着,鞠言便感到一股道则历量从内壁涌出,将他全身覆盖.第八更!感谢‘坑货无极限’ 两千书币打赏!感谢‘霸气侧漏’‘OBY’一零零书币打赏!感谢‘钢哥’‘沉睡の梦’‘幸福一生’‘云想衣裳花想容’の打赏!(本章完)第三零九伍章量身定做内壁之上,刚刚涌出道则历量,鞠言便瞬息感知.不过,呐股道则历量中并不蕴含任何攻击威能,所以鞠言并没有催动自身の历量 抵抗呐股能量.内壁涌动而出の道则历量,顺利覆盖住鞠言の身躯.下一刻,鞠言便消失在内壁之前.恍惚之间后,鞠言发现自身已经处于一个空间之内.鞠言立刻就看到,在自身の头顶上方,悬浮着一个黑色の物件.呐黑色物件,气息极度惊人,带着难以想象の恐怖威压.“莫非,那就是黑月大王の 至宝?”鞠言心中揣测.他已经发现,自身上方悬空の黑色物件,其实就是在进入黑月遗址之前,在善王们面前出现过の黑色弯月.只是在外界の事候,众人看到の是黑色弯月,而在呐里面,鞠言看到の是黑色圆月.没等鞠言思虑更多,空间内出现一股淡淡の轻微の申魂波动.而后,鞠言看到身前不 远处,有一人影逐渐显现出来.呐人影是申魂体,并不是实体.而且,鞠言感知判断,人影只是一缕残魂而已,怕是连完整申魂体百分之一の强度都没有.呐样の残魂,自是不可能对鞠言产生威胁.“有缘者,欢迎来到俺の考验空间,俺是奎安大王.”残魂开口对鞠言说道.当残魂凝现事,鞠言自是趁 机观察.呐残魂身穿宽大の银色长袍,头戴桂冠,目光威严,是一个中年模样の形象.残魂自称为奎安大王,看来应是奎安大王留下の申魂体残魂.“见过前辈.”鞠言躬身对奎安大王残魂见礼.奎安大王の残魂只是看着鞠言,继续说道:“有缘者你进入考验空间,说明你已立下誓言.”奎安大王の 残魂,是以一种述说の方式在传递信息,并不与鞠言互动.由此推断,奎安大王留下の,确实是只蕴含极少量申魂历の一缕残魂,已是没有了智慧.“有缘者想要得到俺主黑月大王の宝物,需在立下誓言后,完成俺留下の考验.通过,便可得到俺主の至宝.”奎安大王残魂继续说道.鞠言先前在草房 の事候,从内壁上得到の信息,奎安大王就已经说得很清楚,有缘者想要获得黑月大王の至宝,需满足两个条件.第一个条件是立下誓言,第二个条件则是需要通过考验.“呐里有两条道则,有缘者需要在三年之内,将呐两条道则领悟并且能够掌控使用.”奎安大王の残魂轻轻挥了下手臂,在他不 远处の空间内,便出现了两条凝现の道则之历.鞠言下意识の转目看向呐两条凝现の道则.“三年内,参悟成功,便为通过考验.参悟失败,则考验不能通过.”奎安大王残魂毫无感情の声音继续响起.鞠言虽然尚未感应呐两条道则,但也知道,呐两条道则必定都是至高级别の道则.如果是寻常の道 则之历,那以善王の能历,参悟并不是难事.而至高道则,难度可就大了,一般の善王想参悟一条道则,也需要漫长の事间耗费大量の精历.“有缘者,现在你便能够开始对道则进行参悟了.事间,即刻开始计算.”奎安大王の残魂,将呐句话说完后,便逐渐变得淡薄,最后全部消失在鞠言面前.“只 有三年事间.”“事间很紧,俺先看看呐两条道则の难度.”鞠言也不耽搁,立刻便上前接近了一些至高道则,而后放出申念,感知道则.由于呐两条道则是凝现の,所以感知很容易,别说鞠言,就是一个善尊境界の修行者,也能感知到呐两条道则.然而,能感知到是一回事,参悟又是一回 事.“咦?”“呐……”当鞠言の申念,分别与两条道则接触后,他の表情就猛の一变.“黑白道则?呐两条道则,居然一条是黑道则,一条是白道则.”鞠言确实没有想到,两条道则会分别是黑白两种道则.两条道则,确实是至高级别の道则.“呐考验,简直是给俺量身定做の一般!”鞠言随即心中 生出喜悦の情绪.在暗混元空间,无数の修行者,上到混元无上级,下到弱小の普通修行者.他们所修行の、参悟の,全部都是黑道则.能够说,他们对白色道则毫无了解.如果呐里の白色道则,只是普通级别の道则之历,那混

《中心对称图形》教案

《中心对称图形》教案

《中心对称图形》教案《中心对称图形》教案《中心对称图形》教案1一、学习目标1、理解圆的描述定义,了解圆的集合定义.2、经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系3、初步渗透数形结合和转化的数学思想,并逐步学会用数学的眼光和运动、集合的观点去认识世界、解决问题.学习重难点会确定点和圆的位置关系.二、知识准备:1、说出几个与圆有关的成语和生活中与圆有关的物体。

思考:车轮为什么做成圆形?2、爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。

他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。

如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?三、知识梳理:本节你有何收获?四、达标检测1、⊙O的半径10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在;点B在;点C在2、⊙O的半径6cm,当OP=6时,点A在;当OP 时点P在圆内;当OP 时,点P不在圆外。

3、到点P的距离等于6厘米的点的集合是________________________________________4、已知AB为⊙O的直径P为⊙O 上任意一点,则点关于AB的对称点P′与⊙O的位置为( ) (A)在⊙O内 (B)在⊙O 外 (C)在⊙O 上 (D)不能确定5、如图已知矩形ABCD的边AB=3厘米,AD=4厘米(直接写出答案)(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?6如图,在直角三角形ABCD中,角C为直角,AC=4,BC=3,E,F分别为AB,AC的中点。

以B为圆心,BC为半径画圆,试判断点A,C,E,F与圆B的位置关系。

7已知:如图,BD、CE是△ABC的高,为BC的中点.试说明点B、C、D、E在以点为圆心的同一个圆上.《中心对称图形》教案2(一)教学内容分析1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)2.本课教学内容的地位、作用,知识的前后联系《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。

23.2:中心对称(解答题专练)(解析版)

23.2:中心对称(解答题专练)(解析版)

23.2:中心对称(解答题专练)1.下图是一个风车图案的一部分,风车图案是一个关于点O的中心对称图形,请你把它补全.【答案】详见解析.【解析】易得旋转中心是O,旋转角度为45°,旋转方向顺时针,按此作图即可.【解答】如图,【点评】旋转作图的关键是得到旋转中心,旋转方向.2.华丰木器加工厂需加工一批矩形木门,为了安装的需要,在木门的中心要钻一个小孔,假如你是工人师傅,你应该如何确定小孔的位置.【答案】两对角线的交点即为小孔的位置【解析】矩形的两条对角线可以看作是两对对应点的连线,中心对称图形上的每一对对应点所连成的线段,都过对称中心,且被对称中心平分,而矩形的两条对角线互相平分,故两条对角线的交点,必为对称中心.【解答】解:只要画出矩形木门的两条对角线,两对角线的交点即为小孔的位置(•如答图所示的O点).【点评】本题考查了中心对称及矩形的性质,难度不大,熟练掌握矩形是中心对称图形,其对角线的交点是对称中心是解答本题的关键.3.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于原点O成中心对称的△A1B1C1,并写出A1的坐标;(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并求出点C在旋转过程中经过的路径长是多少?【答案】(1)画图见解析,A1(-2,-2);(2)画图见解析,5 2π【解析】【解析】根据题意画出相应的三角形, 确定出所求点坐标和弧长即可.【解答】解: (1)画出△ABC关于y轴对称的△A1B1C1,如图所示, 此时A1的坐标为(-2,2);(2) 画出△ABC绕点B逆时针旋转90后得到的△A2B2C2,易得5此时C点旋转过程中经过的路程l为:l=9025360oo)5.【点评】本题主要考查图形的轴对称、尺规作图和弧长公式.4.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;并写出点A2、B2、C2坐标;(3)请画出△ABC绕O逆时针旋转90°后的△A3B3C3;并写出点A3、B3、C3坐标.【答案】(1)见解析;(2)见解析,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);(3)见解析,A3(﹣1,1)、B3(﹣2,4)、C3(﹣4,3).【解析】(1)利用平移的性质得出对应点的位置进而得出答案(2)利用关于原点对称点的性质得出对应点的位置进而得出答案(3)利用旋转的性质得出旋转后的点的坐标进而得出答案【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);(3)如图,△A3B3C3即为所求,A3(﹣1,1)、B3(﹣2,4)、C3(﹣4,3).【点评】本题主要考查了二次函数平移旋转等图形变换的基本性质,掌握前后变换规律是解题关键5.如图,ABC与ADE关于点A成中心对称.(1)点A,B,C的对应点分别是什么?(2)点C,A,E的位置关系是怎样?(3)指出图中相等的线段和相等的角.【答案】(1)点A ,B ,C 的对应点分别是点A ,D ,E ;(2)点C ,A ,E 在同一条直线上;(3)AB AD =,AC AE =,BC DE =,B D ∠=∠,C E ∠=∠,BAC DAE ∠=∠.【解析】(1)根据两个图形成中心对称即可得出答案;(2)根据两个图形成中心对称即可得出答案;(3)分别找到成中心对称的两个图形对应的线段和对应角即可得出答案.【解答】(1)∵ABC 与ADE 是成中心对称的两个图形,∴点A ,B ,C 的对应点分别是点A ,D ,E .(2)根据中心对称的性质,可知点C ,A ,E 在同一条直线上.(3)AB AD =,AC AE =,BC DE =,B D ∠=∠,C E ∠=∠,BAC DAE ∠=∠.【点评】本题主要考查两个图形成中心对称,掌握中心对称的性质是解题的关键.6.画出如图所示的四边形ABCD 关于点O 成中心对称的四边形A B C D ''''.【答案】如图所示,四边形A B C D ''''即为所求;见解析.【解析】根据旋转的性质即可画出四边形ABCD 关于点O 成中心对称的四边形A B C D ''''.【解答】如图所示,四边形A B C D ''''即为所求:.【点评】本题考查了作图−旋转变换,解决本题的关键是掌握旋转的性质.7.如图,在Rt △OAB 中,∠OAB =90°,且点B 的坐标为(4,2).(1)画出OAB 关于点O 成中心对称的11OA B ,并写出点B 1的坐标;(2)求出以点B 1为顶点,并经过点B 的二次函数关系式.【答案】(1)图见解析,点()142B --,;(2)()214216y x =+-. 【解析】(1) 先由条件求出A 点的坐标, 再根据中心对称的性质求出1A 、 1B 的坐标, 最后顺次连接1OA 、1OB , △OAB 关于点O 成中心对称的△11OA B 就画好了,可求出B 1点坐标.(2) 根据 (1) 的结论设出抛物线的顶点式, 利用待定系数法就可以直接求出其抛物线的解析式.【解答】(1)如图,点()142B --,.(2)设二次函数的关系式是()242y a x =+-,把(4,2)代入上式得()22442a =+-,116a ∴=, 即二次函数关系式是()214216y x =+-. 【点评】本题主要考查中心对称的性质,及用待定系数法求二次函数的解析式,难度不大.8.如图,△ABC 的三个顶点和点O 都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称.【答案】解:(1)所画△A1B1C1如图所示.(2)所画△A2B2C2如图所示.【解析】(1)图形的整体平移就是点的平移,找到图形中几个关键的点,也就是A,B,C点,依次的依照题目的要求平移得到对应的点,然后连接得到的点从而得到对应的图形;(2)在已知对称中心的前提下找到对应的对称图形,关键还是找点的对称点,找法是连接点与对称中心O 点并延长相等的距离即为对称点的位置,最后将对称点依次连接得到关于O点成中心对称的图形。

设计中心对称图形

设计中心对称图形

中心对称图形的特性
中心对称性
中心对称图形具有中心对 称性,即图形关于某一点 对称。
轴对称性
一些中心对称图形也具有 轴对称性,即图形关于某 一直线对称。
旋转不变性
旋转中心对称图形180度 后,图形保持不变。
中心对称图形的美学价值
平衡感
数学美感
中心对称图形给人以平衡、稳定的感 觉,符合人们的审美习惯。
景观设计
在景观设计中,中心对称的元素可以使景观更加协调、平衡。例如,喷泉、雕塑等景观元 素可以设计成中心对称的造型,增强景观的整体美感。
城市规划
在城市规划中,中心对称的布局可以增强城市的秩序感和美观度。例如,城市道路网、公 共设施等可以采用中心对称的方式进行规划,提高城市的整体形象。
中心对称图形在服装设计中的应用
海报设计
在海报设计中,中心对称图形能够平衡版面,突出主题,使海报更加引 人注目。例如,电影海报经常使用中心对称的图形来强调主角形象。
中心对称图形在建筑设计中的应用
室内设计
在室内设计中,中心对称的布局可以使空间显得更加宽敞、舒适,给人以稳定感和安全感 。例如,客厅的沙发和茶几布局可以采用中心对称的方式,营造出和谐的氛围。
中心对称图形展现了数学的严谨和美 感,有助于培养人们的数学思维和审 美能力。
美学应用
中心对称图形在建筑、艺术、设计等 领域有着广泛的应用,能够创造出和 谐、优美的视觉效果。
03
设计中心对称图形的方 法和技巧
利用几何图形设计中心对称图形
三角形
通过将等边或等腰三角形进行对称排列,可以设计出具有中心对 称性的图案。
美学价值
对称图形在建筑、艺术和 设计等领域中具有很高的 美学价值,给人以平衡、 和谐和庄重的感觉。

23.2.2 中心对称图形

23.2.2 中心对称图形
经过对称中心的直线把原图形分成面积相等的两部分
美丽的中心对称图形在建筑物和工艺品等领域非常常见
THANKS
D
D
3.下列图形中,是轴对称图形但不是中心对称图形的是( )4. 在线段、等腰梯形、平行四边形、矩形、正六边形、圆、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有( ) A. 3个 B.4个 C.5个 D.6个
3
有一块如图(1)所示的钢板,工人师傅想把它分成面积相等 的两部分,请你在图中画出分割方法.导引:过中心对称图形对称中心的直线将图形分成全等的两部分.可以 将不规则图形分割成若干规则的中心对称图形,然后再去解题. 解:钢板可看成由上、下两个矩形构成(如图(2)所示),矩形是中 心对称图形,过对称中心的任一直线把矩形分成全等的两部分, 自然平分其面积,而矩形的对称中心是两条对角线的交点,因 此,先作出两矩形的对称中心,过这两个对称中心作直线即 可.(画法不唯一)
判断下列图形是否为中心对称图形. 解:(1)(3)(5)(6)(9)是中心对称图形, (2)(4)(7)(8)不是中心对称图形.
(1)
(9)
(8)
(7)
(6)
(5)
(4)
(3)
(2)
指出如图所示的汽车标志中的中心对称图形.


×
×
×
(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形, 但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取1个涂上阴影,使4个阴影小正方形组成一个既是轴对称图形,又是中心对称图形.
如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为_______.

人教版初中数学九年级上册期末测试卷(较易 )(含答案解析)

人教版初中数学九年级上册期末测试卷(较易 )(含答案解析)

人教版初中数学九年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.用配方法解方程x2+8x+9=0,变形后的结果正确的是( )A. (x+4)2=−9B. (x+4)2=−7C. (x+4)2=25 D. (x+4)2=72.下列方程是关于x的一元二次方程的是( )A. x2+1=0 B. ax2+bx+c=0xC. (x−1)(x−2)=0D. 3x2+2=x2+2(x−1)23.将二次函数y=2x2的图象向右平移2个单位,再向下平移3个单位,得到的函数图象的表达式是( )A. y=2(x+2)2+3B. y=2(x+2)2−3C. y=2(x−2)2−3D. y=2(x−2)2+34.下列函数是二次函数的是( )A. y=ax2+bx+cB. y=1+xx2C. y=x(2x−1)D. y=(x+4)2−x25.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P′,则P′的坐标为( )A. (3,2)B. (3,−1)C. (2,−3)D. (3,−2)6.下列图形中,是中心对称图形的是( )A. B. C. D.7.如图,点A,B,C,D,E在⊙O上,AB=CD,∠AOB=42°,则∠CED=( )A. 48°B. 24°C. 22°D. 21°8.如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为( )A. 27°B. 108°C. 116°D. 128°9.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A. 至少有1个白球B. 至少有2个白球C. 至少有1个黑球D. 至少有2个黑球10.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( )A. 13B. 14C. 16D. 1811.用配方法解方程x2−6x+8=0时,方程可变形为( )A. (x−3)2=1B. (x−3)2=−1C. (x+3)2=1D. (x+3)2=−112.如图,将Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,连接AD,若∠B=55°,则∠ADE等于( )A. 5°B. 10°C. 15°D. 20°第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.某大型超市连锁集团元月份销售额为300万元,三月份达到了720万元,若二、三月份两个月平均每月增长率为x,则根据题意列出方程是.14.已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x,纵坐标y的对应值如表:x…−2−10123…y…50−3−4−30…那么该抛物线的顶点坐标是.15.2022北京冬奥会雪花图案令人印象深刻,如图所示,雪花图案围绕旋转中心至少旋转度后可以完全重合.16.如图,在⊙O中,CD⊥AB于点E,若∠BAD=30°,且BE=2,则CD=.三、解答题(本大题共9小题,共72.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二節中心對稱圖形1.在下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( )A. B. C. D.2.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.3.下列图形中,既是轴对称图形,又是中心对称图形的有( ) 。

A. 1個B. 2個C. 3個D. 4個4.下列圖形是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.5.下列圖形中是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.6.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.7.下列所給圖形中,既是中心對稱圖形又是軸對稱圖形的是().A. B. C. D.8.下列標志中,不是中心對稱圖形的是()A. 中國移動B. 中國銀行C. 中國人民銀行D. 方正集團9.在下列四個黑體字母中,既是軸對稱圖形,又是中心對稱圖形的是A. B. C. D.10.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.11.大自然中存在很多轴对称现象,下列植物叶子图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.12.下面的图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.13.下列图形中,既是轴对称图形又是中心对称图形的是( ).A. B. C. D.14.下列四張撲克牌中,屬于中心對稱的圖形是()A. 紅桃7B. 方塊4C. 梅花6D. 黑桃5 15.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.16.下列圖形中,是中心對稱圖形的是()A. B. C. D.17.下列圖形中,既是..中心对称图形的是( )..軸對稱圖形又是A. B. C. D.18.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.19.下列图形中,是轴对称图形但不是中心称图形的是( )A. 等邊三角形B. 正六邊形C. 正方形D. 圓20.剪紙是非物質文化遺產之一,下列剪紙作品中是中心對稱圖形的是()A. B. C. D.21.下列圖案中,是軸對稱圖形但不是中心對稱圖形的是A. B. C. D.22.如圖,若要添加一條線段,使之既是軸對稱圖形又是中心對稱圖形,正確的添加位置是A. B. C. D.23.下图是一个由7个同样的立方体叠成的几何体.请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是( )A. B. C. D.24.下列圖案中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.25.已知點A(a,1)與點B(5,b)關于原點對稱,則a、b值分別是().A.a=1,b=5 B.a=5,b=1C.a=﹣5,b=1 D.a=﹣5,b=﹣126.點M(1,﹣2)關于原點對稱的點的坐標是()A.(﹣1,2) B.(1,2) C.(﹣1,﹣2) D.(﹣2,1)27.已知點P(﹣3,1)關于原點對稱的點的坐標是()A.(1,3) B.(3,﹣1)C.(﹣3,﹣1) D.(﹣1,3)28.如圖,陰影部分組成的圖案既是關于x軸成軸對稱的圖形又是關于坐標原點O成中心對稱的圖形.若點A的坐標是(1,3),則點M和點N的坐標分別是()A.M(1,﹣3),N(﹣1,﹣3)B.M(﹣1,﹣3),N(﹣1,3)C.M(﹣1,﹣3),N(1,﹣3)D.M(﹣1,3),N(1,﹣3)29.風車應做成中心對稱圖形,并且不是軸對稱圖形,才能在風口處平穩旋轉.現有一長條矩形硬紙板(其中心有一個小孔)和兩張全等的矩形薄紙片,將紙片粘到硬紙板上,做成一個能繞著小孔平穩旋轉的風車.正確的粘合方法是()A. B.C. D.30.下列圖形既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.31.下列圖形中是中心對稱圖形的是():A、①②④;B、②③④;C、①③④;D、①②③;32.下列幾何體的主視圖既是中心對稱圖形又是軸對稱圖形的是().A. B.C. D.33.下列圖案中,不是中心對稱圖形的是()A. B. C. D.34.“珍惜生命,注意安全”是一永恒的話題.在現代化的城市,交通安全晚不能被忽視,下列幾個圖形是國際通用的幾種交通標志,其中不是中心對稱圖形是()A. B.C. D.35.世界上因為有圓,萬物才顯得富有生機,請觀察生活中美麗和諧的圖案:其中既是軸對稱圖形又是中心對稱圖形的個數有()A.1個 B.2個 C.3個 D.4個36.下列命題中是真命題的是()A.關于中心對稱的兩個圖形全等B.全等的兩個圖形是中心對稱圖形C.中心對稱圖形都是軸對稱圖形D.軸對稱圖形都是中心對稱圖形37.(2007?蘭州)下列四個圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A.①② B.①③ C.②③ D.①②③38.在平面直角坐標系中有三個點A(1,﹣1)、B(﹣1,﹣1)、C(0,1),點P(0,2)關于A的對稱點為P1,P1關于B的對稱點P2,P2關于C的對稱點為P3,按此規律繼續以A、B、C為對稱中心重復前面的操作,依次得到P4,P5,P6,…,則點P2015的坐標是()A.(0,0) B.(0,2) C.(2,﹣4) D.(﹣4,2)39.如圖所示,已知△ABC與△CDA關于點O對稱,過O任作直線EF分別交AD、BC于點E、F,下面的結論:①點E和點F,點B和點D是關于中心O對稱點;②直線BD必經過點O;③四邊形DEOC與四邊形BFOA的面積必相等;④△AOE與△COF成中心對稱.其中正確的個數為()A.1 B.2 C.3 D.440.若點P(m,﹣m+3)关于原点的对称点Q在第三象限,那么m的取值范围是()A.0<m<3 B.m<0 C.m>0 D.m≥041.已知點P(a,a+3)在拋物線y=x2﹣7x+19圖象上,則點P關于原點O的對稱點P′的坐標是()A.(4,7) B.(﹣4,﹣7) C.(4,﹣7) D.(﹣4,7)42.下列兩個電子數字成中心對稱的是()A. B. C. D.43.一個正多邊形繞它的中心旋轉45°后,就與原正多邊形第一次重合,那么這個正多邊形()A.是軸對稱圖形,但不是中心對稱圖形B.是中心對稱圖形,但不是軸對稱圖形C.既是軸對稱圖形,又是中心對稱圖形D.既不是軸對稱圖形,也不是中心對稱圖形44.如圖,已知△ABC與△A′B′C′關于點O成中心對稱圖形,則下列判斷不正確的是()A.∠ABC=∠A′B′C′B.∠BOC=∠B′A′C′C.AB=A′B′ D.OA=OA45.在如圖所示的平面直角坐標系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關于點B1成中心對稱,再作△B2A3B3與△B2A2B1關于點B2成中心對稱,如此作下去,則△B2n A2n+1B2n+1(n是正整數)的頂點A2n+1的坐標是()A .(4n ﹣1,) B .(2n ﹣1,) C .(4n+1,) D .(2n+1,)46.下列圖案中中心對稱圖形有( )A .1個B .2個C .3個D .4個47.如圖,把圖中的△ABC 經過一定的變換得到△A ′B ′C ′,如果圖中△ABC 上的點P 的坐標為(a ,b ),那么它的對應點P ′的坐標為( )A .(a ﹣2,b )B .(a+2,b )C .(﹣a ﹣2,﹣b )D .(a+2,﹣b )48.在平面直角坐標系中,把一條拋物線先向上平移3個單位長度,然后繞原點選擇180°得到拋物線y=x 2+5x+6,则原抛物线的解析式是( ) A .y=﹣(x ﹣25)2﹣411B .y=﹣(x+25)2﹣411C .y=﹣(x ﹣25)2﹣41.y=﹣(x+25)2+4149.四边形ABCD ,对角线AC 、BD 相交于点O ,如果AO=CO ,BO=DO ,AC ⊥BD ,那么这个四边形 ( )A .仅是轴对称图形B .仅是中心对称图形C .既是轴对称图形,又是中心对称图形D.是轴对称图形,但不是中心对称图形50.已知点P(2+m,n﹣3)与点Q(m,1+n)关于原点对称,则m﹣n的值是()A.1 B.﹣1 C.2 D.﹣251.已知点P(1,﹣3),则点P关于原点对称的点的坐标是__.52.若点(a,1)与(﹣2,b)关于原点对称,则a b= .53.已知点P(-b,2)与点Q(3,a)关于原点对称,则a+b的值是.54.如图,正六边形ABCDEF的边长为2,则对角线AE的长是______________.55.已知A(a,1)与B(5,b)关于原点对称,则a﹣b= .56.若点P的坐标为(x+1,y﹣1),其关于原点对称的点P′的坐标为(﹣3,﹣5),则(x,y)为.57.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD 互相平分,则点D关于坐标原点的对称点的坐标为.58.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.59.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是.60.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.61.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.62.如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上(1)、在图中画出△ABC关于点O成中心对称的图形△A′B′C′;(2)、在(1)的作图过程中,点A,B,C分别绕点O旋转_________°,求点C在旋转过程中所走过的路径长.63.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.64.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C (﹣5,2).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC关于原点O成中心对称的△A2B2C2.(3)画出△ABC绕圆心O顺时针旋转90°的△A3B3C3.65.某班围棋兴趣小组的同学在一次活动时,他们用25粒围棋摆成了如图1所示图案,甲、乙、丙3人发现了该图案以下性质:甲:这是一个中心对称图形;乙:这是一个轴对称图形,且有4条对称轴;丙:这是一个轴对称图形,且每条对称轴都经过5粒棋子.他们想,若去掉其中若干个棋子,上述性质能否仍具有呢?例如,去掉图案正中间一粒棋子(如图2,“×”表示去掉棋子),则甲、乙发现性质仍具有.请你帮助一起进行探究:(1)图3中,请去掉4个棋子,使所得图形仅保留甲所发现性质.(2)图4中,请去掉4个棋子,使所得图形仅保留丙所发现性质.(3)图5中,请去掉若干个棋子(大于0且小于10),使所得图形仍具有甲、乙、丙3人所发现性质.66.(2011•孝感)如图所示,网格中每个小正方形的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案,解答下列问题:(1)这三个图案都具有以下共同特征:都是对称图形,都不是对称图形.(2)请在图(2)中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图(1)中所给出的图案相同.参考答案1.A【解析】A既是轴对称图形又是中心对称图形,故正确;B不是轴对称图形,只是中心对称图形;故不正确;C不是轴对称图形,只是中心对称图形;故不正确;D是轴对称图形,不是中心对称图形;故不正确;故选A.2.A【解析】A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.点睛:中心对称图形绕某一点旋转180°后的图形与原来的图形重合,轴对称图形被一条直线分割成的两部分沿着对称轴折叠时,互相重合,据此逐一判断出既是轴对称图形又是中心对称图形的是哪个即可3.B【解析】试题分析:图(1)、图(5)都是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.图(3)不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180度后与原图不重合.图(2)、图(4)既是轴对称图形,又是中心对称图形.故选B.考点:1.中心对称图形2.轴对称图形.4.C【解析】A选项不是轴对称也不是中心对称图形,故是错误的;B选项是中心对称图形也是轴对称图形,故是错误的;C选项是中心对称图形,但不是轴对称图形,故是错误的;D选项不是中心对称图形,但是轴对轴图形,故是错误的;5.C【解析】A. 不是轴对称图形,不是中心对称图形,不符合题意;B. 是轴对称图形,不是中心对称图形,不符合题意;C. 不是轴对称图形,是中心对称图形,符合题意;D. 是轴对称图形,是中心对称图形,不符合题意。

相关文档
最新文档