人教部编版初中七年级数学下册重点知识总结

合集下载

人教版七年级数学下册知识点总结归纳

人教版七年级数学下册知识点总结归纳

人教版七年级数学下册各单元知识点汇总第五章相交线与平行线5.1 相交线邻补角、对顶角对顶角相等直线a与直线b互相垂直,记作a b。

垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

在同一平面内,过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

同位角、内错角、同旁内角5.2 平行线及其判定5.2.1 平行线在同一平面内,当直线a与直线b不相交时,我们就说直线a与直线b互相平行,记作//a b. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即如果b a,c a,那么b c.5.2.2 平行线的判定判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

同位角相等,两直线平行。

判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

内错角相等,两直线平行。

判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

同旁内角互补,两直线平行。

5.3 平行线的性质5.3.1 平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。

两直线平行,同位角相等。

性质2 两条平行线被第三条直线所截,内错角相等。

两直线平行,内错角相等。

性质3 两条平行线被第三条直线所截,同旁内角互补。

两直线平行,同旁内角互补。

5.3.2 命题、定理、证明判断一件事情的语句,叫做命题命题由题设和结论两部分组成。

题设是已知事项,结论是由已知事项推出的事项。

数学中的命题通常可以写成“如果……那么……”的形式,这时“如果”后的部分是题设,“那么”后接的部分是结论。

如果题设成立,那么结论一定成立,这样的命题叫做真命题。

题设成立时,不能保证结论一定成立,这样的命题中做假命题。

最新人教版部编版七年级数学下册全册 课后同步练习题 专项讲解

最新人教版部编版七年级数学下册全册 课后同步练习题 专项讲解

第五章相交线与平行线5.1 相交线5.1.1 相交线基础题知识点1 邻补角有一条公共边,另一边互为反向延长线,具有这种位置关系的两个角互为邻补角.邻补角互补.如图,则∠AOC与∠BOC互为邻补角,且∠AOC+∠BOC=180°.1.(2017·河池)如图,点O在直线AB上.若∠BOC=60°,则∠AOC的大小是(C)A.60° B.90° C.120° D.150°2.如图,直线AB和CD相交于点O,则∠AOC的邻补角是∠AOD和∠BOC.3.如图,直线AB和CD相交于点O,OE平分∠BOD.若∠BOE=30°,则∠AOD=120°.知识点2 对顶角有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角互为对顶角.对顶角相等.如图,直线AB和CD相交于点O.则∠AOC的对顶角是∠BOD;∠AOD的对顶角是∠BOC,且相等的角有:∠AOC=∠BOD,∠AOD=∠BOC. 4.(2018·遵义桐梓县期末)下列图形中,∠1与∠2是对顶角的是(C)5.如图所示,直线AB 和CD 相交于点O.若∠COB =140°,则∠1,∠2的度数分别为(C)A .140°,40°B .40°,150°C .40°,140°D .150°,40°6.(2018·黔西南期中)如图是对顶角量角器,用它测量角的原理是对顶角相等.7.在括号内填写依据:如图,因为直线a ,b 相交于点O , 所以∠1+∠3=180°(邻补角互补), ∠1=∠2(对顶角相等).8.如图,直线AB ,CD 相交于点O ,∠AOC =60°,∠1=40°,则∠2=20°,∠AOE =140°.9.如图,直线AB ,CD 相交于点O ,∠EOC =70°,OA 平分∠EOC ,求∠BOD 的度数.解:因为OA 平分∠EOC ,∠EOC =70°, 所以∠AOC =12∠EOC=35°.所以∠BOD =∠AOC =35°.易错点1 对对顶角性质理解不透彻而判断失误10.下列说法正确的有(B)①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个 B.2个 C.3个 D.4个易错点2 未给出图形,考虑不周全致错11.两条直线相交所成的四个角中,有两个角分别是(2x-10)°和(110-x)°,则x=40或80.中档题12.如图,三条直线l1,l2,l3相交于一点,则∠1+∠2+∠3等于(C)A.90° B.120° C.180° D.360°13.(2019·黔东南期末)如图,直线AB,CD相交于点O,OE平分∠BOD.若∠AOD=110°,则∠COE的度数为(B)A.135° B.145° C.155° D.125°14.(教材P3练习变式)如图,两条直线l1,l2相交于点O.(1)若∠α=x°,则它的邻补角的度数为(180-x)°,对顶角的度数为x°;(2)当∠α逐渐增大时,它的邻补角逐渐减小,它的对顶角逐渐增大.15.如图,直线a,b,c两两相交,∠1=80°,∠2=2∠3,则∠4=140°.16.如图,直线a,b相交于点O,已知3∠1-∠2=100°,则∠3=130°.17.如图,直线AB,CD相交于点O,∠AOE=∠BOE,OB平分∠DOF.若∠DOE=50°,求∠DOF的度数.解:因为∠AOE =∠BOE ,且∠AOE +∠BOE =180°, 所以∠AOE =∠BOE =90°. 因为∠DOE =50°,所以∠DOB =∠BOE -∠DOE =40°. 因为OB 平分∠DOF , 所以∠DOF =2∠DOB =80°.18.如图,l 1,l 2,l 3相交于点O ,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.解:设∠1=∠2=x °,则∠3=8x °. 由∠1+∠2+∠3=180°,得 10x =180.解得x =18. 所以∠1=∠2=18°. 所以∠4=∠1+∠2=36°. 综合题 19.探究题:(1)三条直线相交,最少有1个交点,最多有3个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数; (2)四条直线相交,最少有1个交点,最多有6个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数; (3)依次类推,n 条直线相交,最少有1个交点,最多有n (n -1)2个交点,对顶角有n(n -1)对,邻补角有2n(n -1)对.解:(1)图略,对顶角有6对,邻补角有12对. (2)图略,对顶角有12对,邻补角有24对.5.1.2 垂线基础题知识点1 认识垂直如果两条直线相交所成的四个角中的任意一个角等于90°,那么这两条直线互相垂直.如图,直线AB,CD相交于点O.(1)若∠AOC=90°,则AB与CD的位置关系是垂直;(2)若AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=90°.1.如图,OA⊥OB,若∠1=55°,则∠2的度数是(A)A.35° B.40° C.45° D.60°2.如图,当∠1与∠2满足条件∠1+∠2=90°时,OA⊥OB.3.如图,已知直线AB,CD,EF相交于点O,AB⊥CD,∠DOE=127°,求∠AOF的大小.解:因为AB⊥CD,所以∠DOB=90°.又因为∠DOE=127°,所以∠BOE=∠DOE-∠DOB=127°-90°=37°.所以∠AOF=∠BOE=37°.知识点2 画垂线4.下列各图中,过直线l外一点P画l的垂线CD,三角板操作正确的是(D)知识点3 垂线的性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.5.下列说法正确的有(C)①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个6.(2017·柳州)如图,经过直线l外一点A画l的垂线,能画出(A)A.1条 B.2条 C.3条 D.4条7.下面可以得到在如图所示的直角三角形中斜边最长的原理是(D)A.两点确定一条直线B.两点之间,线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短8.(2018·遵义期中)如图所示,想在河的两岸搭建一座桥,搭建方式最短的是PM,理由是垂线段最短.知识点4 点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如图,点P到直线l的距离是线段PB的长度.9.(2018·黔南期末)下列图形中,线段PQ的长表示点P到直线MN的距离的是(A)A B C D10.如图,BC⊥AC,CB=8 cm,AC=6 cm,AB=10 cm,那么点B到AC的距离是8cm,点A到BC的距离是6cm,C 到AB的距离是4.8cm.易错点未给出图形,考虑不周全而致错11.(2018·黔西南期末)在直线AB上取一点O,过点O作射线OC,OD,使OC⊥OD.当∠AOC=30°时,∠BOD的度数(D)A.60° B.90° C.120° D.60°或120°中档题12.(教材P9习题T12变式)已知直线AB,CB,l在同一平面内.若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是(C)13.如图,AB⊥CD于点O,EF为经过点O的一条直线,那么∠1与∠2的关系是(C)A.互为对顶角 B.互补 C.互余 D.相等14.如图,三角形ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP的长不可能是(A)A.2.5 B.3 C.4 D.515.(2018·黔西南期中)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有(D)A.2条 B.3条 C.4条 D.5条16.(2018·河南)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.17.如图,已知DO⊥CO,∠1=36°,∠3=36°.(1)求∠2的度数;(2)AO与BO垂直吗?说明理由.解:(1)因为DO⊥CO,所以∠DOC=90°.因为∠1=36°,所以∠2=90°-36°=54°.(2)AO⊥BO.理由如下:因为∠3=36°,∠2=54°,所以∠3+∠2=90°.所以AO⊥BO.18.如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.解:(1)因为∠AOC ∶∠AOD =7∶11,∠AOC +∠AOD =180°, 所以∠AOC =70°,∠AOD =110°. 所以∠BOD =∠AOC =70°, ∠BOC =∠AOD =110°. 又因为OE 平分∠BOD ,所以∠BOE =∠DOE =12∠BOD =35°.所以∠COE =∠BOC +∠BOE =110°+35°=145°. (2)因为OF ⊥OE ,所以∠FOE =90°.所以∠FOD =∠FOE -∠DOE =90°-35°=55°. 所以∠COF =180°-∠FOD =180°-55°=125°.5.1.3 同位角、内错角、同旁内角基础题知识点1 认识同位角、内错角、同旁内角如图所示,直线AB,CD与EF相交.(1)图中∠1和∠2分别在直线AB,CD的同一方(或上方),并且都在直线EF的同侧(或右侧),具有这样位置关系的一对角叫做同位角;(2)图中∠2和∠8都在直线AB,CD之间,并且分别在直线EF的两侧,具有这样位置关系的一对角叫做内错角;(3)图中∠2和∠7都在直线AB,CD之间,且都在直线EF的同一旁(或右侧),具有这样位置关系的一对角叫做同旁内角.1.(2018·衢州)如图,直线a,b被直线c所截,那么∠1的同位角是(C)A.∠2 B.∠3 C.∠4 D.∠52.如图,以下说法正确的是(C)A.∠1和∠2是内错角B.∠2和∠3是同位角C.∠1和∠3是内错角D.∠2和∠4是同旁内角3.看图填空:(1)∠1和∠3是直线AB,BC被直线AC所截得的同旁内角;(2)∠1和∠4是直线AB,BC被直线AC所截得的同位角;(3)∠B和∠2是直线AB,AC被直线BC所截得的同位角;(4)∠B和∠4是直线AC,BC被直线AB所截得的内错角.知识点2 “三线八角”之间的关系4.如图所示,若∠1=∠2,则在①∠3和∠2;②∠4和∠2;③∠3和∠6;④∠4和∠8中,相等的有(C)A.1对 B.2对 C.3对 D.4对易错点忽视截线导致找错位置角5.下面四个图形中,∠1和∠2是同位角的是(D)A.②③④ B.①②③C.①②③④ D.①②④中档题6.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被截直线,食指代表截线).下列三幅图依次表示(B)A.同位角、同旁内角、内错角B.同位角、内错角、同旁内角C.同位角、对顶角、同旁内角D.同位角、内错角、对顶角7.如图,∠ABC与∠EAD是同位角;∠ADB与∠DBC,∠EAD是内错角;∠ABC与∠DAB,∠BCD是同旁内角.8.根据图形说出下列各对角是什么位置关系?(1)∠1和∠2;(2)∠1和∠7;(3)∠3和∠4;(4)∠4和∠6;(5)∠5和∠7.解:(1)∠1和∠2是同旁内角.(2)∠1和∠7是同位角.(3)∠3和∠4是内错角.(4)∠4和∠6是同旁内角.(5)∠5和∠7是内错角.5.2 平行线及其判定5.2.1 平行线基础题知识点1 认识平行在同一平面内,两条不相交的直线互相平行.1.下列说法中,正确的是(D)A.平面内,没有公共点的两条线段平行B.平面内,没有公共点的两条射线平行C.没有公共点的两条直线互相平行D.互相平行的两条直线没有公共点2.在同一平面内,两条直线的位置关系有(A)A.两种:平行和相交B.两种:平行和垂直C.三种:平行、垂直和相交D.两种:相交和垂直3.在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上.(1)a与b没有公共点,则a与b平行;(2)a与b有且只有一个公共点,则a与b相交;(3)a与b有两个公共点,则a与b重合.4.如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过C点画直线垂直于CD;(2)用符号表示上面①、②中的平行、垂直关系.解:(1)如图所示.(2)EF∥AB,MC⊥CD.知识点2 平行公理及其推论(1)经过直线外一点,有且只有一条直线与这条直线平行;(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即如果a∥b,b∥c,那么a∥c.5.若直线a∥b,b∥c,则a∥c的依据是(D)A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行6.点P,Q都是直线l外的点,下列说法正确的是(D)A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行C.连接PQ,则PQ一定与直线l相交D.过点P只能画一条直线与直线l平行7.(2018·黔南期末)如图,在直线a的同侧有P,Q,R三点,若PQ∥a,QR∥a,则P,Q,R三点是(填“是”或“不是”)在同一条直线上,理由是经过直线外一点,有且只有一条直线与这条直线平行.8.如图,P,Q分别是直线EF外两点.(1)过点P画直线AB∥EF,过点Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?解:(1)如图.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD(平行于同一条直线的两条直线平行).中档题9.下列说法中,正确的有(A)①过一点有无数条直线与已知直线平行;②经过直线外一点有且只有一条直线与已知直线平行;③如果两条线段不相交,那么它们就平行;④如果两条直线不相交,那么它们就平行.A .1个B .2个C .3个D .4个10.如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来:CD ∥MN ,GH ∥PN .11.如图所示,直线AB ,CD 是一条河的两岸,并且AB ∥CD ,点E 为直线AB ,CD 外一点,现想过点E 作河岸CD 的平行线,只需过点E 作AB 的平行线即可,其理由是平行于同一条直线的两条直线平行.12.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必相交. 13.(教材P17习题T11变式)观察下图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A 1B 1∥AB ,AA 1⊥AB ,A 1D 1⊥C 1D 1,AD ∥BC ;(2)AB 与B 1C 1所在的直线不相交,它们不是平行线(填“是”或“不是”).由此可知,在同一平面内,两条不相交的直线才是平行线.14.如图所示,在∠AOB 内有一点P. (1)过点P 画l 1∥OA ; (2)过点P 画l 2∥OB ;(3)用量角器量一量l 1与l 2相交的角与∠O 的大小有怎样的关系.解:(1)(2)如图所示.(3)l 1与l 2的夹角有两个:∠1,∠2. 量得∠1=∠O ,∠2+∠O =180°, 所以l 1与l 2的夹角与∠O 相等或互补.15.如图,射线OA ∥CD ,射线OB ∥CD ,∠AOC =13∠AOB ,求∠AOC 的度数.解:因为OA ∥CD ,OB ∥CD ,所以A ,O ,B 在同一条直线上. 所以∠AOB =180°.所以∠AOC =13∠AOB =13×180°=60°.综合题16.利用直尺画图:(1)利用图1中的网格,过P 点画直线AB 的平行线和垂线;(2)在图2的网格中画一个四边形,满足:①两组对边互相平行;②任意两个顶点都不在一条网格线上;③四个顶点都在格点上.解:(1)如图所示.CD ∥AB ,PQ ⊥AB. (2)如图所示,答案不唯一.5.2.2 平行线的判定基础题平行线的判定方法有:(1)定义:在同一平面内,两条不相交的直线互相平行;(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行;(5)同旁内角互补,两直线平行;(6)同一平面内,垂直于同一直线的两条直线互相平行.如图,直线AB,CD被直线EF所截.(1)∵∠1=∠2,或∠5=∠7,或∠3=∠6,或∠4=∠8,∴AB∥CD(同位角相等,两直线平行);(2)∵∠4=∠2,或∠5=∠6,∴AB∥CD(内错角相等,两直线平行);(3)∵∠4+∠6=180°,或∠5+∠2=180°,∴AB∥CD(同旁内角互补,两直线平行).(4)∵AB⊥EF,CD⊥EF,∴AB∥CD(同一平面内,垂直于同一直线的两条直线互相平行).知识点1 同位角相等,两直线平行1.(2019·河池)如图,∠1=120°,要使a∥b,则∠2的大小是(D)A.60° B.80° C.100° D.120°2.(2017·德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是同位角相等,两直线平行.3.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有AB∥CD,EF∥CG.知识点2 内错角相等,两直线平行4.如图,能判定EB∥AC的条件是(D)A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE5.如图,请在括号内填上正确的理由:∵∠DAC=∠C(已知),∴AD∥BC(内错角相等,两直线平行).知识点3 同旁内角互补,两直线平行6.如图,已知∠1=70°,要使AB∥CD,则须具备的另一个条件是(C)A.∠2=70° B.∠2=100°C.∠2=110° D.∠3=110°7.如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?合格(填“合格”“不合格”).8.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.解:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD.易错点不能准确识别截线与被截线,从而误判两直线平行9.(教材P36复习题T8(1)变式)如图,下列能判定AB∥CD的条件有(C)①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A.1个 B.2个 C.3个 D.4个中档题10.如图,在下列条件中,能判断AD∥BC的是(A)A.∠DAC=∠BCAB.∠DCB+∠ABC=180°C.∠ABD=∠BDCD.∠BAC=∠ACD11.如图,下列说法错误的是(C)A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠5=180°,则a∥c12.(2018·湘潭)如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为∠A+∠ABC =180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(任意添加一个符合题意的条件即可)13.如图,已知AB⊥BC,BC⊥CD,∠1=∠2,试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠ABC=∠BCD=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(内错角相等,两直线平行).14.(教材P36复习题T6变式)如图,AB⊥AC,∠1与∠B互余.(1)AD与BC平行吗?为什么?(2)若∠B=∠D,则AB与CD平行吗?为什么?解:(1)AD∥BC.理由如下:∵AB⊥AC,∴∠BAC=90°.∵∠1与∠B互余,∴∠1+∠B=90°.∴∠1+∠BAC+∠B=180°,即∠B+∠BAD=180°.∴AD∥BC.(2)AB∥CD.理由如下:由(1)可知∠B+∠BAD=180°.∵∠B=∠D,∴∠D+∠BAD=180°.∴AB∥CD.15.已知,如图,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.解:CF∥BD.方法一:∵BD⊥BE,∴∠DBE=90°.∴∠1+∠2=90°.∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD(同位角相等,两直线平行).方法二:∵BD⊥BE,∴∠DBE=90°.∵∠1+∠C=90°,∴∠C+∠DBC=∠1+∠DBE+∠C=90°+90°=180°.∴CF∥BD(同旁内角互补,两直线平行).综合题16.如图所示,AB⊥BD于点B,CD⊥BD于点D,∠1+∠2=180°,试问CD与EF平行吗?为什么?解:CD∥EF.理由如下:∵AB⊥BD,CD⊥BD,∴AB∥CD(垂直于同一条直线的两直线平行).∵∠1+∠2=180°,∴AB∥EF(同旁内角互补,两直线平行).∴CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).周周练(5.1~5.2)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.邻补角是指(D)A.和为180°的两个角B.有一条公共边且相等的两个角C.有公共顶点且互补的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角2.下列各图中,∠1与∠2是对顶角的是(C)3.如图,直线AB,CD被EF所截,下列说法正确的有(C)①∠3与∠5是内错角;②∠2与∠7是同位角;③∠4与∠5是同旁内角;④图中有4对同位角,2对内错角,2对同旁内角;⑤∠1与∠7是内错角.A.1个 B.2个 C.3个 D.4个5.下列说法错误的是(C)A.两条直线相交,有一个角是直角,则两条直线互相垂直B.若互为对顶角的两角之和为180°,则两直线互相垂直C.两直线相交,所构成的四个角中,若有两个角相等,则两直线互相垂直D.在同一平面上,过点A作直线l的垂线,这样的垂线只有一条5.如图,OA⊥OB,∠BOC=50°,OD平分∠AOC,则∠BOD的度数是(A)A.20° B.30° C.40° D.50°6.下列说法错误的是(A)A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∥b,b∥c,c∥d,则a∥dD.同一平面内,若一条直线与两平行线中的一条相交,则它和另一条也相交7.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是(A)A.点B到AC的距离是线段BCB.CD和AB互相垂直C.AC与BC互相垂直D.线段AC的长度是点A到BC的距离8.如图,下列条件中能判定直线l1∥l2的是(C)A.∠1=∠2 B.∠1=∠5C.∠1+∠3=180° D.∠3=∠5二、填空题(每小题4分,共24分)9.如图,已知∠1+∠2=100°,则∠3=130°.10.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是153°.11.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是垂线段最短.12.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是同一平面内,过一点有且只有一条直线与已知直线垂直.13.如图所示,请你填写一个适当的条件:答案不唯一,如:∠FAD=∠FBC,使AD∥BC.14.如图所示,AB与BC被AD所截得的内错角是∠1和∠3;DE与AC被直线AD所截得的内错角是∠2和∠4;图中∠4的内错角是∠5和∠2.三、解答题(共44分)15.(6分)完成下面推理过程:如图,CB平分∠ACD,∠1=∠3.试说明:AB∥CD.解:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).16.(6分)如图,直线AO,BO交于点O,过点P作PC⊥AO于点C,PD⊥BO于点D,画出图形.解:如图,作∠ACP=90°,作∠PDB=90°,则直线PC,PD即为所求.17.(6分)如图,已知∠OEB=130°,∠FOD=25°,OF平分∠EOD,试说明:AB∥CD.解:∵OF平分∠EOD,∠FOD=25°,∴∠EOD=2∠FOD=50°.又∵∠OEB=130°,∴∠OEB+∠EOD=180°.∴AB∥CD(同旁内角互补,两直线平行).18.(8分)如图,已知直线l1,l2,l3被直线l所截,∠α=105°,∠β=75°,∠γ=75°,运用已知条件,你能找出哪两条直线是平行的吗?若能,请写出理由.解:l1∥l2∥l3.理由:∵∠1=∠β=75°,∠α=105°,∴∠α+∠1=180°.∴l1∥l2(同旁内角互补,两直线平行).∵∠β=75°,∠γ=75°,∴∠β=∠γ.∴l2∥l3(内错角相等,两直线平行).∴l1∥l2∥l3(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).19.(8分)如图,AB和CD相交于点O,OD平分∠BOF,OE⊥CD于点O,∠AOC=40°,求∠EOF的度数.解:∵AB,CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°.∵OE⊥CD,∴∠EOD=90°.∴∠EOF=∠EOD+∠DOF=130°.20.(10分)如图,要判定AB∥CD,需要哪些条件?根据是什么?解:①若考虑截线AD,则需∠D+∠DAB=180°,根据是同旁内角互补,两直线平行;②若考虑截线AE,则需∠CEA+∠EAB=180°,根据是同旁内角互补,两直线平行或∠DEA=∠EAB,根据是内错角相等,两直线平行;③若考虑截线AC,则需∠DCA=∠CAB,根据是内错角相等,两直线平行;④若考虑截线FC,则需∠DCF+∠AFC=180°,根据是同旁内角互补,两直线平行或∠DCF=∠BFC,根据是内错角相等,两直线平行;⑤若考虑截线BC,则需∠DCB+∠B=180°,根据是同旁内角互补,两直线平行.5.3 平行线的性质5.3.1 平行线的性质基础题知识点1 平行线的性质平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.如图,直线AB,CD被直线EF所截.∵AB∥CD,∴∠1=∠2,或∠5=∠7,或∠3=∠6,或∠4=∠8(两直线平行,同位角相等);∠4=∠2,或∠5=∠6(两直线平行,内错角相等);∠4+∠6=180°,或∠5+∠2=180°(两直线平行,同旁内角互补).1.(2019·百色)如图,已知a∥b,∠1=58°,则∠2的大小是(C)A.122° B.85° C.58° D.32°2.(2017·六盘水)如图,梯形ABCD中,AB∥CD,∠D=(B)A.120° B.135° C.145° D.155°3.(2018·铜仁)如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是(B)A.30° B.60° C.120° D.61°4.(2019·新疆)如图,AB∥CD,∠A=50°,则∠1的度数是(C)A .40°B .50°C .130°D .150°5.(2018·黔西南)如图,已知AD ∥BC ,∠B =30°,DB 平分∠ADE ,则∠DEC =(B)A .30°B .60°C .90°D .120° 6.如图,EF ∥BC ,AC 平分∠BAF ,∠B =80°.求∠C 的度数.解:∵EF ∥BC ,∴∠BAF +∠B =180°(两直线平行,同旁内角互补). ∵∠B =80°,∴∠BAF =100°. ∵AC 平分∠BAF , ∴∠CAF =12∠BAF =50°.∵EF ∥BC ,∴∠C =∠CAF =50°(两直线平行,内错角相等).知识点2 平行线性质的应用7.某商品的商标可以抽象为如图所示的三条线段,若AB ∥CD ,∠EAB =45°,则∠FDC 的度数是(B)A .30°B .45°C .60°D .75°8.一只因损坏而倾斜的椅子,从背后看到的形状如图所示,其中两组对边的平行关系没有发生变化.若∠1=76°,则∠2的大小是(C)A.76° B.86° C.104° D.114°9.(教材P19例1变式)如图,某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D=100°,已知梯形的两底边AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.解:∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.易错点误用平行线的性质10.已知∠1与∠2是同旁内角,若∠1=60°,则∠2的度数是(D)A.60° B.120°C.60°或120° D.不能确定中档题11.(2018·枣庄)已知直线m∥n,将一块含30°角的直角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上.若∠1=20°,则∠2的度数为(D)A.20° B.30° C.45° D.50°12.(2019·遵义)如图,∠1+∠2=180°,∠3=104°,则∠4的度数是(B)A.74° B.76° C.84° D.86°13.(2018·遵义桐梓县期末)如图,小瑶从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,则∠ABC的度数是(C)A.80° B.90° C.100° D.95°14.(2018·遵义桐梓县期末)如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB =65°,则∠AED′等于(A)A.50° B.55° C.60° D.65°15.(2019·黔东南期末)如图,AD,BE相交于点C,AB∥ED,∠A=∠DCF.若∠B=50°,∠D=20°,则∠DCB的度数为(C)A.20° B.50° C.70° D.90°16.(2019·武汉)如图,点A,B,C,D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,试说明:∠E=∠F.解:∵∠A=∠1,∴AE∥BF.∴∠E=∠2.∵CE∥DF,∴∠2=∠F.∴∠E=∠F.17.如图,已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°(两直线平行,内错角相等).又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°(两直线平行,同旁内角互补).∴∠DCF=50°.∴∠BCD=∠BCF-∠DCF=70°-50°=20°.综合题18.(2018·黔西南兴义市期中)如图,已知∠1=∠2,∠GFA=40°,∠HAQ=15°,∠ACB=70°,AQ平分∠FAC,探索直线BD,GE,AH之间的位置关系.解:∵∠1=∠2,∴AH∥GE.∴∠FAH=∠GFA=40°.∴∠FAQ=∠FAH+∠HAQ=40°+15°=55°.又∵AQ平分∠FAC,∴∠QAC=∠FAQ=55°.∴∠HAC=∠QAC+∠HAQ=55°+15°=70°.∴∠HAC=∠ACB.∴BD∥AH.∴BD∥GE∥AH.小专题(一) 平行线中的拐点问题模型1 M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E作EF∥AB,于是BE,DE就可以作为第三条直线了.【解答】∠BED=∠B+∠D.理由:过点E作EF∥AB,则EF∥CD.∴∠B=∠BEF,∠D=∠DEF.∴∠BED=∠BEF+∠DEF=∠B+∠D.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.拓展平行线间有多个拐点2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?解:(1)∠BEF+∠FGD=∠B+∠EFG+∠D.理由:过点E,F,G分别作EM∥AB,FN∥AB,GH∥AB,由AB∥CD,得AB∥EM∥FN∥GH∥CD.∴∠BEM=∠B,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D.∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D.(2)在图2中,有∠E1+∠E2+∠E3+…+∠E n=∠B+∠F1+∠F2+…+∠F n-1+∠D.如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2 铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?【解答】∠B+∠BED+∠D=360°.理由:过点E作EF∥AB.∵AB∥CD,∴AB∥CD∥EF.∴∠B+∠BEF=180°,∠D+∠DEF=180°.∴∠B+∠BEF+∠D+∠DEF=360°,即∠B+∠BED+∠D=360°.拓展平行线间有多个拐点3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=180度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=360度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=540度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=720度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n-1)度.解:每增加一个角,度数增加180°.小专题(二) 利用平行线的性质求角的度数类型1 直接利用平行线的性质与判定求角度1.(2019·陕西)如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为(C)A.52° B.54° C.64° D.69°2.(2019·天门)如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是(D)A.20° B.25° C.30° D.35°3.(2019·大连)如图,AB∥CD,CB∥DE,∠B=50°,则∠D=130°.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=80°,∴∠AGD=100°.类型2 借助学具的特征求角度5.(2019·安顺)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是(C)A.35° B.45° C.55° D.65°6.(2017·遵义)把一块等腰直角三角尺和直尺按如图所示方式放置,若∠1=30°,则∠2的度数为(D)A.45° B.30° C.20° D.15°类型3 折叠问题中求角度7.(2019·扬州)将一个矩形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=128°.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是65°.类型4 抽象出平行线模型求角度(建模思想)9.(教材P25习题T15变式)如图,∠AOB的两边OA,OB均为平面反光镜,在射线OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行.已知∠OQP=∠AQR,∠AOB=40°,则∠QPB的度数是(B)A.60° B.80° C.100° D.120°10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个长方形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90°.5.3.2 命题、定理、证明基础题知识点1 命题的定义及结构判断一件事情的语句叫做命题,命题常可以写成“如果……那么……”的形式,“如果”后面接的部分是题设,“那么”后面接的部分是结论.1.(2018·遵义期中)下列语句中,不是命题的是(D)A.两点确定一条直线 B.垂线段最短C.同位角相等 D.作∠A的平分线2.(2018·黔西南兴义市月考)下列语句中,是命题的是(A)①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④一个数能被2整除,则它也能被4整除;⑤直角都相等.A.①④⑤ B.①②④C.①②⑤ D.②③④⑤3.命题“两直线平行,内错角相等”的题设是两条平行线被第三条直线所截,结论是内错角相等.4.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.解:(1)如果在平面上有两个点,那么过这两个点确定一条直线.题设:在平面上有两个点;结论:过这两个点确定一条直线.(2)如果两个角是同角的补角,那么它们相等.题设:两个角是同角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.知识点2 真假命题及其证明(1)题设成立,并且结论一定成立的命题叫做真命题;题设成立,不能保证结论一定成立的命题叫做假命题.(2)经过推理证实为正确并可以作为推理的依据的真命题叫做定理.很多情况下,一个命题的正确性需要经过推理,才能做出判断,这个推理的过程叫做证明.5.下列命题中,是真命题的是(B)A.若|x|=2,则x=2B.平行于同一条直线的两条直线平行C.一个锐角与一个钝角的和等于一个平角D.任何一个角都比它的补角小6.下列命题中,是假命题的是(A)A.若|x|=3,则x=3B.垂线段最短C.同一平面内,两条直线的位置关系只有相交和平行两种。

新人教版七年级下册数学知识点整理

新人教版七年级下册数学知识点整理

一、有理数1.有理数的定义和性质;2.整数的加、减、乘、除运算;3.有理数的加、减、乘、除运算;4.有理数的比较大小;5.有理数的绝对值;6.有理数的相反数;7.有理数的乘方运算;8.有理数的乘方与开方运算。

二、平面图形的认识1.几何图形的基本概念;2.三角形的分类与特性;3.平行四边形的性质;4.矩形、正方形、菱形、长方形的性质;5.正多边形的性质;6.直角三角形的性质;7.中位线的性质;8.三角形面积的计算。

三、勾股定理与三角形1.勾股定理的直角三角形判定;2.特殊直角三角形的性质;3.两线相交的性质;4.逆条件的判定;5.根据条件求解实际问题。

四、相似形1.相似三角形的判定;2.相似三角形的性质;3.相似三角形的相似比例与证明;4.根据相似比例求解实际问题;5.相似三角形与勾股定理的关系;6.相似三角形与线段的比例关系。

五、线性方程与线性方程组1.一元一次方程的定义和解;2.一元一次方程的判断与图象;3.一元一次方程解的性质;4.解一元一次方程的步骤及方法;5.列方程解实际问题;6.两个变量的一元一次方程组的解;7.解一元一次方程组的步骤及方法;8.一元一次方程组解实际问题。

六、数据的分析与概率1.列频数标表和频数直方图;2.列频率分布直方图和频率分布折线图;3.数据的整理与统计;4.众数、中位数与平均数的计算;5.数据的误差分析;6.概率的基本概念与计算;7.事件的排列与组合。

以上是《新人教版七年级下册数学知识点整理(1)》,总计1200字以上。

人教版七年级数学下册各章节知识点归纳

人教版七年级数学下册各章节知识点归纳

人教版七年级数学下册各章节知识点归纳第一章:直线与角1. 定义平行线和垂直线的概念,了解直线的性质。

2. 知道角的概念和角的分类,包括锐角、直角、钝角和平角。

3. 掌握角的度量单位:度和弧度。

4. 学习如何用直尺和量角器画角。

第二章:平行线与平面1. 学习如何用直尺和圆规做等分线段、垂线、平行线、垂直平分线和角的平分线。

2. 理解平行线与转角的关系,学会证明平行线与转角的基本性质。

3. 掌握平面的概念,理解平面的性质和表示方法。

4. 学习如何判断平面与平面的位置关系,包括平行、垂直和交叉。

第三章:三角形1. 知道三角形的定义和分类,包括等边三角形、等腰三角形、直角三角形和普通三角形。

2. 掌握三角形内角的和定理和外角的性质。

3. 学习三角形的判定方法,包括SSS、SAS、ASA和AAS。

4. 理解三角形中的全等概念,学会判断和证明两个三角形是否全等。

第四章:四边形1. 知道四边形的定义和分类,包括矩形、正方形、菱形、平行四边形和梯形。

2. 掌握矩形、正方形和菱形的性质,包括边长、对角线、内角和面积的计算方法。

3. 学习平行四边形的性质,包括对角线的关系、内角和、面积和周长的计算方法。

4. 理解梯形的定义和性质,学会计算梯形的面积和周长。

第五章:图形的变化1. 了解图形中的平移、旋转、翻折和对称等基本变化。

2. 学习如何用折纸法进行图形变化。

3. 理解相似图形的概念和性质,学会判断和证明两个图形是否相似。

4. 掌握相似图形的计算方法,包括比例尺和相似比的计算。

第六章:数的运算1. 复习整数的概念和运算法则,包括加法、减法、乘法和除法。

2. 学习分数的概念和运算规则,包括分数的四则运算和混合运算。

3. 掌握百分数的概念和表示方法,包括百分数与分数的转换。

4. 学习用图形表示分数和百分数的大小关系,包括数轴和百分数相应的阶梯图。

第七章:方程与不等式1. 知道方程和不等式的定义和表示方法。

2. 学习一元一次方程和一元一次不等式的解法,包括等式和不等式的性质及运算规则。

七年级数学下册(人教版)全册笔记 超详细

七年级数学下册(人教版)全册笔记 超详细

七年级数学下册(人教版)全册笔记超详细第一章分数1.1 分数的引入- 分数的概念:分数是整数与整数之间的比值关系。

- 分子和分母:分数的分子表示分数的份数,分母表示每份的份数。

- 分数的意义:分数表示一个数比整数大,但比下一个整数小。

1.2 分数的性质- 分数的大小比较:分数的分母相同,分子大的分数大;分数的分子相同,分母小的分数大。

- 分数的约分:分子和分母同时除以一个相同的数,得到的分数与原分数相等。

1.3 分数的加减运算- 分数的加法:分母相同,分子相加;分母不同,通分后分子相加。

- 分数的减法:分母相同,分子相减;分母不同,通分后分子相减。

1.4 分数的乘除运算- 分数的乘法:分子相乘,分母相乘。

- 分数的除法:将除数倒置后变成乘法。

第二章小数2.1 小数的引入- 小数的概念:小数是整数与整数之间的比值关系,但分子是整数,分母是10的幂次。

2.2 小数与分数的关系- 小数转分数:小数的数字部分作为分子,根据小数位数确定分母的幂次。

- 分数转小数:分子除以分母得到小数。

2.3 小数的加减运算- 小数的加法:小数部分相加,整数部分相加。

- 小数的减法:小数部分相减,整数部分相减。

2.4 小数的乘除运算- 小数的乘法:小数部分相乘,整数部分相乘。

- 小数的除法:将被除数的小数点移动与除数对齐,然后按整数除法进行计算。

第三章平方根3.1 平方根的引入- 平方根的概念:平方根是一个数的平方等于另一个数的运算。

3.2 平方根的性质- 平方根的符号:非负数的平方根为正数。

- 平方根的大小比较:对于非负数,平方根越大,被开方数越大。

3.3 平方根的计算- 尝试法计算平方根:通过试探和逼近的方法计算一个数的平方根。

3.4 平方根的运算- 平方根的加减运算:分别计算两个数的平方根,然后进行加减运算。

- 平方根的乘除运算:分别计算两个数的平方根,然后进行乘除运算。

以上是《七年级数学下册(人教版)全册笔记》的内容概要。

部编数学七年级下册专题04《实数》解答题重点题型分类(解析版)含答案

部编数学七年级下册专题04《实数》解答题重点题型分类(解析版)含答案

专题04《实数》解答题重点题型分类专题简介:本份资料专攻《实数》中“化简求值题型”、“利用平方根与立方根的性质解方程题型”、“计算解答题型”、“数轴比较大小题型”、“整数部分与小数部分题型”、“创新题型”重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。

考点1:化简求值题型方法点拨:1.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应(数形结合)。

2.数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.3.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.4.绝对值、平方、算术平方根的双重非负性的应用。

1.若0,0a ab <<,化简a b a --【答案】【分析】由0,0a ab <<判断b >0,再判断绝对值里的数的正负,由绝对值的定义去掉绝对值,再计算即可.【详解】解:∵0,0a ab <<,∴b >0,∴0,0a b b a --<->∴a b a --((a b b a =-----a b b a =-+++=【点睛】本题考查二次根式的化简,正确的对含绝对值号的代数式的化简是解题的关键.分类的标准应按正实数,负实数,零分类考虑.掌握好分类标准,不断加强分类讨论的意识.2.先化简后求值:()()()()222232x y y x y x y x y -----+-,其中x ,y满足30x y +=.【答案】xy -,1-【分析】直接利用整式的混合运算法则以及绝对值、算术平方根的性质得出x ,y 的值,进a a而计算得出答案.【详解】解:原式2222244432x xy y x y xy y =-+-++-xy =-,30x y +=Q ,\3402350x y x y +-=ìí--=î,解得:313x y =ìïí=ïî,\原式1313=-´=-.【点睛】本题主要考查了整式的混合运算,绝对值的非负性,算术平方根,解题的关键是正确掌握相关运算法则.3.先化简,再求值:[(3x +y )(3x ﹣y )﹣2x (y +2x )+(y ﹣2x )2]÷(﹣3x ),其中x 、y满足1y =.【答案】﹣3x +2y ,﹣26【分析】原式中括号利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:原式=(9x 2﹣y 2﹣2xy ﹣4x 2+y 2﹣4xy +4x 2)÷(﹣3x )=(9x 2﹣6xy )÷(﹣3x )=﹣3x +2y ,∵1y =,∴x ﹣8≥0且8﹣x ≥0,解得:x =8,∴11y ==-,∴原式=﹣3×8+2×(﹣1)=﹣24﹣2=﹣26.【点睛】此题考查了整式的混合运算﹣化简求值,以及非负数的性质,熟练掌握相关运算法则是解本题的关键.4.已知多项式A =x 2+2xy ﹣3y 2,B =2x 2﹣3xy +y 2,先化简3A +2B ;再求当x ,y 为有理数且满足x 2y +2y =﹣+17时,3A +2B 的值.【答案】2277,63x y -【分析】根据多项式的加减运算进行化简,进而根据x ,y 为有理数求得,x y 的值,代入求解即可.【详解】Q A =x 2+2xy ﹣3y 2,B =2x 2﹣3xy +y 2,\()()222232323223A B x xy y x xy y +=+-++-2222369462x xy y x xy y =+-+-+2277x y =-()227x y =-Q x 2+2y =﹣,x ,y 为有理数,22x y \+==-,4,5y x \=-=±2225169x y \-=-=\原式7963=´=【点睛】本题考查了整式的加减化简求值,实数的性质,求得,x y 的值是解题的关键.5.(1)化简:a 2+(5a 2﹣2a )﹣2(a 2﹣3a );(2)先化简,再求值:14(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),其中x =23,y =2018.【答案】(1)244a a +;(2)232x x -+,59【分析】(1)去括号后合并同类项即可;(2)利用乘法分配律化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:(1)a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),2225226a a a a a =+--+ ,244a a =+ ;(2)14(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),()()21114282444x x y x y =´-+´+´-++ ,21222x x y x y =-+-++ ,232x x =-+ ,当x =23,y =2018时,原式2232323æö=-+´ç÷èø ,419=-+ ,59= .【点睛】此题主要考查了整式的化简求值和实数运算,正确掌握整式的混合运算法则是解题关键.6.已知数a a【答案】2【分析】直接利用数轴得出a 的取值范围,进而化简得出答案.【详解】解:由数轴得:0.50a -<<,a =121a a a-+++=2.【点睛】本题主要考查了实数的运算与数轴,算术平方根的非负性,化简绝对值等知识点,正确化简各式是解本题的关键.7.实数a 、b 、c 在数轴上的对应点位置如图所示,化简:【答案】3b【详解】解:原式=|-c |+|a -b |+a +b -|b -c |,=c +(-a +b )+a +b -(-b +c ),=c -a +b +a +b +b -c ,=3b .【点睛】此题主要考查了实数的运算,关键是掌握绝对值的性质和二次根式的性质.8.若一个正数的两个平方根分别为1a -,27a +,请先化简再求值:()()222123a a a a -+--+.【答案】25a +,9【分析】根据正数的两个平方根互为相反数可求得a 的值,再对原式去括号合并同类项化简后,代入a 的值求解即可.【详解】解:∵一个正数的两个平方根分别为1a -,27a +,∴(a -1)+(2a +7)=0,解得a =-2.()()222123a a a a -+--+2222223a a a a =-+-++25a =+,当a =-2时,原式()2259=-+=.【点睛】本题主要考查了平方根的性质,整式的加减求值.利用正数的两个平方根互为相反数列等式求值是解题的关键.9.我们可以把根号外的数移到根号内,从而达到化简的目的.例如:(1)请仿照上例化简.①②;(2)请化简【答案】(1);②2)【分析】(1)①根据题意仿照求解即可;②根据题意仿照求解即可;(2)先根据被开方数的非负性判断a 的正负,然后根据题意求解即可.【详解】解:(1)①;②===(2)∵∴10a -³,∴0a <∴==【点睛】本题主要考查了实数的运算,解题的关键在于能够熟练掌握相关知识进行求解.10.数形结合是一种重要的数学方法,如在化简a 时,当a 在数轴上位于原点的右侧时,a a =;当a 在数轴上位于原点时,0a =;当a 在数轴上位于原点的左侧时,a a =-.当a ,b ,c 三个数在数轴上的位置如图所示,试用这种方法解决下列问题,(1)当1a =时,求aa =______,当2b =-时,求bb =______.(2)请根据a ,b ,c 三个数在数轴上的位置,求abca b c ++的值.(3)请根据a ,b ,c 三个数在数轴上的位置,化简:a c c a b b c ++++--.【答案】(1)1;1- ;(2)1-;(3)c -.【分析】(1)当1a =时,点a 在原点右边,由题意可知,此时a a =,代入a a 即可求值;当2b =- 时,点b 在原点左边,由题意可知,此时b b =-,代入bb 即可求值;(2)由图中获取a b c 、、三点的位置信息后,结合题意即可求原式的值;(3)由图获取a b c 、、的正、负信息和三个数绝对值的大小后,就可确定原式中绝对值符号里面式子的值的符号,就可化简原式.【详解】解:(1)当1a =时,111a a ==;当2b =-时,212b b ==--,故答案是:1,-1;(2)由数轴可得:0b < ,0c < ,0a > ,∴abca b c ++=1111a b c a b c--++=--=-;(3)由数轴可知:0b c a <<<且c a b <<,∴000a c a b b c +>+<-<,,,∴a c c a b b c++++--()[()][()]a c c a b b c =++-+-+---a c c ab b c=+---+-c =-.【点睛】本题考查了数轴,解决本题的关键是熟记正数的绝对值是它本身,负数的绝对值是它的相反数.在解第3小问这类题时,需注意以下两点:(1)根据在数轴上表示的数中,左边的总小于右边的,确定好所涉及数的大小关系及每个数的正、负信息(涉及异号两数相加的还要获取它们绝对值的大小关系);(2)根据有理数加、减法法则确定好需化简式子中绝对值符号里的式子的正、负,然后再根据绝对值的代数意义将绝对值符号去掉.考点2:利用平方根与立方根的性质解方程题型方法点拨:解方程时应把平方部分看成一个整体,先根据等式基本性质把方程化为平方部分等什么。

人教部编版初中七年级数学下册必备知识点梳理

人教部编版初中七年级数学下册必备知识点梳理

人教部编版初中七年级数学下册必备知识点梳理代数式初步知识1. 代数式用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

2. 列代数式的几个注意事项(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写。

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号。

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a(4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(5)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .3. 几个重要的代数式(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2(2)若a、b、c是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c。

(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1。

(4)若b>0,则正数是:a2+b ,负数是:-a2-b,非负数是:b2 ,非正数是:-b2 。

有理数1. 有理数(1)凡能写成(a、b都是整数且a≠0)形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

(注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数)(2)有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

(3)自然数是指0和正整数;a>0,则a是正数;a<0,则a是负数;a≥0 ,则a是正数或0(即a是非负数);a≤0,则a是负数或0(即a是非正数)。

初一下数学知识点

初一下数学知识点

初一下学期的数学知识点主要包括以下几个方面:
1. 有理数:有理数是可以表示为两个整数的比的数,包括整数和分数。

学生需要掌握有理数的四则运算,包括加法、减法、乘法和除法。

2. 整式的加减:整式是由常数、变量、加、减、乘等运算符号组成的代数式。

学生需要学会整式的合并同类项和去括号等基本运算。

3. 一元一次方程:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。

学生需要掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等步骤。

4. 图形初步认识:学生需要初步认识线段、角、相交线、平行线等基本图形,了解它们的基本性质和判定方法。

5. 数据的收集与整理:学生需要学会如何收集、整理和描述数据,包括数据的分类、频数、频率、直方图等基本概念和方法。

以上是初一下学期数学的主要知识点,通过学习这些知识点,学生可以打下坚实的数学基础,为后续的数学学习做好准备。

人教版七年级下册数学笔记整理

人教版七年级下册数学笔记整理

级下册数学笔记整理级数学知识点归纳(上下册)基础教育热门TOP1000开通VIP低至0。

3元、天级数学知识点归纳(上下册)第一章有理数1、1正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a不一定是负数,+a也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0a是正数;a≥0a是正数或0a是非负数;a<0a是负数;a≤0a是负数或0a是非正数。

1、2有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:有理数⎩⎩⎩正有理数{正整数正分数零负有理数{负整数负分数有理数⎩⎩⎩整数⎩⎩⎩正整数零负整数分数{正分数负分数(4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a是正数时,则数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度;(6)两点关于原点对称:一般地,设a是正数,则在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a的相反数是-a;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a、b互为相反数a+b=0;(即相反数之和为0)(11)a、b互为相反数或;(即相反数之商为-1)(12)a、b互为相反数,a,=,b,;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a的点到原点的距离叫做a的绝对值;(,a,≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:∣∣a∣∣=⎩⎩⎩a(a>0)0(a=0)−a(a<0)(16)a∣∣a∣∣=1⇔a>0;a∣∣a∣∣=−1⇔a<0;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

新人教版七年级下册数学知识点整理

新人教版七年级下册数学知识点整理

新人教版七年级下册数学知识点整理的两个角叫做同位角,它们的度数相等。

②在两条直线(被截线)的异侧,都在第三条直线(截线)的同一侧,这样的两个角叫做内错角,它们的度数相等。

③在两条直线(被截线)的同一侧,都在第三条直线(截线)的同一侧,这样的两个角叫做同旁内角,它们的度数互补。

7、平移是指在平面内,将一个图形沿着某个方向按照某个距离移动,移动后的图形与原图形形状、大小、方向都相同。

平移的性质:平移不改变图形的形状、大小和方向,只改变图形的位置。

本文介绍了平面几何中的角度和平行线的相关概念和性质。

其中,角度分为同位角、内错角和同旁内角,平行线的判定包括同位角相等、内错角相等、同旁内角互补和平行于同一条直线的两条直线互相平行。

此外,文章还介绍了命题和定理的概念,以及平移变换的性质。

最后,文章对实数进行了分类,包括按定义分类和按性质符号分类。

科学记数法是一种将数表示为(1≤<10,n为整数)形式的记数方法。

平面直角坐标系由有序数对和两条互相垂直且有公共原点的数轴组成。

其中,有序数对是有顺序的两个数a与b组成的数对,记做(a,b)。

横轴是水平的数轴,也称为x轴或横轴;纵轴是竖直的数轴,也称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

坐标轴上的点不在任何一个象限内,而两条坐标轴将平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。

坐标轴上的点有特殊的坐标特点,如x轴正半轴上的点的坐标为(a,0),y轴负半轴上的点的坐标为(0,-b)。

点P(a,b)到x 轴的距离是|b|,到y轴的距离是|a|。

对称点的坐标特点包括:关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

部编人教版七年级下册数学5.2.2第1课时《平行线的判定2》教案

部编人教版七年级下册数学5.2.2第1课时《平行线的判定2》教案

第1课时平行线的判定教学目标1、通过操作、观察、想象、推理、交流等活动推演出平行线的判定方法;2、会运用转化的思想将新问题转化为已知或者已解决的问题,体会数学的转化思维;3、会运用数学语言描述并证明平行线的判定方法,认识证明的必要性和证明过程的严密性,深刻理解直线平行的判定方法;4、灵活应用判定方法进行直线是否平行或者其它结论的推理判断。

重点:理解直线平行的判定方法,并会根据判定方法进行简单的推理应用。

难点:平行线判定方法的灵活运用和其推导过程中的转化思想的认识。

教学过程一、创设情境,引入课题一个长方形工件,如果需要检验它是否符合设计要求,除了度量它的长和宽的尺寸外,还要检查各面的长宽是否分别平行,而这些实际问题如果根据平行线的定义去判断是不可能的,但又如何判断它们是否平行呢?二、目标导学,探索新知目标导学1:平行的判定方法活动1:如图,三根木条相交成∠1,∠2,固定木条b、c,转动木条a , 观察∠1,∠2满足什么条件时直线a与b平行。

直线a和b不平行直线a∥b得出结论:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.【教学备注】【教师提示】引导学生去发现,两直线之所以平行,是因为同位角相等,进而引导学生用文字述叙概括出判定两直线平行的方法。

活动2图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程。

由此你又得出怎样的平行判定?结论:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.活动3下图中,如果∠4+∠7=180°,能得出AB∥CD?结论:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行学习目标2:平行判定方法的灵活应用活动4 学生讨论完成下面题目。

如图,∠A= 55 °,∠B=125 °,AD与BC平行吗?AB与CD平行吗?为什么?学习目标3:平行判定方法在生活中的应用应用1:在如图所示的图中,甲从A处沿东偏南55°方向行走,乙从B处沿东偏南35°方向行走,(1)他们所行道路可能相交吗?(2)当乙从B处沿什么方向行走,他们所行道路不相交?请说明其中的理由.应用2 如图,有一座山,想从山中开凿一条隧道直通甲、乙两地;在甲地侧得乙为北偏东41.5º方向,如果甲、乙两地同时开工,那么从乙地出发应按北偏西【教师提示】引导学生利用判定1:同位角相等,两直线平行和对顶角相等得出结论。

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结

Ⅶ、假设a>0,b<0,a+b>0,那么a、-a、b、-b的大小关系是〔〕A、-a<b<-b<aB、-a<-b<b<aC、-b<a<-a<bD、-b<-a<a<bⅧ、当-1<a<0时,那么有〔〕A、1/a>aB、∣-a3∣>-a3C、-a>a2D、a3<-a2Ⅸ、如果x>2,那么以下四个式子中:①x2>2x②xy>2y③2x>x④1/x<1/2正确的个数是〔〕A、4个B、3个C、2个D、1个Ⅹ、假设x+y>x-y,y-x>y,那么以下式子正确的选项是〔〕A、x+y>0B、y-x<0C、xy<0D、y/x>0Ⅺ、如果关于x的方程x+2m-3=3x+7的解为不大于2的非负数,那么〔〕A、m=6B、m等于5,6,7C、5<m<7D、5≤m≤7Ⅻ、-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对任意的a、b,对应的代数式的值最大的是〔〕A、a+bB、a-bC、a+b2D、a2+b4、运用不等式的性质比较大小:例:ⅰ、制作某产品有两种用料方案:方案1是用5X A型钢板,7X B型钢板;方案2是用3X A型钢板,9X B型钢板。

A型钢板比B型钢板的面积大,从省料的角度考虑,应选哪种方案?〔用求差法比较大小〕ⅱ、设a>2,b>3,c>6,令M=abc,N=ab+bc+ac,那么M、N的大小关系是〔〕<提示:用作商比较法>A、M>NB、M<NC、M=ND、以上三种情况都有可能ⅲ、甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条〔a+b〕/2的价格把鱼全部卖出去,结果发现亏了钱,原因是〔〕A、a>bB、a<bC、a=bD、与a、b的大小无关ⅳ、a、b、c、d都是正实数,且a/b<c/d,比较b/(a+b)和d/(c+d)的大小。

〔提示:用求倒数法〕5、不等式与方程、方程组的结合:2x+y=1+3m例:ⅰ、方程组满足x+y<0,那么〔〕A、m>-1B、m>1C、m<-1D、m<1x+2y=1-mⅱ、方程x+2k=4(x+k)+1的解是正数,求k的取值X围。

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)

第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。

(反之,若两条直线只有一个交点,则这两条直线相交。

)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。

邻补角互补。

要注意区分互为邻补角与互为补角的异同。

对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。

对顶角相等。

注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。

反过来亦成立。

②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。

例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。

()相等的两个角互为对顶角。

()2、垂直是两直线相交的特殊情况。

注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。

垂足:两条互相垂直的直线的交点叫垂足。

垂直时,一定要用直角符号表示出来。

过一点有且只有一条直线与已知直线垂直。

(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。

垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。

垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。

垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。

(或说直角三角形中,斜边大于直角边。

)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。

注:距离指的是垂线段的长度,而不是这条垂线段的本身。

所以,如果在判断时,若没有“长度”两字,则是错误的。

4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。

注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。

人教版七年级下册数学知识点汇总

人教版七年级下册数学知识点汇总

一、相交线与平行线1. 相交线•邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

邻补角互补。

•对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。

对顶角相等。

•垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

垂线的性质包括:过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短。

2. 平行线•定义:在同一平面内,永不相交的两条直线叫做平行线。

•平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论是,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

•平行线的性质:o两直线平行,同位角相等。

o两直线平行,内错角相等。

o两直线平行,同旁内角互补。

•平行线的判定:o同位角相等,两直线平行。

o内错角相等,两直线平行。

o同旁内角互补,两直线平行。

3. 平移•定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移不改变物体的形状和大小。

•对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

连接各组对应点的线段平行且相等。

二、平面直角坐标系•有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。

•平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

•坐标:对于平面内任一点P,过P分别向x轴、y轴作垂线,垂足分别在x 轴、y轴上,对应的数a、b分别叫点P的横坐标和纵坐标。

三、三角形•三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

•高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

•中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(完整版)人教版七年级下册数学知识点总结大全

(完整版)人教版七年级下册数学知识点总结大全

(完整版)人教版七年级下册数学知识点总结大全直角三角形- 定义:有一个角为直角(90度)的三角形。

- 勾股定理:直角三角形斜边的平方等于两腿的平方和。

- 特殊直角三角形:45-45-90度三角形和30-60-90度三角形。

圆- 定义:平面上到一个固定点的距离等于定长的点的集合。

- 元素:圆心、半径、直径、弦、弧、扇形、切线等。

- 四大关系:- 半径和弦垂直- 弦长的一半与半径的乘积等于斜边的一半与半径的乘积- 外接角等于弧对应的圆心角- 弧度与角度之间的换算关系比例与相似- 定义:表示两个或多个有对应关系的数之间的比值关系。

- 比例定理:若a/b = c/d,则a、b、c、d成比例。

- 三线一比例:三角形内部的三条连线和三角形外部的三条平行线与三角形的腰成比例。

- 相似三角形:对应角相等,对应边成比例的三角形。

科学计数法- 定义:一种简便表示极大或极小数的方法。

- 标准形式:数字部分在1到9之间,指数为整数。

- 运算法则:运算时先计算系数的乘除,再计算指数的加减。

二次根式- 定义:含有根号并且被根号包围的代数式。

- 平方根:一个数的平方等于该数。

- 二次根式的运算:相加减后化简、乘除法则。

分式- 定义:由整数与整数或整数代数式的比例组成的式子。

- 分式的性质:分母不能等于0,分子分母互质,分子分母都是整数等。

- 分式的运算:加减乘除、化简、倒数。

线性方程- 定义:等式中含有未知数的方程。

- 解方程:找到使等式成立的未知数的值。

- 一次方程:未知数的次数为1。

- 解一元一次方程:转化为等价方程,通过逆向运算得到未知数的值。

平行线与直线的交角- 定义:两条平行线与直线的交角为对应角或同位角。

- 绳分线定理:直线与两平行线相交时,对应角相等,内错角之和等于180度。

随机事件与概率- 定义:随机试验的可能结果称为随机事件。

- 基本事件与必然事件:基本事件是随机试验的单个结果,必然事件是一定发生的事件。

- 概率的计算:概率等于有利事件数除以可能事件总数。

七下数学人教版知识点总结

七下数学人教版知识点总结

七下数学人教版知识点总结
七年级的数学学习是初中数学教育的一个重要阶段,同时也是中学数学知识的基础。

在七年级数学学习中,我们将从数的基本概念、整数、分数、代数、几何等方面进行学习。

下面,我将对七下数学人教版的知识点进行总结。

一、数的基本概念
1. 自然数、整数和有理数的概念及它们的互相转化。

2. 正数、零和负数的概念。

3. 分数的概念、分数的运算及其应用。

二、整数
1. 整数的加减法、乘法及其性质,以及用整数解决实际问题的方法。

2. 大于、小于、不大于、不小于、相等和不等的符号。

三、分数
1. 分数的加减、乘除及其性质。

2. 分数的化简、分数的比大小及分数的应用。

四、代数
1. 代数运算基本性质,如交换律、结合律和分配律。

2. 一元一次方程的解法及其应用。

五、几何
1. 角的概念及分类,如钝角、直角和锐角。

2. 线段、射线、直线和平面的概念。

3. 三角形、四边形和多边形的概念及分类。

4. 探究勾股定理的条件和应用。

六、统计与概率
1. 数据的分类、整理和统计。

2. 概率的基本概念及其计算方法。

以上为七下数学人教版的知识点总结,这些知识点是本学年数学教学的重点。

同时,这些知识点的学习还需要我们进行大量的练习,才能够真正掌握,从而更好地应用到实际生活中。

人教版初一七年级下册数学知识点汇总讲解

人教版初一七年级下册数学知识点汇总讲解

人教版初一七年级下册数学知识点汇总讲解
1. 相交线与平行线:了解对顶角、邻补角的概念,学习平行线的性质和判定方法。

2. 实数:认识无理数,掌握实数的分类、大小比较以及运算规则。

3. 平面直角坐标系:学习用坐标表示点的位置,以及坐标中四个象限的特征。

4. 二元一次方程组:了解二元一次方程组的概念,学会解二元一次方程组的方法,如代入消元法和加减消元法。

5. 不等式与不等式组:学习不等式的性质,会解一元一次不等式和不等式组,并能在数轴上表示解集。

6. 数据的收集、整理与描述:掌握数据收集的方法,学习用统计图(如条形图、扇形图、直方图等)来描述数据。

这些知识点是初一七年级下册数学的核心内容,理解和掌握它们对于后续的数学学习非常重要。

在学习过程中,可以通过做练习题、与同学讨论以及请教老师等方式来加深对知识点的理解。

人教部编版七年级下册数学《平移》ppt课件

人教部编版七年级下册数学《平移》ppt课件

位置,除了对应线段平行且相等外,你还发现了什么
现象?
P A
R
Q
A
A'
A
BC的中点M平 移B到什么地方 B'
去了?
B M
B
M`
C
C
C'
C AA'//__B_B_'//_A_C_C_'
S
AA'=_B_B__' =_C_C__'
B
C
图形平移的基本性质:
① 平移的两个图形形状和大小完全相同
②对应线段平行(或在同一直
与数量关系.
F
AC=DF AC//DF
Q
规律发现 1.平移后的图形与原来的图形的对应线段平行 且相等;
2.在平移过程中,对应线段也可能在一条直线 上,如BC与EF;
3.平移后图形的形状与大小都没有变化;
4.平移的方向是直尺PQ倾斜放置的方向,平移 的距离是BE的长度.
问题:三角形ABC沿着PQ的方向平移到 △A`B`C`的
工厂里传输带上的物品
归纳总结 1.图形的平移不一定是水平的,也不一定是竖直的. 2.图形的平移由移动的方向和距离决定.
试一试:如图,平移三角形ABC,得到△A′B′C′. 分
析两个图形中的对应关系.
点 A、B、C的对应点分别是A'、B'、C'; 线段AB、AC、BC的对应线段分别是A'B'、A'C'、B'C';
线上)且相等;
A
D
几何符号语言:
B
E
∵三角形ABC平移得到三角
C A
F D
形DEF ∴AB∥DE,AC∥DF,

人教版七年级下册数学课本知识点归纳完整版(最新最全)

人教版七年级下册数学课本知识点归纳完整版(最新最全)

人教版七年级下册数学课本知识点归纳第五章相交线与平行线一、相交线两条直线相交,形成4个角。

1.邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。

具有这种关系的两个角,互为邻补角。

如:∠1、∠2。

2.对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。

如:∠1、∠3。

3.对顶角相等。

二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

3.垂足:两条垂线的交点叫垂足。

4.垂线特点:过一点有且只有一条直线与已知直线垂直。

5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。

1.同位角:在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。

如:∠1和∠5。

2.内错角:在在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。

如:∠3和∠5。

3.同旁内角:在在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。

如:∠3和∠6。

四、平行线(一) 平行线1.平行:两条直线不相交。

互相平行的两条直线,互为平行线。

a∥b(在同一平面内,不相交的两条直线叫做平行线。

)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.平行公理推论:①平行于同一直线的两条直线互相平行。

②在同一平面内,垂直于同一直线的两条直线互相平行。

(二)平行线的判定:1.同位角相等,两直线平行。

2.内错角相等,两直线平行。

3.同旁内角互补,两直线平行。

(三)平行线的性质1.两条平行线被第三条直线所截,同位角相等。

2.两条平行线被第三条直线所截,内错角相等。

3.两条平行线被第三条直线所截,同旁内角互补。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教部编版初中七年级数学下册重点知识总结
(一)相交线
两条直线相交,形成4个角。

1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

角:两个角有一条公共边,它们的另一条边互为反向延长线。

具有这种关系的两个角,互为邻补角。

如:∠1、∠2。

2、对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。

如:∠1、∠3。

3、对顶角相等。

(二)垂线
1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

3.垂足:两条垂线的交点叫垂足。

4.垂线特点:过一点有且只有一条直线与已知直线垂直。

5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

(三)内错角、同旁内角
两条直线被第三条直线所截形成8个角。

1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。

如:∠1和∠5。

2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。

如:∠3和∠5。

3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。

如:∠3和∠6。

5.2 平行线及其判定
(一) 平行线
1.平行:两条直线不相交。

互相平行的两条直线,互为平行线。

a∥b(在同一平面内,不相交的两条直线叫做平行线。


2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.平行公理推论:平行于同一直线的两条直线互相平行。

如果b//a,c//a,那么b//c
(二)平行线的判定:
1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。

(同位角相等,两直线平行)
2. 两条平行线被第三条直线所截,如果内错角相等,那么这两条直线平行。

(内错角相等,两直线平行)
3. 两条平行线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

(同旁内角互补,两直线平行)推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

5.3 平行线的性质
(一)平行线的性质
1.两条平行线被第三条直线所截,同位角相等。

(两直线平行,同位角相等)
2.两条平行线被第三条直线所截,内错角相等。

(两直线平行,内错角相等)
3.两条平行线被第三条直线所截,同旁内角互补。

(两直线平行,同旁内角相等)
(二)命题、定理、证明
1.命题的概念:判断一件事情的语句,叫做命题。

2.命题的组成:每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。

命题
常写成“如果……,那么……”的形式。

具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

3.真命题:正确的命题,题设成立,结论一定成立。

4.假命题:错误的命题,题设成立,不能保证结论一定成立。

5.定理:经过推理证实得到的真命题。

(定理可以做为继续推理的依据)
6.证明:推理的过程叫做证明。

5.4 平移
1.平移:平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换(简称平移),平移不改变物体的形状和大小。

2.平移的性质
①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。

连接各组对应点的线段平行且相等。

相关文档
最新文档